Sebuah Kajian Pustaka: IT Journal Research and Development (ITJRD) Vol.7, No.1, August 2022, E-ISSN : 2528-4053 | P-ISSN : 2528-4061 DOI : 10.25299/itjrd.2022.7976 12 Journal homepage: http://journal.uir.ac.id/index/php/ITJRD Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum Muh. Nurtanzis Sutoyo1, Andi Tenri Sumpala Mangkona2 Faculty of Information Technology, Sembilanbelas November Kolaka University1,2 mns.usn@gmail.com1, foleta.21@gmail.com2 Article Info ABSTRACT Article history: Received Oct 31, 2021 Revised Jan 18, 2022 Accepted Jun 23, 2022 Scheduling is needed to anticipate the clash of lecture hours for lecturers in teaching. Some things that need to be considered when arranging a lecture schedule are lecturers, rooms, courses, hours, and days. In this study, the scheduling system uses the Euclidean Distance method by modifying the algorithm. The aim of this study is to prove the Euclidean distance method in the course planning system in universities. In general, to obtain data that will be used in the scheduling system, observations, interviews and bibliographic studies are carried out. From the research results, the lecture scheduling system using the Euclidean Distance method can be used in the scheduling system, especially lecture scheduling. This is proven, that the lecture scheduling system using the Euclidean Distance method does not have a schedule for lecturers who teach more than one course at the same time (collide). Keyword: Scheduling Euclidean Distance Algorithm © This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License. Corresponding Author: Muh. Nurtanzis Sutoyo Faculty of Information Technology Sembilanbelas November Kolaka University Sangia Nibandera Street, Kolaka, Indonesia Email: mns.usn21@gmail.com 1. INTRODUCTION The development of more and more advanced technology offers many conveniences and facilities in the life of the educational world, especially the planning of lessons. The course schedule must absolutely exist in a university, because it has become the basis of the agenda for the courses to run smoothly. Programming is generally necessary to anticipate conflicts between class hours and teachers' teaching time. The scheduling problem is a problem that is found in all universities. To determine the timetable, it takes a long enough time to find a solution. In addition, programming that is done manually has many shortcomings, one of which is that it focuses more on the interests of the speakers. In the study program on Information Systems, Universitas Sembilanbelas November Kolaka, the course planning process is carried out manually, that is, it does not use certain planning methods. So in the preparation of the timetable, there is often a conflict between the professors who support the subject and the study room that will be used. Indeed, the number of professors and study rooms in the Sembilanbelas November Kolaka University information systems study program is quite large. IT Jou Res and Dev, Vol.7, No.1, August 2022 : 12 - 22 Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum, Nurtanzis 13 There is therefore a need for automatic programming that can be synchronized between the teachers in charge of the lessons with the study rooms that will be used in class, that is to say the teachers who teach during the available lesson hours. Some things to consider when compiling a lesson plan are speakers, rooms, classes, times, and days. Determining the wrong scheduling system can cause many problems that hurt teachers and students, namely the appearance of schedules with teachers teaching more than one course at the same time (conflict). The process of creating a long class schedule often results in professors getting late schedules, so it's not uncommon for professors not to come and teach in the first few weeks of class. Therefore, we need an algorithm or a method that can determine the scheduling automatically. In this study, the scheduling system uses the Euclidean distance method by modifying the algorithm. Euclidean distance is a method used to measure the distance between 2 different points. Where each point is represented in multidimensional [eros]. This method has a simple formula as shown in the following formula. ( ) = −= n i jiEuc yxD 1 2 (1) Where x is the distribution of course tutors, y is the schedule of available rooms and n is the number of data. The algorithm with the modified Euclidean distance method is as follows. 1. Generate x value and y value at random. 2. Calculate the distance between the teacher responsible for the course and the available time using the Euclidean distance method. 3. Check the ith buffer at the distance that has the closest (smallest) value if it collides. If it collides, repeat step 2, and if there isn't, label it on the j space plane. 4. Repeat step 2 until you finish by not calculating the y value in the labeled space schedule. While the flowchart of the planning system using the Euclidean distance method, as shown in Figure 1 below. IT Jou Res and Dev, Vol.7, No.1, August 2022 : 12 - 22 Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum, Nurtanzis 14 Start Enter the distribution of classes and class schedules Generate random x and y values Calculate the shortest distance between the values of x and y Check values closest to i if they collide? Yes Label the parts list-j EndNo Figure 1. Flowchart of the planning system 2. RESEARCH METHOD In a previous study [1], a course planning system was developed using the genetic algorithm method with a tournament selection technique. From the test results, the system can provide convenience and speed to the user in the process of creating or compiling a lecture program, which takes only about 14.7 minutes compared to the manual process which takes about 2 (two) days. Then [2], the course scheduling system by applying the method of the Steepest-Ascent Hill Climbing Algorithm. Based on the results of the research, analysis and design of the resulting application using the steepest escalation algorithm, it can be applied to simplify the conference planning process. In addition [3], the design of an information system for the scheduling of university resources uses the Particle Swarm Optimization (PSO) method. The results of the resource and constraint analysis using the PSO algorithm paying attention to hard constraints and soft constraints were not able to produce optimal solutions because there are always conflicts of speaker-time interval. In addition to the last [4], the course planning system of the Electrical Engineering Training Department of the Engineering Faculty of Makassar State University uses PHP. Next, research [5], the ordering system using the genetic algorithm at the Faculty of Medicine of the University of Muhammadiyah Jakarta, and research [6] using the genetic algorithm for the ordering system in the STMIK Semarang province. Research [7] uses the Weighted Round Robin method for server load planning, and [8] for planning uses the Genetic Algorithm method which is implemented on a web basis. Application of Euclidean distance algorithm [9] for selecting internet packages by region, [10] for ranking bus transport, [11] for ranking Indonesian-speaking participants' degrees, [12] for obtaining information regarding the image of TNI Berets, [13] for Air Pollution Standards Index Data, [14] for Classification of Instagram Bullying Comments and [15] for Prediction of Sengon Sawmill Results IT Jou Res and Dev, Vol.7, No.1, August 2022 : 12 - 22 Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum, Nurtanzis 15 While research uses the Euclidean distance method, among others, [16] to map a web-based pension. In addition, [17] which uses the Euclidean distance method for facial recognition, and [18] which applies the Euclidean distance method for clothing size recommendations in the application of a virtual locker room. And [19] combines the KNN and Euclidean Distance methods for the prediction of national examination graduation, and [20] using the Euclidean distance method to predict national exam success. While the steps of this research, namely: the preparation and analysis of the needs of the software to work on, the next step is the realization of the design of the application. The next step is the implementation of the program code using various tools and programming languages as needed. In this research, the programming language used is Visual FoxPro. In the last step, the modules that were created in the previous step are combined and tested. 3. RESULTS AND ANALYSIS 3.1. Course Planning Data The data necessary for this planning system research are the distribution of lessons and classroom schedules. In Table 1, the distribution of courses in the USN Kolaka Information Systems curriculum is presented. Where data on subject distribution is based on the results of the meeting held at the USN Kolaka Information Systems Study Program. Table 1. Distribution of courses No Code Lecturer Name Course 1 INA-A Dosen Bahasa Indonesia 2 INA-B Dosen Bahasa Indonesia 3 INA-C Dosen Bahasa Indonesia 4 ING-A Dosen Bahasa Inggris 1 5 ING-B Dosen Bahasa Inggris 1 6 ING-C Dosen Bahasa Inggris 1 7 AGM-A Dosen Pendidikan Agama 1 8 AGM-B Dosen Pendidikan Agama 1 9 AGM-C Dosen Pendidikan Agama 1 10 ALG-A Dosen Algoritma & Bahasa Pemrograman 11 ALG-B Dosen Algoritma & Bahasa Pemrograman 12 ALG-C Dosen Algoritma & Bahasa Pemrograman 13 APK-A Dosen Aplikasi Perkantoran 14 APK-B Dosen Aplikasi Perkantoran 15 APK-C Dosen Aplikasi Perkantoran 16 LOG-A Dosen Logika Informatika 17 LOG-B Dosen Logika Informatika 18 LOG-C Dosen Logika Informatika 19 PKN-A Dosen Pendidikan Pancasila & Kewarganegaraan 20 PKN-B Dosen Pendidikan Pancasila & Kewarganegaraan … … … … 64 DGS-A Dosen Desain Grafis 65 DGS-B Dosen Desain Grafis 66 DGS-C Dosen Desain Grafis 67 DGS-D Dosen Desain Grafis 68 DGS-E Dosen Desain Grafis 69 SPR-A Dosen Sistem Pakar 70 SPR-B Dosen Sistem Pakar 71 SPR-C Dosen Sistem Pakar 72 SPR-D Dosen Sistem Pakar IT Jou Res and Dev, Vol.7, No.1, August 2022 : 12 - 22 Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum, Nurtanzis 16 73 SPR-E Dosen Sistem Pakar … … … … 99 SPM-A Dosen Sistem Pendukung Manajemen 100 SPM-B Dosen Sistem Pendukung Manajemen 101 SPM-C Dosen Sistem Pendukung Manajemen 102 SPM-D Dosen Sistem Pendukung Manajemen 103 SPM-E Dosen Sistem Pendukung Manajemen 104 STS-A Dosen Sistem Terdistribusi 105 STS-B Dosen Sistem Terdistribusi 106 STS-C Dosen Sistem Terdistribusi 107 STS-D Dosen Sistem Terdistribusi 108 STS-E Dosen Sistem Terdistribusi 109 TKS-A Dosen Tata Kelola Sistem Informasi 110 TKS-B Dosen Tata Kelola Sistem Informasi 111 TKS-C Dosen Tata Kelola Sistem Informasi 112 TKS-D Dosen Tata Kelola Sistem Informasi 113 TKS-E Dosen Tata Kelola Sistem Informasi In Table 2, the schedule of conference rooms available in the USN Kolaka Information Systems Curriculum is shown. Table 2. Parts schedule No Code Day Clock Room 1 JDL374 Senin 07.30-09.45 1 2 JDL976 Senin 10.00-12.15 1 3 JDL939 Senin 13.00-15.15 1 4 JDL442 Senin 07.30-09.45 2 5 JDL037 Senin 10.00-12.15 2 6 JDL948 Senin 13.00-15.15 2 7 JDL916 Senin 07.30-09.45 3 8 JDL343 Senin 10.00-12.15 3 9 JDL994 Senin 13.00-15.15 3 10 JDL306 Senin 07.30-09.45 4 11 JDL222 Senin 10.00-12.15 4 12 JDL439 Senin 13.00-15.15 4 13 JDL296 Senin 07.30-09.45 5 14 JDL403 Senin 10.00-12.15 5 15 JDL179 Senin 13.00-15.15 5 16 JDL809 Senin 07.30-09.45 6 17 JDL797 Senin 10.00-12.15 6 18 JDL973 Senin 13.00-15.15 6 19 JDL663 Senin 07.30-09.45 7 20 JDL646 Senin 10.00-12.15 7 21 JDL564 Senin 13.00-15.15 7 22 JDL206 Senin 07.30-09.45 8 23 JDL026 Senin 10.00-12.15 8 24 JDL811 Senin 13.00-15.15 8 25 JDL426 Senin 07.30-09.45 9 26 JDL117 Senin 10.00-12.15 9 27 JDL747 Senin 13.00-15.15 9 28 JDL505 Senin 07.30-09.45 10 29 JDL999 Senin 10.00-12.15 10 IT Jou Res and Dev, Vol.7, No.1, August 2022 : 12 - 22 Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum, Nurtanzis 17 30 JDL698 Senin 13.00-15.15 10 31 JDL447 Senin 07.30-09.45 11 32 JDL776 Senin 10.00-12.15 11 … … … … … 100 JDL451 Kamis 07.30-09.45 1 101 JDL141 Kamis 10.00-12.15 1 102 JDL032 Kamis 13.00-15.15 1 103 JDL612 Kamis 07.30-09.45 2 104 JDL015 Kamis 10.00-12.15 2 105 JDL017 Kamis 13.00-15.15 2 106 JDL286 Kamis 07.30-09.45 3 107 JDL148 Kamis 10.00-12.15 3 108 JDL428 Kamis 13.00-15.15 3 109 JDL347 Kamis 07.30-09.45 4 110 JDL356 Kamis 10.00-12.15 4 … … … … … 151 JDL289 Jum'at 07.30-09.45 7 152 JDL502 Jum'at 10.00-12.15 7 153 JDL159 Jum'at 13.00-15.15 7 154 JDL044 Jum'at 07.30-09.45 8 155 JDL486 Jum'at 10.00-12.15 8 156 JDL065 Jum'at 13.00-15.15 8 157 JDL336 Jum'at 07.30-09.45 9 158 JDL574 Jum'at 10.00-12.15 9 159 JDL415 Jum'at 13.00-15.15 9 160 JDL585 Jum'at 07.30-09.45 10 161 JDL545 Jum'at 10.00-12.15 10 162 JDL781 Jum'at 13.00-15.15 10 163 JDL907 Jum'at 07.30-09.45 11 164 JDL733 Jum'at 10.00-12.15 11 165 JDL184 Jum'at 13.00-15.15 11 From the above table, it can be explained that the number of subject distribution data is 113, and the number of room nomenclature data available is 165. After the data is collected, the next step is calculating the planning system using formula (1) with a modified algorithm. The calculation of the scheduling system is based on the following algorithm. Generate x value and y value at random Table 3. Random value of x No Code Value x 1 INA-A 0,6602 2 INA-B 0,8722 3 INA-C 0,6776 4 ING-A 0,2250 5 ING-B 0,8305 6 ING-C 0,1657 7 AGM-A 0,9885 8 AGM-B 0,4018 9 AGM-C 0,4421 10 ALG-A 0,1164 11 ALG-B 0,8843 12 ALG-C 0,7920 13 APK-A 0,8590 IT Jou Res and Dev, Vol.7, No.1, August 2022 : 12 - 22 Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum, Nurtanzis 18 14 APK-B 0,3413 15 APK-C 0,3915 16 LOG-A 0,6668 17 LOG-B 0,0170 18 LOG-C 0,4723 19 PKN-A 0,3043 20 PKN-B 0,3675 … … … 111 TKS-C 0,6108 112 TKS-D 0,3906 113 TKS-E 0,0554 Table 4. Random value of y No Code Value y 1 JDL374 0,8268 2 JDL976 0,3906 3 JDL939 0,0739 4 JDL442 0,7343 5 JDL037 0,8146 6 JDL948 0,6883 7 JDL916 0,6694 8 JDL343 0,8646 9 JDL994 0,3173 10 JDL306 0,4186 11 JDL222 0,8381 12 JDL439 0,5728 13 JDL296 0,3617 14 JDL403 0,6552 15 JDL179 0,5821 … … … 161 JDL545 0,9313 162 JDL781 0,3022 163 JDL907 0,4853 164 JDL733 0,7131 165 JDL184 0,0591 Next, calculate the proximity distance between x and y using the Euclidean distance method. Example of calculation of code INA-A with code JD374. ( ) 1666,028268,06602,0 =−=D etc. The full calculation is shown in Table 5 below. Table 5. Calculation of the distance xi to yj Code x Value x Code y Value y D INA-A 0,6602 JDL374 0,8268 0,1666 INA-A 0,6602 JDL976 0,3906 0,2696 INA-A 0,6602 JDL939 0,0739 0,5863 INA-A 0,6602 JDL442 0,7343 0,0741 INA-A 0,6602 JDL037 0,8146 0,1544 INA-A 0,6602 JDL948 0,6883 0,0281 IT Jou Res and Dev, Vol.7, No.1, August 2022 : 12 - 22 Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum, Nurtanzis 19 INA-A 0,6602 JDL916 0,6694 0,0092 … … … … … INA-A 0,6602 JDL447 0,4690 0,1912 INA-A 0,6602 JDL776 0,9791 0,3189 INA-A 0,6602 JDL353 0,6598 0,0004 INA-A 0,6602 JDL218 0,5794 0,0808 … … … … … INA-A 0,6602 JDL574 0,9143 0,2541 INA-A 0,6602 JDL415 0,8871 0,2269 INA-A 0,6602 JDL585 0,4593 0,2009 INA-A 0,6602 JDL545 0,9313 0,2711 INA-A 0,6602 JDL781 0,3022 0,358 INA-A 0,6602 JDL907 0,4853 0,1749 INA-A 0,6602 JDL733 0,7131 0,0529 INA-A 0,6602 JDL184 0,0591 0,6011 Based on the calculation of the proximity value between x and y, the closest distance is 0.0004. For the code INA-A (Indonesian) in the distribution of lessons to obtain a room schedule with the code JDL353. Where, in this case, the code JDL353 is the room schedule on Monday from 1:00 p.m. to 3:15 p.m. in room 11. The complete results of the scheduling system are shown in Table 6 below. Table 6. Results of scheduling calculations Code x Value x Code y Value y D INA-A 0,6602 JDL353 0,6598 0,0004 INA-B 0,8722 JDL141 0,8794 0,0072 INA-C 0,6776 JDL389 0,6736 0,0040 ING-A 0,2250 JDL341 0,2236 0,0014 ING-B 0,8305 JDL906 0,8305 0,0000 ING-C 0,1657 JDL988 0,1691 0,0034 AGM-A 0,9885 JDL957 0,9882 0,0003 AGM-B 0,4018 JDL811 0,4031 0,0013 AGM-C 0,4421 JDL383 0,4349 0,0072 ALG-A 0,1164 JDL533 0,1203 0,0039 … … … … … SPR-A 0,5191 JDL032 0,5153 0,0038 SPR-B 0,2517 JDL619 0,247 0,0047 SPR-C 0,8502 JDL781 0,3022 0,0070 … … … … … SPM-B 0,5734 JDL515 0,574 0,0006 SPM-C 0,8520 JDL747 0,8531 0,0011 SPM-D 0,6120 JDL801 0,6138 0,0018 SPM-E 0,4382 JDL514 0,4349 0,0033 STS-A 0,2403 JDL376 0,2401 0,0002 STS-B 0,7815 JDL111 0,779 0,0025 STS-C 0,6465 JDL673 0,6487 0,0022 STS-D 0,5072 JDL517 0,5127 0,0055 STS-E 0,8118 JDL037 0,8146 0,0028 TKS-A 0,6221 JDL887 0,6291 0,0070 TKS-B 0,2315 JDL879 0,2215 0,0100 TKS-C 0,6108 JDL474 0,6097 0,0011 TKS-D 0,3906 JDL976 0,3906 0,0000 TKS-E 0,0554 JDL502 0,0547 0,0007 IT Jou Res and Dev, Vol.7, No.1, August 2022 : 12 - 22 Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum, Nurtanzis 20 3.2. Implementation of the Planning System The main support of this planning system is the use of the lesson planning application. Through the lesson planning app, each study program manager will get information about the planning results of each teacher in charge of each semester. The Lesson Planning System dialog page is shown in Figures 2-4 below. Figure 2. Home dialog page This main page is the page that appears the first time the scheduling application is run. Figure 3. Lesson Schedule Dialog Page This page is used to enter the room used in the lessons IT Jou Res and Dev, Vol.7, No.1, August 2022 : 12 - 22 Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum, Nurtanzis 21 Figure 4. Planning Process Dialog Page 4. CONCLUSION From the results of research and discussion of course planning system using Euclidean distance method, it can be concluded that Euclidean distance method can be used in planning systems, especially course planning . In addition, the course planning system using the Euclidean distance method has been shown to be able to solve problems detrimental to teachers and students, such as the emergence of schedules of lecturers who teach more than one course in same time (conflict). REFERENCES [1] Y. Sari, M. Alkaff, E. S. Wijaya, S. Soraya, and D. P. Kartikasari, “Optimasi Penjadwalan Mata Kuliah Menggunakan Metode Algoritma Genetika dengan Teknik Tournament Selection,” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 1, p. 85, 2019, doi: 10.25126/jtiik.2019611262. [2] M. T. Rustiyana and R. Budiman, “Aplikasi Penjadwalan Kuliah Dengan Menerapkan Metode Algoritma Steepest-Ascent Hill Climbing Di Fakultas Teknologi Informasi Universitas Bale Bandung,” Computing, vol. 6, no. 2, pp. 1–9, 2019, [Online]. Available: http://ejournal.unibba.ac.id/index.php/computing/article/view/189. [3] Mansur, “Perancangan Sistem Informasi Penjadwalan Resource Perguruan Tinggi Menggunakan Metode Particle Swarm Optimization (PSO),” Invotek, vol. 4, pp. 75–86, 2014. [4] Selviyanti, M. S. Lamada, and S. G. Zain, “Sistem penjadwalan mata kuliah pada jurusan pendidikan teknik elektro fakultas teknik universitas negeri makassar menggunakan php,” vol. 17, no. 3, pp. 49–54, 2020. [5] A. Laksono, M. Utami, and Y. Sugiarti, “Sistem Penjadwalan Kuliah Menggunakan Metode Algoritma Genetika (Studi Kasus: Fakultas Kedokteran dan Kesehatan Universitas Muhammadiyah Jakarta),” Stud. Inform. J. Sist. Inf., vol. 9, no. 2, pp. 177–188, 2018. [6] V. U. R. Hartadi, A. Hidayat, “Perancangan Aplikasi Penjadwalan Mata Kuliah (Studi Kasus : STMIK Provisi Semarang),” Pro HTML5 with CSS, JavaScript, Multimed., vol. 4, no. 1, pp. 439–466, 2017, doi: 10.1007/978-1-4842-2463-2_24. [7] A. Hanafiah, “Implementasi Load Balancing Dengan Algoritma Penjadwalan Weighted Round Robin Dalam Mengatasi Beban Webserver,” IT J. Res. Dev., vol. 5, no. 2, pp. 226– 233, 2021, doi: 10.25299/itjrd.2021.vol5(2).5795. [8] L. Paranduk, A. Indriani, M. Hafid, and Suprianto, “Sistem Informasi Penjadwalan Mata Kuliah Menggunakan Algoritma Genetika Berbasis Web,” Semin. Nas. Apl. Teknol. Inf., pp. E46–E50, 2018. [9] Fitriyani, R. Fitriani, and N. Rosmawanti, “Penerapan Algoritma Euclidean Distance Untuk Pemilihan Paket Internet Berdasarkan Wilayah,” Progresif, vol. 13, no. 1, pp. 1651–1662, 2017. [10] R. K. Dinata, H. Akbar, and N. Hasdyna, “Algoritma K-Nearest Neighbor dengan Euclidean Distance dan Manhattan Distance untuk Klasifikasi Transportasi Bus,” Ilk. J. Ilm., vol. 12, no. 2, pp. 104–111, 2020, doi: 10.33096/ilkom.v12i2.539.104-111. [11] H. R. Siburian, E. Buulolo, and H. Hutabarat, “Algoritma K-Nearest Neigbor Model Euclidean Distance Dalam Klasifikasi Kelulusan Peserta Bahasa Indonesia Penutur Asing IT Jou Res and Dev, Vol.7, No.1, August 2022 : 12 - 22 Implementing the Modified Euclidean Distance Method in the Course Planning of the USN Kolaka Information Systems Curriculum, Nurtanzis 22 Pada Balai Bahasa Sumatera Utara,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 171–175, 2019, doi: 10.30865/komik.v3i1.1585. [12] A. Pratidina, “Implementasi Pengolahan Citra Untuk Mendapatkan Informasi Mengenai Citra Baret TNI Dengan Menggunakan Algoritma Euclidean Distance,” vol. 22, no. 1, 2017. [13] Y. Yuliska and K. U. Syaliman, “Peningkatan Akurasi K-Nearest Neighbor Pada Data Index Standar Pencemaran Udara Kota Pekanbaru,” IT J. Res. Dev., vol. 5, no. 1, pp. 11–18, 2020, doi: 10.25299/itjrd.2020.vol5(1).4680. [14] R. M. Candra and A. Nanda Rozana, “Klasifikasi Komentar Bullying pada Instagram Menggunakan Metode K-Nearest Neighbor,” IT J. Res. Dev., vol. 5, no. 1, pp. 45–52, 2020, doi: 10.25299/itjrd.2020.vol5(1).4962. [15] A. Yudhana, S. Sunardi, and A. J. S. Hartanta, “Algoritma K-Nn Dengan Euclidean Distance Untuk Prediksi Hasil Penggergajian Kayu Sengon,” Transmisi, vol. 22, no. 4, pp. 123–129, 2020, doi: 10.14710/transmisi.22.4.123-129. [16] Suparmi and Soeheri, “Application of the Euclidean Distance Nearest Location Method Campus Area Boarding School,” pp. 105–113, 2020. [17] D. Harto and M. Z. Rahmani, “Sistem Pengenalan Wajah Dengan Metode Euclidean Distance,” J. Elektr. Borneo, vol. 5, no. 2, pp. 16–26, 2019. [18] R. Rizaldi, A. Kurniawati, and C. V. Angkoso, “Implementasi Metode Euclidean Distance untuk Rekomendasi Ukuran Pakaian pada Aplikasi Ruang Ganti Virtual,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, p. 129, 2018, doi: 10.25126/jtiik.201852592. [19] S. Mulyati, S. M. Husein, and Ramdhan, “Rancang Bangun Aplikasi Data Mining Prediksi Kelulusan Ujian Nasional Menggunakan Algoritma KNN dan Metode Euclidean Distance,” J. Tek. Inform. Univ. Muhammadiyah Tangerang, vol. 4, no. 1, pp. 65–73, 2020. [20] P. Y. Santoso and D. Kusumaningsih, “Algoritma K-nearest Neighbor Dengan Menggunakan Metode Euclidean Distance Untuk Memprediksi Kelulusan Ujian Nasional Berbasis Desktop SMA Negeri 12 Tangerang.,” Skanika 2018, vol. 1, no. 1, pp. 123–129, 2018.