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Summary
The assessment of tomato fruit quality depends on a variety of ex-
trinsic and intrinsic quality parameters such as color, firmness and 
sugar content. Conventional measurement methods of these quality 
parameters are time consuming, require various measurement de-
vices, and in case of intrinsic quality, involve destructive measure-
ments. Latest research focused on the non-destructive determination 
of these parameters by using spectroscopic measurements. The goal 
of this study was to evaluate the capability of three commercial- 
ly available portable and miniaturized VIS/NIR spectrometers, so  
called food-scanners, in predicting various tomato quality attributes 
in a non-destructive way. Additionally, this study evaluated the soft-
ware provided by manufacturers for building of prediction models by 
comparing the results derived from those software tools to state-of-
the-art software for multivariate analysis. Evaluation of food-scanner 
spectra resulted in prediction models of high accuracy (r² > 0.90) for 
tomato fruit firmness, dry matter, total soluble solids and color values 
L*, a* and h°. Prediction models computed with manufacturer’s soft-
ware showed similar accuracy to those derived from state-of-the-art 
evaluation software. Results of this study illustrate the great potential 
of commercial food-scanners for non-destructive quality measure-
ment. Further important features of food-scanners with respect to 
the application along the fresh produce supply chain are addressed. 
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Introduction
Fresh tomato fruit (Solanum lycopersicum L.) is the vegetable spe-
cies most consumed in Germany in terms of quantity with an average 
amount of 2.3 Mio t per year (Statista, 2019). When it comes to 
cultivation, distribution and marketing of tomatoes, various commer-
cial quality parameters are of high relevance. These commercial qua-
lity attributes differ depending on the position in the supply chain. 
Producer prioritize qualities beneficial for an unproblematic cultivati-
on of plants such as disease resistance, cultivation work, fruit weight, 
fruit size and appearance. In order to meet the requirements of a de-
mand driven supply chain, additional postharvest characteristics such 
as uniformity, shape, color and firmness as well as shelf life are of 
importance (Folta and Klee, 2016). From the perspective of the 
consumer, taste and flavor are relevant quality attributes, and lack of 
flavor was identified as the primary reason for consumer dissatisfac-
tion for tomatoes (Bruhn et al., 1991). A recent study on consumer 
acceptance of tomatoes cultivated for fresh consumption attested the 
importance of sensory traits like juiciness, sweetness and taste inten-
sity, which influence consumer purchase preference (Casals et al., 
2019). Additionally, tomato firmness and color are vital quality para-
meters which influence acceptability and marketability (Batu, 2004).

Some of the above mentioned quality parameters of tomato fruit 
must meet certain standards within the European Union regarding 
the marketing and commercial quality control (BLE, 2019). Besides 
these standards required by law, retail companies impose additional 
requirements which oftentimes exceed those statutory provisions. 
These provisions regarding quality relate primarily to extrinsic attri-
butes that are important for marketing and trading, e.g. appearance  
or absence of damage and deterioration. Firmness is used as an  
indicator for the classification of tomatoes into three classes (Extra, 
Class I, Class II), yet the quoted indications „firm, reasonably firm, 
slightly less firm than Class I“ and severity of defects (UNECE, 2018) 
are prone to subjectivity. Visual and haptical impressions dominate 
quality assessment along the fresh fruit supply chain, therefore the 
evaluation of these traits highly depends on experience of staff in 
quality control (Goisser et al., 2020a). The application of instrumen-
tal measurements for these commercially important traits could help 
to reduce the variation between individual controller, offer higher 
precision and supply a standardized language of fruit quality among 
industry, consumers and research (Abbott, 1999). Furthermore, the 
measurement of intrinsic quality parameters such as sugar content 
(°Brix) as well as acidity, which relate to tomato flavor and sweetness 
(Causse et al., 2007), could allow the estimation of sensory traits 
such as tomato taste. 
Traditional instrumental measurement methods of extrinsic and 
intrinsic quality parameters are often time consuming and require 
trained personal in combination with various measurement devices. 
The determination of firmness via penetrometer and sugar content 
per refractometer demands destructive measurement methods, in 
the case of acidity handling of chemicals is necessary for titration. 
Besides these destructive measurement methods of internal quality 
parameters, optical measurement methods like visible and near in-
frared (VIS/NIR) spectroscopy have been successful in determining 
important quality parameters of agricultural and horticultural pro- 
ducts. NIR spectroscopy can be applied for qualitative applications, 
such as identification and classification of samples, as well as quan-
titative applications in order to determine major constituents in sam-
ples such as fruit and vegetables (Pasquini, 2003). As emphasized 
in the recent guidelines on objective tests for fruit and vegetables 
(OECD, 2018), NIR spectroscopy comprises the ability to simultane-
ously predict multiple quality attributes using only a single spectrum, 
therefore serving as multidimensional predictor of fruit quality. A 
summary provided by dos Santos et al. (2013) highlights successful 
reported applications for analysis of various quality attributes along 
a variety of fruit and vegetable species using portable spectrometers 
instead of traditional laboratory NIR devices. Ongoing technologi-
cal developments promoted the miniaturization and commercializa-
tion of NIR sensors, so called food-scanners. Some of these devices 
are particularly designed for end-consumers and should enable them 
to identify macronutrients, allergens, calories or food contaminants 
(Rateni et al., 2017).
First studies on the predictability of individual tomato quality para- * Corresponding author
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meters such as sugar content and lycopene (Sheng et al., 2019; 
Goisser et al., 2020b) using portable handheld NIR spectrometers 
indicate the potential of these miniaturized devices for non-destruc-
tive quality evaluation. Commercially manufactured portable NIR 
instruments are relatively new and previous research either com-
pared the performance of various instruments for the prediction of 
single quality traits such as dry matter (Kaur et al., 2017) or used 
individual devices for the prediction of multiple quality attributes 
within selected fruit such as kiwi (Li et al., 2018) or avocado (Ncama 
et al., 2018). The results of these studies illustrate the potential of 
food-scanners for fast and non-destructive quality measurement. 
With regard to the practical use of these devices along the fresh pro-
duce supply chain, a recent study identified important requirements 
as stated by supply chain actors, e.g., ease of use and robustness of 
devices and reliability and accuracy of prediction models (Goisser 
et al., 2020a). 
The aim of the study is to examine the assessment of the most im-
portant quality attributes of tomato fruit by using three commercial-
ly available portable food-scanners. Contrary to previous research, 
which focused on prediction accuracy and spectral pre-processing, 
this study investigates user friendliness and potential of an ap-
plication in practice along the fresh fruit supply chain. Therefore, 
this study used manufacturer’s software for building of prediction  
models as well as state-of-the-art software for multivariate analysis. 
By comparing the results derived from both software tools, the ac-
curacy and reliability of prediction models computed with manufac-
turer’s software can be assessed. For the evaluation of the full poten-
tial of each food-scanner, the full available spectral range was used 
during building of NIR prediction models. In order to generate a high 
variability for different quality parameters, two different experimen-
tal approaches were used in this study. In one experiment, different 
ripening stages from one tomato cultivar were examined, whereas 
the second experiment analyzed tomatoes of uniform ripening levels 
but different cultivars and origins. These different approaches high-
light the fact that users have to adhere to certain requirements in  
order to create good prediction models. Further important aspects 
with respect to usability and applicability by non-experts are dis-
cussed. 

Materials and methods
Experimental setup and sample material
All research was conducted at facilities of the University of Applied 
Sciences Weihenstephan-Triesdorf. In order to examine tomato fruit 
quality in its entirety the experiment comprised two separate parts. 
Within the first part, quality of one tomato variety (Solanum lyco- 
persicum cv. Avalantino) was monitored from fruit ripening during  
cultivation throughout harvest up to postharvest storage. Tomatoes 
were cultivated during summer 2019 in a greenhouse at the Univer- 
sity of Applied Sciences Weihenstephan-Triesdorf (48°24’12’’N, 
11°43’50’’E) under commercial growth conditions. A hydroponic re-
circulating drip irrigation system was utilized for tomato cultivation. 
The average air temperature during cultivation within the green-
house was 20.1 ± 8.1 °C and relative humidity was 74.5 ± 17.7%. In 
total, 245 tomatoes were used for the first part of the experiment. 
Evaluation of tomato quality during ripening was conducted from 
the middle of July until start of August 2019 on five days with two to 
five days in between. Five different ripening stages were determined 
for harvest by using the USDA Color Chart (USDA, 1975) as orienta-
tion: 1) Green (tomato surface of full green color) 2) Breaker (shift in 
color from green to yellow) 3) Turning (break in color from yellow 
to orange) 4) Light red (change in color from orange to light red) 
5) Red (tomato surface of full red color). On any measurement day 
five tomatoes of every ripening stage were randomly selected and 
harvested, resulting in batches of 25 tomatoes each day and 125 fruit  

total. Calyx was removed and samples were numbered for record-
ing of spectra and subsequent reference measurements. In order to 
monitor fruit quality during postharvest storage, 120 tomatoes of the 
ripening stage (5) were randomly selected and harvested from the 
greenhouse in the fourth week of August, 2019. After numbering the 
tomatoes were positioned on a metal grid to allow full air circulation 
at room temperature of 22.4 ± 1.7 °C and relative humidity of 67.4 ± 
3.0% for the storage period of 22 days. Measurement of fruit quality 
was conducted on the day of harvest and 8, 13, 17, 20, and 22 days 
after harvest in batches of 20 randomly selected samples. 
For the second part, 200 tomatoes consisting of eight different 
varieties à 25 fruit were purchased at four different supermarkets 
in Freising, Germany, from January to March, 2019. Only plastic-
wrapped tomatoes of commercial grade one were selected. In order 
to generate variability, various tomato types (Roma, Salad, Cherry) 
from different countries of origin were analyzed (Tab. 1). Not all fruit 
cultivars could be identified due to missing indications on packag-
ing labels. All spectral and related reference measurements in both 
parts of the experiment were conducted on a single fruit basis. Prior 
to spectroscopic and reference analysis fruit was kept at room tem-
perature to allow acclimatization. Temperature of fruit surface was 
measured immediately before recording of spectra using an infra-
red meter (AMiR 7834, Ahlborn Meßtechnik GmbH, Holzkirchen, 
Germany) and averaged 19.1 ± 0.4 °C.

Tab. 1: 	Sample composition of supermarket tomatoes.

Tomato type	 Variety	 N	 Origin

Salad	 n/a	 25	 The Netherlands
Salad	 n/a	 25	 The Netherlands
Salad	 Prince	 25	 Germany
Roma	 n/a	 25	 Spain
Miniature Roma	 Aromatica	 25	 The Netherlands
Miniature Roma	 Sunstream	 25	 The Netherlands
Cherry	 Romantic	 25	 Spain
Cherry	 n/a	 25	 Germany

Acquisition of spectra using portable NIR devices
Fruit spectra of intact tomato fruit were recorded with three differ-
ent portable and commercially available food-scanners (Fig. 1). At 
first, two spectra for each tomato were acquired on opposite sides of 
the fruit equator using the F-750 Produce Quality Meter (Firmware 
v.1.2.0 build 7041, Felix Instruments, Portland, USA). During each 
recording of a new measurement, the F-750 uses a reference shutter 
for normalization of the spectrometer output and accounts for dark 
current and ambient light by recording dark scans. After recording 
of spectra data was transferred from the SD-Card to a computer for 
subsequent analysis. In a next step, the portable NIR spectrometer 
H-100F (Sunforest, Incheon, Korea) was used for recording of spectra 
on same two spots on opposite sides of the fruit equator as the F-750. 
To ensure scan quality, the white standard attached in the protective 
cap of the measurement head was used for referencing at the begin-
ning and after every 20 measurements. Raw spectra was saved to a 
computer by linking the H-100F via USB and running the Sunforest 
H-100 Laboratory Program (V 1.1, Sunforest, Incheon, Korea). At 
last, spectra of each tomato was recorded using the SCiO™ Molecular 
Sensor (SCiO™ version 1.2, Consumer Physics, Hod HaSharon, 
Israel). The SCiO™ applies a LED light source which illuminates 
a considerably smaller surface area compared to the halogen lamps 
of the F-750 and H-100F. In order to depict an appropriate average 
fruit spectra, four equidistant scan points (approximately 90° apart) 
around the fruit equator were deemed more suitable, covering the 
two measurement points used with the F-750 and H-100F. The device 
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possesses a white standard within its protective plastic case, which 
was used for referencing at the start and after every 20 measurements. 
The technical features of all three devices have been elaborated in 
several previous works (Kaur et al., 2017; Li et al., 2018).	  
Depending on the respective device, two to four spectra were record-
ed for each fruit. For each device, all spectra belonging to one tomato 
fruit were averaged and the averaged spectra used for correlation 
with quality parameters and subsequent model building.

Measurement of fruit quality parameters
Measurements of external and internal quality parameters were 
performed immediately after recording of spectra and followed a 
defined operating procedure (Fig. 2). At first, fruit color was mea-
sured around the fruit equator with a colorimeter (PCE-CSM 2, 
PCE Instruments, Meschede, Germany) consistent with the spots 
of NIR spectra acquisition. Color readings were automatically av-
eraged by the colorimeter and the averaged values used for sub-
sequent reference. Firmness of each fruit was recorded in N as an  
average of two measuring points using a penetrometer (Fruit Texture 
Analyser, GUESS Manufacturing Ltd., Cape Town, South Africa). 
The applied probe head was 1 cm² in surface and used a measure- 
ment speed of 5 mm/s and test depth of 7.5 mm.	  
After acquisition of external quality parameters fruit were randomly 
selected for dry matter (DM) measurement. Within the first part of 

the experiment, dry matter of 50 tomatoes was analyzed during the 
ripening period, consisting of two tomatoes of each of the five ripen-
ing stages on five measurement days. During analysis of stored fruit, 
five tomatoes were selected randomly for DM measurement on each 
of the six days of measurement, resulting in 30 tomatoes. In total,  
80 samples were analyzed for DM within the first part. In the second 
part, ten tomatoes within the batch of 25 fruit of each of the eight 
varieties were drafted randomly for DM measurement, resulting in 
80 samples in total. Tomatoes were cut into four parts, put in small 
aluminum containers and placed in a dry oven for 48 h at 80 °C until 
constant dry weight was reached. Afterwards the ratio of dry weight 
to initial fresh weight was used to calculate % DM.
The remaining tomatoes within each part of the experiment were 
blended using a conventional smoothie mixer (WMF Kult X Mix&Go 
300 Watt, WMF Group GmbH, Geislingen/Steige, Germany). The 
purée was filtered using filtering paper. 2-3 drops of stirred filtrate 
were used for measurement of total soluble solids (TSS) using a digi-
tal refractometer (HI 96801, Hanna Instruments, Woonsocket, USA). 
10 mL stirred filtrate was used for the determination of titratable 
acidity with a titrator (HI 902 Potentiometric Titrator and HI 921 
Autosampler, Hanna Instruments, Woonsocket, USA). Results were 
expressed as g/L citric acid in fresh weight. TSS concentration and 
amount of titratable acidity were used to calculate Brix/Acid ratio  
as stipulated by OECD guidelines (OECD, 2018).

Statistical and chemometrical analysis
General data analysis such as calculation of average values and 
standard deviations (SD) was performed with Microsoft® Excel® 
2016.	
The evaluation of a linear relationship between recorded spectra and 
tomato quality attributes was performed with the respective analy-
sis software tools from the device manufacturer for the SCiO™ and 
F-750. In order to evaluate the performance of the manufacturer’s 
software and to carry out a neutral overall evaluation of food-scanner 
predictability of quality parameters, raw spectra of both devices was 
additionally analyzed with the multivariate data analysis software 
The Unscrambler® software (version 10.5.1, CAMO, Oslo, Norway). 
In comparison, the H-100F is not provided with an end-user tool for 
creating prediction models, therefore spectra was only analyzed with 
The Unscrambler® software. Software such as The Unscrambler® al-
low the computation of the correlation coefficient of both calibration 

 

Fig. 1: 	 Commercially available portable NIR food-scanner: (left) SCiO™ 
Molecular Sensor with protective plastic case, (middle) F-750 
Produce Quality Meter, (right) H-100F portable spectrometer with 
protective plastic cap.

Fig. 2: 	 Illustration of the measurement procedure and measuring points for NIR spectra as well as quality parameters within this experiment.
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(r ²C) and cross-validation model (r ²CV) as well as the correspond-
ing calibration and cross-validation root mean square error (RMSEC, 
RMSECV). These factors are used to evaluate the performance of the 
respective prediction model. Additionally, the software offers numer-
ous possibilities for data pre-processing and further analysis. Outliers 
detected with The Unscrambler®, which indicated errors during spec-
tra collection, were omitted from evaluation. 		   
After recording of spectra with the SCiO™, the spectra are uploaded 
to a cloud-based browser application (The Lab, Consumer Physics, 
Hod HaSharon, Israel) which allows building of prediction models. 
The default pre-processing settings within the cloud-application were 
used in order to build prediction models, namely logarithm, averaging 
all four scans per sample, first derivative (window of 35 and polynom 
degree of 2), selecting the full wavelength range from 740-1070 nm 
and subtracting the average. Every tenth spectra was used for cross-
validation. The algorithm was set to partial least square regression 
(PLSR) and outlier detection as well as additional filters were disabled. 
Raw spectra were then exported from the cloud-based samples library 
to an Excel-file and analyzed with The Unscrambler®, applying the 
same pre-processing settings as set in the cloud-application as well 
as PLSR, using 20 random segments for cross-validation. 	  
The F-750 comes with a free software tool for analysis of spectra and 
building of prediction models. Spectra recorded with the F-750 was 
loaded into the most recent Model Builder Software (version 1.3.0.192 
BETA, Felix Instruments, Portland, USA). The software uses non-
linear iterative partial least squares (NIPALS) regression and leave-
one-out method for cross-validation. Spectra in second derivative 
form, which is used by default by the software, was transferred from 
the Model Builder Software to an Excel-file and loaded into The 
Unscrambler® for additional evaluation. The whole wavelength range 
from 477-1059 nm was utilized for building prediction models. Both 
spectra per sample were averaged and no further pre-processing 
was applied. PLSR algorithm was utilized for building of prediction 
models, using 20 random segments for cross-validation.	  
For the H-100F, raw spectra in second derivative form was exported 
from The Sunforest H-100 Laboratory Program in the wavelength 
range from 650-950 nm. After averaging the two scans per sample  
no further pre-processing was applied. 20 random segments were 
used for cross-validation.	
The SCiO™ application as well as the F-750 Model Builder Software 
allow the selection of a specific spectral range for evaluation. Within 
this study, the full wavelength range of all food-scanners was se-
lected in order to evaluate the full potential of these devices. Since 
both software programs of the F-750 and H-100F do not allow ac-
cess to raw spectra, the automatically computed second derivative of 
spectra was used.  

Gathering of information on usability characteristics
A qualitative study regarding the application of food-scanners along 
the fresh produce supply chain identified several important require-
ments for food-scanners to allow the utilization in daily quali- 
ty control processes, e.g., high prediction accuracy, convenience in 
handling and robustness of food-scanners (Goisser et al., 2020a). 
Based on these results as well as personal experience of the authors 
through collaborations with supply chain actors, characteristics of 
high importance with respect to the usability and applicability of 
food-scanners were identified within four categories, namely device 
independency, data handling, practical handling and available acces-
sories. Manufacturer’s specifications were used to evaluate device  
independency and available accessories, whereas personal assess-
ments of the authors were used besides manufacturer’s specifications 
for the evaluation of data handling and practical handling of food-
scanners. In order to determine a practice-oriented scan speed for 
each device, 30 consecutive measurements on various tomatoes were 

conducted with each food-scanner and measured using a stop watch. 
Based on these measurements, arithmetic mean as well as standard 
deviation of scan speed for each device were calculated. 

Results
Distribution of tomato fruit quality for both parts of the ex- 
periment
Value ranges, arithmetic mean and standard deviation (SD) for all 
quality parameters measured in both parts of the experiment are 
shown in Tab. 2. As indicated by the value range, variance within 
the first part of the experiment was greater for quality parameters L*, 
a*, C*, h°, firmness and Brix/Acid ratio. Vice versa, quality attributes 
such as DM, TSS and titratable acidity showed higher variability 
within the second part of the experiment. Variance of color value b* 
differed only slightly between both parts of the experiment. 
 

Food-scanner spectra vs. quality parameters (manufacturer’s 
software)
The Model Builder software allocated by Felix Instruments for the 
F-750 provides the user with information on model linearity of the 
calibration set (r ²C) as well as the correlation coefficient after per-
forming a leave-on-out cross-validation (r ²CV). Root mean square  
errors for both calculations are also provided (RMSEC, RMSECV). 
For the purpose of this study, these values were chosen as denomi-
nator of performance (Tab. 3). The cloud application provided by 
Consumer Physics for the evaluation of SCiO™ spectra with respect 
to its correlation to reference values does not differentiate between 
calibration and validation models and therefore only displays a single 
r² and RMSE value (Tab. 3). 	
Evaluation of spectra collected with the F-750 in the first part of the 
experiment yielded models of high prediction accuracy (r ²CV > 0.90) 

Tab. 2: 	Distribution of reference values of quality parameters within each 
part of the experiment. L*, a*, b*, C*, h°: colorimetric values; DM: 
dry matter; TSS: total soluble solids; SD: standard deviation

Parameter	 Experiment	 N	 Range	 Mean	 SD
	 part

L*	 1	 245	 29.13 - 51.36	 36.03	 5.40
	 2	 120	 32.33 - 41.88	 36.12	 2.11

a*	 1	 245	 -7.97 - 31.69	 17.08	 13.19
	 2	 120	 11.55 - 28.46	 22.29	 2.87

b*	 1	 245	 18.01 - 39.27	 27.65	 3.34
	 2	 120	 16.49 - 27.99	 21.16	 2.57

C*	 1	 245	 21.49 - 49.26	 34.74	 6.11
	 2	 120	 23.66 - 39.59	 30.85	 2.79

h°	 1	 245	 40.87 - 106.54	 62.07	 22.50
	 2	 120	 35.18 - 63.39	 43.56	 5.02

Firmness (N)	 1	 245	 6.14 - 90.75	 30.53	 19.26
	 2	 120	 12.67 - 42.24	 24.43	 7.21

DM (%)	 1	 80	 5.50 - 7.58	 6.09	 0.38
	 2	 80	 4.02 - 9.69	 6.72	 1.74

TSS (%)	 1	 165	 4.50 - 7.30	 5.54	 0.59
	 2	 120	 3.1 - 9.00	 5.78	 1.84

Acidity (g/L)	 1	 165	 2.43 - 6.02	 3.73	 0.77
	 2	 120	 2.40 - 9.21	 5.08	 1.32

Brix/Acid ratio	 1	 165	 8.63 - 27.21	 15.60	 3.98
 	 2	 120	 7.38 - 18.22	 11.42	 2.39



208	 S. Goisser, M. Fernandes, S. Wittmann, C. Ulrichs, H. Mempel

for color values L*, a*, h° as well as firmness. Prediction models of 
moderate performance were obtained for chroma C* (r ²CV = 0.72) as 
well as TSS (r ²CV = 0.56), whereas color value b* and Brix/Acid ratio 
yielded predictions of poor performance. No feasible calibration and 
cross-validation could be acquired for DM (r²CV = 0.03) and titrat-
able acidity (r ²CV = 0.02). Within the second part of the experiment, 
prediction models computed for DM and TSS showed high predic-
tive capabilities (r ²CV > 0.90). Models of moderate performance 
were acquired for color value L* (r ²CV = 0.52) and b* (r ²CV = 0.65), 
whereas predictions of color value a*, chroma C*, hue h°, firmness, 
titratable acidity and Brix/Acid ratio displayed poor accuracy (r ²CV < 
0.50). 	
Prediction models of high accuracy (r ²P > 0.90) computed for the 
SCiO™ device in the first experiment part were obtained for color 
value a*, hue h° and firmness, while models for L*, chroma C* and 
TSS were of good performance with r ²P of 0.89, 0.80 and 0.71, re-
spectively. Models of poor predictive capability were acquired for 
color value b* (r ²P = 0.42) and Brix/Acid ratio (r ²P = 0.49), whereas 
the prediction of DM and titratable acidity was not feasible. Analysis 
of spectra gathered in the second part of the experiment resulted in 
prediction models of high accuracy (r ²P = 0.97) for DM and TSS. 
Moderate r ²P were obtained for color value b*, chroma C*, titratable 
acidity and Brix/Acid ratio, however the prediction models computed 
for color values L*, a*, hue h° as well as firmness showed low per-
formance.

Food-scanner spectra vs. quality parameters (The Unscrambler®)
The evaluation of raw spectra of all three commercially available 
food-scanners using The Unscrambler® software showed great dif-
ferences in the accuracy of quantitative prediction of certain tomato 
quality attributes (Tab. 4). 	  

Within the first part of the experiment, tomato fruit quality was  
monitored from fruit ripening during cultivation up to postharvest 
storage. The evaluation of all three portable food-scanners within 
this part of the experiment resulted in cross-validation models of high 
accuracy (r ²CV > 0.90) for color values L* and a*, hue h° as well as 
firmness (Fig. 3A). Validated models of color value b* showed low to 
moderate accuracy for the F-750 (r ²CV = 0.29), SCiO™ (r²CV = 0.55) 
and H-100F (r ²CV = 0.48) instrument. Prediction models of chroma 
C* yielded good results for all three devices, ranging from r²CV = 
0.73 to 0.80 and 0.83 for F-750, H-100F and SCiO™ respectively. 
Unlike the second part of the experiment, calibration models for dry 
matter indicated only small predictive capability for all three instru-
ments, and subsequent cross-validation resulted in a significant drop 
in r ², which overall led to prediction models of poor performance. 
The validation of models for TSS achieved predictions of moderate 
(F-750 and H-100F) to good (SCiO™) performance, whereas cross-
validation of prediction models for titratable acidity only yielded 
models of moderate accuracy for all three food-scanners. Prediction 
models for the Brix/Acid ratio ranged from r²CV = 0.69 over 0.70 
to 0.74 for the F-750, H-100F and SCiO™, respectively, indicating  
moderate to good predictability. 	
In the second part of the experiment, fruit quality of eight differ-
ent tomato varieties was determined. The evaluation of prediction  
models computed with food-scanner scans and reference measure-
ments yielded models of high accuracy (r ²CV > 0.90) for both dry 
matter and TSS (Fig. 3). Additionally, all three sensors obtained 
cross-validated prediction models of moderate accuracy (r ²CV rang-
ing from 0.54 to 0.75) for color values L* and b*, hue h°, firmness, 
acidity as well as the Brix/Acid ratio for all three devices. Low to 
moderate predictability was achieved for color value a*, where r ²CV 
ranged from 0.48 over 0.49 to 0.54 for F-750, SCiO™ and H-100F, 
respectively. Prediction of chroma C* was poor for the F-750 (r ²CV = 

Tab. 3: 	Prediction of tomato quality parameters of the F-750 Produce Quality Meter and SCiO™ Molecular Sensor using the respective manufacturer’s soft-
ware. L*, a*, b*, C*, h°: colorimetric values; TSS: total soluble solids; r²C: r² of calibration; RMSEC: root mean square error of calibration; r²CV: r² of 
cross-validation; RMSECV: root mean square error of cross validation; PC: principal components

 	 	 	 	 	 	 	 	 	 	 	           

	 F-750	 SCiO™
	 (λ = 477 - 1059 nm)	 (λ = 740 - 1070 nm)

Parameter	 Experiment part	 N	 r²C	 RMSEC	 r²CV	 RMSECV	 PC	  r²P	 SEP	 PC

L*	 1	 245	 0.90	 1.68	 0.90	 1.70	 3	 0.89	 1.83	 9
	 2	 120	 0.54	 1.44	 0.52	 1.46	 3	 0.47	 1.54	 3

a*	 1	 245	 0.95	 2.83	 0.95	 2.88	 4	  0.92	 3.81	 12
	 2	 120	 0.21	 2.54	 0.19	 2.58	 3	  0.37	 2.28	 3

b*	 1	 245	 0.27	 2.85	 0.25	 2.89	 3	 0.42	 2.56	 5
	 2	 120	 0.66	 1.49	 0.65	 1.52	 3	 0.72	 1.36	 4

C*	 1	 245	 0.74	 3.15	 0.72	 3.24	 4	  0.80	 2.76	 7
	 2	 120	 0.41	 2.14	 0.39	 2.17	 2	  0.62	 1.73	 4

h°	 1	 245	 0.96	 4.60	 0.96	 4.71	 4	 0.91	 6.95	 12
	 2	 120	 0.42	 3.84	 0.40	 3.90	 3	 0.39	 3.91	 2

Firmness (N)	 1	 245	 0.92	 5.40	 0.92	 5.53	 4	  0.91	 5.84	 10
	 2	 120	 0.49	 5.16	 0.47	 5.25	 3	  0.46	 5.29	 6

DM (%)	 1	 80	 0.08	 0.59	 0.03	 0.61	 1	 0.07	 0.37	 1
	 2	 80	 0.94	 0.41	 0.93	 0.47	 6	 0.97	 0.31	 8

TSS (%)	 1	 165	 0.56	 0.39	 0.56	 0.39	 2	  0.71	 0.32	 7
	 2	 120	 0.93	 0.47	 0.92	 0.51	 6	  0.97	 0.30	 8

Acidity (g/L)	 1	 165	 0.03	 2.00	 0.02	 2.01	 2	  0.00	 2.00	 1
	 2	 120	 0.51	 0.92	 0.49	 0.94	 3	  0.66	 0.77	 6

Brix/Acid ratio	 1	 165	 0.43	 3.09	 0.42	 3.13	 2	 0.49	 2.92	 4
 	 2	 120	 0.46	 1.76	 0.46	 1.77	 2	  0.51	 1.68	 3
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0.42) as well as the H-100F (r ²CV = 0.49), whereas the evaluation of 
the SCiO™ device yielded moderate results (r ²CV = 0.65).

Differences in usability characteristics
Important features with respect to device independency, data handl- 
ing, practical handling and available accessories of food-scanners 
derived from manufacturer’s specifications and personal assessment 
of the authors are compiled in Tab. 5. 	
With respect to the independent use of these devices without addi- 
tional equipment, the necessity of internet access and additional 
devices during scanning as well as the need for external white-
referencing of these spectrometers was evaluated. The investigation 
showed that the F-750 and H-100F can be used as stand-alone and 
offline instruments that require no additional devices for scanning or 
displaying of results. Both instruments are equipped with on-board 
prediction models for evaluation of NIR spectra and displays for the 
illustration of the respective measurement results. In contrast, the 
SCiO™ requires constant internet access during scanning as well 
as an additional mobile device. For the SCiO™, an additional de-
vice (e.g., smartphone, tablet) is mandatory, works as an intermedi-
ate link between the miniaturized NIR spectrometer and the cloud 
database, and serves as display for measurement results. The SCiO™ 
as well as the H-100F provide protective plastic caps, which on the 
one hand serve as protection during transportation and on the other 
hand contain the respective white standard for regular referencing 
of the spectrometer. Contrary to this, the F-750 uses a shutter with 
gold-coated foil as its reference standard, which is calculated for  
every sample measurement, therefore an external white reference is 
not needed.	
As a second aspect, the handling of the generated data was exam-

ined. Spectra collected with the F-750 can be accessed either by 
removing the SD card on which spectra is stored and transferring 
the data to a computer or using the Wi-Fi function of the SD card. 
Although a special file format is used for the spectra, the transfer 
to other multivariate analysis software is easily possible due to 
the free software and open format. SCiO™ spectra is only acces-
sible through an online database by using a web browser or the cor- 
responding SCiO™ mobile app. Furthermore, the SCiO™ requires a 
separate development license for the access of raw spectra, which can 
be downloaded in a simple file format. Spectral data stored on the 
H-100F can either be transferred via USB to a computer or accessed 
via Bluetooth using a smartphone. Spectra provided by the H-100F 
can either be accessed with special software for multivariate data 
analysis, e.g., The Unscrambler®, or by using data analysis software 
such as R or Python combined with syntax analysis of the respec-
tive file format. The ability of building own prediction models and 
the knowledge necessary for doing so differs significantly between 
the three devices. The manufacturer of the F-750 provides a free 
software tool for analysis of spectra and building of own prediction  
models and supports users with a systematic instruction on how 
to build custom tailored models. By following these instructions 
step by step, unexperienced users are able to build own prediction  
models without specialized knowledge in NIR spectroscopy. As  
for the SCiO™, the manufacturer provides a cloud-based browser 
application that allows the building and evaluation of prediction 
models. However, the utilization of these self-developed prediction 
models for future predictions requires the programming of separate 
mobile applications. In contrast to this, building of own prediction 
models by end-users is not possible with the H-100F.	
Additional differences were identified with respect to features in 
practical handling of the three food-scanners. Regular handling of  

Tab. 4: 	Prediction of tomato quality parameters of three commercially available NIR devices using The Unscrambler® software for evaluation. L*, a*, b*, 
C*, h°: colorimetric values; TSS: total soluble solids; r²C: r² of calibration; RMSEC: root mean square error of calibration; r²CV: r² of cross-validation; 
RMSECV: root mean square error of cross validation; PC: principal components

 

	 F-750	 SCiO™	 H-100F
	 (λ = 477 - 1059 nm)	 (λ = 740 - 1070 nm)	 (λ = 650 - 950 nm)	

Parameter	 Experiment	 N	 r²C	 RMSEC	 r²CV	 RMSECV	 PC	 r²C	 RMSEC	 r²CV	 RMSECV	 PC	 r²C	 RMSEC	 r²CV	 RMSECV	 PC
	 part

L*	 1	 245	 0.90	 1.70	 0.90	 1.74	 1	 0.91	 1.61	 0.90	 1.74	 9	 0.93	 1.39	 0.93	 1.44	 3
	 2	 120	 0.71	 1.14	 0.62	 1.32	 6	 0.62	 1.31	 0.57	 1.40	 4	 0.75	 1.05	 0.70	 1.16	 6

a*	 1	 245	 0.97	 2.44	 0.96	 2.53	 4	 0.93	 3.41	 0.92	 3.71	 9	 0.96	 2.65	 0.96	 2.74	 3
	 2	 120	 0.61	 1.78	 0.48	 2.08	 6	 0.55	 1.91	 0.49	 2.05	 5	 0.63	 1.74	 0.54	 1.95	 7

b*	 1	 245	 0.31	 2.78	 0.29	 2.83	 3	 0.60	 2.12	 0.55	 2.26	 8	 0.53	 2.30	 0.48	 2.43	 5
	 2	 120	 0.68	 1.45	 0.66	 1.51	 3	 0.76	 1.25	 0.73	 1.35	 4	 0.78	 1.22	 0.72	 1.38	 7

C*	 1	 245	 0.75	 3.04	 0.73	 3.20	 4	 0.85	 2.36	 0.83	 2.54	 8	 0.82	 2.58	 0.80	 2.71	 5
	 2	 120	 0.43	 2.10	 0.42	 2.14	 1	 0.69	 1.56	 0.65	 1.67	 5	 0.60	 1.78	 0.49	 2.00	 7

h°	 1	 245	 0.96	 4.52	 0.96	 4.70	 3	 0.93	 6.04	 0.92	 6.50	 9	 0.95	 4.86	 0.95	 4.95	 2
	 2	 120	 0.72	 2.66	 0.64	 3.03	 6	 0.61	 3.15	 0.54	 3.45	 5	 0.78	 2.37	 0.73	 2.64	 6

Firmness (N)	 1	 245	 0.93	 5.17	 0.93	 5.31	 3	 0.90	 6.07	 0.89	 6.55	 9	 0.92	 5.35	 0.92	 5.46	 2
	 2	 120	 0.73	 3.77	 0.64	 4.37	 6	 0.66	 4.19	 0.54	 4.95	 11	 0.72	 3.80	 0.67	 4.18	 6

DM (%)	 1	 80	 0.47	 1.58	 0.18	 1.99	 7	 0.54	 0.28	 0.32	 0.33	 6	 0.33	 0.32	 0.16	 0.36	 5
	 2	 80	 0.96	 0.33	 0.94	 0.43	 7	 0.98	 0.25	 0.97	 0.32	 8	 0.96	 0.35	 0.94	 0.42	 7

TSS (%)	 1	 165	 0.80	 0.26	 0.69	 0.32	 8	 0.85	 0.23	 0.81	 0.26	 10	 0.77	 0.28	 0.67	 0.34	 11
	 2	 120	 0.94	 0.46	 0.92	 0.51	 5	 0.97	 0.32	 0.96	 0.35	 6	 0.97	 0.32	 0.96	 0.38	 7

Acidity (g/L)	 1	 165	 0.60	 0.49	 0.51	 0.54	 6	 0.63	 0.46	 0.57	 0.51	 8	 0.68	 0.43	 0.63	 0.47	 5
	 2	 120	 0.74	 0.67	 0.64	 0.79	 6	 0.71	 0.71	 0.66	 0.78	 6	 0.82	 0.57	 0.75	 0.67	 8

Brix/Acid ratio	 1	 165	 0.74	 2.11	 0.69	 2.30	 6	 0.75	 2.06	 0.70	 2.25	 7	 0.77	 1.96	 0.74	 2.10	 6
 	 2	 120	 0.62	 1.47	 0.54	 1.64	 5	 0.77	 1.15	 0.65	 1.42	 12	 0.71	 1.29	 0.64	 1.45	 7
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fruit and vegetables leads to light soiling of food-scanners, e.g., 
through adhering water and dirt or particles of rough and hairy fruit 
skins. Therefore, lens and light source of the SCiO™ and H-100F 
device have to be cleaned regularly to guarantee undistorted mea-
surements. Due to the design of the F-750, the lens protects the light 
source, therefore only the lens requires regular cleaning. According 
to manufacturer’s specifications, the F-750 battery lasts over 1600 
scans and the H-100F battery over 2000 scans. Results of our own 
measurements estimate the battery life of the SCiO™ at 250 scans. 
Own measurements identified differences in scan speed, ranging 
from 4.9 s (H-100F), 8.2 s (SCiO™) to 14.3 s (F-750). It should be 
noted that the whole time interval from the beginning of one to the 
beginning of the next possible scan was recorded instead of just mea-
suring the time until the measured value was displayed. Due to the 
built-in technology and the focus on different end-user groups, there 
are also differences in the weight and dimensions of the three food-
scanners. The F-750 is robustly designed for the utilization within the 
orchard through farmers and producers, whereas the SCiO™’s small 
and lightweight design was initially targeted for end-consumer use. 
The H-100F has similar dimensions to the F-750, but since plastic is 
used for the casing instead of metal, it weighs significantly less.

All three devices provide accessories for the measurement of smaller 
objects and fruit. In addition, the H-100F features a built-in radio-
frequency identification (RFID) reader for the identification of indi-
vidual tagged trees or areas, whereas the F-750 has a GPS sensor for 
online mapping of non-destructive quality readings. Manufacturers 
offer supplementary accessories for additional areas of application 
such as liquids (F-750, SCiO™) and powders (F-750). 

Discussion
Prediction results of food-scanner spectra  
By using two different experimental designs (tomatoes during ripen-
ing and different tomato cultivars from the supermarket) we were 
able to generate great variance for almost every quality parameter 
examined. Color values L*, a*, C*, h° and firmness showed great 
variation in reference values in the first part of the experiment due to 
ripening-related changes during cultivation and storage. The combi-
nation of different tomato cultivars in the second part of the experi-
ment resulted in a wide range of reference values for DM and TSS. 
The evaluation of NIR prediction models using food-scanners yield-
ed a higher coefficient of determination (r²) for the respective part  
of the experiment with a wide range in fruit quality of the samples 
used in calibration and validation sets (Tab. 2). These findings are in 
line with Su et al. (2014) and highlight the importance of the vari-
ability of samples for building a feasible NIR prediction model of 
the quality trait of interest. This wide range of reference values also 
makes prediction models more robust, since both bad and good qua- 
lities are integrated. Thus a realistic range of values is represented. 
When creating future prediction models during practical application 
of food-scanners along the fresh fruit supply chain, attention should 
be paid to a large variance of the desired quality trait of interest. In 
order to guarantee this variance, users responsible for building pre-
diction models must have extensive knowledge of fruit quality.
For the following comparison of our results to scientific literature, 
results computed with the independent software The Unscrambler® 
are used as reference. The models with the best accuracy due to the 
wide range of reference values are used for comparison (Tab. 3). 
Utilizing NIR spectra for the determination of tomato firmness dur-
ing cultivation and storage resulted in good prediction models (r²CV 
> 0.89) for all three food-scanners. These results are superior to find-
ings achieved on intact tomatoes using portable and laboratory NIR 
instruments reaching from r²CV = 0.78 (Ecarnot et al., 2013) to r²CV 
= 0.82 (He et al., 2005). Similar results for firmness prediction (r² = 
0.89) on intact tomatoes were achieved by Kusumiyati et al. (2008) 
using portable NIR spectroscopy. 	
Tomato dry matter content varies greatly depending on the tomato 
cultivar (Ercolano et al., 2008). Screening of one tomato cultivar 
from cultivation to storage in our study showed a smaller range of 
dry matter distribution (2.08%) compared to screening multiple to-
mato cultivars (5.67%). Prediction of dry matter with only one tomato 
cultivar yielded no feasible models (r²CV = 0.16-0.32). These findings 
are in line with poor prediction results (r²CV = 0.39-0.49) for one 
tomato cultivar using a laboratory NIR instrument (Torres et al.,  
2015). Contrary to this, NIR prediction models of high accuracy 
(r²CV > 0.90) could be created for the model containing multiple cul-
tivars with all three food-scanners. Prediction of dry matter in apple, 
kiwifruit and stone fruit applying the same food-scanners we used 
showed similar predictive capabilities of this fruit trait (Kaur et al., 
2017).	
Models containing only one cultivar yielded moderate predictions of 
TSS (r²CV = 0.67-0.81), which is in range of previous studies using 
only one tomato cultivar and laboratory NIR instruments (Flores 
et al., 2009; Torres et al., 2015; Clément et al., 2008). Building of 
TSS prediction models using multiple tomato cultivars in our study 
yielded accurate results (r²CV > 0.90). Previous studies using labo-

Fig. 3: 	 Correlation between measured and predicted firmness (A), TSS (B), 
and DM (C) of cross validated models built with The Unscrambler® 
of all three food-scanners used in this study. The black line symbol-
izes the line of best fit.
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ratory NIR instruments (He et al., 2005; Saad et al., 2016) and a  
miniaturized NIR sensor (Sheng et al., 2019) obtained similar pre-
diction models.	
In the first part of the experiment all three food-scanners yielded 
prediction models of high accuracy for lightness L* and color value  
a* (r²CV > 0.90, Tab. 3), which is in the range of findings from pre-
vious work using benchtop UV-VIS-NIR spectrometer and port- 
able NIR instrument (Clément et al., 2008; Kusumiyati et al., 
2008). Prediction of color value b* yielded best results in the sec-
ond part of the experiment for all three food-scanners (r²CV = 0.66-
0.73). However, previous studies demonstrated better correlations 
of r² = 0.82-0.92 (Kusumiyati et al., 2008; Clément et al., 2008). 
Correlation of food-scanner spectra to chroma C* in our study ob-
tained moderate to good results (r²CV = 0.73-0.83) in the first part of 
the experiment. Various previous research using portable NIR spec-
trometer yielded slightly better prediction models of r² = 0.90-0.87 
(Ecarnot et al., 2013; Kusumiyati et al., 2008). Evaluation of hue 
h° yielded prediction models of high accuracy (r²CV > 0.90), which 
is similar to findings in the literature on portable NIR instrument  
performance (Ecarnot et al., 2013; Kusumiyati et al., 2008). 
Previous studies applying laboratory NIR instruments demonstrated 
the difficulty of predicting acidity in intact tomato fruit (Flores  
et al., 2009; Oliveira et al., 2014) and yielded prediction accuracies 
comparable to our results. As elaborated by Oliveira et al. (2014), 
tomatoes generally show low concentration and a heterogeneous 
composition of TSS and acidity. Compared to other fruit species, 
tomatoes have no homogeneous composition of flesh since they are 
divided into different loculi. This structure can cause interference 
when NIR radiation is penetrating fruit and could be the reason for 
these moderate correlations in both parts of the experiment (r²CV = 
0.51-0.75).	
This moderate predictability of acidity combined with the mathe- 
matical relation yielded prediction models for Brix/Acid ratio of 
likewise moderate accuracy (r²CV = 0.54-0.74) in both experiments. 
No literature reports could be found regarding prediction models for 
Brix/Acid ratio in intact tomatoes. However, previous research on 

tomato juice using a laboratory NIR instrument obtained slightly  
superior accuracies (r² = 0.74-0.86) for comparable wavelength  
regions (Jha and Matsuoka, 2004). 	
All three food-scanners had similar accuracies for the prediction of 
each quality trait within each part of the experiment (Tab. 3). The 
slight differences in model accuracy can be explained by the differ-
ences in wavelength ranges of the respective scanners. Kaur et al. 
(2017) evaluated the spectral features of all three food-scanners used 
in this study and found strong correspondence to the water absor-
bance bands at 760 nm, 840 nm and 960 nm, with slight variations 
between instruments. As demonstrated by McGlone and Kawano 
(1998) using kiwifruit, the water and carbohydrate absorbance bands 
at 840 nm and 960 nm strongly correlate to prediction models de- 
veloped for TSS and DM. The good correlation of food-scanner  
spectra and tomato TSS and dry matter in our study are in line with 
these findings. With respect to the determination of color values, the 
F-750 covers almost the whole visible spectrum up to near infrared 
(477-1059 nm), whereas the H-100F comprises the red wavelength 
range of the visible spectrum (650-950 nm). Contrary to this, the 
SCiO™ covers a small range of the far-red end of the visible spec-
trum.

Performance of manufacturer’s software compared to The 
Unscrambler®

Various previous studies tried to determine the performance of the 
three food-scanners used in this study for the prediction of internal 
quality traits of selected fruit and vegetables. However, most studies 
only used the portable NIR spectrometers for collection of spectra 
and utilized the corresponding software tools provided by manufac-
turers for data extraction. In many scientific studies, the subsequent 
multivariate data analysis was performed by using specialized soft-
ware for multivariate data analysis such as MATLAB (Kaur et al., 
2017; Teye et al., 2019) or The Unscrambler® (Ncama et al., 2018). 
To the best of our knowledge, a direct comparison of these provided 
software tools to specialized software has only been done by Li et al.  

Tab. 5: 	Compilation of food-scanner characteristics with respect to usability and applicability 
	

Features		  Device
		  F-750	 SCiO™	 H-100F

Device independency	  	 	  
   Necessity of internet access during scanning	 No	 Yes	 No
   Additional devices needed for scanning	 None	 Smartphone / Tablet	 None
   Internal / external white-referencing	 Internal	 External	 External

Data handling	  	 	  
   Access of spectra	 Free, SD-Card	 Licenced, online database	 Free, USB, Bluetooth
   Ability for building own prediction models	 Free software available	 Programming of own apps necessary	 No
   Specialized knowledge necessary for model building	 No	 Yes	 Yes

Practical handling	  	 	  
   Instrument maintenance	 Lens cleaning	 Lens and LED cleaning	 Lens and light source cleaning
   Running costs	 None	 None	 None
   Durability of battery life	 > 1600 scansa	 > 250 scansb	 ~ 2000 scansa

   Scan speed (mean and standard deviation)	 14.3 ± 0.1 sb	 8.2 ± 0.7 sb	 4.9 ± 0.1 sb

   Device weight	 1.05 kg	 36 g	 440 g
   Device dimension	 18 × 13.5 × 6 cm	 5.5 × 3.7 × 1.4 cm	 19 × 17 × 10.7 cm

Available accessories	  	 	  
   Provided accessories	 Small fruit adaptor, GPS	 Small object holder	 Rubber mold for small fruit, 	
				    built-in RFID reader
 Purchasable accessories	 Liquids and powders kit	 Liquid accessory	 n/s

aAccording to manufacturer’s specifications
bResults of own measurements
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highlighted in previous research (Fan et al., 2019; Wedding et al., 
2013), additional integration of biological and seasonal variability 
of fruit can contribute to build more reliable and robust prediction 
models and thereby unlock potential of non-destructive quality as-
sessment via NIR food-scanners in practical applications.

Comparison of usability characteristics
A direct comparison of the three food-scanners used in this study 
shows clear differences with regard to usability and applicability 
characteristics (Tab. 5).	
Both F-750 and H-100F are not reliant on internet access during 
scanning and can therefore be used independently at all points of the 
fresh produce supply chain, from orchards to incoming goods con-
trol in warehouses to retail stores. In contrast, the SCiO™ requires 
constant internet access during scanning as well as an additional 
mobile device (e.g., smartphone, tablet). This finding is contrary to 
statements on the SCiO™ website, where offline scanning is adver-
tised (Consumer Physics, 2020). However, personal experience as 
well as communication with SCiO™’s manufacturer revealed that of-
fline scanning is not possible (Consumer Physics, 2017). Therefore, 
the SCiO™ can not be used as an independent measuring device. 
Additionally, the device can only be used effectively in places with 
a stable internet connection, which is not always guaranteed in large 
warehouses or remote orchards.
Data handling of the F-750 can be described as very user-friendly. 
On the one hand, spectra are provided freely, on the other hand the 
gratis software and instructions for model building allows non-ex-
perts of NIR spectroscopy the building of new prediction models. 
With respect to the practical use of food-scanners for fresh produce 
quality control, new quality parameters could be developed by users 
along the supply chain themselves. In contrast, users of the SCiO™ 
device need to purchase an additional license to access raw spectra 
for building of own prediction models. To enable the use of these 
models for future predictions, further know-how in app programm- 
ing is required. For the H-100F, spectra are also freely accessible, 
but the manufacturer does not provide software for building of own 
prediction models. According to the manufacturer, a short form of 
model building program was provided in the past, but deemed not 
useful. In order to analyze the spectra and respective reference data 
and produce calibration models in a suitable data format with the 
H-100F, model building programs such as The Unscrambler® can be 
used (Sunforest, 2018). However, these specialized programs are 
not suitable for many users in day-to-day practice, since on the one 
hand they are very expensive and on the other hand they require a lot 
of training. 	
The evaluation of the practical handling of all three food-scanners 
showed comparable effort in device maintenance. Additionally, 
none of these devices requires further running costs. Both F-750 
and H-100F are characterized by very long battery runtimes and can 
therefore be used for several days in practical applications. The bat-
tery of the SCiO™ lasts for approximately 250 measurements. When 
used continuously, e.g., during quality assessment in the orchard or 
incoming goods control, this number can be reached within a short 
period of time. Theoretically, the battery life of the SCiO™ can be 
extended by using a mobile powerbank and charging the device  
parallel to scanning. However, an additional device and thus another 
dependency would be necessary. An important aspect in practical 
handling is the scan each device requires for one measurement, since 
it serves as indication for labor efficiency. Previous work identified 
rapid measurements as important feature of portable food-scanners 
(Goisser et al., 2020a). Our measurement results for scan speed  
(Tab. 5) surpass those reported in previous studies (Kaur et al., 
2017) as well as manufacturer’s specifications (Sunforest, 2020; 
Consumer Physics, 2020). It should be noted that in contrast to these 

(2018) for the SCiO™ device with three kiwi quality parameters dur-
ing a quality estimation trial. The authors obtained similar predictive 
performance for dry matter, TSS and firmness using SCiO™ Lab 
as well as The Unscrambler®. However, such a comparison has not 
yet been conducted for the F-750, which also provides its own soft-
ware for evaluation and building of prediction models. In order to 
evaluate the potential application of these portable food-scanners in 
practice along the fresh fruit supply chain, this study used manufac-
turer’s software as well as The Unscrambler® software for building 
of prediction models for a variety of tomato fruit quality traits. By 
comparing the results derived from both software tools, the accuracy 
and reliability of prediction models computed with manufacturer’s 
software can be assessed.	
A direct comparison of the prediction models created with The Un- 
scrambler® (Tab. 3) to models developed using manufacturer’s soft-
ware (Tab. 4) indicates similar predictive performances for models of 
high accuracy (r²CV > 0.90) for both devices. The small variations in 
model performance was most likely due to slightly deviating numbers 
of principal components (PC), which are selected automatically and 
individually by each respective software. Additionally, the variabil-
ity in sampling during cross-validation could cause these minor dif- 
ferences. Some prediction models of poor to moderate accuracy (0.40 
< r²CV < 0.80) achieved similar results for both The Unscrambler® 
and manufacturer’s software (e.g., color values b* and C* for the 
F-750 as well as color value C* for SCiO™ within both parts of the 
experiment). However, most prediction models within this area of 
accuracy computed with The Unscrambler® surpass those derived 
from F-750 or SCiO™ manufacturer’s evaluation software. Whereas 
the evaluation of DM and acidity with The Unscrambler® within the 
first part of the experiment indicated merely moderate predictive  
capabilities, neither F-750 or SCiO™ software obtained any form  
of linear correlation between food-scanner spectra and reference  
values.	
It should be noted that the evaluation of spectra using manufac-
turer’s software yielded similar results to evaluations applying The 
Unscrambler® software for prediction models of high accuracy (r²CV 
> 0.90). In particular, these models of high accuracy are relevant  
when it comes to the practical application of food-scanners. This 
study therefore was able to demonstrate that existing food-scanners, 
including the software supplied, are suitable for creating feasible 
prediction models for fruit quality traits. Therefore, actors along the 
fresh fruit supply chain can use these devices independently and are 
not reliant on additional professional software for data evaluation. 
These results are in line with findings of Li et al. (2018), who found 
similar model accuracies for kiwi quality attributes using both The 
Unscrambler® and SCiO™ software. The results of this study demon- 
strate the great predictive potential and informative value of com-
mercially available portable food-scanners. By combining multiple 
prediction models of high accuracy of various quality traits within 
one global prediction model, portable food-scanners can be used as 
multidimensional and non-destructive measurement tools of fruit 
quality. Therefore, future users can gain a comprehensive picture of 
fruit quality using only one single scan.	
This study used two different experimental approaches in order to 
generate high variability of tomato fruit quality parameters. The  
utilization of fruit during ripening and storage resulted in a larger 
range of reference values L*, a*, b*, C*, h° and firmness compared to 
fruit from retail stores. Vice versa, differences in variety and origin  
within the second experiment increased variability of reference  
values DM, TSS and acidity. With the exception of color value b*, 
NIR prediction models yielded higher correlation for the experiment 
with a larger range of reference values. When it comes to the de- 
velopment of new prediction models by users in daily practice, a 
broad range of fruit qualities and respective reference values must 
be taken into account in order to obtain good prediction models. As 
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references, we recorded the whole time interval from the start of one 
scan to the beginning of the next possible scan. For the SCiO™, qua- 
lity and stability of the internet connection is essential with regard 
to scan speed. Both F-750 and H-100F display the scan result a few 
seconds before the next scan is possible, which most likely explains 
these deviations from manufacturer’s specifications. However, the 
scan speed measured in our study is much more practice-oriented. 
Assuming a fixed timeframe for the application of food-scanners 
in quality control processes, different numbers of scans can be per-
formed with each device. Depending on the device, different num-
bers of measuring points would be available for quality assessment. 
Due to the built-in technology, weight and dimension differs notably 
between devices. These features have to be considered when the de-
vices are used portable in the orchard or warehouse and have to be 
physically carried around by the users. 	
All manufacturers provide accessories that enable the measurement 
of fruit and vegetables of various sizes. Therefore, users along the 
fresh produce supply chain are not limited in their use of these de- 
vices due to fruit size. However, additional fruit properties such as 
the color and thickness of fruit skin have to be considered when ap-
plying NIR spectroscopy, since these properties could greatly in-
fluence the accuracy and reliability of NIR prediction models. The 
F-750 provides a GPS function, which enables the measurement val-
ues to be displayed in a map view. By using RFID tags in orchards 
in combination with the built-in RFID reader, the H-100F takes a 
similar approach. On the one hand, fruit ripeness can be monitored in 
orchards, on the other hand, this function can also be used to verify 
the origin of produce as well as quality of origin by measurements 
at production companies. Additional accessories for the measure-
ment of liquids can be purchased for the SCiO™, the F-750 provides 
a purchasable liquids and powders kit. Users are therefore able to use 
these portable NIR instruments for testing various substances within 
the food industry (e.g., fruit juices, beverages, dried herbs) or com-
pletely different areas of application in other industries. 

Conclusion
The predictability of various tomato quality parameters using three 
commercially available portable food-scanners was analyzed and the 
software for building of own prediction models provided by manu-
facturers of these devices evaluated through comparison to state-of-
the-art software for multivariate analysis. The results highlight the 
capability of these devices in predicting various internal fruit quality 
parameters in a non-destructive way. Our findings are consistent with 
previous research, which in many cases used laboratory NIR instru-
ments compared to portable and miniaturized NIR devices. Quality 
control of fruit and vegetable along the fresh produce supply chain 
is often limited to optical inspections and in some cases not per-
formed at all. Through the combination of a multitude of internal 
quality measurements within a single scan, food-scanners provide a 
comprehensive and objective picture of fruit quality. Food-scanners 
can be used on various points along the fresh produce supply chain 
and replace traditional time-consuming and elaborate destructive 
measurement methods of internal fruit quality. Therefore, food-
scanners can be an important tool in making fruit quality along the 
whole fresh produce supply chain more transparent and comprehen-
sible. 	
The comparison of software provided by manufacturer to state-of-
the-art software shows that the provided software delivers good 
results, especially for models of high prediction accuracy. Applied 
to the practical application of these devices in day-to-day processes 
of quality control this means that special expertise in the field of 
NIR spectroscopy and model building is not necessary. Since some 
manufacturers provide basic software solutions in combination with 
operating instructions, users are enabled to build their own predic-

tion models. 	
As highlighted in this study, variation in fruit quality is of great im-
portance in order to build accurate prediction models. The variation 
of the respective fruit quality parameter can be influenced in vari-
ous ways, e.g., through different ripening stages, variation in origin 
and cultivars or seasonal differences. With regard to the practical use 
and long term application of food-scanners along the fresh produce 
supply chain, it is vital that users of these devices are aware of the 
importance of the variability of reference values when it comes to 
creating new, reliable and robust prediction models. 	
Based on previous studies and personal experience with supply chain 
actors, an exemplary framework evaluating food-scanner character-
istics with respect to usability and applicability was designed. The 
evaluation of these usability characteristics showed various differ-
ences between the three devices used in this study, especially with 
regard to the independent use of these devices and handling of gene- 
rated data. Potential users of food-scanners must inform themselves 
in advance and make sure that the respective device meets their com-
pany’s requirements, especially in day-to-day work processes of fruit 
quality control. For a further spread and effective use of these de- 
vices in practice, manufacturers must pay attention to user-friendli-
ness and simple model building solutions. 
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