Available online at http://ijcpe.uobaghdad.edu.iq and www.iasj.net 

Iraqi Journal of Chemical and Petroleum 
 Engineering  

Vol.21 No.1 (March 2020) 9 – 41 
EISSN: 2618-0707, PISSN: 1997-4884 

 

Corresponding Authors:  Name: Bariq Bahmman Jima, Email: drbarikbahman93@gmail.com , Name: Najwa Saber Majeed, Email: 

majeednajwa@gmail.com  
IJCPE is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 

 

Oxidation Desulphurization of Heavy Naphtha Improved by 

Ultrasound Waves 

 
Bariq Bahmman Jima and Najwa Saber Majeed 

 
University of Baghdad, Chemical Engineering Dept. 

 

Abstract 

 
   The oxidation desulphurization assisted by ultrasound waves was applied to the desulphurization of heavy naphtha. Hydrogen 

peroxide and acetic acid were used as oxidants, ultrasound waves as phase dispersion, and activated carbon as solid adsorbent. When 

the oxidation desulphurization (ODS) process was followed by a solid adsorption step, the performance of overall Sulphur removal 

was 89% for heavy naphtha at the normal condition of pressure and temperature. The process of (ODS) converts the compounds of 

Sulphur to sulfoxides /sulfones, and these oxidizing compounds can be removed by activated carbon to produce fuel with low 

Sulphur content. The absence of any components (hydrogen peroxide, acetic acid, ultrasound waves and activated carbon) from the 

ODS process leading to reduce the performance of removal, hydrogen peroxide was the most crucial factor. The ultrasound waves 

increase the dispersion of carbon, water and oil phase, promotes the interfacial mass transfer, and this leads to accelerates the 

reaction. The ultrasound waves did not affect the chemical or physical properties of the fuel. The chemical analysis of treated fuel oil 

showed that <1% of the hydrocarbon fuel compounds were oxidized in the ODS process. In this work, desulphurization by oxidation 

is the main mechanism was tested with several parameters that effects desulphurization efficiency such as sonication time (5-40) min, 

activated carbon (0.01-0.5) gm, hydrogen peroxide (1-30) ml, and acetic acid (1-15) ml. It was found that the hydrogen peroxide 

amounts lead to increase oxidation rates of Sulphur compounds so, the desulphurization efficiency increases. The optimum amounts 

of oxidants are 10 ml hydrogen peroxide per 100 ml of heavy naphtha. Increasing the amount of acid catalyst lead to increase 

Sulphur removal, it was found that7.5 ml acid per 10 ml oxidant was the optimum amount. Activated carbon as a solid adsorbent and 

reaction enhancer with 0.1gm weight was found as the optimum amount for 100 ml heavy naphtha. Increasing sonication time lead to 

increase desulphurization rate, it was found that (10 min) is the optimum period. By applying the optimum parameters 89% of sulfur 

can be removed from heavy naphtha with 598.4 ppm Sulphur content. 
        
Keywords: Ultra-low Sulphur fuel, Oxidative desulfurization, ultrasonic waves, hydrogen peroxide, acetic acid 
 

Received on 23/04/2019, Accepted on 03/09/2019, published on 30/03/0220 
 
https://doi.org/10.31699/IJCPE.2020.1.0   

 
1- Introduction 
 

   Sulphur compounds in oil fractions are the main reason 

for many environmental pollution and equipment failure. 

The presence of Sulfur compounds with a high 

concentration in oil fraction lead with time to damage 

industrial equipment by causing corrosion effect ‎[1]. 

   Sulfur compounds are poison metals and catalysts used 

in industrial processes such as catalytic cracking and 

catalytic reforming by precipitation on the catalyst surface 

and close its pores ‎[2]. 

   Burning of oil fractions that contain a high 

concentration of Sulphur compounds lead to releases of 

Sulphur oxides gases (SOx) which cause smog and acid 

rains so that for environmental protection called for 

diminishing Sulphur compounds content to minimum 

concentration as much as probable by using suitable 

desulfurization processes ‎[3]. 

   Hydrodesulphurization (HDS) is the conventional 

desulphurization process, it is a familiar practice in the 

refinery for several years and has the dominance of pre-

existent in the infrastructure of the refinery, but this 

process required high pressure and temperature ‎[4]. 

   Seek for preference way to sulphur component removal 

has been increased in the past years ‎[5]. 

   The selective oxidation of organic sulphur compounds 

at ambient pressure and room temperature in the process 

of oxidation desulphurization (ODS), permit the utilize of 

inexpensive adsorbents to get low sulphur content ‎[6]. 

   The challenge in oxidation desulphurization (ODS) is to 

recognize the conditions that perform ultra-deep 

desulphurization without using expensive catalysts or 

auxiliary chemicals and keep high fuel oils recovery ‎[7]. 

Ultrasonic waves used to raise quick reactions by 

dissipating the multiphase admixtures of the oil phase and 

aqueous phase. The oxidation process modifies the 

physical properties of organic sulphur compounds so that 

these compounds can be removed by adsorption using 

inexpensive adsorbent ‎[8]. 

   The moderates condition used in the ODS process 

reduces the total energy required for sulphur removal in 

comparisons with the HDS process ‎[9].  

https://doi.org/10.31699/IJCPE.2020.1.2


B. B. Jima and N. S. Majeed / Iraqi Journal of Chemical and Petroleum Engineering 21,1 (2020) 9 - 14 

 

 

01 
 

   Oxidation desulphurization considered an efficient 

process to remove Sulphur compounds that can't be 

removed by the HDS process such as benzothiophenes 

and dibenzothiophenes compounds ‎[10].  

   This study is a first attempt to treat commercial heavy 

naphtha supplied from Al-Doura refinery to remove 

Sulphur content by the oxidation process improved by 

ultrasound waves. The effect of several variables on the 

process was studied, such as the effect of hydrogen 

peroxide, acetic acid, sonication time and activated 

carbon as adsorbent. 

 

2- Experimental Work 
 

2.1. Materials 

 

   Chemical materials utilized in this research are shown 

in table 1, the activated carbon used in this work is of 

1184.9 m2/gm surface area. Heavy naphtha of 598.4 ppm 

sulphur content was derived from Al-Doura refinery with 

60.7 API and a density of 0.7379 g/cm3. 

 

Table 1. Chemical materials utilized in experiment work 
chemical 

materials 
function 

molecular 

  weight 

Purity 

% 
formula company 

Hydrogen 

peroxide 

Oxygen 

source 
34   50 H2O2 

Hopkin and 

Williams, 

England 

Acetic acid 
Increase 

oxidation 
60   99 C2O2H4 

Riedel-De  

Haen 

Activated-

carbon 

Solid 

adsorbent 
12.01 -----     C 

Jacobi 

Carbons 

 

2.2. Apparatus 

 

   The equipment used is as follows: 

A-Q 500 Sonicator 

   Q 500 sonicator is the important apparatus employed in 

these experiments, Fig. 1 ultrasound device. It is a strong 

device for ultrasound wave's processor displaying 

programmable action and numerical show of running 

parameters. Q500 sonicator is of 20 kHz and 500 W 

maximum amplitude of power ultrasound. The device is 

designed and produced by the company of Materials and 

Sonics, Inc. Model VX 500, Newton, United States). 

 

 
Fig. 1. Ultrasound device of Q 500 sonicator 

 

B- Hot plate magnetics stirrer manufactured by PCE 

Americas Inc., USA. 

 

2.3. Analysis 

 

   Sulphur content of heavy naphtha was obtained due to 

ASTM D-7093 by utilizing the Antek-Multitek device 

located in Al-Daura refinery, manufactured by (PAC LP, 

Houston, Texas, USA). 

 

2.4. Procedure 

 

   100 ml of heavy naphtha with 598.4 ppm sulphur 

content put in a beaker, as oxidative agent amounts of 

hydrogen peroxide(H2O2) (1-30 ml) and as a catalyst 

amounts of acetic acid (1-15 ml) and activated-carbon 

(0.01-0.5 gm) as adsorbent, were added to this beaker. 

This beaker put in ultrasound effects for periods (5-40 

min) of time with Amplitudes (20-60% Amp) of power 

ultrasound. 

   After the sonication process, the mixture put up in a 

magnetic stirrer for 1 hr. with 900 rpm to satisfy 

adsorption equilibrium ‎[11], then the oil phase and 

aqueous phase separated and the oil phase went to 

analysis to know Sulphur content by the Antek-Multitek 

device. 

 

3- Results and Discussion 
 

3.1. Effects of hydrogen peroxide amount 

 

   The effects of changing hydrogen peroxide added 

amount on desulphurization of heavy naphtha are shown 

in Fig. 2. 

 

 
Fig. 2. effects amounts of oxidant on Sulphur content for 

100 ml of heavy naphtha, 10 min sonication time, 20% 

Amp ultrasound power, 0.1 gm activated carbon and 1ml 

acid. 

Note: Amp means amplitude 

 

   As shown in Fig. 2, the desulphurization efficiency 

increases with increasing amounts of oxidant hydrogen 

peroxide, this is because of increasing the free radicals in 

the mixture which leads to increase oxidation of Sulphur 

compounds, this behavior was also pointed out by 

Hosseini, 2012, ‎[12].  

 



B. B. Jima and N. S. Majeed / Iraqi Journal of Chemical and Petroleum Engineering 21,1 (2020) 9 - 14 

 

 

00 
 

   The optimum volume of hydrogen peroxide is 10 ml, 

for this reason, all subsequent experiments are selected at 

hydrogen peroxide volume 10 ml hydrogen peroxide per 

100 ml of naphtha. 

 

3.2. Effects of Acetic Acid Amount 

 

   The effects of changing the amounts of acetic acid on 

desulphurization process are shown in Fig. 3. 

 

 
Fig. 3. Effects amount of acid on Sulphur content for 100 

ml heavy naphtha, 10 ml hydrogen peroxide, 10 min 

sonication time, 20% Amp power ultrasound and 0.1 gm 

activated carbon 

 

   As shown in Fig. 3, increasing the amounts of acid 

catalyst lead to increase the removal of Sulphur until 7.5 

ml of acid that is because beyond this amounts adverse 

reaction occurs, this behavior was due to the reaction 

between oxidant and acid. 

 

        … (1) 

  

   The reaction of hydrogen peroxide and acetic acid 

produces peracetic acid.  this acid is a form of proxy-

carboxylic acids, that can decompose to produce hydro-

proxy radicals ( .OOH), these radicals are more effective 

than hydroxyl radicals (.OH) formed from hydrogen 

peroxide decomposition, so oxidation process increases. 

  

   it was found that the best Sulphur removal when utilized 

7.5 ml acetic acid per 10 ml hydrogen peroxide. The 

optimum ratio of acid to oxidant is 0.75, for this reason, 

all subsequent experiments are selected at acid to oxidant 

ratio of 0.75. 

 

 

 

 

 

 

 

 

 
Fig. 4. The relation between Sulphur content and 

sonication time for 100 ml naphtha, 10 ml hydrogen 

peroxide, 7.5 ml acetic acid, 20% Amp of ultrasound 

power and 0.1 gm activated carbon 

 

   As shown in Fig. 4, increasing the sonication time leads 

to an increase in the oxidation of Sulphur compounds due 

to increasing exposure periods of these compounds to the 

oxidants, then increasing desulphurization rate. 

   These longer times of reaction under the energy of 

ultrasound lead to strong cavitation formation that leads to 

fine emulsions formation for the oxidation reaction, this 

fine emulsion increase contacts and exposure of the 

oxidative system to organic Sulphur compounds, so 

increase desulphurization efficiency. These results are in 

good agreement with that of Teng-Chien Chen., et al 

2010, ‎[13]. The optimum period of sonication time is 10 

min, for this reason, all experiments are selected at 10 min 

sonication time. 

 

3.4. Effects of Activated Carbon Amounts 

 

   The results related to satisfying these effects are shown 

in Fig. 5 

 

 
Fig. 5. Sulphur content with different amounts of 

activated carbon for 100 ml heavy naphtha, 10 min 

sonication time, 20% Amp ultrasound power, 10 ml 

hydrogen peroxide and 7.5 ml acetic acid 

 

 

 



B. B. Jima and N. S. Majeed / Iraqi Journal of Chemical and Petroleum Engineering 21,1 (2020) 9 - 14 

 

 

01 
 

   As shown in figure 5, the increase of activated carbon 

amounts leads to increase desulphurization efficiency due 

to increased oxidation rates by increase attractions the 

organic Sulphur compounds to the aqueous phase where 

oxidation occurs, this behavior was also pointed out by 

Gonzalez., et al 2012, ‎[8]. The optimum amount of 

activated carbon is 0.1 gm so that all experiments are 

selected at 0.1 gm activated carbon. 

 

4- Conclusion 
 

   Based on the results obtained, the conclusions can be 

demonstrated as follows: 

It was found that increasing hydrogen peroxide amounts 

lead to an increased oxidation rate, so desulphurization 

efficiency increases.  

   The ultrasound-assisted oxidative desulphurization 

process with adsorption by active carbon has high effects 

on desulphurization of crude oil fractions up to 89 % for 

heavy naphtha. 

   The amounts of acetic acid used in this process have an 

optimum value, if more than the optimum value, the 

adverse reaction will occur leading to decrease the 

efficiency of desulphurization, 7.5 ml acetic acid per 10 

ml of hydrogen peroxide is the optimum value of acetic 

acid in this work. 

   Increasing the time of sonication lead to increase 

Sulphur removal, but using too much time leads to 

increase in the cost of operation, it was found that the 

optimum sonication time for heavy naphtha is 10 min.  

   Increasing amounts of active carbon lead to increase 

adsorption rate but at 0.5 gm ≥ the amount becomes too 

much, so the favorite amount for 100 ml heavy naphtha is 

0.1 gm. The process is done without any effects in the 

chemical or physical properties of the fuel. 

 

References 

 

[1] Rawnaq B. Jimaa, Zaid H. Mahmoud, Farah K. Ali., 
2018. Evaluation the Efficiency of CuFe2O4 Prepared 

Photolysis by OSD and Photo degradation., Entomol. 

Appl. Sci. Lett., 2018, 5 (2) pp.91-100. 

[2] A. Shamseddini, F. Esmaeilzadeh and D. Mowla., 
2017. Diesel Oil Upgradation by Ultrasound 

Irradiation: A Study on the Effects of Main 

Operational Parameters. Phys. Chem. Res., Vol. 5, 

No. 4, 691-707, December 2017. 

[3] Zhu W., Zhu G., Li H., Chao Y., Chang Y., Chen G. 
& Han C., 2011. Oxidative desulfurization of fuel 

catalyzed by metal-based surfactant-type ionic liquids. 

“Journal of Molecular Catalysis. A, Chemical”, 347, 

pp.8–14. 

[4] Abdul-Halim A. Mohammed and Zeinab K. 
Nassrullah, 2013. Preparation and Formation of 

Zeolite 5A from Local Kaolin Clay for Drying and 

Desuphurization of Liquefied Petroleum Gas. " Iraqi 

Journal of Chemical and Petroleum Engineering", 

Vol.14 No.1 (March  2013) 1- 13. 

 

 

[5] Campos-Martin J.M., Capel-Sanchez M. C., Perez-
Presas P., Fierro J. L. G., 2010. Oxidative processes of 

desulfurization of liquid fuels. Journal of Chemical 

Technology and Biotechnology, 85(7), pp.879–890. 

[6] Iman Najafi, Mohammad Amin Makarem, Mahmood 
Amani., 2011., Application of Ultrasound Waves to 

Increase the Efficiency of Oxidative Desulfurization 

Process., Advances in Petroleum Exploration and 

Development, 2(2), 63-69. 

[7] Mello P.A., Duarte F.A., and Nunes M. G., 2009, 
Ultrasound-Assisted Oxidative Process for Sulfur 

Removal from Petroleum Product Feedstock, Ultra 

son. Sonochem Journal. Vol.16, pp. 732-736. 

[8] Lino A. Gonzalez, Peter Kracke, William H. Green, 
Jefferson W. Tester, Linda M. Shafer, and Michael T. 

Timko., 2012. Oxidative Desulfurization of Middle-

Distillate Fuels Using Activated Carbon and Power 

Ultrasound. Cambridge, Massachusetts 02139, United 

States. Energy Fuels 2012, 26, 5164−5176. 

[9] Nada Sadoon Ahmedzeki and Arowa Salah Alddin 
Mahdi, 2014. Research Octane Number Improvement 

of Iraqi Gasoline by Adsorption of n-Paraffins Using 

Zeolite Molecular Sieves, "Iraqi Journal of Chemical 

and Petroleum Engineering", Vol.15 No.2 (June 2014) 

27- 37. 

[10] Safa Nabeel Abdulqahar, Majid I. Abdulwahab 
and Khalid K. Hummadi., 2019. Reuse of Spent 

Hydrotreating Catalyst of the Middle Petroleum 

Fraction. "Iraqi Journal of Chemical and Petroleum 

Engineering", Vol.20 No.1 (March 2019) 15 – 22. 

[11] Kinya Sakanishi, Hamdy Farag, Shinya Sato, 
Akimitsu Matsumura, and Ikuo Saito., 2003., 

Adsorptive removal of sulfur compounds from 

naphtha fractions by using carbon adsorbents, 

"National Institute of Advanced Industrial Science and 

Technology". 

[12] H. Hosseini., 2012. Novel Methods for 
Desulfurization of Fuel Oils., Department of Chemical 

Engineering, Abadan Branch, Islamic Azad 

University, Abadan, Iran., World Academy of 

Science, Engineering and Technology, Vol:6, No:11, 

2012. 

[13] Teng-Chien Chen, Yun-Hwei Shen, Wen-Jhy 
Lee, Chih-Chung Lin, Meng-Wei Wan., The study of 

ultrasound-assisted oxidative desulfurization process 

applied to the utilization of pyrolysis oil from waste 

tires. Journal of Cleaner Production 18 (2010) 1850-

1858. 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.researchgate.net/profile/Zaid_Hamid2/publication/328631683_Evaluation_the_Efficiency_of_CuFe2O4_Prepared_Photolysis_by_OSD_and_Photo_degradation/links/5bd9908492851c6b279bcb86/Evaluation-the-Efficiency-of-CuFe2O4-Prepared-Photolysis-by-OSD-and-Photo-degradation.pdf
https://www.researchgate.net/profile/Zaid_Hamid2/publication/328631683_Evaluation_the_Efficiency_of_CuFe2O4_Prepared_Photolysis_by_OSD_and_Photo_degradation/links/5bd9908492851c6b279bcb86/Evaluation-the-Efficiency-of-CuFe2O4-Prepared-Photolysis-by-OSD-and-Photo-degradation.pdf
https://www.researchgate.net/profile/Zaid_Hamid2/publication/328631683_Evaluation_the_Efficiency_of_CuFe2O4_Prepared_Photolysis_by_OSD_and_Photo_degradation/links/5bd9908492851c6b279bcb86/Evaluation-the-Efficiency-of-CuFe2O4-Prepared-Photolysis-by-OSD-and-Photo-degradation.pdf
https://www.researchgate.net/profile/Zaid_Hamid2/publication/328631683_Evaluation_the_Efficiency_of_CuFe2O4_Prepared_Photolysis_by_OSD_and_Photo_degradation/links/5bd9908492851c6b279bcb86/Evaluation-the-Efficiency-of-CuFe2O4-Prepared-Photolysis-by-OSD-and-Photo-degradation.pdf
http://www.physchemres.org/m/&url=http:/www.physchemres.org/article_48979.html
http://www.physchemres.org/m/&url=http:/www.physchemres.org/article_48979.html
http://www.physchemres.org/m/&url=http:/www.physchemres.org/article_48979.html
http://www.physchemres.org/m/&url=http:/www.physchemres.org/article_48979.html
http://www.physchemres.org/m/&url=http:/www.physchemres.org/article_48979.html
https://www.sciencedirect.com/science/article/abs/pii/S1381116911002755
https://www.sciencedirect.com/science/article/abs/pii/S1381116911002755
https://www.sciencedirect.com/science/article/abs/pii/S1381116911002755
https://www.sciencedirect.com/science/article/abs/pii/S1381116911002755
https://www.sciencedirect.com/science/article/abs/pii/S1381116911002755
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/302
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/302
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/302
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/302
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/302
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/302
https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.2371
https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.2371
https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.2371
https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.2371
http://www.cscanada.org/index.php/aped/article/view/j.aped.1925543820110202.116
http://www.cscanada.org/index.php/aped/article/view/j.aped.1925543820110202.116
http://www.cscanada.org/index.php/aped/article/view/j.aped.1925543820110202.116
http://www.cscanada.org/index.php/aped/article/view/j.aped.1925543820110202.116
http://www.cscanada.org/index.php/aped/article/view/j.aped.1925543820110202.116
https://www.sciencedirect.com/science/article/abs/pii/S1350417709000418
https://www.sciencedirect.com/science/article/abs/pii/S1350417709000418
https://www.sciencedirect.com/science/article/abs/pii/S1350417709000418
https://www.sciencedirect.com/science/article/abs/pii/S1350417709000418
https://pubs.acs.org/doi/abs/10.1021/ef201289r
https://pubs.acs.org/doi/abs/10.1021/ef201289r
https://pubs.acs.org/doi/abs/10.1021/ef201289r
https://pubs.acs.org/doi/abs/10.1021/ef201289r
https://pubs.acs.org/doi/abs/10.1021/ef201289r
https://pubs.acs.org/doi/abs/10.1021/ef201289r
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/275
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/275
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/275
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/275
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/275
http://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/275
https://doi.org/10.31699/IJCPE.2019.1.3
https://doi.org/10.31699/IJCPE.2019.1.3
https://doi.org/10.31699/IJCPE.2019.1.3
https://doi.org/10.31699/IJCPE.2019.1.3
https://doi.org/10.31699/IJCPE.2019.1.3
https://www.researchgate.net/publication/287767377_Adsorptive_removal_of_sulfur_compounds_from_naphtha_fractions_by_using_carbon_adsorbents
https://www.researchgate.net/publication/287767377_Adsorptive_removal_of_sulfur_compounds_from_naphtha_fractions_by_using_carbon_adsorbents
https://www.researchgate.net/publication/287767377_Adsorptive_removal_of_sulfur_compounds_from_naphtha_fractions_by_using_carbon_adsorbents
https://www.researchgate.net/publication/287767377_Adsorptive_removal_of_sulfur_compounds_from_naphtha_fractions_by_using_carbon_adsorbents
https://www.researchgate.net/publication/287767377_Adsorptive_removal_of_sulfur_compounds_from_naphtha_fractions_by_using_carbon_adsorbents
https://www.researchgate.net/publication/287767377_Adsorptive_removal_of_sulfur_compounds_from_naphtha_fractions_by_using_carbon_adsorbents
https://pdfs.semanticscholar.org/e7ef/e89248f27b495cc0a47f12bdc9c93917cb77.pdf
https://pdfs.semanticscholar.org/e7ef/e89248f27b495cc0a47f12bdc9c93917cb77.pdf
https://pdfs.semanticscholar.org/e7ef/e89248f27b495cc0a47f12bdc9c93917cb77.pdf
https://pdfs.semanticscholar.org/e7ef/e89248f27b495cc0a47f12bdc9c93917cb77.pdf
https://pdfs.semanticscholar.org/e7ef/e89248f27b495cc0a47f12bdc9c93917cb77.pdf
https://pdfs.semanticscholar.org/e7ef/e89248f27b495cc0a47f12bdc9c93917cb77.pdf
https://www.sciencedirect.com/science/article/pii/S0959652610002775
https://www.sciencedirect.com/science/article/pii/S0959652610002775
https://www.sciencedirect.com/science/article/pii/S0959652610002775
https://www.sciencedirect.com/science/article/pii/S0959652610002775
https://www.sciencedirect.com/science/article/pii/S0959652610002775
https://www.sciencedirect.com/science/article/pii/S0959652610002775


B. B. Jima and N. S. Majeed / Iraqi Journal of Chemical and Petroleum Engineering 21,1 (2020) 9 - 14 

 

 

02 
 

 
 الموجات فوق الصوتية أكسدة و إزالة الكبريت من النافتا الثقيمة المحسنة بواسطة

 بارق بهمان ونجوى صابر مجيد

 قسم اليندسة الكيمياويةجامعة بغداد, 

 
 ألُخالصة

 
تبعًا لزيادة ألطمب العالمي عمى أستخدام وقود أقل ظررًا بالبيئة وبأقل تكمفة ممكنة من ألجانب أالقتصادي,    

فأن ىذا ألعمل يركز عمى عممية كفوؤة وقميمة ألكمفة من أجل إزالة ألكبريت من وقود ألنفثا ألثقيمة عن طريق 
مركبات ألكبريت ألمعززة بالموجات فوق ألصوتية حيث أثبتت ىذه ألعممية كفائتيا في إزالة عميقة عممية أكسدة 

 لممحتوى ألكبريتي.
بأستخدام نظام أالكسدة ألمكون من بيروكسيد ألييدروجين وحامض ألخميك كعامل مساعد من أجل أكسدة    

 إزالة أالخير بواسطة ألكاربون ألنشط.مركبات ألكبريت ألعضوية وتحويميا ألى سمفونات حيث تتم 
ألموجات فوق ألصوتية تزيد من ألمساحة ألسطحية لتالمس نظام االكسدة مع ألطور ألنفطي في ألنظام ثنائي 
ألطور وألتي تؤدي لزيادة معدل أالكسدة لمركبات ألكبريت وبالتالي زيادة كفائة أالزالة وبدون أي تأثير عمى 

 فيزيائية لموقود.ألخواص ألكيميائية او أل
في ىذا ألعمل ِإزالة ألكبريت بواسطة أالكسدة ىي ألعممية ألرئيسية وقد أختُبرت مع عدة متغيرات والتي تؤثر    

 04-04دقيقة(, مقدار طاقة ألموجات فوق ألصوتية ) 04-5في كفائة أإِلزالة وِمن ىذِه ألعوامل وقت ألتفاعل )
مل(  04-0غم(, كمية ألعامل ألمؤكِسد ىيدروجبن بيروكسيد ) 5..4-4.40%(, كمية ألكاربون ألمنشط )

 مل(. 05-0وكمية حامض ألخميك )
في ما يتعمق بتأثير ألعامل ألمؤكسد فقد لوحظ أنو بزيادة كمية ألييدروجين بيروكسيد تؤدي لزيادة معدل إزالة    

ن أل مل من ألنفثا  044كمية ألُمناِسبة ِلمعالجة ألكبريت نظرًا ِلزيادة ُمعدل أالكسدة ِلمركبات ألكبريت ألعظوية وا 
 مل من ىيدروجين بيروكسيد. 04ألثقيمة ىي 

مل من حامض  5..في ما يتعمق بتأثير حامض ألخميك فقد لوِحظ ِبأنُو يجب أن تكون كميتُو ُمحددة وىي 
لُمحددة تؤدي مل من ألييدروجين بيروكسيد حيُث أن زيادة كمية ألحامض أكثر من ألكمية أ 04ألخميك لكل 

 ِلحصول تأثير عكسي وبالتالي تُقمل ِمن كفائة أإِلزالة لمكبريت.
غم ِمن ألكاربون  4.0مل ِمن ألنفثا ىي  044ألكاربون ألمنشط كسطح ممتز وِجد أَن ألكمية ألُمناِسبة ل   

 ألُمنشط.



B. B. Jima and N. S. Majeed / Iraqi Journal of Chemical and Petroleum Engineering 21,1 (2020) 9 - 14 

 

 

03 
 

ِجد أنُو أفضل فترة زمنية مناسبة زيادة وقت ألتعُرض ِلمموجات فوق ألصوتية يؤدي ِلزيادة ُمعدل أاِلزالة وقد و    
 دقيقة( ِلُمعالجة ألنفثا ألثقيمة. 04ىي)
% من ألمقدار ألُكمي ِلطاقة 04مقدار طاقة ألموجات فوق ألصوتية مؤثر ميم في ىذه ألعممية حيث ِوجد أنُو    

حالة أستخدام طاقة جياز ألموجات فوق ألصوتية ىو ألمقدار ألمناسب ِِلزالة ألكبريت ِمن ألنفثا ألثقيمة وفي 
 أعمى َفإن ذلك يؤدي لحدوث تأثير عكسي يؤدي ِلتقميل َكفائة إزالة ألكبريت.

% ِمن ألمحتوى ألكبريتي وذِلك عند تطبيق جميع 98عمى ُكِل حال فإنٌو أمكن ألحصول عمى إزالة تصل إلى    
ق ألصوتية إِلزالة ألكبريت من النفثا ألثقيمة إن تفاُعل أالكسدة ألمعززة ِبالموجات فو  ألمقادير ألِمثالية ِلممتغيرات.

 ىوتفاعل من ألدرجة أِلولى. 
 

 موجات فوق الصوتية ,أالكسدة ,: إزالة ألكبريتدالةالكممات ال