18 Su r g ic a l D iS e a Se S iSSN 2413-6077. iJMMr 2022 Vol. 8 issue 1 DOI 10.11603/ijmmr.2413-6077.2022.1.13098 ANTIBACTERIAL THERAPY FOR PATIENTS WITH BURN INJURIES S. Y. Zaporozhan, *D. B. Fira, O. V. Pokryshko I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE Background. Treatment of burn wound infection is an urgent issue of contemporary medicine, including surgery, combustiology and microbiology. It is established that infectious complications are a challenge for burn patients. In the course of wound reparation, infectious complications may worsen. Along with surgical treatment, mechanical removal of pathogens from burn wounds is also important as well as antimicrobials for patients with severe burns. Objective. The aim of the study was to define the most common pathogens of purulent-inflammatory complications of burn wounds and their susceptibility to antibiotics. Methods. The study involved patients treated at the Center of Thermal Trauma and Plastic Surgery of Lviv I-Territorial Medical Association, the unit of St. Luke Hospital of Lviv. Collection of material from wound secretions of burn wounds was performed with sterile swab. The study was performed before prescription of antibiotics, at the end of the first and second weeks of the disease. The pathogens were isolated and identified. Antibiotic susceptibility was studied using standard research methods. The obtained results were analyzed by means of the software package of the microbiological monitoring system WHONET 5.2 (WHO Collaborating Centre for Surveillance of Antimicrobial Resistance) and the program Microsoft Office Excel 2007. Results. The study of smears from burn wounds proved that 240 strains of gram-positive and gram-negative microorganisms that caused purulent-inflammatory processes were isolated. Among the selected causative agents of a burn wound complicated by a purulent-inflammatory process, gram-negative bacteria predominated (60.8% of all detected microorganisms). Gram-positive flora of S. epidermidis and S. aureus were more common in the wound surface during the first week of the disease. In most patients with severe burns, bacterial associations were isolated from the wound surface (66.3%) in two and three weeks, and in three weeks Candida spp. were isolated. Non-fermenting rods A. baumannii and P. aeruginosa dominated among the gram-negative flora isolated from the wound surface of burns. The analysis of susceptibility of microorganisms isolated from patients with burns to antibiotics showed that almost all of the cultures were polyresistant. Conclusions. Gram-negative microorganisms, strains of non-fermenting bacteria predominated among the pathogens isolated from burn wounds complicated by purulent inflammation; Staphylococcus aureus prevailed among the gram-positive ones. The most significant clinical strains were highly polyresistant to antibiotics. KEYWORDS: smears from burn wounds; strains of microorganisms; antibiotics; resistance. *Corresponding author: Dmytro Fira, Associate Professor, I. Horbachevsky Ternopil National Medical University, Ternopil, 46002, Ukraine. E-mail: firadb@tdmu.edu.ua International Journal of Medicine and Medical Research 2022, Volume 8, Issue 1, p. 18-24 copyright © 2022, TNMU, All Rights Reserved Introduction According to the WHO, injuries, burns, poisonings, etc. are the third in the structure of human mortality. Every year about 840 million people suffer from burns and about 180 thousand people die in the world. In Ukraine, more than 100,000 cases of burns are registered annually, and 60-80% of those burned have superficial burns of the skin of II­III A degree, which do not require surgical intervention [1, 2, 3, 4]. Treatment of burn wound infection is an urgent issue of contemporary medicine, in particular, surgery and combustiology. Accor- ding to literature [5, 6], despite the constant improvement of wound healing methods, the frequency of its infectious complications in surgery is 30%. Traditional remedies and treat- ments for infected burns are often ineffective. This necessitates further search for new and improvement of existing medications and treatment that stimulate reparative processes in infected wounds, as well as in-depth study of the mechanisms of action of antibiotics [7]. Today, there is a wide range of medications for conservative treatment of burns, but none of them is sufficiently effective. It is established that infectious complications are a challenge for patients with burns. Accor- ding to the literature, their frequency correlates with the depth and area of burns. Complications S. Y. Zaporozhan et al. 19 Su r g ic a l D iS e a Se S iSSN 2413-6077. iJMMr 2022 Vol. 8 issue 1 S. Y. Zaporozhan et al. in patients with burns are caused by disturbance of barrier function of the skin, reduction of its protective properties due to the action of traumatic factors and suppression of the immune system of these patients [8, 9, 10]. The most common cause of patient mortality is infection, which accounts for about 76.3% of burn mortality. In cases of thermal damage, coagulation necrosis of the epidermis, of va- rious layers of the dermis and adjacent tissues develops that creates favorable conditions for massive microbial invasion. Infectious compli- cations worsen the course of reparative proces- ses in the wound. In patients with severe burns antimicrobial therapy is important together with surgical treatment aimed at mechanical removal of pathogens from burn wounds [11, 12, 13]. The aim of the study was to define the most common pathogens of purulent­inflammatory complications of burn wounds and their susceptibility to antibiotics. Methods The study involved patients treated at the Center of Thermal Trauma and Plastic Surgery of Lviv I-Territorial Medical Association, the unit of St. Luke’s Hospital of Lviv. Collection of ma- terial from the wound secretions of burn wounds was performed with sterile swab. burn wounds in all patients were studied before prescription of antibiotics, at the end of the first and second weeks of the disease, which inclu- ded isolation of pathogens, their identification by morphological, cultural and biochemical properties. Antibiotic susceptibility was studied using standard research methods according to the Order of the Ministry of Health of Ukraine No. 167 “On approval of guidelines for Deter- mination of susceptibility of microorganisms to antibac terials”, dated April 05, 2007 and the recommendations of the International Com- mittee of Clinical Standards (NCCLS, 2002). Statistical processing and analysis of the results was performed using the software package of the microbiological monitoring system WHONET 5.2 (WHO Collaborating Centre for Surveillance of Antimicrobial Resis- tance) and Microsoft Office Excel 2007 [14]. Results The results of the studies showed that in patients with burn trauma during the first week of the disease gram­positive flora of S. epi- dermidis and S. aureus were more common according to microbiological examination of smears from wound surfaces. Candida spp. were isolated in patients with severe burns on the third week of the disease, which might have been associated with immunosuppression due to thermal trauma and development of anti- bacterial resistance [15]. Depending on this, susceptibility of the main pathogens to anti- bacterials was evidenced. The study found that S. aureus showed high resistance to ceftriaxone (78-80%) and carbapenems (70-73%), high susceptibility to fluoroquinolones, including ciprofloxacin (71.5%) and levofloxacin (67.5%). P. aeruginosa strains were susceptible to carba- penems, in particular to meropenem (80 %) and imipenem (95%). On day 18-20 from the moment of the injury, Pseudomonas aeruginosa was isolated from the wound in 65-70% of patients. Strains of Pseudo- monas aeruginosa were moderately resistant, retaining susceptibility to carbapenems. As a result of microbiological examination of smears from burn wounds, etiologically sig- ni ficant pathogens of infectious complications in patients with dermal burns were isolated. A total of 240 strains of gram-positive and gram- negative microorganisms were isolated from burn wound surfaces, which led to development of purulent­inflammatory processes. On the seventh day after burns in 62.3% of cases, microorganisms were isolated from patients in monoculture, and only 37.7% – in associations. In two and three weeks of the disease, most patients with severe burns had bacterial associations isolated from the wound surface (66.3%), and on the third week of the disease Candida spp. were isolated due to possible immunosuppression on the back- ground of thermal trauma. Acinetobacter baumannii (30.0%), Pseudo- monas aeruginosa (20.4%) and Staphylococcus aureus (15%) are leading in the spectrum of isolated clinical strains (Fig. 1). Most often, they formed associations from the second week of the disease. Among the isolated pathogens of purulent- inflammatory complications of burn wounds, gram-negative bacteria predominated (60.8 % of all isolated microorganisms) (Fig. 2). Non-fermenting rods A. baumannii and P. aeruginosa (48.3% and 34.9%, respectively) dominated in the gram­negative flora isolated from the burn wound surface; they were most often isolated after the first week of the disease. In contrast, Enterobacteria accounted for only 17.1 % (Fig. 3); Escherichia coli (8.7 % of isolated 20 Su r g ic a l D iS e a Se S iSSN 2413-6077. iJMMr 2022 Vol. 8 issue 1 Fig. 3. Species of gram-negative bacteria isolated from burn surfaces,% Fig. 1. The range of microorganisms isolated from burn surfaces,%. Fig. 2. The range of microorganisms isolated from purulent­inflammatory surfaces of burn wounds,%. 0 5 10 15 20 25 30 15,0 11,6 4,6 2,1 2,5 1,3 5,4 1,7 1,3 0,4 1,6 30,0 20,4 2,1 60,8 % 37,1 % 2,1 % gram-negative bacteria gram-positive bacteria yeast fungi 8,7 % 2,7 % 2,0 % 0,7 % 2,7 % 48,3 % 34,9 % E. coli K. pneumoniae P. mirabilis P. vulgaris E. cloacae A. baumannii P. aeruginosa S. Y. Zaporozhan et al. 21 Su r g ic a l D iS e a Se S iSSN 2413-6077. iJMMr 2022 Vol. 8 issue 1 S. Y. Zaporozhan et al. gram-negative rods), Enterobacter cloacae (2.7 %), Klebsiella pneumoniae (2.7 %), Proteus mirabilis (2.0%), Proteus vulgaris (0.7%) were isolated among them. Gram-positive cocci were isolated 1.6 times less (37.1%) (Fig. 4). Staphylococci were predominant among them. They accounted for 75 % of isolated strains of cocci, and cultures of S. aureus (40.4% of all identified strains of cocci) were most often isolated among them. Coagu- lase-negative cocci were represented by cultu- res of S. epidermidis and S. haemolyticus (31.5 % and 12.4%, respectively). Enterococci were represented by strains of Enterococcus faecalis and Enterococcus faecium, which accounted for 10.1 % of the coccal flora, respectively. Strep- tococcus pyogenes was isolated only in 5.6%. Enterococci were more often isolated in the first week of the disease, staphylococci in the following weeks. Candida spp. accounted for only 2.1 % of all isolated microorganisms. The analysis of the susceptibility of micro- organisms isolated from patients with burn disease to antibiotics showed that these clinical strains had high resistance to antibacterials, especially those that most often infect the wound surfaces. Almost all isolated strains were polyresistant. The identified strains of P. aeruginosa were low susceptible to cephalosporins, in particular: cefepime (92.3%), ceftriaxone (86.5%), cefta- zidime (80.8%), cefotaxime (69.2%). Almost half of the isolated cultures of Pseudomonas aeruginosa were resistant to aminoglycosides: to gentamicin – in 46.2% cases, to amikacin – 42.3 %. Meropenem and imipenem showed also low effectiveness, although they were reserve antibiotics. Clinical strains of P. aeruginosa showed resistance in 51.9 % and 82.7 % cases, respectively. The most effective antimicrobial against Pseudomonas aeruginosa was doxycyc- line. Resistance to it was only 19.2 %. Like P. aeruginosa strains, isolated cultures of A. baumannii had a high level of antibiotic resistance. Cephalosporin antibiotics, in parti- cular ceftazidime (97.2 %), ceftriaxone (95.8 %), cefepime (91.7 %), cefotaxime (86.1 %), were ineffective against acinetobacteria. Strains of A. baumannii to gentamicin and amikacin (73.6 % and 79.2 %, respectively) were highly resistant. They were also low susceptible to fluoroquinolones, i.e.: levofloxacin (76.4 %), ciprofloxacin (68.1%), gatifloxacin (63.9%). Meropenem and imipenem were more effective than other groups of antibacterials against acinetobacteria, only in 31.9% and 40.2% of resistant cultures of A. baumannii. Isolated cultures of S. aureus were resistant to oxacillin (63.9%) that indicated methicillin resistance of these strains, as well as cepha- losporin antibiotics, in particular: cefepime, ceftazidime, ceftriaxone (from 19.4 % to 33.3 %, respectively). Staphylococcus aureus was highly resistant to azithromycin (66.7 %) and linco- samides such as clindamycin (72.2 %) and doxycycline (52.8 %). Fluoroquinolones were also low effective, i.e.: ciprofloxacin (58.3 %) and Fig. 4. Species of gram-positive bacteria isolated from burn surfaces,% 40,4 % 31,5 % 12,4 % 5,6 % 6,7 % 3,4 % S. aureus S. epidermidis S. haemolyticus S. pyogenes E. faecalis E. faecium 22 Su r g ic a l D iS e a Se S iSSN 2413-6077. iJMMr 2022 Vol. 8 issue 1 levofloxacin (25.0­44.4 %), as well as aminogly­ cosamides: gentamicin (30.6 %) and amikacin (38.9 %). In contrast to non-fermenting bacteria, clinical strains of S. aureus were the most sus- ceptible to carbapenems: meropenem and imipenem resistant cultures of Staphylococcus aureus were only 8.3% and 5.6% of strains. Discussion Burns destroy the first barrier of human innate immunity that protect tissue from the colonised external world, and microorganisms can easily spread and infiltrate necrotic tissue [15, 16]. Our data confirmed many published studies, which have reported gram-negative bacteria as the commonest microorganisms that colonize burn wounds [17]. Initial burn wounds are sterile. However, within a few days, Gram-positive strains, such as Staphylococcus aureus, coagulase-negative Staphylococcus, and Streptococcus spp., start to colonize the wounds from deeper structures (hair follicles and glands). In the second phase, a Gram-negative shift takes place, where P. aeruginosa, E. coli, and Proteus are the predominant isolates [18, 19, 20]. If left untreated, this colonization can lead to infection [20, 21]. Our data confirmed the steps of infectious process developing on burn wounds. The study had established that S. aureus among gram-positive microbes and P. aeruginosa among gram-negative microbes were the most frequent microbial isolates in our patients(40.4% and 34.9% respectively). Similar observation was seen in the study by Tsolakidis S. et. al. [18]. In our study, we found a variable percentage of antibiotic resistance among the cultured bacteria. The analysis of the studied isolates susceptibility to antibiotics showed that most often infecting the wound surfaces clinical strains had high resistance to antibacterials. Almost all isolated bacteria were multiresistant. 63.9% of identified S. aureus belong to MRSA staphylococci. This had less incidence with other studies on MRSA in burn patients by Mandal [21]. Isolates of S. aureus (more than 70 % of all of them) were found as highly resistant to cephalosporins, including cefepime, ceftazidime, ceftriaxone, to lincosamides, such as clindamycin (72.2 %) and doxycycline (52.8 %). S. aureus was highly resistant to fluo­ roquinolones, i.e.: ciprofloxacin (58.3 %) and levofloxacin (25.0­44.4 %), as well as aminogly­ cosamides: gentamicin (30.6 %) and amikacin (38.9 %). However, isolates of S. aureus were susceptible to fluoroquinolones, including cipro floxacin (71.5 %) and levofloxacin (67.5%). In contrast to non-fermenting bacteria, clinical strains of S. aureus were the most susceptible to carbapenems: meropenem and imipenem; only 8.3 % and 5.6 % of strains of S. aureus were resistant to these antibiotics. P. aeruginosa strains as well as S. aureus were resistant to cephalosporins, in particular: cefepime (92.3 %), ceftriaxone (86.5 %), cefta- zi dime (80.8 %), cefotaxime (69.2 %); to ami- noglycosides: gentamicin (46.2 %), amikacin (42.3 %); to meropenem and imipenem (almost half of the isolated cultures of P. aeruginosa). and moderate resistant to carbapenems, in particular: to meropenem (80 %) and imipenem (95 %). The most resistant antibiotics found in most of studies were cephalosporins and quinolones [7, 8, 23, 24, 25]. In contrast, some authors reported no isolated bacteria found resistant to gentamicin [24], or susceptible to aminoglycosides [25]. Conclusions It was established that among the pathogens isolated from complicated purulent­inflam ma­ tory burn wounds, gram-negative micro orga- nisms of non-fermenting bacteria predominated and Staphylococcus aureus among gram-po- sitive ones. The most significant clinical strains were highly multiresistant to antibiotics. Funding This research received no external funding. Conflict of interest The authors declare no conflict of interests in this study. Author’s Contributions Stepan Zaporozhan – conceptualization, writing – original draft; Dmytro Fira – formal analysis, writing – original draft, writing – reviewing and editing; Olena Pokryshko – data curation, writing – reviewing and editing. S. Y. Zaporozhan et al. 23 Su r g ic a l D iS e a Se S iSSN 2413-6077. iJMMr 2022 Vol. 8 issue 1 S. Y. Zaporozhan et al. АНТИБАКТЕРІАЛЬНА ТЕРАПІЯ У ХВОРИХ ІЗ ОПІКОВОЮ ТРАВМОЮ с. Й. Запорожан, Д. Б. Фіра, о. В. Покришко ТЕРНОПІЛЬСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ ІМЕНІ І. Я. ГОРБАЧЕВСЬКОГО, ТЕРНОПІЛЬ, УКРАЇНА Вступ. Лікування опікової ранової інфекції є актуальною проблемою сучасної медицини, зокрема хірургії, комбустіології й мікробіології. Відомо, що у хворих з опіками інфекційні ускладнення становлять серйозну проблему. Інфекційні ускладнення погіршують перебіг репаративних процесів у рані. Водночас із хірургічними методами лікування, спрямованими на механічне видалення збудників з опікових ран, важливе значення має застосування антимікробних лікарських засобів у хворих із тяжкими опіками. Мета. Визначити найбільш поширені збудники гнійно-запальних ускладнень опікових ран у хворих та їх чутливість до антибіотиків. Методи. Дослідження проводилось у пацієнтів, що перебували на стаціонарному лікуванні у центрі термічної травми і пластичної хірургії КНП «І-е територіальне медичне об'єднання м. Львова» відокремленого підрозділу «Лікарня святого Луки» м. Львів. Забір матеріалу із ранових виділень опікових ран здійснювали за допомогою стерильного тампону. Дослідження проводили у хворих до початку застосування антибіотиків, наприкінці першого і другого тижня захворювання. Виділяли збудники, ідентифікували їх. Чутливість до антибіотиків вивчали за допомогою стандартних методів дослідження. Отримані результати піддавали аналізу, який включав пакет програм системи мікробіологічного моніторингу "WHONET 5.2" (WHO Collaborating Centre for Surveillance of Antimicrobial Resistance) та програму «Microsoft Office Exel 2007». Результати. У результаті проведеного дослідження мазків з опікових ран виділено 240 штамів грампозитивних та грамнегативних мікроорганізмів, які спричиняли гнійно-запальні процеси. Серед виділених збудників гнійно-запальних ускладнень опікових ран переважали грамнегативні бактерії (60,8% усіх виділених мікроорганізмів). Впродовж першого тижня захворювання у рановій поверхні частіше зустрічалися грампозитивна флора S. epidermidis та S. aureus. Після двох і трьох тижнів захворювання у більшості пацієнтів із важкою опіковою травмою з ранової поверхні висівали асоціації бактерій (66,3%) та на третьому тижні захворювання виділяли ще й гриби роду Candida spp. У грамнегативній флорі, висіяній із ранової поверхні опіків, домінували неферментуючі палички A. baumannii та P. aeruginosa. Результати аналізу чутливості мікроорганізмів, виділених від хворих із опіковою хворобою, до антибіотиків показали, що практично всі висіяні культури були полірезистентними. Висновки. Серед виділених збудників гнійно-запальних ускладнень опікових ран переважали грамнегативні мікррорганізми, штами неферментуючих бактерій, серед грампозитивних – золотисті стафілококи. Найбільш значущі клінічні штами були високо полірезистентними до антибіотиків. КЛЮчоВі сЛоВа: мазки з опікових ран; штами мікроорганізмів; антибіотики; резистентність. Information about the authors Stepan Zaporozhan, Professor, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine https://orcid.org/0000­0002­4038­2010, e­mail: zaporozhan@tdmu.edu.ua Dmytro Fira, Associate Professor, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine https://orcid.org/0000­0002­0590­8910, e­mail: firadb@tdmu.edu.ua Olena Pokryshko, Associate Professor, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine https://orcid.org/0000­0001­9640­0786, e­mail: pokryshko@tdmu.edu.ua References 1. World Health Organization Media Center. Burns. Available online: http://www.who.int/media­ centre/ factsheets/fs365/en/ (accessed on 1 March 2017). 2. Vikas Singh, Bharat Mishra, Rahul Pandey. Burn wound infection and antibiotic susceptibility patterns in a tertiary care teaching centre in western India. International Journal of Scientific Research. 2019 Sep; 8(9):1­2. https://doi.org/10.36106/ijsr 3. Rafla K, Tredget EE. Infection control in the burn unit. Burns. 2011;37:5–15. https://doi.org/10.1016/j.burns.2009.06.198. 24 Su r g ic a l D iS e a Se S iSSN 2413-6077. iJMMr 2022 Vol. 8 issue 1 4. Greenhalgh DG, Saffle JR, Holmes JH. American Burn Association consensus conference to define sepsis and infection in burns. J. Burn Care Res. 2007; 28(6):776–790. 5. Latifi NA, Karimi H. Correlation of occurrence of infection in burn patients. Ann Burns Fire Disas- ters. 2017 Sep 30;30(3):172–6. 6. Rowley-Conwy G. Infection prevention and treatment in patients with major burn injuries. Nurs Stand. 2010. https://doi.org/10.7748/ns2010.10.25.7.51.c8053. 7. Sharma L, Srivastava H, Pipal DK, Dhawan R, Purohit PM, Bhargava A. Bacteriological profile of burn patients and antimicrobial susceptibility pattern of burn wound isolates. International Surgery Journal. 2017;4:1019–1023. https://doi.org/10.18203/2349­2902.isj20170854 8. Frikh M, Abdelhay L, Jalal K, Imad Y, Yassine B, Bouchra B, et al. Profile and Antibiotic Susceptibility of Bacteria Isolates in Burn Patients Hospitalized in a Moroccan Hospital: A Cross­sectional Study. Wounds Compend Clin Res Pract. 2018 Apr;30(4):102–7. 9. Nagaichuk VI, Nazarchuk OA, Paliy IG To the characteristics modern infectious complications in patients with burns. Ukrainian medical journal. 2014; 5(103):123­126. [In Ukrainian]. 10. Potekaev NN, Indilova NI, Rumyantseva EE. External therapy of purulent complications in cos- metology. Clinical dermatology and venereology. 2010;6:55–61. [In Ukrainian]. 11. Barajas-Nava LA., López-Alcalde J, Roqué i Figuls M, Solà I, Bonfill Cosp. X. Antibiotic prophylaxis for preventing burn wound infection. Cochrane Database Syst Rev. 2013. https://doi.org/10.1002/14651858.CD008738. pub2. 12. Nagaichuk VI, Nazarchuk OA, Paliy VG etc. Study of the properties of the microflora of the burn surface in patients with burns. Biomedical and biosocial anthropology. 2014;22:194­199. [In Ukrainian]. 13. Fistal EYa, Etc. The choice of pathogenetic local treatment burns and trophic ulcers. Clinical surgery. 2012;11:36­41. [In Ukrainian]. 14. Okeh U. Statistical problems in medical research. East. Afr. J. Public. Health. 2009;6(1):1–7. 15. Nagaichuk VI. Comparative evaluation of microbiological research and terms of infection of burn wounds with opportunistic pathogenic micro- flora. Surgery of Ukraine. 2015;2:52–55. [In Ukrainian]. 16. Ladhani HA, Yowler CJ, Claridge JA. Burn Wound Colonization, Infection, and Sepsis. Surg Infect (Larchmt). 2021 Feb;22(1):44­8. https://doi.org/10.1089/sur.2020.346. 17. Saaiq M, Ahmad S, Zaib MS. Burn Wound Infections and Antibiotic Susceptibility Patterns at Pakistan Institute of Medical Sciences, Islamabad, Pakistan. World J Plast Surg 2015;4(1):9­15. 18. Tsolakidis S, Freytag DL, Dovern E, Alharbi Z, Kim B-S, Houschyar KS, Reumuth G, Schäfer B, Rennekampff H-O, Pallua N, Grieb G. Infections in Burn Patients: A Retrospective View over Seven Years. Medicina. 2022;58(8):1066. https://doi.org/10.3390/medicina58081066 19. Pyatkovskyy Т. The burn wound micro­ biocenosis and its correction by A-bacterin. Doctoral dissertation. 2008. 20. Tuzyuk NV, Pokryshko OV. Microbiological substantiation of the use of xenografts saturated with silver nanocrystals for the treatment of burn wounds. Hospital Surgery. Journal Named by L.Ya. Kovalchuk. 2022;(1):12­8. 21. Cambiaso-Daniel J, Gallagher JJ, Norbury WB, Finnerty CC, Herndon DN, Culnan DM. Treatment of Infection in Burn Patients. In Total Burn Care; Else- vier: Amsterdam, The Netherlands, 2018;e4:93–113. https://doi.org/10.1016/B978­0­323­47661­ 4.00011-3 22. Trupkovic T, Gille J, Fischer H, Kleinschmidt S. Antimikrobielle Therapie bei Patienten nach Verbren- nungstrauma [Antimicrobial treatment in burn injury patients]. Anaesthesist. 2012 Mar;61(3):249­51,254­6, 258. German. https://doi.org/10.1007/s00101­012­1994­4. 23. Forson OA, Ayanka E, Olu-Taiwo M, Pappoe- Ashong PJ, Ayeh-Kumi PJ. Bacterial infections in burn wound patients at a tertiary teaching hospital in Accra, Ghana. Ann Burns Fire Disasters. 2017; 30(2):116­20. 24. Mandal A, Das S. Bacteriological profile with antibiotic sensitivity pattern of burn wound infections in a peripheral tertiary care hospital. International Surgery Journal. 2021 Mar 26;8(4):1253­9. https://doi.org/10.18203/2349-2902.isj20211307. 25. Gupta M, Naik AK, Singh SK. Bacteriological profile and antimicrobial resistance patterns of burn wound infections in a tertiary care hospital. Heliyon. 2019;5(12):e02956. https://doi.org/10.1016/j.heliyon.2019.e02956. Received 20 May 2022; revised 29 May 2022; accepted 14 June 2022. This is open access article distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. S. Y. Zaporozhan et al.