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Quality of veiled olive oil: Role of turbidity components
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Abstract

This study investigated the effects of water and content of solid particles, taken together as well as separately, on
stability of veiled olive oil. The following oil samples were obtained through four different separation treatments:
veiled, filtered, ‘solid-only, and ‘water-only. Changes in chemical, microbial, and sensory characteristics were
evaluated during storage (240 days). A significant effect of hydrolysis was shown in veiled and ‘water only’ oils; in
‘solid-only’ oils, a slow increase of phenols was observed. A notable microbial activity, with resulting formation of
volatile metabolites and sensory defects, was observed in veiled samples. Filtered oils underwent less significant

changes.
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Introduction

Preservation of quality during storage is an import-
ant subject for extra-virgin olive oil (EVOO) producers
(International Olive Council [IOC], 2018). Good pres-
ervation practices are essential to maintain quality of
EVOOs up to shelf-life. Moreover, sensory profile and
contents of phenolic compounds change during stor-
age, leading to a decrease in hedonic and health charac-
teristics. Filtration is one of the most used stabilization
processes for EVOOs (Guerrini et al., 2015). Interest in
unfiltered oils has increased during last few years (Bimbo
et al., 2020).

Cloudy aspect of veiled extra-virgin olive oils (VEVOO)
is due to the presence of micro-droplets of water and
fragments of olive pulp and stone suspended/dispersed
in the oil phase (Lercker et al., 1994; Koidis et al., 2008).
Furthermore, different combinations of water and insol-
uble solids can lead to different ‘turbidities’ in VEVOOs
(Breschi et al., 2019). The same degree of turbidity of a

VEVOO could be characterized by different water con-
tents, insoluble solid contents, water activity, and/or
microbial contamination. Therefore, VEVOO turbid-
ity is not a dichotomous variable, but it is a continuous
variable of different proportions of water, insoluble sol-
ids, microbial contamination, and water activity (Breschi
etal., 2019).

The difference between VEVOO and filtered extra-
virgin olive oil (FEVOO) during storage is still a contro-
versial and widely studied topic for the quality of olive
oil (Cayuela-Sanchez and Caballero-Guerrero, 2019).
Some authors have proclaimed that suspended particles
play a stabilizing function during storage because most
phenolic compounds present in olive oil, having hydro-
philic nature, are located in water droplets and insol-
uble solids (Lonzano-Sanchez et al., 2010). Therefore,
the presence of suspended particles acts as an anti-
oxidant, providing greater oxidative stability (Lercker
et al., 1994; Ambrosone et al., 2002; Koidis and Boskou,
2006; Migliorini et al., 2009). Moreover, the suspended
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particles act as buffer against increase in free fatty acid
(FFA) and hydrolytic degradation (Frega et al., 1999).

On the other hand, in literature, improvement in shelf
life because of elimination of sediment by filtration
was evidenced. In VEVOO, solid particles and water
micro-droplets trap microorganism, mainly yeasts, and
constitute a perfect environment for microbial sur-
vival (Guerrini et al., 2015; Ciafardini and Zullo, 2002a;
Ciafardini and Zullo, 2002b; Zullo and Ciafardini, 2020a;
Zullo and Ciafardini, 2020b). In veiled oils (VOs), micro-
bial metabolism promoted by a water activity of more
than 0.6 (Breschi et al., 2019; Bubola et al., 2017) was
responsible for fast behavior of sensory defects, such
as ‘fusty’ and ‘muddy-humidity, and oil debittering
phenomena (Zullo and Ciafardini, 2020b ; Zullo et al.,
2013; Zanoni, 2014; Cayuela et al., 2015; Guerrini et al.,
2020a; Zullo et al., 2020). Moreover, the yeast present
in VEVOO was responsible for oxidation of phenolic
compound and hydrolysis of triacylglycerol (Zullo et al.,
2013; Romo-Sanchez et al., 2010; El Haouhay et al., 2018;
Ciafardini and Zullo, 2018). Water content also affects
the hydrolytic activity of olive oil; hydrolysis is faster at
the interface between the two phases of oil and water
(Xenakis et al., 2010). This effect has been demonstrated
with a higher increase of hydroxytyrosol and tyrosol in
veiled olive oils than in filtered oils (FO) (Brenes et al.,
2001; Fregapane et al., 2006; Fortini et al., 2016; Guerrini
et al., 2020Db).

Given the conflicting results about the role of turbidity
on the stability of VEVOOs, in this work, an original
research was carried out on the different role of water
and insoluble solid particles content during storage of
EVOO by testing a wide spectrum of olive oil ‘turbidities.

The present work is a part of wide study on the turbid-
ity and stabilization of olive oil. The first contribution
(Breschi et al., 2019) allowed defining a set of analy-
ses useful to study turbidities of olive oil based on its
physical-chemical and microbiological characterization.
Then a specific research (Guerrini et al., 2020b) was car-
ried out on the role of water and microorganisms, the two
factors that mostly compromise the stability of VEVOOs.
Then the dynamics of development of ‘fusty’ sensory
defect and the hydrolysis of phenolic compounds were
studied (Guerrini et al., 2020a), since these phenomena
were always present in the analyzed VEVOOs, with the
aim of establishing an adequate filtration schedule.

Finally, the present work aimed (i) to study the contribu-
tion of dispersed water droplets or solid particles, which,
to different extent, contribute to turbidity in VEVOOs
and affect the qualitative characteristics of olive oil
during a simulated medium storage period, and (ii) how
important the qualification of olive oil turbidity could be

to plan separation techniques during crop seasons and
storage of olive oil.

Materials and Methods
Olive oil samples

EVOO samples were extracted in October—November
2017 in an industrial continuous plant (TEM, Florence,
Italy) in Azienda Agricola La Ranocchiaia (Florence,
Italy). The plant was equipped with the following: olive
cleaner, blade cutter crusher, sealed vertical malaxer (300
kg), and two-phase horizontal centrifuge (i.e., decanter).
The malaxation was carried out at 18°C for 20 min.

Six different 300-kg batches of blend of olive cultivars,
harvested in Tuscany, were processed on three differ-
ent days in 2017: olive oils #1 and #2 were processed on
October 31, 2017; olive oils #3 and #4 were processed
on November 7, 2017; and olive oils #5 and #6 were pro-
cessed on November 28, 2017.

Six 20-kg batches of oil from each batch of blended olive
cultivars were collected at the end of ‘decanter; immedi-
ately transferred to the laboratory, and subjected to the
following four different water and solid particle separa-
tion treatments: (1) first % of oil batches (5 kg of oil) were
untreated, forming VO samples for this study (i.e., sam-
ples VO#1-VO#6); (2) second % of oil batches (5 kg of
oil) were filtered using a portable filter press (Colombo
Inox 12, Rover Pompe, Padua, Italy) equipped with five
filter sheets (Rover 8, 3-um cut-off, Rover Pompe, Padua,
Italy), forming FO samples for this study (i.e., samples
FO#1-FO#6); (3) third % of oil samples (5 kg of oil) were
freeze-dried (Modulyo, Edwards, Milan, Italy), forming
the ‘solid particle-only’ (SO) samples for this study, that
is, freshly extracted olive oil containing solid particles
only without water (i.e., samples SO#1-SO#6); and (4)
last % of oil samples (5 kg of oil) were filtered with glass
wool using a filter aid to separate solid particles, forming
‘water-only’ (WO) samples for this study, that is, freshly
extracted olive oil containing water only without solid
particles (i.e., samples WO#1-WO#6).

All oil samples obtained (4 treatments x 6 different oil
batches = 24 oil samples) were bottled in 0.25-L clear
glass bottles with a headspace of about 8% of bottle’s
volume, and immediately analyzed to measure turbid-
ity characterization parameters (i.e., degree of turbidity,
water content, water activity, solid particles content, and
microbial cell count) as described in Breschi et al. (2019).
Chemical characteristics (FFA, peroxide value [PV],
ultraviolet [UV] spectroscopic indices [K232, K270, and
AK], and content of phenolic and volatile compounds)
and sensory attributes were also measured.
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For storage test, all olive oil samples (4 treatments x 6 dif-
ferent oil batches x 4 storage periods = 96 oil samples)
were bottled in 0.25-L clear glass bottles with a head-
space of about 8% of bottle’s volume. These were stored at
room temperature (20°C) in a chamber (1.3 x 1.0 x 0.8 m)
with internal walls covered with reflective material and
a light intensity of 1,900 lux (Master TL-D 90 Graphica
lamp, 35 W/390, Philips, Amsterdam, the Netherlands)
for 12 h per day. After 45, 120, 180, and 240 days of stor-
age, the olive oil samples were analyzed to measure FFA,
PV, K232, K270, AK, and phenolic and volatile com-
pounds content and sensory parameters.

Analyses

Turbidity characterization parameters and microbial cell count
The degree of turbidity was measured in nephelometric
turbidity unit (NTU) using a Hach Model 2100 turbidi-
meter (Hach, Loveland, CO, USA). Water content, cal-
culated as percent of water content weight/100-g olive
oil sample (% w/w), was analyzed with a Karl Fischer
Kit for visual water determination without titrator
(37858 HYDRANAL - Moisture Test Kit, Honeywell
Fluka, Bucharest, Romania). Water activity (Aw) was
measured using a Rotronic Hygroskop DT hygrometer
(Michell Italia Srl, Milan, Italy). The solid particles con-
tent, calculated as the difference in weight and quanti-
fied as percentage of solid particles weight/100-g olive
oil sample (% w/w), was measured using the method
described in literature (Zullo and Ciafardini, 2018), and
calculated by weighing the difference and quantified as
% w/w. Microorganisms were enumerated according to
the method reported in literature (ZULLO et al., 2010):
an aliquot of each sample (i.e., 20 mL) was taken from
each bottle under sterile conditions and filtered through
a 0.45-um sterile nitrocellulose membrane. Then the fil-
tered content was transferred into a 50-mL sterile Falcon
tube containing 20-mL sterile physiological solution
(0.85% NaCl) and homogenized using UltraTurrax (mod.
T25 homogenizer, IKA Milan, Italy). Of each homoge-
nized sample, 200-pL serial dilution was placed on YPD
agar medium. Colonies were counted after 48-72 h of
incubation at 28°C.

Chemical and sensory parameters

The FFA (% oleic acid), PV (meq O, kg™), and UV spec-
troscopic indices (K232, K270, and AK) were measured
according to the official EU method (REG. 2016/2095).
Extraction, identification, and determination of phenolic
compounds was performed in agreement with the offi-
cial IOC method (IOC/T.20/Doc.29/Rev.1; International
Olive Council [IOC], 2017) using an HPLC apparatus
comprising Agilent 1200 series system (Agilent technolo-
gies, Santa Clara, CA, USA). The system was composed of
a quaternary pump equipped with a diode-array detector
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and autosampler. The analytical conditions were as fol-
lows: HPLC column: LiChroCART" 250-4.6 Purospher’
STAR RP-18E, 5 pm (250 x 4.6-mm id; Merck KGaA)
equipped with a LiChroCART" 4-4 Purospher’ STAR
RP-18E, 5-um pre-column (4 x 4 mm). Contents of phe-
nolic compounds in oil samples were studied as total con-
tent, content of polyphenols from different family groups
(sum of oleuropein and its derivates, sum of ligstroside
and its derivates, phenolic acids, flavonoids, and lig-
nans), and content of single representative compounds in
EVOO (hydroxytyrosol and tyrosol). Moreover, R-index,
which relates the content of the more hydrolysed phenols
(hydroxytyrosol and tyrosol) to the less hydrolysed ones
(oleuropein and its derivates and ligstroside and its deri-
vates) was calculated as follows (Fiorini et al., 2018):

hydroxytyrosol + tyrosol

R-index= - - -
oleuropein and its derivates +

ligstroside and its derivates

The content of volatile organic compounds in olive oil
was determined using the combination of headspace
solid phase microextraction (HS-SPME) and gas chro-
matography—mass spectrometry (GC-MS) technique
as described in literature (Fortini et al., 2017). Analyses
were carried out by weighing 4.3 g of sample and 0.1 g of
internal standard mixture (ISTD MIX) in 20-mL screw-
cap vials fitted with a PTFE/silicone septum. After 5 min
of equilibrium at 60°C, the SPME fiber (50/30 pm DVB/
CAR/PDMS by Supelco, Darmstadt, Germany) was visi-
ble in the vial headspace for 20 min while being subjected
to orbital shaking (500 rpm). Then the fiber immediately
desorbed for 2 min in a gas chromatograph injection port
operating in split less mode at 260°C. The identification of
volatile compounds was performed by gas chromatogra-
phy coupled with quadrupole mass spectrometry using a
GC-MS scientific trace system (Thermo Fisher, Waltham,
MA, USA) equipped with a 30 m x 0.25 mm ID and
0.25-um DF ZB-FFAP capillary column (Phenomenex,
Torrance, CA, USA). The mass detector was operated
in scan mode within a mass range of 30-330 Thomson
(Th) at 1,500 Th/s, with an ionization energy (IE) of 70
eV. Compounds were identified and quantified (mg/kg)
by comparing their mass spectra and retention period
with those of ISTD MIX. These consisted of the fol-
lowing 11 compounds: 3,4-dimethyl phenol, 4-methyl-
2-pentanol, hexanoic acid-d11, 1-butanol-d10, ethyl
acetate-d8, toluene-d8, ethyl hexanoate-d11, ace-
tic acid-2,2,2-d3, 6-chloro-2-hexanone, 3-octanone,
trimethylacetaldehyde.

The panel test was carried out according to the official
IOC method (IOC/T.20/Doc.15/Rev.10; International
Olive Council [IOC], 2018b). Three women and five men,
aged 29-58 years, comprised the panel. All panelists were
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trained following the official IOC procedure (IOC/T.20/
Doc.14/Rev.5; International Olive Council [IOC], 2018a).
The panelists worked for the Taste Commission of the
Ministerodelle Politiche Agricole Alimentari, Forestali e
del Turismo (MIPAAAFT—Italian Ministry of Agri-Food
and Forestry Policy and Tourism). For the safety of panel-
ists, WO samples, filtered on glass wool, were not tasted
but only smelt out.

Data processing

A linear model that included two tested variables (treat-
ment and storage period) and their interactions were
used to fit the experimental data. Data were analyzed
with Matlab R2017B software (MathWorks, Natick, MA,
USA). A two-way mixed effect ANOVA was performed
to assess significant differences (p < 0.05). Treatment was
considered a fixed effect variable, while storage period
was taken as a random effect variable.

Six olive oil samples for each treatment were used as
replicated for storage study. This choice was done to
understand both the behavior of unfiltered oils related to
filtered oils, regardless of individual oil turbidity charac-
teristics, and the separated role of water and solid parti-
cles during storage of unfiltered olive oils.

Results
Turbidity characterization

Immediately after production, the six VEVOO samples
(VO#1-VO#6) used in this study were characterized
for different ‘turbidities’ (Breschi et al., 2019). The tur-
bidity grade ranged between 800 and 1,700 NTU, with
water content between 0.15 and 0.40% w/w, water activ-
ity between 0.60 and 0.85, and insoluble solids content
between 0.10 and 0.45% w/w. Microbial cell count was
between 2.5 and 4.5 log CFU g

After treatments, turbidity characteristics of olive oil
samples changed radically. FEVOO samples (FO#1-
FO#6) were characterized by a degree of turbidity grade
(10-20 NTU), water (0.04—0.05% w/w), and insoluble
solids content (0.00% w/w), water activity (0.30-0.45),
and microbial cell count (0.00 log CFU g), which were
statistically (p > 0.05) lower than VO samples. The WO
olive oil (WO#1-WO#6) and SO olive oil (SO#1-SO#6)
samples were characterized by turbidity characteristics,
which were between VEVOO and FEVOO samples. The
degree of turbidity grade for WO olive oil samples was
between 40 and 90 NTU and that for SO olive oil samples
between 150 and 240 NTU. These turbidity grades were
characterized by different water content (0.10-0.11%

w/w for WO samples; and 0.02-0.04% w/w for SO sam-
ples), water activity value (0.45-0.75 for WO samples;
and 0.30-0.40 for SO samples), and insoluble solids con-
tent (0.00% w/w for WO samples; and 0.15-0.40% w/w
for SO samples). The microbial cell counts for WO and
SO olive oil samples were 0.5-3.0 log CFU g and 0.0-.7
log CFU g}, respectively.

Chemical parameters and microbial cell count

All olive oil samples resulted from the values of chemi-
cal parameters, FFA, PV, K232, K270, and AK, in the
‘extra-virgin’ category during whole storage (Table 1).
However, the spectroscopic indices (K232, K270, and AK)
significantly increased during storage for all treatments (p
< 0.01). VO samples had statistically higher FFA and AK
values than FO, SO, and WO samples. However, the high-
est value of K270 was determined in SO olive oil samples.

Microbial cell count was statistically significant for treat-
ment. VO samples had a microbial cell count higher than
FO samples; WO olive oil samples had a microbial cell
count between VO and FO samples. SO olive oil samples
had a microbial cell count between WO and FO samples
(i.e., no significant difference than both WO and FO). No
statistically significant variation occurred during storage
time. However, interactions between time and treatment
were statistically significant. In WO and SO olive oil sam-
ples, the microbial cell count decreased during storage,
in FO samples it did not change, and in VO samples, the
microbial contamination increased up to 120 days, then
decreased (Figure 1).

Content of phenolic compounds

The content of phenolic compounds of oil samples was
studied as total content, content of different family
groups of polyphenols, and content of single represen-
tative compounds in EVOO, as described in literature
(Breschi et al., 2019; El Riachy et al., 2011) (Table 2).

The total phenolic content was statistically significant
(p < 0.001) for treatment. The content of total phenolic
compounds was statistically higher in SO samples than
in VO and WO samples, which had a higher content of
total phenolic compounds than in FO samples (Table 2).
The statistically significant higher content of total pheno-
lic compounds in SO samples was also determined by the
sum of oleuropein and its derivates and the sum of lig-
stroside and its derivates (Table 2). Instead, the content
of hydroxytyrosol, tyrosol, and phenolic acids was statis-
tically higher (p < 0.001) in VO samples than in WO and
SO samples, which had higher content of hydroxytyrosol,
tyrosol, and phenolic acids than in FO samples (Table 2).
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Figure 1

Mean contents and standard error of microbial cell count in samples of virgin oil (VO; red circle), olive oil contain-

ing water only (WO; blue diamond), olive oil containing solid particles (SO; purple triangle), and filtered oil (FO; green square)
during storage. The R? and ADJ-R? values of microbial cell count were 0.8522 and 0.8356, respectively.

Significant interactions between storage period and
treatment (p < 0.001) were determined for hydroxyty-
rosol and tyrosol contents, which statistically increased
faster in VO samples than in WO > SO > FO samples
during storage (Table 2). Immediately after production
(time = 0), the content of both hydroxytyrosol and tyro-
sol was lower than 10 mg kg™ and 5 mg kg™, respec-
tively, in all samples. During the 240 days of storage, the
contents increased statistically in all samples except FO
samples. VO samples had content of hydroxytyrosol and
tyrosol statistically (p < 0.001) higher than in FO samples.
Content of both hydroxytyrosol and tyrosol in WO and
SO samples was statistically different (p < 0.001) and was
between the content determined in VO and FO samples.

The contents of hydroxytyrosol, tyrosol, oleuropein, and
ligstroside and their derivates were used to calculate
R-index (R-index = [hydroxytyrosol + tyrosol]/[oleuro-
pein and its derivates + ligstroside and its derivates]), a
useful marker of the hydrolysis of secoiridoids (Fiorini et
al., 2018). During storage R-index increased significantly
(p < 0.001) in all treatments, demonstrating degrada-
tion of phenols (Figure 2). The difference between treat-
ments was statistically significant (p < 0.001); except at
the beginning of storage, the R-index of VO samples was
always higher than that of FO and SO samples. WO sam-
ples had intermediate value of R-index. Moreover, time—
treatment interactions were also statistically significant:
in VO samples, the R-index gain was faster than in WO
samples, which was faster than SO and FO samples.

The ratio of oxidized form of phenolic compounds to not
oxidized form (OX:not OX) during storage period (Figure

3) was determined to observe the effect of oxidation on
phenolic compounds. Immediately after production, FO
samples showed the OX:not OX ratio value statistically
(p < 0.05) lower than in VO, WO, and SO samples. After
240 days of storage, increase in oxidized forms of pheno-
lic compounds made a statistically significant difference
in treatment: the OX:not OX ratio value was higher in
FO and SO samples than in WO and VO samples.

Content of volatile compounds

The content of volatile compounds in olive oil samples
was studied as described in literature (Guerrini et al.,
2020a): pleasant lipoxygenase pathway (LOX pathway)
volatile compounds with five (C5) and six (C6) carbon
atoms; unpleasant volatile compounds related to ‘fus-
ty’/‘mouldy’/*vinegary’ defects; and unpleasant volatile
compounds related to ‘rancid’ defect.

Some statistically significant differences (p < 0.05) were
identified in C5 and C6 branches of LOX pathway vola-
tile compounds. A statistically significant main effect of
filtration was detected in 1-hexanol, E-2-hexenol, Z-3-
hexenol, 1-penten-3-one, and E-2-penten-1-ol volatile
compounds (Figure 4). The content of all these volatile
compounds was higher in VO samples than in FO, WO,
and SO samples.

The same statistically significant difference was also
determined in 3-methyl-butanal, 2-octanol, and 2-nona-
none unpleasant volatile compounds related to ‘fusty’
defect (Figure 5). Moreover, a statistically significant
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Figure 2.

Mean value, standard error of R-index in samples of virgin oil (VO; red circle and line), olive oil containing water only

(WO; blue diamond and line), olive oil containing solid particles (SO; purple triangle and line), and filtered oil (FO; green square
and line) during storage. The R? and ADJ-R? values of R-index were 0.8343 and 0.8157, respectively.
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Figure 3. Mean value and standard error of phenolic oxi-
dized-not oxidized form ratio (OX:not OX) in virgin oil VO
(red circle), olive oil containing water only WO (blue dia-
mond), olive oil containing solid particles SO (purple tri-
angle), and filtered oil FO (green square) samples during
storage. The R? and ADJ-R? of OX/not OX were 0.1957 and
0.1055, respectively.

effect of treatment was determined in some single and
some C5 and C6 LOX pathway volatile compounds, with
lower content in SO samples than in FO, WO, and VO
samples because of stripping caused by freeze-drying.
No statistically significant differences during storage
period and no significant interactions between filtration
and storage period were determined in all the evaluated
volatile compounds of LOX pathway and those related to
‘fusty’ defect.

The main effect of treatment and storage period and
their interactions were not statistically significant for the
unpleasant volatile compounds related to ‘rancid’ defect.

Sensory evaluation

The sensory attributes were evaluated and a significant (p
< 0.05) effect of treatment and storage period was deter-
mined. The positive ‘fruity’ attribute decreased during
storage period in all samples. The VO and SO samples
were significantly less fruity than FO and WO samples
after 120 days of production (Table SI).

The negative ‘fusty’ and ‘winey’ defects, both related
to microbial activity, and ‘rancid’ defect, related to oxi-
dation, showed significant (p < 0.001) increase during
storage, and were of higher values in VO samples than
in FO, SO, and WO samples after 45 days (Table S1).
Furthermore, interactions between filtration and storage
period were statistically significant for ‘fusty, ‘winey” and
‘rancid’ defects. Indeed, these defects increased faster in
VO samples than in FO, WO, and SO samples (Figure 6).

The bitterness and pungency attributes significantly (p <
0.001) decreased in intensity during storage (Table S1).
The VO samples were significantly (p < 0.001) less bit-
ter and pungent than SO and FO samples after 45 days.
WO samples were not tasted due to filtration with glass
wool.
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Figure 4. Mean contents and standard error of lipoxygenase (LOX) pathway volatile compounds in virgin oil VO (red circle),
olive oil containing water only WO (blue diamond), olive oil containing solid particles SO (purple triangle), and filtered oil FO
(green square) samples during storage. Only compounds statistically significant different (p < 0.05) for time and/or treatment are
reported. The R? and ADJ-R?values for LOX pathway volatile compound are as follows: 1-hexanol, R? = 0.5003, ADJ-R? = 0.4442;
E-2-hexenol, R? = 0.6473, ADJ-R? = 0.6077; Z-3-hexenol, R? = 0.7068, ADJ-R? = 0.6740; 1-peten-3-one, R? = 0.5996, ADJ-R? = 0.5547;

and E-2-penten-1-ol, R? = 0.7460, ADJ-R? = 0.7175.

Discussion

The experimental data highlighted that water and solid
particles had some specific roles to play in the quality
evolution of EVOO during storage. The obtained results
demonstrated that two degradation phenomena, hydro-
lysis and microbial activity, were faster in VO samples
than in FO, WO, and SO samples.

The presence of water micro-droplets dispersed in oil
matrix increased the water/oil exchange surface, and

the hydrolysis reaction occurred to a significant extent
(XENAKIS et al., 2010). The enzymatic hydrolysis of
triglycerides produced, not esterified fatty acids, that
increased the FFA value more in VO samples than in
FO, SO, and WO samples. Furthermore, the formation
of phenolic compounds with low molecular weight,
such as hydroxytyrosol and tyrosol (due to chemi-
cal hydrolysis of phenolic compounds (Zanoni, 2014;
Cinquanta et al., 1997)), was higher in VO samples than
in FO, SO, and WO samples. R-index confirmed the
above trend in VO samples and established that WO
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Figure 5. Mean contents and standard error of volatile compounds related to ‘fusty’ defect in virgin oil VO (red circle), olive
oil containing water only WO (blue diamond), olive oil containing solid particles SO (purple triangle), and filtered oil FO (green
square) samples during storage. Only compounds statistically significant different (p < 0.05) for time and/or treatment are
reported. The R? and ADJ-R? values for ‘fusty’ defect volatile compounds are as follows: 3-methyl-butanal, R? = 0.4201, ADJ-R? =
0.3551; 2-octanol, R? = 0.7852, ADJ-R? = 0.7611; and 2-nonanone, R? = 0.5197, ADJ-R? = 0.4659.

samples, with intermediate water content, had interme-
diate hydrolytic activity (Figure 2). The cause and effect
relationship between the presence of micro-droplets of
water in VO samples and the chemical hydrolytic phe-
nomena of phenolic compounds were in accordance
with the experimental data given in literature (Guerrini
et al., 2020b).

The ‘fusty’ and ‘winey’ sensory defects and their related
volatile compounds were strictly connected to the micro-
bial activity. The microorganism cell count in VO sam-
ples was higher than in FO, SO, and WO samples during
storage; the microbial survival was due to the favorable
environment of VO samples, starting with water activ-
ity of >0.6 (Derossi et al., 2011), resulting in unpleasant
volatile microbial metabolites, such as 3-methyl-butanal,
2-octanol, 2-nonanone (Figure 5).

The microbial activity was also helped by the content of
solid particles. Our results highlight that water has to be
combined with solid particles for microbial growth. WO
and SO samples were not good for microbial survival,
and only VO samples had favorable conditions for micro-
bial growth (Figure 1).

The content of solid particles could be involved in promot-
ing the transfer of phenols transfer from solid particles to oil.
The SO samples were able to show the above effect, thanks
to both absence of water and slow hydrolytic phenomena
of phenolic compounds. The significant higher contents of
both total phenolic compounds and sum of oleuropein and
its derivatives in SO samples (Table 2) could be explained
by the mass transfer of phenolic compounds from solid
particles to oil. Solid particles consist of olive pulp and core
fragments that are rich in high molecular weight phenolic
compounds (Jerman Klen et al., 2015; Cecchi et al., 2018;
Morales et al., 2005). However, the freeze-drying conditions
led to initial oxidation, as shown in OX:not OX ratio val-
ues (Figure 3), and stripping of volatile compounds which
affected quality parameters, such as K270 (Table 1), and
development of ‘rancid’ defect (Figure 6).

Derived from the experimental results, following are the
other functions of water and solid particles in the qual-
ity evolution of EVOO during storage, although they had
some uncertain aspects.

The water content seemed to promote the LOX enzy-
matic pathway, which is responsible for ‘fruity’ positive
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Figure 6. Mean contents and standard error of the ‘fusty’, ‘winey’, and ‘rancid’ defect scores in virgin oil VO (red circle), olive
oil containing water only WO (blue diamond), olive oil containing solid particles SO (purple triangle), and filtered oil FO (green
square) samples during storage. The R? and ADJ-R? for each sensory attribute are reported below: ‘fusty’, R? = 0.4908, ADJ-R? =
0.4337; ‘winey’, R = 0.6216, ADJ-R? = 0.5792; ‘rancid’, R? = 0.5960, ADJ-R? = 0.5507.

sensory attributes. The content of C5 and C6 volatile
compounds of LOX pathway was higher in VO samples
than in FO and WO samples (Figure 4); however, VO
samples had a significant low level of ‘fruity’ sensory
attributes than determined in FO and WO samples. We
suppose that significant appearance of ‘fusty’ defect led
panelists to measure decrease in the ‘fruity’ score of VO
samples (Guerrini et al., 2020a).

The water content also seemed to protect EVOO against
negative oxidative phenomena during storage. The
OX:not OX ratio of phenolic compounds (Figure 3) was
higher in FO and SO samples than in WO and VO sam-
ples because of the stabilizing effect of water on oxidative
degradation, as demonstrated in literature (Lercker et al.,
1994; Ambrosone et al., 2002; Koidis and Boskou, 2006;
Frega et al., 1999). However, the protective effect of water
was not shown for chemical parameters, K232, K270, and
AK, which did not increase significantly during storage
as a function of treatments. The effect of treatments was
not statistically significant for unpleasant volatile com-
pounds, commonly related to ‘rancid’ sensory defect.
Instead, the ‘rancid’ sensory defect behavior during
storage demonstrated an opposite trend to the above

oxidation phenomena: the ‘rancid’ scores were higher in
VO samples than in FO, SO, and WO samples. The sig-
nificant appearance of ‘fusty’ defect led panelists to mea-
sure an increase in the ‘rancid’ score of VO samples, since
these two defects are characterized by some common
volatile compounds (Morales et al., 2005).

Conclusions

In this study, an original approach was carried out to
understand the significance of VO in terms of preser-
vation of EVOO quality during storage. A clear effect of
water content on hydrolytic phenomena and microbial
activity was evidenced. Effect of content of solid particles
to promote microbial activity was also demonstrated,
potentially resulting in the loss of EVOO quality.

The results of the present study asserted that the rec-
ommended technique to avoid significant degradation
during storage was to quickly filter freshly produced olive
oil. However, an immediate filtration is not always pos-
sible as veiled olive oil is the product sought for bottling
by producers. Therefore, A qualification of oil turbidity,
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based on separate measurement of water and insoluble
solids contents, is suggested during different process-
ing steps of olive oil chain, such as VO storage in mills,
VO supply and storage in oil blenders, and transporta-
tion and distribution of veiled EVOO. It follows that, for
olive oil producers, the qualification of veiled olive oil in
potentially different combinations of water and solid con-
tents (i.e., high—high, high—low, low—high, or low—low)
could be useful to plan and control both water/solid sep-
aration techniques and storage of oil.
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