{Research developments in carbon materials based sensors for determination of hormones:} http://dx.doi.org/10.5599/jese.1094 3 J. Electrochem. Sci. Eng. 12(1) (2022) 3-23; http://dx.doi.org/10.5599/jese.1094 Open Access : : ISSN 1847-9286 www.jESE-online.org Review Research developments in carbon materials based sensors for determination of hormones Girish Tigari, Jamballi G. Manjunatha, Hareesha Nagarajappa, Nambudumada S. Prinith Department of Chemistry, FMKMC College Madikeri, Mangalore University Constituent College, Karnataka, India Corresponding author: manju1853@gmail.com; Tel: +91 082 7222 833 Received: August 20, 2021; Accepted: September 27, 2021; Published: October 8, 2021 Abstract Various carbon-based sensors (graphene, carbon nanotubes, graphite, pencil graphite, glassy carbon, etc.) have distinctive behavior and a broad range of importance for identifying sex hormones like estriol, estradiol, estrone, progesterone, and testosterone. The current review emphasizes voltammetric, amperometric, and electrochemical impedance spectroscopic methods for detecting some of these hormones. The existence, structural aspects, nature, and biological importance of each hormone were analyzed in detail and their analysis with different electroanalytical methods was considered. Unique methodologies and innovations of electrochemical sensors for hormones based on carbon materials modified by different agents were examined. In this review, the interaction among various sensor materials and analytes in different supporting electrolyte media is premeditated. The most important significances of the electroanalytical methodologies were discussed based on sensor selectivity, sensitivity, stability, the limit of detection, repeatability, and reproducibility. Keywords electroanalysis; estriol; estradiol; estrone; progesterone; testosterone. Introduction The recent new materials based on carbon have fascinated the researchers of various fields of science and technology. Thus, different carbon-based materials have already been developed as sensing platforms for various analytes using voltammetry techniques. The choice of analytes for voltammetric analysis are based on their electroactive nature and biological significance. Hormones belong to cell-signaling molecules in multicellular organisms that transmit information between organs and tissues. They play a substantial involvement in controlling the functions and mechanisms of the living organisms and life activities like respiration, lactation, digestion, excretion, reproduction, sleep, growth development, sensory stimulation, and emotions [1-3]. Hence, http://dx.doi.org/10.5599/jese.1094 http://dx.doi.org/10.5599/jese.1094 http://www.jese-online.org/ mailto:manju1853@gmail.com J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 CARBON BASED SENSORS FOR HORMONES 4 investigations of hormones are imperative. Variety of analytical methods for hormone analysis were already reported, such as bioassay [4], immunoassay [5], high-performance liquid chromatography [6], capillary electrophoresis [7], spectrophotometry [8], etc. All these techniques give accurate results, but they require expensive instruments with complex methodologies, what considerably restricts their application [9-12]. Electroanalytical methods, which are suitable for recognizing hormones observed in the human blood serum, urine, and plasma samples could overcome this problem. In addition, electroanalytical methods hold merits like rapid response time, easy operation, sensitivity, precision, accuracy, etc. [13-17]. As hormones have a significant role in human biochemistry and metabolism, assessing hormones is becoming a trending research. Rapid monitoring of hormone levels is essential as they lead to major health issues [18,19]. So, the estimation of hormones became the focus of a broad scientific investigation. Rapid testing of hormonal concentration in biological matrices is important. In this review paper, we address to some new advancements in the fabrication of electrodes for the analysis of hormones. Carbon and its different forms occupy a special place in electroanalysis due to their unique properties like high mechanical and thermal stability, low resistance for electrons transfer, wide potential window, low price, and eco-friendliness. Carbon and its derivatives such as graphite (3D/sp2), glassy carbon (3D/sp2-sp3), diamond (3D/sp3), carbon nanotubes (1D/sp2), graphene (2D/sp2), pyrolytic graphite (2D/sp2), carbon dots (0D/sp3), fullerenes (0D/sp2), amorphous carbon, pencil graphite, carbon black, carbon fibers, etc. were often used in electrochemical device assemblies. These carbon materials are abundant and low-cost but significantly improve the current/voltage characteristics in electrochemical studies because these materials possess very high surface area, low ohmic resistance, high mechanical stability, and biocompatibility [20-41]. Carbon- based electrode materials have a broad spectrum of real-time applications for detection and estimation of molecules and ions. Presently there are various reports of carbon-based electrochemical devices in investigations of vitamins [42-46], hormones [47-49], drugs [50-52], dyes [53,54], metal ions [55,56], pesticides [57,58], phenolic compounds [59,60], neurotransmitters [61- 63] etc., and even pathogens like viruses [64] and bacteria [65]. Also, carbon-based materials have great application in the research of kinetics of electrochemical reactions and electronic states [66], supercapacitors, batteries [67], aerospace applications [68], different types of sensors [69], drug- delivery platforms, anticancer therapy, photothermal and photodynamic therapies, radiation treatment, bimolecular absorption [70] etc. This review focuses on the analytical performance of electrochemical sensors based on carbon materials for estriol, estrone, estradiol, progesterone, and testosterone hormones. Abbreviations CV: cyclic voltammetry DPV: differential pulse voltammetry SWV: square wave voltammetry LSV: linear sweep voltammetry GCE: glassy carbon electrode SWAdSV: square wave adsorptive stripping voltammetry CPE: carbon paste electrode EIS: electrochemical impedance spectroscopy LOD: limit of detection LOQ: limit of quantification ER: estriol G. Tigari et al. J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 http://dx.doi.org/10.5599/jese.1094 5 ED: estradiol EN: estrone PN: progesterone TN: testosterone GCE: glassy carbon electrode SPCE: screen-printed carbon electrode BDDE: boron doped diamond electrode Co-poly (Met): cobalt-poly (methionine) RGO-GNPs-PS: reduced graphene oxide-gold nanoparticles-potato starch Lac/rGO/Sb2O5: reduced graphene oxide doped with Sb2O5 film and with immobilized laccase enzyme CCh/WGE: carbamylcholine modified paraffin-impregnated graphite electrode Pt/MWCNTs: Pt nanoclusters/multi-wall carbon nanotubes CNB-AgNP: carbon black nanoballs/ silver nanoparticles Fe3O4NPs: ferrimagnetic nanoparticles RGO/AgNPs: reduced graphene oxide/ Silver nanoparticles, SDSMCNTPE: sodium dodecyl sulphate modified carbon nanotube paste electrode OXL -9MGPE: octoxynol-9 modified graphite paste electrode, RGO/AgNWS/AgNPs: reduced graphene oxide (RGO)/silver nanowires/silver nanoparticles RGO - SbNPs: reduced graphene oxide/antimony nanoparticles Fe3O4 NPs-BMI.PF6: magnetite nanoparticles/ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate CNTs/PVI/ ITO: carbon nanotubes/poly (vinylimidazole)/ indium titanium oxide VS2/AuNPs: vanadium disulfide nanoflowers and Au nanoparticles RGO/CuTthP: reduced graphene oxide and metal porphyrin complex Cu-BDC/CPE: 1,4-benzenedicarboxylic and copper framework, MWCNT-Nafion: multi-walled carbon nanotubes and Nafion FeTPyPz: iron tetrapyridinoporphyrazine CuPc-P6LC-Nafion/SPEF: screen-printed sensor modified with CuPc, Printex 6L carbon and Nafion film DHP: dihexadecylphosphate ErG/AuNP/ITO: electro-reduced graphene and gold nanoparticle on indium tin oxide BPIDS: 1-butyl-3-[3-(N-pyrrole) propyl] imidazolium tetrafluoroborate CuO: copper (II) oxide MWNT - GNP/PGE: multi-walled carbon nanotube - gold nanoparticles modified graphite electrode ERGO: electrochemically reduced graphene oxide FSCPE: fused silica modified carbon paste electrode CTAB - Nafion: cetyltrimethylammonium bromide/Nafion MWNT-[bmim]PF6/GCE: multi-walled carbon nanotubes/1-butyl-3-methylimidazolium hexafluorophosphate GCE/NiFe2O4-MC: NiFe2O4 metal oxide/mesoporous carbon GOx/AuNP/CuS: glucose oxidase/gold nanoparticles/copper sulfide nanoparticles A-UCPPyNT: carboxylate polypyrrole nanotubes AuNPs/CoS: gold nanoparticles/cobalt sulfide nanoparticles LSGE: laser-scribed graphene electrode MWNT-CR: multi-walled carbon nanotubes/Congo red functionalized Fe3O4NP-BMI PF6: Fe3O4 nanoparticles / ionic liquid 1-butyl-3-methylimidazolium hexafluoro-phosphate http://dx.doi.org/10.5599/jese.1094 J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 CARBON BASED SENSORS FOR HORMONES 6 CCh/WGE: carbamylcholine modified paraffin-impregnated graphite electrode MIP: molecularly imprinted polymers mAb: monoclonal antibody BiFE: bismuth film-plated electrode, Anti-Prog-Aucoll- antiprogesterone/gold nanoparticles-modified graphite-Teflon -graphite-Teflon: composite electrode Fe3O4@GQDs/f-CNT: Fe3O4/graphene quantum dots/ functionalized carbon nanotubes PEDOT/ZrO2-NPs: poly (3, 4- ethylenedioxythiophene)/ zirconium oxide nanoparticles BSA/Aptamer/GQDs- bovine serum albumin/ aptamer/graphene quantum NiO-AuNFs/f-MWCNTs: dots/ functionalized multiwalled carbon nanotubes AuNP/AMBI: gold nanoparticles/ 5-amino-2-mercaptobenzimidazole HRP-P4-(P4)-anti-P4- peroxidase labelled progesterone/anti-human progesterone capture -Protein-G-MBs: antibody/protein G functionalized-magnetic microbeads HRP-P4-(P4)-cAb- peroxidase-labeled progesterone/ anti-human-LH-biotin capture -Protein G-MBs: antibody/ protein G functionalized-magnetic microbeads GO-IMZ: imidazole-functionalized graphene oxide ACN: acetonitrile rIgG/mAb/: anti-progesterone monoclonal antibody /rabbit anti-sheep IgG, Mn(III)-SB: Mn(III) Schiff base film CoOx: Cobalt oxide SWNT modified EPPGE: single-wall carbon nanotubes modified edge plane pyrolytic graphite electrode Anti-testosterone- anti-testosterone-gold nanoparticles-carbon nanotubes-Teflon -nAu/MWCNTs/Teflon: composite electrodes MBs/AbTES: protein A-functionalized magnetic beads/anti-testosterone NCD/silicon wafer/MIP: nano-crystalline diamond/ silicon wafer/ molecularly imprinted polymer SA/BSA/BiNb16: streptavidin/ bovine serum albumin/ biotinylated nanobod Electroanalysis of estriol at carbon based sensors Estriol or oestriol (ER) is a sort of female sex hormones (estrogens) that belong to steroids, secreted by the placenta [71]. ER is the most dominant sex hormone in females. Its release level is enriched during pregnancy periods [72,73]. Therefore, ER is essential for women's reproductive and sexual characters. Its abnormal levels in the body leads to heart disorders, osteoporosis, hyperandrogenism, cancer, and urogenital diseases [74,75]. The central issue of ER hormone is its chemical stability resisting sewage management which might lead to serious health risks to aquatic organisms [76,77]. Therefore, it is necessary to develop fast and accurate clinical and environmental diagnostic methods. There are several literature reports on the electrochemical estimation of ER at carbon-based electrodes. The probable ER oxidation reaction at carbon-based electrode [90] is drawn in Figure 1. In this regard, Hareesha and Manjunatha [78] examined the ER by sodium dodecyl sulfate and electropolymerized xanthacridinum carbon nanotube and graphite composite paste electrode through different voltammetric methods in buffer solutions (pH 7.0). The studied concentration of ER varied from 2.0 to 200.0 µM and 10.0 to 70.0 µM with the LOD values of 0.29 and 0.19 µM, respectively. In addition, the stability of electrodes was studied by cycling 30 CV cycles with 95.5 % current retention. Reproducibility was obtained for five measurements with RSD 3.42 % and repeatability for five measurements was obtained with an RSD of 2.57 %. For analytical application, the water samples were analyzed by standard addition method with 98.0-99.0 % recovery. G. Tigari et al. J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 http://dx.doi.org/10.5599/jese.1094 7 Figure 1. Oxidation of ER at carbon incorporated electrode Manjunatha [79] has studied electrooxidation of ER at poly(glycine) modified CPE in phosphate buffer, pH (6.0), using DPV and CV techniques. The suitable concentration range for ER analysis was from 2.0 to 100 µM, with the LOD of 8.7×10−7 M and good recovery in injection samples. In addition, stability was examined after 15 days for ER sensing with 84 % current retention. Furthermore, good reproducibility towards ER detection was observed for five measurements with RSD of 4.75 %. Charithra and Manjunatha [80] have examined ER on L-proline electropolymerized CPE using CV technique in 0.1 M phosphate buffer (pH 6.5). The linear range for ER analysis was from 6×10-6 - - 6×10-5 M with LOD of 2.2×10-7 M and LOQ of 7.6×10-7 M. Moreover, the method was stable with 92.87 % current retention even after 30 CV cycles of ER sensing, and reproducible responses for ER were observed with RSD of 4.75 %. Also, simultaneous separation of ER, folic acid, and ascorbic acid was achieved with the proposed methodology. In addition, Ochiai et al. [81] effectively fabricated the SPE surface modified with carbon nanotubes as an electrochemical sensor for the amperometric estimation of ER in medicinal products. The authors defined a convenient concentration range from 1.0 to 1000 μmol L−1 with LOD and LOQ of 0.53 and 1.77 μmol L−1, respectively. For comparison, the spectrophotometry method was also applied and the obtained results are found to be in agreement with 95 % confidence level. The results of some other already reported works [82-97] are tabulated in Table 1. The tabulated ER sensors yield good LOD with real-time applications in pharmaceutical, biological and environmental samples. Comparatively, Xinet al. [85] observed the smallest LOD of 0.00693 µM in clinical and water sample applications. However, the carbon fibers, pencil graphite, activated carbon-based electrodes are still to be explored for ER sensing. Table 1. Analytical properties of some carbon-based sensors for ER determination using various electrochemical techniques and real samples Electrode Technique ER linear range, µM* LOD, µM Analytical application Ref. Co-poly(Met)/GCE DPV 0.596 - 9.90 0.034 Pharmaceutical tablets and human urine [82] RGO-GNPs-PS/GCE LSV 1.5-22 0.48 Water and urine samples [83] GCE/Lac/rGO/Sb2O5 Chronoamperometry 0.025 - 1.03 0.011 Human urine [84] N-MWCNT/GONRs Amperometry 0.34 - 69.35 0.00693 Clinical and water samples [85] BDDE SWV 0.2 - 20.0 0.17 Pharmaceutical and urine sample [86] http://dx.doi.org/10.5599/jese.1094 J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 CARBON BASED SENSORS FOR HORMONES 8 Electrode Technique ER linear range, µM* LOD, µM Analytical application Ref. MWCNTs/Pt/GC SWV 1.0 - 75.0 0.62 Blood serum [87] CNB-AgNP/GC DPV 0.2 - 3.0 0.16 Creek water [88] CPE/Fe3O4NPs SWV 3.0 - 110.0 2.6 Pharmaceutical sample and artificial urine [89] rGO/AgNPs/GCE DPV 0.1 - 3.0 0.021 Tap water Synthetic urine [90] Ni-GCE CV 5 - 100 0.1 - [91] OXL -9MGPE CV 40 - 120 1.46 - [92] RGO/AgNWs/ AgNPs/SPCE DPV 1 - 90 0.58 Synthetic urine [93] GCE/rGO - SbNPs DPV 0.2 - 1.4 0.0005 Natural water [94] SDSMCNTPE CV 6.0 - 20 and 25 - 150 0.32 ET injection [95] Fe3O4 NPs- BMI.PF6/CPE SWV 1.0 - 10.0 0.3 Pharmaceutical samples [96] PVI/CNTs/ITO DPV 2.0 - 15 0.090 Serum [97] *Linear concentration range of estriol detection Electroanalytical estimation of estradiol Estradiol/oestradiol (C18H24O2) is a steroid and the most important female hormone. It participates in the process of oestrous and is involved in menstrual reproductive cycles. Estradiol (ED) is important for the growth of secondary women sexual characteristics such as the female-associated pattern of fat distribution, and widening of hips and the breasts. ED is also very much important in the protection of reproductive muscles such as the adulthood vagina during puberty, uterus, mammary glands, and pregnancy [98,99]. However, ED level in males is lower as compared to females. ED also originated in most crustaceans, vertebrates, fish and insects [100,101]. ED causes serious problems in premature puberty of children and also makes a risk in ovarian and breast cancer in women [102,103]. A deficiency of ED causes diseases such as heart diseases or menopausal symptoms and osteoporosis [104,105]. Due to this risk factor in humans, the determination of ED is necessary. Several literature reports are available for the detection of ED using voltammetric techniques, which are based on the possible electrooxidation reaction of ED [107] shown in Figure 2. Figure 2. Possible electrooxidation of ED at carbon-based electrode Chen and his research group [106] have analyzed ED by Fe3O4-doped nanoporous carbon (Fe3O4- NC), which was made through the carbonization of Fe-porous coordination polymer (Fe-PCP). Fe3O4- https://en.wikipedia.org/wiki/Steroid_hormone https://en.wikipedia.org/wiki/Female https://en.wikipedia.org/wiki/Sex_hormone https://en.wikipedia.org/wiki/Estrous_cycle https://en.wikipedia.org/wiki/Secondary_sexual_characteristic https://en.wikipedia.org/wiki/Gynoid_fat_distribution https://en.wikipedia.org/wiki/Gynoid_fat_distribution https://en.wikipedia.org/wiki/Widening_of_the_hips https://en.wikipedia.org/wiki/Breast https://en.wikipedia.org/wiki/Reproductive_organ https://en.wikipedia.org/wiki/Adulthood https://en.wikipedia.org/wiki/Vagina https://en.wikipedia.org/wiki/Puberty https://en.wikipedia.org/wiki/Uterus https://en.wikipedia.org/wiki/Mammary_gland https://en.wikipedia.org/wiki/Pregnancy https://en.wikipedia.org/wiki/Crustacean https://en.wikipedia.org/wiki/Vertebrate https://en.wikipedia.org/wiki/Fish https://en.wikipedia.org/wiki/Insect G. Tigari et al. J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 http://dx.doi.org/10.5599/jese.1094 9 NC was characterized with a scanning electron microscope (SEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. It was fabricated into an electrochemical sensor for the detection of ED in toner using Britton-Robinson buffer (pH 8.69) and concentrations range from 0.01 to 20 μM/L, with a detection limit of 4.9 nM/L were obtained. Additionally, simultaneous determination of diethylstilbestrol and ED was performed and achieved diethyl- stilbestrol and ED 91.2-110 % recovery in toner samples. In addition, Masikini et al. [107] studied the detection of ED in environmental samples (tap water and wastewater) by electrooxidation on multi-walled carbon nanotubes (MWCNT) and gold nanoparticles (AuNP) modified glassy carbon electrode (GCE) in 0.1 M phosphate buffer solution of pH 7.0, and obtained result of a dynamic range up to 20 % molL-1 and the value of LOD was estimated to be 7.0×10-8 molL-1. Additionally, the sensor retained 79 % of its initial response even after five days after storing at 4° C, and good reproducibility was observed for ED detection with RSD of 1.7 %. Zaid et al. [108] successfully analysed ED by a sensitive impedimetric aptasensor based on a screen- printed electrode /carbon nanodots/76-mer aptamer. The prepared electrode was characterized by UV-visible absorption spectra, fluorescence spectra, and transmission electron microscopy. The detection limit of 0.5×10−12 M in a concentration range from 1.0×10−7 to 1.0×10−12 M was achieved, using EIS. Moreover, a stable and selective sensor was applied for determination of ED in river water samples with recovery rates of 92.3 and 101.2 %. Yuan et al. [109] analysed ED by electrochemical sensor based on molecularly imprinted mem- branes at the platinum nanoparticles-modified electrode in phosphate buffer solution pH (6.86). Under optimized conditions, DPV was applied for the determination of ED in the concentration range from 3.0×10−8 - 5.0×10−5 mol L−1 (R = 0.996) with the assessed LOD of 1.6×10−8 mol L−1. Acceptable stability was observed even after ten days with 97 % of 17-estradiol response retention. Also, good reproducibility and repeatability of ED response were observed with RSD 2.9 and 2.3 %, respectively. The proposed method was utilized for ED detection in hospital wastewater with 93.9 % recovery. Zhang et al. [110] determined the ED by a glassy carbon electrode (GCE) which was modified by gold nanoparticles (AuNPs) and molecular imprinted polymer (MIP) in phosphate buffer solution (PBS) (0.01 M, pH 6.97). The produced sensor was characterized by CV and EIS. The proposed sensor exhibits a linear range from 1.0×10−12 to 1.0×10−7 mg/ml, and LOD of 1.28×10−12 mg/ml under calibrated conditions. The stable and reproducible sensor was applied for ED detection in milk samples with a recovery of 84.7 - 102.9 %. Analytical results from some other reported works [111- 134] are tabulated in Table 2. Comparatively, ErG/AuNP/ITO [121] showed a low LOD of 0.1×10−15 M with practical application in water and pharmaceutical samples. Finding of new modifiers with good sensitivity is still a hot topic. Table 2. Analytical properties of some carbon-based sensors for ED determination using various electrochemical techniques and real samples Electrode materials Method ED linear range, M* LOD, M Real sample Ref. GCE DPV 4×10−5 - 1×10−3 1.21×10−5 Tablet and serum [111] Aptamer/AuNPs/VS2/GCE DPV 1.0×10−11 - 1.0×10−8 1.0×10−12 Human urine [112] RGO/CuTthP/GCE DPV 1×10−7 - 1.0×10−6 5.3×10−9 River water sample [113] Cu-BDC/CPE DPV 5.0×10−9 - 6.5×10−7 3.8×10−9 Water samples [114] MWCNT-Nafion/GCE SWV 2.5×10−7 - 1.0×10−5 1.0×10−8 ---- [115] FeTPyPz/CPE ----- 4.5×10−5 - 4.5×10−4 13.0×10−6 Injection [116] CuPc-P6LC-Nafion/SPEF DPV 8.0×10−8 - 7.3×10−6 5.0×10−9 Environmental and synthetic urine samples [117] RGO-DHP/GCE LSV 4.0×10−7 - 2×10−5 7.7×10−8 Synthetic urine [118] http://dx.doi.org/10.5599/jese.1094 J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 CARBON BASED SENSORS FOR HORMONES 10 Electrode materials Method ED linear range, M* LOD, M Real sample Ref. Poly(L-serine)/GCE LSV 0.1×10−6 - 30×10−6 20×10−8 Human blood serum [119] Al2O3/GCE LSV 4.0×10−7 - 4×10−5 8.0×10−8 --- [120] ErG/AuNP/ITO CV 1×10−3 - 0.1×10−12 0.1×10−15 --- [121] CNT - Ni(cyclam)-GC SWV 5.0×10−7 - 4×10−5 60×10−9 Human serum [122] BPIDS/GCE DPV 1.0×10−7 - 1.0×10−5 5.0×10−8 [123] CuO/CPE SWV 60×10−9 - 800×10−9 21×10−9 Urine and buttermilk samples [124] MWNT - GNP/PGE LSV 7.0 10-8 - 4.2 10-5 1×10−8 Blood serums [125] ERGO/GCE SWV 1.0×10−15 - -2.3×10−10 0.5×10−15 Wastewater and pharmaceutical samples [126] FSCPE DPV 0.1 ×10−6and 15.0 ×10−6 2.3×10−8 Milk and pharmaceutical samples [127] CTAB - Nafion/GCE LSV 2.5×10−8 to 1.5×10−6 1.0×10−9 Blood serum [128] MWNT-[bmim]PF6/GCE 1.0×10−8 to 1.0×10−6 1.0×10−6 - 7.5× 10−6 5.0×10−9 Rabbit blood serum and environmental water [129] GCE/NiFe2O4-MC SWV 20.0×10−9-56.6×10−8 6.88×10−9 Tablet samples [130] GOx/Aptamer/AuNPs/ /GOx/AuNPs/CuS/GCE DPV 5.0×10−13 to 5.0×10−9 6.0×10−14 Urine samples [131] Fe3O4@Au-GSH/MIPs/GCE DPV 0.025× 10−6 - 10× 10−6 2.76×10−9 Pharmacological product [132] cDNA/aptamer/AuNPs/ /CoS/GCE DPV 1.0×10−12 to 1.0×10−9 7.0×10−13 Urine samples [133] LSGE DPV 1.0×10−13 to 1.0×10−9 6.31×10−14 Milk samples [134] *Linear concentration range of estradiol detection Electrochemical sensing of estrone Estrone (E1) is also known as 3-hydroxyestra-1,3,5(10)-trien-17-one/oestrone. It is a minor wo- men's sex hormone that plays a substantial role in female sexual growth and functions. Estrone (EN) is produced from gonads, adrenal androgens, and adipose tissue. It is used in menopausal hormone therapy and prostate cancer control, and is excreted through urine and feces. EN is an endocrine- disrupting chemical that affects endocrine systems and can lead to carcinogenic effects, birth faults, and other growth issues [135-140]. So, its detection is important for human health and environmental concern. Possible electrochemical oxidation of EN at carbon electrode [144] is shown in Figure 3. Figure 3. Oxidation of EN at carbon incorporated electrode In this perspective, Okina et al. [141] described a sensor for EN, based on a glassy carbon electrode incorporated MWNTs, functionalized with carboxylic groups. The reported sensor detects G. Tigari et al. J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 http://dx.doi.org/10.5599/jese.1094 11 EN at 0.59 V as an irreversible electrode process. SWV results showed 2.5 times higher current of EN oxidation reaction as compared to bare glassy carbon electrode. The proposed electrode offers a lower LOD of 0.117 and LOQ of 0.392 μM L−1 with a sensitivity of 0.1521 μA/M L−1. Moreover, the sensor electrode showed a good recovery (91 %) in seawater samples. In addition, Chai et al. [142] described sequential ion-exchange and in-situ chemical reduction strategy synthesis of Au nanoparticles ornamented bimetallic metal-organic framework, and its sensing application towards endocrine-disrupting chemical EN. The prepared sensor material exhibits high sensing performance towords EN. The authors showed a low LOD of 12.3 nM in a linear range of concentrations from 0.05 - 5 μM with a sensitivity of 101.3 A M−1 cm−2. The results of some other literature reports [143-147] are listed in Table 3. It is obvious that in comparison to other sensors, MIP/CPE [147] showed significantly lower LOD of 1.18×10−12 M with real-time application in pregnant mare urine. The carbon materials like pencil graphite, carbon dots, carbon fibers, fullerenes, pyrolytic graphite, etc., are yet to be explored. Table 3. Analytical properties of some carbon-based sensors for EN determination using various electrochemical techniques and real samples Sensor Method EN linear range, M/l* LOD, M/L Real sample Ref. MWNT-CR/GCE LSV 5.0×10−8 - 2.0×10−5 5.0×10−9 Tablets [143] CPE/Fe3O4NP-BMI.PF6 SWV 4.0× 10−6 - 9.0×10−6 & 9.0× 10−6 - 100.0× 10−6 4.7× 10−7 Pork meat [144] CCh/WGE SWV 0.3× 10−6 - 30.0× 10−6 0.10× 10−6 Blood serum [145] CPE in presence CTAB -- 9.0×10-8 - 8.0×10-6 4.0 x 10-8 Tablets [146] MIP/CPE CV 4.0×10−12 - 6.0×10−9 1.18×10−12 Pregnant mare urine [147] *Linear concentration range of estrone detection Electrochemical determination of progesterone at carbon-based electrodes Progesterone (PN) is an unsaturated α,β-ketone hormone derived from cholesterol, which is shaped by 21 carbon hydrophobic steroids framed by the corpus luteum in the ovary during pregnancy [148-150]. PN hormone has a vital contribution to pregnancy maintenance, synthesis of sex hormones, cognitive development, monthly menstrual cycle, growth of breast, etc. The imbalance of PN can cause severe problems in the body. It forms infertility and abnormality of the reproductive system. In humans, it causes the secretion of gonadotropin-releasing hormone (GnRH), which may give rise to a decline of released testosterone and affect male behavior. Therefore, it is necessary to determine PN in mammals for clinical diagnosis [151,152]. There are several literature reports on the voltammetric determination of PN using carbon-based electrode. Possible Reduction process of PN at carbon-based electrode [157] is schematically presented in Figure 4. In this perspective, Naderi and Jalali [153] have successfully determined PN at glassy carbon electrode modified with MWCNT, Au nanoparticles, and poly-L-serine. It was characterized by FESEM, energy dispersive X-ray spectroscopy (EDS), CV, and EIS techniques. The modified electrode showed improved current response as compared to the bare electrode by lowering overpotential. Under optimized conditions, sensor exhibits lower LOD of 0.2 nM (0.063 ng ml−1) in a concentration range of 0.001 - 2.0 μM (0.31 to 636 ng ml−1) using PBS buffer 0.1 M with pH (7.4). A reproducible and stable sensor was utilized for PN in pharmaceutical and blood serum samples. Esmaeili et al. [154] have successfully examined determination of PN using a gadolinium(III) tungstate nanoparticles modified carbon paste electrode in 0.1 M Britton - Robinson buffer (BRB) solution at pH 11.5, using fast Fourier transformed SWV technique. Under optimized conditions, the sensor detects PN in the concentration domain of 0.1 to 1.0 μM (31.45-314.47 ng ml−1) with http://dx.doi.org/10.5599/jese.1094 J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 CARBON BASED SENSORS FOR HORMONES 12 acceptable sensitivity of 485.64 A M−1 and LOD of 50 nM (15.72 ng ml−1). The stable and selective sensor was used for estimation of PN in human blood plasma with a recovery of 103.7 %. Figure 4. Reduction of PN at carbon-based electrode Analytical results of some other sensors from already reported works [155-169] are tabulated in Table 4. Reported sensors provide lower LOD values with practical applicability in complicated matrices such as serum, urine, and milk samples. Comparatively, GCE/Mn(III)-SB [169] offers LOD of 0.00000314 ng ml−1. Table 4. Analytical properties of some carbon-based sensors for PN determination using various electrochemical techniques and real samples Electrode Technique PN linear range, ng/ml* LOD, ng/ml Real sample Ref. Microfluidic immunosensor Amperometry 0.5 - 12.5 0.2 Serum [155] mAb - SPCEs Amperometry 1.56 - 15.75 0.315 Cow milk [156] Ex - situ BiFE SWAdSV 125 - 2485 56.61 Pharmaceutic products [157] Anti - Prog - Aucoll - graphite - Teflon electrode Amperometry 0 - 30 0.84 Milk [158] Fe3O4@GQDs/f-CNT/GCE DPV 3.15 - 945 0.63 Serum and com- mercial ampoules [159] PEDOT/ZrO2-NPs/GCE DPV 0.314 - 1886.8 0.102 Human blood serum & pharmaceutical products [160] BSA/Aptamer/GQDs - NiO- AuNFs/f-MWCNTs/SPCE DPV 0.00314 - 314.46 0.00058 [161] AuNP/AMBI/rGO/SPCE SWV 0.28 to 8490.57 88.0 - [162] HRP-P4-(P4)-anti-P4- Protein-G-MBs/SPCE Amperometry 0.02 - 100 0.005 Saliva [163] HRP-P4-(P4)-cAb-Protein G- MBs/SPCE Amperometry 0.01 - 1000 0.0017 Saliva [164] GO-IMZ/GCE SWV 69.18- 4402.52 20.13 Pharmaceutical samples [165] ACN /GCE CV and SWV 1257.86-314465.41 157.23 - [166] rIgG/mAb/Screen - printed carbon electrodes CV 0-5 --- Cow's milk [167] Sn-modified GC DPV 1572.3 - 25156.8 35.74 Pharmaceutical commercial samples [168] GCE/Mn(III)-SB CV 3.1445 10-6 - 31.446 10-6 3.1445 10-6 Milk [169] *Linear concentration range of progesterone detection G. Tigari et al. J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 http://dx.doi.org/10.5599/jese.1094 13 Electrochemical determination of testosterone Testosterone/7β-hydroxy-4-androsten-3-one pleiotropic hormone plays a substantial role in human health. It is predominantly produced in men from testes and adrenalin glands, and has a vital role in the growth of the testes and prostate. It is also involved in the development of muscles, bones and stimulates sexual desire. Abnormal testosterone (TN) concentration in the body may lead to hypogonadism, prostate cancer, metabolic syndrome, depression, obesity, anxiety, cardio- vascular diseases, memory loss, hair loss, loss of muscle mass, etc. TN has also been abused for enhanced sports performance, but the World Anti-Doping Agency (WADA) prohibited its use. So, it is important to have a fast and accurate analytical method for TN detection [170-178]. Possible mechanism of electroreduction reaction of TN [179] at carbon electrode is shown in Figure 5. In this regard, Levent et al. [179] reported a bismuth-film coated glassy carbon electrode for the determination of TN in Britton-Robinson buffer, pH 5.0, containing 3 mmol L−1cetyltrimethyl- ammonium bromide. TN showed an irreversible, adsorption-controlled reduction peak at the electrode. The authors obtained LOD of 0.3 nM. The electrode responses were reproduced and repeated with RSD not exceeding 5 %. Finally, a sensor was utilized for the recognition of TN in medicinal and bio-samples. Bulut et al. [180] introduced a sensor based on poly(benzenediamine-bis[(2-ethylhexyl) oxy]ben- zodithiophene)/testosterone antibodies via glutaraldehyde/screen-printed carbon electrode for the determination of TN. The surface morphology of the modified electrode was studied with atomic force microscopy. The modifications in the exterior topography due to TN binding were inspected through electrochemical techniques. The amperometric studies were conducted to measure TN in the range of 10 - 500 ng/ml with LOD of 17 ng/ml. Finally, a sensor was utilized for the analysis of TN in synthetic urine (recovery 103.4 ± 1.0 and 98.0 ± 5.3 %) and serum samples (113.8 ± 1.1 and 105.6 ± 2.2 %). Additionally, repeatability of electrode response towards TN was studied by 10 measurements, showing RSD of 0.433 %. Figure 5. Possible mechanism of TN electroreduction at carbon electrode Liu et al. [181] developed a sensor for TN based on nanosized molecularly imprinted polymer (MIP) film that was electrochemically grafted on graphene oxide sheets modified electrode. Measurement of TN was performed using EIS technique in the range 1.0 fM to 1.0 μM with LOD of http://dx.doi.org/10.5599/jese.1094 J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 CARBON BASED SENSORS FOR HORMONES 14 0.4 fM. Moreover, stability was good with 93.4 % retention of the initial response of electrode towards TN even after 30-day storage at room temperature. Also good reproducibility and repeatability were observed with RSD not exceeding 5 %. Practical application of sensor was carried in human serum samples with recovery 98.6 to 104.2 %, and RSD not exceeding 5 %. Data in Table 5. [182-190] shows the comparison between different electrochemical sensors for TN. Results given by Liu et al. [181] for molecularly imprinted polymer /electrochemically grafted on graphene-oxide sheets modified electrode provide the lowest LOD of 0.4 fM. Table 5. Analytical properties of some carbon-based sensors for TN determination using various electrochemical techniques and real samples Electrode Technique TN linear range, M* LOD, M Real sample Ref. GCE/CoOx CV 0.33 - 2.00 × 10-6 1.6×10-7 --- [182] Surfactant/glassy carbon SWV 10 – 70 × 10-9 1.18×10-9 Human urine [183] SWNT modified EPPGE SWV 5 – 1000 × 10-9 2.8×10−9 Female urine [184] rGO/GCE DPV 2.0 – 210.0 × 10-9 0.1×10-9 Human plasma & urine [185] Anti-testosterone- nAu/MWCNTs/Teflon Amperometry 0.4 and 34.67 × 10-9 0.29×10-9 Human serum [186] SPCE/MBs/AbTES Amperometry 0.0174 – 173.35 × 10-9 0.0059×10-9 Human serum [187] NCD/silicon wafer/MIP EIS 0.5 – 20×10-9 0.5×10-9 Human urine &saliva [188] GCE/SA/BSA/BiNb16 EIS 0.1734 – 17.336×10-9 0.156×10-9 Human serum [189] CuO/CeO2/GCE Electrochemical (I - V) approach 0.01 – 0.01 × 10-3 9.30×10-12 Human, mouse, and rabbit serum [190] *Linear concentration range of testosterone detection Future perspectives In the last decade, many carbon-based sensors and biosensors for the determination of hormones have been probed. However, the simultaneous determination of sex hormones seems to be a challenge manifested in a significantly lower number of literature reports. Hormones like pregneno- lone, allopregnanedione, allopregnanolone, 17α-hydroxy pregnenolone, 17α-hydroxyprogesterone, dehydroepiandrosterone, androstenedione, androstanedione, androsterone, androstenediol, dihydrotestosterone, androstanediol, 2-hydroxyestrone, 16α-hydroxyestrone, 2-hydroxyestradiol, and estetrol are still waiting to be analyzed electrochemically. Carbon materials like activated carbon, carbon derived from biomass, carbon fibers, pencil graphite electrode, pin-based electrodes, fullerenes, carbon nanohornes, graphyne, carbon nanomaterials, etc. could be possibly utilized to achieve this goal. Breakthrough in analytical methods with new materials is always important in the field of analytical science and technology. Conclusions Electroanalytical methods for biomolecular diagnosis have increased widely in recent years, especially for hormone determinations. Electrochemical techniques are used for the detection of various hormones because of their excellent response, easy instrumentation, minimal sample pre- treatment criteria, rapid and satisfactory sensitivity, and low cost. Recent developments include use of graphene, graphite, carbon paste, carbon nanotubes (multi-walled, single-walled, etc.), glassy carbon electrodes, and other combinations, mostly due to their high effective surface area and distinct electrochemical properties. Also, these materials substantially improve analytical signals, decrease overpotentials of hormone oxidation or reduction, and solve peak overlapping problems G. Tigari et al. J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 http://dx.doi.org/10.5599/jese.1094 15 in complex samples. The characteristics of the sensor constituents and functionalized groups and their interfaces with analyte molecules greatly stimulates degree of electrooxidation/reduction, pH, pKa of the background electrolyte, and peak voltage and current. The interface and degree of electrooxidation/reduction depend extremely on the following aspects: alteration of the sensor assembly, pre-treatment of the electrode, exterior functionalities, pH, background electrolyte, and presence of other molecules. For determining the electrooxidation or reduction rate and electrode efficiency, the communication (reaction) between the respective type of analyte (targeted molecule) present at some pH value (range) and the oxygen functionalities and other groups on the sensor are found to be vital. References [1] S. Hiller-Sturmhöfel, A. Bartke, Alcohol Health Research World 22(3) (1998) 153-164. [2] A. Bhatia, H. K. Sekhon, G. Kaur, Scientific World Journal 2014 (2014) 159150. https://doi.org/10.1155/2014/159150 [3] M. C. Ysrraelit, J. Correale, Immunology 156(1) (2019) 9-22. https://doi.org/10.1111/imm.13004 [4] R. I. Dorfman, Physiological Reviews 34(1) (1954) 138-166. https://doi.org/10.1152/physrev.1954.34.1.138 [5] M. Thaler, J. Metzger, A. Schreiegg, B. Denk, A. Gleixner, H. Hauptmann, P. B. Luppa, Clinical Chemistry 51(2) (2005) 401-407. https://doi.org/10.1373/clinchem.2004.034264 [6] F. Merlo, A. Speltini, F. Maraschi, M. Sturini, A. Profumo, Arabian Journal of Chemistry 13(3) (2020) 4673-4680. https://doi.org/10.1016/j.arabjc.2019.10.009 [7] H. Sirén, T. Seppãnen-Laakso, M. Orešič, Journal of Chromatography B 871(2) (2008) 375- 382. https://doi.org/10.1016/j.jchromb.2008.06.016 [8] S. S. M. Hassan, M. M. A. Fattah, M. T. M. Zaki, Journal of Analytical and Bioanalytical Chemistry 281 (1976) 371-377. https://doi.org/10.1007/BF00512688 [9] E. Deskoulidis, S. Petrouli, V. Apostolopoulos, J. Matsoukas, E. Topoglidis, Brain Science 10(9) (2020) 577. https://doi.org/10.3390/brainsci10090577 [10] T. Girish, J. G. Manjunatha, P. A. Pushpanjali, N. S. Prinith, D. K. Ravishankar, G. Siddaraju, Journal of Electrochemical Science and Engineering 11 (2021) 27-38. http://dx.doi.org/10.5599/jese.999 [11] G. Tigari, J. G. Manjunatha, E. S. D’Souza, N. Sreeharsha, ChemistrySelect 6(11) (2021) 2700- 2708. https://doi.org/10.1002/slct.202004370 [12] A. Kassa, M. Amare, Cogent Chemistry 5 (2019) 1681607 https://doi.org/10.1080/23312009.2019.1681607 [13] J. M. Díaz-Cruz, N. Serrano, C. Pérez-Rafols, C. Ariño, M. Esteban, Journal of Solid State Electrochemistry 24 (2020) 2653-2661. https://doi.org/10.1007/s10008-020-04733-9 [14] G. Tigari, J. G. Manjunatha, Monatshefte für Chemie - Chemical Monthly 151 (2020) 1681- 1688. https://doi.org/10.1007/s00706-020-02700-8 [15] C. Raril, J. G. Manjunatha, G. Tigari, Instrumentation Science and Technology 48(5) (2020) 561-582. https://doi.org/10.1080/10739149.2020.1756317 [16] B. Uslu, S. A. Ozkan, Analytical Chemistry Letters 44(6) (2011) 2644-2702. https://doi.org/10.1080/00032719.2011.553010 [17] G. Tigari, J. G. Manjunatha, Instruments and Experimental Techniques 63 (2020) 750-757. https://doi.org/10.1134/S0020441220050139 [18] A. I. Zia, S. C. Mukhopadhyay, in: Electrochemical Sensing: Carcinogens in Beverages. Smart Sensors, Measurement and Instrumentation, Springer Cam. Vol. 20. 2016. 75-92. https://doi.org/10.1007/978-3-319-32655-9_4 http://dx.doi.org/10.5599/jese.1094 https://doi.org/10.1155/2014/159150 https://doi.org/10.1111/imm.13004 https://doi.org/10.1152/physrev.1954.34.1.138 https://doi.org/10.1373/clinchem.2004.034264 https://doi.org/10.1016/j.arabjc.2019.10.009 https://doi.org/10.1016/j.jchromb.2008.06.016 https://doi.org/10.1007/BF00512688 https://doi.org/10.3390/brainsci10090577 http://dx.doi.org/10.5599/jese.999 https://doi.org/10.1002/slct.202004370 https://doi.org/10.1080/23312009.2019.1681607 https://doi.org/10.1007/s10008-020-04733-9 https://doi.org/10.1007/s00706-020-02700-8 https://doi.org/10.1080/10739149.2020.1756317 https://doi.org/10.1080/00032719.2011.553010 https://doi.org/10.1134/S0020441220050139 https://doi.org/10.1007/978-3-319-32655-9_4 J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 CARBON BASED SENSORS FOR HORMONES 16 [19] B. B. Hirpessa, B. H. Ulusoy, C. Hecer, Journal of Food Quality (2020) 5065386. https://doi.org/10.1134/S0020441220050139 [20] S. Tajik, H. Beitollahi, F. G. Nejad, M. Safaei, K. Zhang, Q. V. Le, R. S . Varma, H. W. Jang, M. Shokouhimehr, RSC Advances 36(10) (2020) 21561-21581. https://doi.org/10.1039/D0RA03672B [21] E. Kirchner, T. Hirsc, Microchimica Acta 187 (2020) 441. https://doi.org/10.1007/s00604- 020-04415-3 [22] J. Hu, Z. Zhang, Nanomaterials (2020)(10) (2020). https://doi.org/10.3390/nano10102020 [23] A. C. Power, B. Gorey, S. Chandra, J. Chapman, Nanotechnology Reviews 7(1) (2018) 19-41. https://doi.org/10.1515/ntrev-2017-0160 [24] F. Otero, E. Magner, Sensors 20(12) (2020) 3561. https://doi.org/10.3390/s20123561 [25] V. S. Bhat, S. Supriya, G. Hegde, Journal of the Electrochemical Society 167(3) (2020) 037526. http://dx.doi.org/10.1149/2.0262003JES [26] J. G. Manjunatha, M. Deraman, N. H. Basri, Asian Journal of Pharmaceutical and Clinical Research 8(5) (2015) 48-53. https://innovareacademics.in/journals/index.php/ajpcr/article/ view/7586 [27] J. G. Manjunatha, M. Deraman, Analytical and Bioanalytical Electrochemistry 9(2) (2017) 198-213. https://www.magiran.com/paper/1676284/ [28] J. G. Manjunatha, Asian Journal of Pharmaceutical Clinical Research 10(12) (2017) 295-300. https://doi.org/10.22159/ajpcr.2017.v10i12.21028 [29] J. G. Manjunatha, Heliyon 4 (2018) e00986. https://doi.org/10.1016/j.heliyon.2018.e00986 [30] B. M. Amrutha, J. G. Manjunatha, A. S. Bhatt, ACS Omega 5(36) (2020) 23481-23490. https://doi.org/10.1021/acsomega.0c03517 [31] N. S. Prinith, J. G. Manjunatha, C. Raril, Analytical and Bioanalytical Electrochemistry 11(6) (2019) 742-756. https://www.magiran.com/paper/1993830 [32] P. A. Pushpanjali, J. G. Manjunatha, B. M. Amrutha, H. Nagarajappa, Materials Research Innovations (2020). https://doi.org/10.1080/14328917.2020.1842589 [33] X. Yang, B. Feng, X. He, F. Li, Y. Ding, J. Fei, Microchimica Acta 180 (2013) 935-956. https://doi.org/10.1007/s00604-013-1015-6 [34] P. R. Unwin, A. G. Guell, G. Zhang, Accounts of Chemical Research 49(9) (2016) 2041-2048. https://doi.org/10.1021/acs.accounts.6b00301 [35] W. Zhang, S. Zhu, R. Luque, S. Han, L. Hu, G. Xu, Chemical Society Reviews 45(3) (2016) 715- 752. https://doi.org/10.1039/C5CS00297D [36] G. Tigari, J. G. Manjunatha, C. Raril, N. Hareesha, ChemistrySelect 4(7) (2019) 2168-2173. https://doi.org/10.1002/slct.201803191 [37] E. S. D’Souza, J. G. Manjunatha, C. Raril, G. Tigari, H. J. Arpitha, S. Shenoy, Journal of Electrochemical Science and Engineering 11(2) (2021) 87-96. http://dx.doi.org/10.5599/ jese.953 [38] N. Hareesha, J. G. Manjunatha, C. Raril, G. Tigari, Chemistry Select 4(15) (2019) 4559-4567. https://doi.org/10.1002/slct.201900794 [39] N. Hareesha, J. G. Manjunatha, B. M. Amrutha, P. A. Pushpanjali, M. M. Charithra, N. Prinith Subbaiah, Journal of Electronic Materials 50 (2021) 1230-1238. https://doi.org/10.1007/ s11664-020-08616-7 [40] N. Hareesha, J. G. Manjunatha, Journal of Science: Advanced Materials and Devices 5(4) (2020) 502-511. https://doi.org/10.1016/j.jsamd.2020.08.005 [41] N. Hareesha, J. G. Manjunatha, Scientific Reports 11 (2021) 12797. https://doi.org/10.1038/s41598-021-92099-x [42] G. Tigari, J. G. Manjunatha, Journal of Science: Advanced Materials and Devices 5(1) (2020) 56-64. https://doi.org/10.1016/j.jsamd.2019.11.001 https://doi.org/10.1134/S0020441220050139 https://doi.org/10.1039/D0RA03672B https://doi.org/10.1007/s00604-020-04415-3 https://doi.org/10.1007/s00604-020-04415-3 https://doi.org/10.3390/nano10102020 https://doi.org/10.1515/ntrev-2017-0160 https://doi.org/10.3390/s20123561 http://dx.doi.org/10.1149/2.0262003JES https://innovareacademics.in/journals/index.php/ajpcr/article/view/7586 https://innovareacademics.in/journals/index.php/ajpcr/article/view/7586 https://www.magiran.com/paper/1676284/ https://doi.org/10.22159/ajpcr.2017.v10i12.21028 https://doi.org/10.1016/j.heliyon.2018.e00986 https://doi.org/10.1021/acsomega.0c03517 https://www.magiran.com/paper/1993830 https://doi.org/10.1080/14328917.2020.1842589 https://doi.org/10.1007/s00604-013-1015-6 https://doi.org/10.1021/acs.accounts.6b00301 https://doi.org/10.1039/C5CS00297D https://doi.org/10.1002/slct.201803191 http://dx.doi.org/10.5599/jese.953 http://dx.doi.org/10.5599/jese.953 https://doi.org/10.1002/slct.201900794 https://doi.org/10.1007/s11664-020-08616-7 https://doi.org/10.1007/s11664-020-08616-7 https://doi.org/10.1016/j.jsamd.2020.08.005 https://doi.org/10.1038/s41598-021-92099-x https://doi.org/10.1016/j.jsamd.2019.11.001 G. Tigari et al. J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 http://dx.doi.org/10.5599/jese.1094 17 [43] L. Huang, S. Tian, W. Zhao, K. Liu, J. Guo, Talanta 222 (2021) 121645. https://doi.org/ 10.1016/j.talanta.2020.121645 [44] G. Tigari, J. G. Manjunatha, Journal of Analysis and Testing 3 (2019) 331-340. https://doi. org/10.1007/s41664-019-00116-w [45] G. Tigari, J. G. Manjunatha, D. K. Ravishankar, G Siddaraju, Methods and Objects of Chemical Analysis 14(4) (2019) 216-223. https://doi.org/10.17721/moca.2019.216-223 [46] E. S. D’ Souza, J. G. Manjunatha, C. Raril, G. Tigari, P. A. Pushpanjali, Analytical and Bioanalytical Chemistry Research 7(4) (2020) 461-472. https://dx.doi.org/10.22036/abcr. 2020.214882.1445 [47] E. B. Bahadır, M. K. Sezgintürk, Biosensors and Bioelectronics 68 (2015) 62-71. https://doi. org/10.1016/j.bios.2014.12.054 [48] M. Moreno-Guzmán, L. Agüí, A. González-Cortés, P. Yáñez-Sedeño, J. M. Pingarrón, Journal of Solid-State Electrochemistry 17 (2013)1591-1599. https://doi.org/10.1007/s10008-012- 1868-3 [49] J. Chýlkova, L. Janíkova, M. Sedlák, J. Váňa, R. Šelešovská, Monatshefte für Chemie - Chemical Monthly 150 (2019) 443–449. https://doi.org/10.1007/s00706-018-2347-z [50] B. Zanfrognini, L. Pigani, C. Zanardi, Journal of Solid-State Electrochemistry 24 (2020) 2603- 2616. https://doi.org/10.1007/s10008-020-04686-z [51] N. S. Prinith, J. G. Manjunatha, Materials Research Innovations (2021). https://doi.org/ 10.1080/14328917.2021.1906560 [52] N. Hareesha, J. G. Manjunatha, B. M. Amrutha, N. Sreeharsha, S. M. Basheeruddin Asdaq, Md. Khalid Anwer, Colloids and Surfaces A: Physicochemical and Engineering Aspects 626 (2021) 127042. https://doi.org/10.1016/j.colsurfa.2021.127042 [53] I. Soni, P. Kumar, S. Sharma, G. K. Jayaprakash, Electrochem 2(2) (2021) 274-294. https://doi.org/10.3390/electrochem2020020 [54] G. Tigari, J. G. Manjunatha, C. Raril, in: Environmental Applications of Carbon Nanomaterials-Based Devices, S. Mallakpour, C. M. Hussain (Eds.,), WILEY‐VCH GmbH, Ch. 5, (2021) 135-146. https://doi.org/10.1002/9783527830978.ch5 [55] C. Raril, J. G. Manjunatha, Analytical Science and Technology 11 (2020) 3. https://doi.org/ 10.1186/s40543-019-0194-0 [56] Q. Wu, H.-M. Bi, X.-J. Han, Chinese Journal of Analytical Chemistry 49(3) (2021) 330-340. https://doi.org/10.1016/S1872-2040(21)60083-X [57] J. S. Noori, J. Mortensen, A. Geto, Sensors 20 (2020) 2221. https://doi.org/10.3390 /s20082221 [58] D. Akyüza, A. Koca, Sensors and Actuators B: Chemical 283 (2019) 848-856. https://doi.org/ 10.1016/j.snb.2018.11.155 [59] P. C. Pwavodi, V. H. Ozyurt, S. Asir, M. Ozsoz, Micromachines 12(3) (2021) 312. https://doi. org/10.3390/mi12030312 [60] J .G. Manjunatha, Chemical Data Collections 25 (2020) 100331. https://doi.org/10.1016/ j.cdc.2019.100331 [61] J. G. Manjunatha, B. E. Kumara Swamy, M. T. Shreenivas, G. P. Mamatha, Analytical and Bioanalytical Electrochemistry 4(3) (2012) 225-237. https://www.magiran.com/paper/ 1351828 [62] J. G. Manjunatha, M. Deraman, N. H. Basri, I. A. Talib, Advanced Materials Research 895 (2014) 447-451. https://doi.org/10.4028/www.scientific.net/AMR.895.447 [63] J. G. Manjunatha, The Open Bentham Chemical Engineering Journal 13 (2019) 81-87. http://dx.doi.org/10.2174/1874123101913010081 [64] M. R. de Eguilaz, L. R. Cumba, R .J. Forster, Electrochemistry Communications 116 (2020) 106762. https://doi.org/10.1016/j.elecom.2020.106762 http://dx.doi.org/10.5599/jese.1094 https://doi.org/‌10.1016/j.talanta.2020.121645 https://doi.org/‌10.1016/j.talanta.2020.121645 https://doi.org/10.17721/moca.2019.216-223 https://dx.doi.org/10.22036/abcr.2020.214882.1445 https://dx.doi.org/10.22036/abcr.2020.214882.1445 https://doi.org/10.1007/s10008-012-1868-3 https://doi.org/10.1007/s10008-012-1868-3 https://doi.org/10.1007/s00706-018-2347-z https://doi.org/10.1007/s10008-020-04686-z https://doi.org/‌10.1080/14328917.2021.1906560 https://doi.org/‌10.1080/14328917.2021.1906560 https://doi.org/10.1016/j.colsurfa.2021.127042 https://doi.org/10.3390/electrochem2020020 https://doi.org/10.1002/9783527830978.ch5 https://doi.org/‌10.1186/s40543-019-0194-0 https://doi.org/‌10.1186/s40543-019-0194-0 https://doi.org/10.1016/S1872-2040(21)60083-X https://doi.org/10.3390/s20082221 https://doi.org/10.3390/s20082221 https://doi.org/10.1016/j.snb.2018.11.155 https://doi.org/10.1016/j.snb.2018.11.155 https://doi.org/10.1016/j.cdc.2019.100331 https://doi.org/10.1016/j.cdc.2019.100331 https://www.magiran.com/paper/1351828 https://www.magiran.com/paper/1351828 https://doi.org/10.4028/www.scientific.net/AMR.895.447 http://dx.doi.org/10.2174/1874123101913010081 https://doi.org/10.1016/j.elecom.2020.106762 J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 CARBON BASED SENSORS FOR HORMONES 18 [65] A. A. Karbelkar, A. L. Furst, ACS Infectious Diseases 6(7) (2020) 1567-1571. https://doi.org /10.1021/acsinfecdis.0c00342 [66] R. Nissim, C. Batchelor-McAuley, M. C. Henstridge, R. G. Compton, Chemistry Communications 48 (2012) 3294-3296. https://doi.org/10.1039/C2CC30165B [67] S. Iqbal, H. Khatoon, A. H. Pandit, S. Ahmad, Materials Science for Energy Technologies 2(3) (2019) 417-428. https://doi.org/10.1016/j.mset.2019.04.006 [68] S. Bellucci, C. Balasubramanian, F. Micciulla, G. Rinaldi, Journal of Experimental Nanoscience 2(3) (2007) 193-206. https://doi.org/10.1080/17458080701376348 [69] V. D. N. Bezzon, T. L. A. Montanheiro, B. R. C. de Menezes, R. G. Ribas, V. A. N. Righetti, K. F. Rodrigues, G. P. Thim, Advances in Materials Science and Engineering 2019 (2019) 4293073. https://doi.org/10.1155/2019/4293073 [70] G. Rajakumar, X. Zhang, T. Gomathi, S. Wang, M .A. Ansari, G. Mydhili, G. Nirmala, M. A. Alzohairy, I. Chung, Processes 8 (2020) 355. https://doi.org/10.3390/pr8030355 [71] K. J. Hamilton, Y. Arao, K. S. Korach, Reproductive Biology 14 (2014) 3-8. https://doi.org/ 10.1016/j.repbio.2013.12.002 [72] M. Numazawa, M. Nagaoka, M. Tsuji, Y. Osawa, Journal of the Chemical Society, Chemical Communications (1981) 383-384. https://doi.org/10.1039/C39810000383 [73] N. Falah, J. Torday, S. K. Quinney, D. M. Haas, Clinical Research and Trials 1(2) (2015) 29-33. https://doi.org/10.15761/CRT.1000109 [74] E. Lommen, J. H. Mead, Journal of Restorative Medicine 2(1) (2013) 45-52. https://doi.org/ 10.14200/jrm.2013.2.0103 [75] E. S. Ali, C. Mangold, A. N. Peiris, Menopause 24(9) (2017) 1081-1085. https://doi.org/ 10.1097/gme.0000000000000855 [76] Writing Group of Woman Health Innitiative Investigators, Journal of the American Medical Association 288(3) (2002) 321-333. https://doi.org/10.1001/jama.288.3.321 [77] J. Ding, B.-T. Zhu. Molecular Medicine Reports 13 (2016) 447-452. https://doi.org/ 10.3892/mmr.2015.4491 [78] N. Hareesha, J. G. Manjunatha, Material Research Innovations 24(6) (2020) 349-362. https://doi.org/10.1080/14328917.2019.1684657 [79] J. G. Manjunatha, Sensing and Bio-Sensing Research 16 (2017) 79-84. https://doi.org/ 10.1016/j.sbsr.2017.11.006 [80] M. M. Charithra, J. G. Manjunatha, Materials Science for Energy Technologies 2(3) (2019) 365-371. https://doi.org/10.1016/j.mset.2019.05.002 [81] L. M. Ochiai, D. Agustini, L. C. S. Figueiredo-Filho, C. E. Banks, L. H. Marcolino-Junior, M. F. Bergamini, Sensor and Actuators B: Chemical 241 (2017) 978-984. https://doi.org/10.1016/ j.snb.2016.10.150 [82] E. S. Gomes, F. R. F. Leite, B. R. L. Ferraz, H .A. J. L. Mourão, A. R. Malagutti, Journal of Pharmaceutical Analysis 9(5) (2019) 347-357. https://doi.org/10.1016/j.jpha.2019.04.001 [83] L. V. Jodar, F. A. Santos, V. Zucolotto, B. C. Janegitz, Journal of Solid-State Electrochemistry 22 (2018) 1431-1438. https://doi.org/10.1007/s10008-017-3726-9 [84] F. H. Cincotto, T. C. Canevari, S. A. S. Machado, A. Sanchez, M. Asuncion, R. Barrio, R. Villalonga, J. M. Pingarrón, Electrochimica Acta 174 (2015) 332-339. https://doi.org/ 10.1016/j.electacta.2015.06.013 [85] X. Xin, S. Sun, M. Wang, R. Jia, Ionics 26 (2020) 2633-2641. https://doi.org/10.1007/s11581- 019-03377-8 [86] K. D. Santos, O. C. Braga, I. C. Vieira, A. Spinelli, Talanta 80(5) (2010) 1999-2006. https://doi.org/10.1016/j.talanta.2009.10.058 [87] X. Q. Lin, Y. X. Li, Biosensors and Bioelectronics 22(2) (2006) 253-259. https://doi.org/ 10.1016/j.bios.2006.01.005 https://doi.org/10.1021/acsinfecdis.0c00342 https://doi.org/10.1021/acsinfecdis.0c00342 https://doi.org/10.1039/C2CC30165B https://doi.org/10.1016/j.mset.2019.04.006 https://doi.org/10.1080/17458080701376348 https://doi.org/10.1155/2019/4293073 https://doi.org/10.3390/pr8030355 https://doi.org/‌10.1016/j.repbio.2013.12.002 https://doi.org/‌10.1016/j.repbio.2013.12.002 https://doi.org/10.1039/C39810000383 https://doi.org/10.15761/CRT.1000109 https://doi.org/10.14200/jrm.2013.2.0103 https://doi.org/10.14200/jrm.2013.2.0103 https://doi.org/‌10.1097/gme.0000000000000855 https://doi.org/‌10.1097/gme.0000000000000855 https://doi.org/10.1001/jama.288.3.321 https://doi.org/10.3892/mmr.2015.4491 https://doi.org/10.3892/mmr.2015.4491 https://doi.org/10.1080/14328917.2019.1684657 https://doi.org/‌10.1016/j.sbsr.2017.11.006 https://doi.org/‌10.1016/j.sbsr.2017.11.006 https://doi.org/10.1016/j.mset.2019.05.002 https://doi.org/10.1016/j.snb.2016.10.150 https://doi.org/10.1016/j.snb.2016.10.150 https://doi.org/10.1016/j.jpha.2019.04.001 https://doi.org/10.1007/s10008-017-3726-9 https://doi.org/‌10.1016/j.electacta.2015.06.013 https://doi.org/‌10.1016/j.electacta.2015.06.013 https://doi.org/10.1007/s11581-019-03377-8 https://doi.org/10.1007/s11581-019-03377-8 https://doi.org/10.1016/j.talanta.2009.10.058 https://doi.org/‌10.1016/j.bios.2006.01.005 https://doi.org/‌10.1016/j.bios.2006.01.005 G. Tigari et al. J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 http://dx.doi.org/10.5599/jese.1094 19 [88] P. A. Raymundo-Pereira, A. M. Campos, F. C. Vicentini, B. C. Janegitz, C. D. Mendonça, L. N. Furini, N. V. Boas, M. L. Calegaro, C. J. L. Constantino, S. A. S. Machado, O. N. Oliveira Jr., Talanta 174 (2017) 652–659. https://doi.org/10.1016/j.talanta.2017.06.058 [89] J. P. da Silveira, J. V. Piovesan, A. Spinelli, Microchemical Journal 133 (2017) 22-30. https://doi.org/10.1016/j.microc.2017.03.010 [90] C. A. Donini, M. K. L. da Silva, R. P. Simōes, I. Cesarino, Journal of Electroanalytical Chemistry 809 (2018) 67-73. https://doi.org/10.1016/j.jelechem.2017.12.054 [91] G. W. Muna, A. Kaylor, B. Jaskowski, L. R. Sirhan, C. T. Kelley, Electroanalysis 23(12) (2011) 2915-2924. https://doi.org/10.1002/elan.201100406 [92] M. M. Charithra, J. G. Manjunatha, C. Raril, Advanced Pharmaceutical Bulletin 10(2) (2020) 247-253. https://doi.org/10.34172/apb.2020.029 [93] Q. Zhao, Y. Faraj, L.-Y. Liu, W. Wang, R. Xie, Z. Liu, X.-J. Ju, J. Wei, L.-Y. Chu, Microchemical Journal 158 (2020) 105185. https://doi.org/10.1016/j.microc.2020.105185 [94] I. Cesarino, F. H. Cincotto, S. A. S. Machado, Sensors and Actuators B: Chemical 210 (2015) 453-459. https://doi.org/10.1016/j.snb.2015.01.013 [95] J. G. Manjunatha, G. K. Jayaprakash, Eurasian Journal of Analytical Chemistry 14 (2019) 1- 11. http://www.eurasianjournals.com/abstract.php?id=674 [96] F. Moreira, E. R. Santana, A. Spinelli, Scientific Reports 10 (2020) 1955. https://doi.org/10.1038/s41598-020-58931-6 [97] L. Recco, B. P. Crulhas, C. R. Basso, G. R. Castro, V. A. Pedrosa, ECS Journal of Solid State Science and Technology 5(8) (2016) M3041. https://doi.org/10.1149/2.0081608jss [98] J. A. Balfour, R. C. Heel, Drugs 40(4) (1990) 561-582. https://doi.org/10.2165/00003495- 199040040-00006 [99] C. Castelo-Branco, I. Soveral, Research and Reports in Transdermal Drug Delivery 3 (2014) 1-8. https://doi.org/10.2147/RRTD.S47532 [100] M. Schulster, A. M. Bernie, R. Ramasamy, Asian Journal of Andrology 18(3) (2016) 435-440. https://doi.org/10.4103/1008-682X.173932 [101] M. M . McCarthy, Neuroscientist 15(6) (2009) 599-610. https://doi.org/10.1177/10738584 09340924 [102] C. J. Bagatell, J. R. Heiman, J. E. Rivier, W. J. Bremner, The Journal of Clinical Endocrinology & Metabolism 78(3) (1994) 711-716. https://doi.org/10.1210/jcem.78.3.8126146 [103] E. Wibowo, P. Schellhammer, R. J. Wassersug, The Journal of Urology 185(1) (2011) 17-23. https://doi.org/10.1016/j.juro.2010.08.094 [104] B. M. Sherman, S. G. Korenman, Measurement of Serum LH, FSH, The Journal of Clinical Endocrinology & Metabolism 39(1) (1974) 145-149. https://doi.org/10.1210/jcem-39-1-145 [105] B. W. R. Balzer, S. A. Duke, C. I. Hawke, K. S. Steinbeck, European Journal of Pediatrics 174 (2015) 289–298. https://doi.org/10.1007/s00431-014-2475-3 [106] X. Chen, Z. Shi, Y. Hu, X. Xiao, G. Li, Talanta 188 (2018) 81-90. https://doi.org/10.1016/j.ta lanta.2018.05.063 [107] M. Masikini, M. E. Ghica, P. G. L. Baker, E. I. Iwuoha, C. M. A. Brett, Electroanalysis 31 (2019) 1925-1933. https://doi.org/10.1002/elan.201900190 [108] M. H. M. Zaid, J. Abdullah, N. Rozi, A. A. M. Rozlan, S. A. Hanifah, Nanomaterials 10(7) (2020) 1346. https://doi.org/10.3390/nano10071346 [109] L. Yuan, J. Zhang, P. Zhou, J. Chen, R. Wang, T. Wen, Y. Li, X. Zhou, H. Jiang, Biosensors and Bioelectronics 29(1) (2011) 29-33. https://doi.org/10.1016/j.bios.2011.07.058 [110] X. Zhang, Y. Peng, J. Bai, B. Ning, S. Sun, X. Hong, Y. Liu, Y. Liu, Z. Gao, Sensors and Actuators: B Chemical 200 (2014) 69-75. https://doi.org/10.1016/j.snb.2014.04.028 [111] B. Salci, I. Biryol, Journal of Pharmaceutical and Biomedical Analysis 28(3-4) (2002) 753- 759. https://doi.org/10.1016/S0731-7085(01)00676-8 http://dx.doi.org/10.5599/jese.1094 https://doi.org/10.1016/j.talanta.2017.06.058 https://doi.org/10.1016/j.microc.2017.03.010 https://doi.org/10.1016/j.jelechem.2017.12.054 https://doi.org/10.1002/elan.201100406 https://doi.org/10.34172/apb.2020.029 https://doi.org/10.1016/j.microc.2020.105185 https://doi.org/10.1016/j.snb.2015.01.013 http://www.eurasianjournals.com/abstract.php?id=674 https://doi.org/10.1038/s41598-020-58931-6 https://doi.org/10.1149/2.0081608jss https://doi.org/10.2165/00003495-199040040-00006 https://doi.org/10.2165/00003495-199040040-00006 https://doi.org/10.2147/RRTD.S47532 https://doi.org/10.4103/1008-682X.173932 https://doi.org/10.1177/‌1073858409340924 https://doi.org/10.1177/‌1073858409340924 https://doi.org/10.1210/jcem.78.3.8126146 https://doi.org/10.1016/j.juro.2010.08.094 https://doi.org/10.1210/jcem-39-1-145 https://doi.org/10.1007/s00431-014-2475-3 https://doi.org/10.1016/j.ta‌lanta.2018.05.063 https://doi.org/10.1016/j.ta‌lanta.2018.05.063 https://doi.org/10.1002/elan.201900190 https://doi.org/10.3390/nano10071346 https://doi.org/10.1016/j.bios.2011.07.058 https://doi.org/10.1016/j.snb.2014.04.028 https://doi.org/10.1016/S0731-7085(01)00676-8 J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 CARBON BASED SENSORS FOR HORMONES 20 [112] K.-J. Huang, Y.-J. Liu, G.-W. Shi, X.-R. Yang, Y.-M. Liu, Sensors and Actuators B: Chemical 201 (2014) 579-585. https://doi.org/10.1016/j.snb.2014.05.055 [113] F. C. Moraes, B. Rossi, M. C. Donatoni, K. T. de Oliveira, E. C. Pereira, Analytica Chimica Acta 881 (2015) 37-43. https://doi.org/10.1016/j.aca.2015.04.043 [114] D. Sun, Q. Deng, J. Long, Journal of Solid State Electrochemistry 22 (2018) 487-493. https://doi.org/10.1007/s10008-017-3778-x [115] N. Terui, B. Fugetsu, S. Tanaka, Analytical Sciences 22(6) (2006) 895-898. https://doi.org/ 10.2116/analsci.22.895 [116] I. V. Batista, M. R. V. Lanza, I. L. T. Dias, S. M. C. N. Tanaka, A. A. Tanaka, M. D. P. T. Sotomayor, Analyst 133(12) (2008) 1692-1699. https://doi.org/10.1039/B804462G [117] A. Wong, A. M. Santos, E. L. Fava, O. Fatibello-Filho, M. D. Pilar Taboada Sotomayor, Microchemical Journal 147 (2019) 365-373. https://doi.org/10.1016/j.microc.2019.03.052 [118] B. C. Janegitz, F. A. dos Santos, R. C. Faria, V. Zucolotto, Material Science and Engineering: C 37 (2014) 14-19. https://doi.org/10.1016/j.msec.2013.12.026 [119] J. Song, J. Yang, X. Hu, Journal of Applied Electrochemistry 38 (2008) 833-836. https://doi. org/10.1007/s10800-008-9520-8 [120] Q. He, S. Yuan, C. Chen, S. Hu, Material Science and Engineering: C 23(5) (2003) 621-625. https://doi.org/10.1016/S0928-4931(03)00053-5 [121] V. Dharuman, J. H. Hahn, K. Jayakumar, W. Teng, Electrochimica. Acta 114 (2013) 590-597. https://doi.org/10.1016/j.electacta.2013.10.128 [122] X. Liu, D. K. Y. Wong, Analytica Chimica Acta 594(2) (2007) 184-191. https://doi.org/10.1016/j.aca.2007.05.043 [123] Z. Wang, P. Wang, X. Tu, Y. Wu, G. Zhan, C. Lib, Sensors and Actuators B: Chemical 193 (2014) 190-197. https://doi.org/10.1016/j.snb.2013.11.053 [124] C. Antoniazzi, C. A.de Lima, R. Marangoni, A. Spinelli, E. G. de Castro, Journal of Solid State Electrochemistry 22 (2018) 1373-1383. https://doi.org/10.1007/s10008-017-3690-4 [125] G. Hao, D. Zheng, T. Gan, C. Hu, S. Hu, Journal of Experimental Nanoscience 6(1) (2011) 13- 28. https://doi.org/10.1080/17458081003752988 [126] J. A. Rather, E. A. Khudaisha, P. Kannan, Analyst 143 (2018) 1835-1845. https://doi.org/ 10.1039/C7AN02092A [127] A. Özcan, D. Topçuoğullari, A. A. Özcan, Eskişehir Technical University Journal Of Science And Technology A 19(4) (2018) 963-975. https://doi.org/10.18038/aubtda.430622 [128] S. Hua, K. Wu, H. Yi, D. Cui, S. Hu, K. Wu, H. Yi, D. Cui, Analytica Chimica Acta 464 (2) (2002) 209-216. https://doi.org/10.1016/S0003-2670(02)00496-8 [129] H. Tao, W. Wei, X. Zeng, X. Liu, X. Zhang, Y. Zhang, Microchima Acta 166 (2009) 53–59. https://doi.org/10.1007/s00604-009-0163-1 [130] E. Tanrıkut, I. Ozcan, E. Sel, S. Koytepe, E. K. Savan, Journal of Electrochemical Society 167 (2020) 087509. https://doi.org/10.1149/1945-7111/ab927f [131] K. J. Huang, Y. J. Liu, J. Z. Zhang, Microchimica Acta 182 (2015) 409–417. https://doi.org/10.1007/s00604-014-1352-0 [132] Q. Han, X. Shen, W. Zhu, C. Zhu, X. Zhou, H. Jiang, Biosensors and Bioelectrons 79 (2016) 180-186. https://doi.org/10.1016/j.bios.2015.12.017 [133] K.-J. Huang, Y.-J. Liu, J.-Z. Zhang, J.-T. Cao, Y.-M. Liu, Biosensors and Bioelectronics 67 (2015) 184-191. https://doi.org/10.1016/j.bios.2014.08.010 [134] Z. Chang, B. Zhu, J. Liu, X. Zhu, M. Xu, J. Travas-Sejdic, Biosensors and Bioelectronics 185 (2021) 113247. https://doi.org/10.1016/j.bios.2021.113247 [135] M. V. de Liz, B. do Amaral, S. Stets, N. Nagata, P. Peralta-Zamora, Journal of the Brazilian Chemical Society 28(8) (2017) 1453-1460. https://doi.org/10.21577/0103-5053.20160324 https://doi.org/10.1016/j.snb.2014.05.055 https://doi.org/10.1016/j.aca.2015.04.043 https://doi.org/10.1007/s10008-017-3778-x https://doi.org/‌10.2116/analsci.22.895 https://doi.org/‌10.2116/analsci.22.895 https://doi.org/10.1039/B804462G https://doi.org/10.1016/j.microc.2019.03.052 https://doi.org/10.1016/j.msec.2013.12.026 https://doi.org/10.1016/S0928-4931(03)00053-5 https://doi.org/10.1016/j.electacta.2013.10.128 https://doi.org/10.1016/j.aca.2007.05.043 https://doi.org/10.1016/j.snb.2013.11.053 https://doi.org/10.1007/s10008-017-3690-4 https://doi.org/10.1080/17458081003752988 https://doi.org/10.1039/C7AN02092A https://doi.org/10.1039/C7AN02092A https://doi.org/10.18038/aubtda.430622 https://doi.org/10.1016/S0003-2670(02)00496-8 https://doi.org/10.1007/s00604-009-0163-1 https://doi.org/10.1149/1945-7111/ab927f https://doi.org/10.1007/s00604-014-1352-0 https://doi.org/10.1016/j.bios.2015.12.017 https://doi.org/10.1016/j.bios.2014.08.010 https://doi.org/10.1016/j.bios.2021.113247 https://doi.org/10.21577/0103-5053.20160324 G. Tigari et al. J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 http://dx.doi.org/10.5599/jese.1094 21 [136] S. Ahmed, C. P. Owen, K. James, L. Sampson, C. K. Patel, Current Medicinal Chemistry 9(2) (2002) 263-273. https://doi.org/10.2174/0929867023371210 [137] H. Kuhl, Climacteric 8(1) (2005) 3-63. https://doi.org/10.1080/13697130500148875 [138] J. Liang, Y. Shang, Annual Review of Physiology 75 (2013) 225-240. https://doi.org/ 10.1146/annurev-physiol-030212-183708 [139] R. F. Brocenschi, R. C. Rocha-Filho, N. Bocchi, S. R. Biaggio, Electrochimica Acta 197 (2016) 186-193. https://doi.org/10.1016/j.electacta.2015.09.170 [140] L. V. Allen Jr., U.S. Pharmacist 41(9) (2016) 27-28. [141] R. H. Okina, E. M. Agostini Valle, F. R. Simões, L. Codognoto, Electroanalysis 33(5) (2021) 1264-1270. https://doi.org/10.1002/elan.202060469 [142] C. Chai, J. Gao, G. Zhao, L. Li, Y. Tang, C. Wu, C. Wan, Analytica Chimica Acta 1152 (2020) 338242. https://doi.org/10.1016/j.aca.2021.338242 [143] C. Yang, Q. Sang, S. Zhang, W. Huang, Materials Science and Engineering: C 29(5) (2009) 1741-1745. https://doi.org/10.1016/j.msec.2009.01.024 [144] F. Moreira, T. de Andrade Maranhão, A. Spinelli, Journal of Solid State Electrochemistry 22 (2018) 1303-1313. https://doi.org/10.1007/s10008-017-3678-0 [145] G.-P. Jin, X.-Q. Lin, Electrochimica Acta 50(16-17) (2005) 3556-3562. https://doi.org/10. 1016/j.electacta.2005.01.001 [146] C. Yang, P. Xie, Bulletin of the Korean Chemical Society 28(10) (2007) 1729-1734. https://doi.org/10.5012/bkcs.2007.28.10.1729 [147] H. Song, Y. Wang, L. Zhang, L. Tian, J. Luo, N. Zhao, Y. Han, F. Zhao, X. Ying, Y. Li, Analytical and Bioanalytical Chemistry 409 (2017) 6509-6519. https://doi.org/10.1007/s00216-017- 0598-x [148] S. Taraborrelli, Acta Obstetricia et Gynecologica Scandinavica 94(S161) (2015) 8-16. https://doi.org/10.1111/aogs.12771 [149] J. D. Graham, C. L. Clarke, Endocrine Reviews 18(4) (1997) 502-519. https://doi.org/ 10.1210/edrv.18.4.0308 [150] A. Lieberman, L. Curtis, Alternative Therapies in Health and Medicine 23(6) (2017) 24-32. [151] C. Brisken, Nature Reviews Cancer 13 (2013) 385-396. https://doi.org/10.1038/nrc3518 [152] V. W. Henderson, Climacteric 21 (2018) 333-340. https://doi.org/10.1080/13697137. 2018. 1476484 [153] P. Naderi, F. Jalali, Journal of The Electrochemical Society 167(2) (2020) 027524. https://doi.org/10.1149/1945-7111/ab6a7f [154] C. Esmaeili, M. S. Karimi, P. Norouzi, F. Wu, M. R. Ganjali, E. Safitri, Journal of The Electrochemical Society 167(6) (2020) 067513. https://doi.org/10.1149/1945-7111/ab828e [155] F. J. Arévalo, G. A. Messina, P. G. Molina, M. A. Zon, J. Raba, H. Fernández, Talanta 80(5) (2010) 1986-1992. https://doi.org/10.1016/j.talanta.2009.10.059 [156] J .P. Hart, R.M. Pemberton, R. Luxton, R.Wedge, Biosensors and Bioelectronics 12 (11) (1997). https://doi.org/10.1016/S0956-5663(97)00033-X [157] C. Alves de Lima, A. Spinelli, Electrochimica Acta 107 (2013) 542–548. https://doi.org/ 10.1016/j.electacta.2013.05.141 [158] V. Carralero, A. González-Cortés, P. Yáñez-Sedeño, J. M. Pingarrón, Electroanalysis 19 (2007) 853-858. https://doi.org/10.1002/elan.200603794 [159] M. Arvand, S. Hemmati, Sensors and Actuators B: Chemical 238 (2017) 346-356. https://doi.org/10.1016/j.snb.2016.07.066 [160] M. Arvand, S. Elyan, M. S. Ardaki, Sensors and Actuators B: Chemical 281 (2019) 157-167. https://doi.org/10.1016/j.snb.2018.10.084 [161] H. A. Samie, M. Arvand, Bioelectrochemistry 133 (2020) 107489. https://doi.org/10.1016/ j.bioelechem.2020.107489 http://dx.doi.org/10.5599/jese.1094 https://doi.org/10.2174/0929867023371210 https://doi.org/10.1080/13697130500148875 https://doi.org/‌10.1146/annurev-physiol-030212-183708 https://doi.org/‌10.1146/annurev-physiol-030212-183708 https://doi.org/10.1016/j.electacta.2015.09.170 https://doi.org/10.1002/elan.202060469 https://doi.org/10.1016/j.aca.2021.338242 https://doi.org/10.1016/j.msec.2009.01.024 https://doi.org/10.1007/s10008-017-3678-0 https://doi.org/10.%20‌1016/j.electacta.2005.01.001 https://doi.org/10.%20‌1016/j.electacta.2005.01.001 https://doi.org/10.5012/bkcs.2007.28.10.1729 https://doi.org/10.1007/s00216-017-0598-x https://doi.org/10.1007/s00216-017-0598-x https://doi.org/10.1111/aogs.12771 https://doi.org/10.1210/edrv.18.4.0308 https://doi.org/10.1210/edrv.18.4.0308 https://doi.org/10.1038/nrc3518 https://doi.org/10.1080/13697137.2018.1476484 https://doi.org/10.1080/13697137.2018.1476484 https://doi.org/10.1149/1945-7111/ab6a7f https://doi.org/10.1149/1945-7111/ab828e https://doi.org/10.1016/j.talanta.2009.10.059 https://doi.org/10.1016/S0956-5663(97)00033-X https://doi.org/‌10.1016/j.electacta.2013.05.141 https://doi.org/‌10.1016/j.electacta.2013.05.141 https://doi.org/10.1002/elan.200603794 https://doi.org/10.1016/j.snb.2016.07.066 https://doi.org/10.1016/j.snb.2018.10.084 https://doi.org/10.1016/j.bioelechem.2020.107489 https://doi.org/10.1016/j.bioelechem.2020.107489 J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 CARBON BASED SENSORS FOR HORMONES 22 [162] X. Zhao, L. Zheng, Y. Yan, R. Cao, J. Zhang, Journal of Electroanalytical Chemistry 882 (2021) 115023. https://doi.org/10.1016/j.jelechem.2021.115023 [163] V. Serafín, G. Martínez-García, J. Aznar-Poveda, J. A. Lopez-Pastor, A. J. Garcia-Sanchez, J. Garcia-Haro, S. Campuzano, P. Yáñez-Sedeño, J. M. Pingarrón, Analytica Chimica Acta 1049 (2019) 65-73. https://doi.org/10.1016/j.aca.2018.10.019 [164] V. Serafín, B. Arévalo, G. Martínez-García, J. Aznar-Poveda, J. A. Lopez-Pastor, J. F. Beltrán- Sánchez, A. J. Garcia-Sanchez, J. Garcia Haro, S. Campuzano, P. Yáñez-Sedeño, J. M. Pingarrón, Sensors and Actuators B: Chemical 299 (2019) 126934. https://doi.org/10.1016/ j.snb.2019.126934 [165] A. Gevaerd, S. F. Blaskievicz, A. J. G. Zarbin, E. S. Orth, M. F. Bergamini, L. H. Marcolino- Junior, Biosensors and Bioelectronics 112 (2018) 108-113. https://doi.org/10.1016/j.bios. 2018.04.044 [166] F. J. Arévalo, P. G. Molina, M. A. Zón, H. Fernández, Journal of Electroanalytical Chemistry 619–620 (2008) 46-52. https://doi.org/10.1016/j.jelechem.2008.03.008 [167] Y. F. Xu, M. Velasco-Garcia, T. T. Mottram, Biosensor and Bioelectronics 20(10) (2005) 2061- 2070. https://doi.org/10.1016/j.bios.2004.09.009 [168] A. Das, M. V. Sangaranarayanan, Sensors and Actuators B: Chemical 256 (2018) 775-789. https://doi.org/10.1016/j.snb.2017.10.008 [169] M. Shamsipur, A. Pashabadi, A. Taherpour, K. Bahrami, H. Sharghi, Analytical Letters 51(3) (2018) 312-322. https://doi.org/10.1080/00032719.2017.1298118 [170] K. Tyszczuk, Analytical and Bioanalytical Chemistry 390 (2008) 1951-1956. https://doi.org/10.1007/s00216-008-1928-9 [171] M. R. Stancampiano, A. K. Lucas-Herald, G. Russo, A. D. Rogol, S. F. Ahmed, Hormone Research in Paediatrics 92 (2019) 215-228. https://doi.org/0.1159/000504670 [172] P. Celec, D. Ostatníková, J. Hodosy, Frontiers in Neuroscience 9 (2015) 12. https://doi.org/10.3389/fnins.2015.00012 [173] V. Tyagi, M. Scordo, R. S. Yoon, F. A. Liporace, L. W. Greene, Reviews in Urology 19 (2017) 16-24. https://doi.org/10.3909/riu0716 [174] L. Miranda, A. Galli, S. P. Quináia, Revista Virtual de Química 6 (2014) 416-431. https://doi.org/10.5935/1984-6835.20140029 [175] A. Betatache, F. Lagarde, C. Sanglar, A. Bonhomme, D. Leonard, N. Jaffrezic-Renault, Sensors & Transducers 27 (2014) 92-99. https://hal.archives-ouvertes.fr/hal-01006335 [176] R. I. Wood, S. J. Stanton, Hormones and Behavior 61(1) (2012) 147-155. https://doi.org/ 10.1016/j.yhbeh.2011.09.010 [177] L. A. Gugoasa, R.-I. S. Staden, Current Medicinal Chemistry 25(33) (2018) 4037-4049. https://doi.org/10.2174/0929867324666170724102602 [178] H. Fourou, M. Braiek, A. Bonhomme, F. Lagarde, A. Zazoua, N. Jaffrezic-Renault, Analytical Letters 51(3) (2018) 312-322. https://doi.org/10.1080/00032719.2017.1298118 [179] A. Levent, A. Altun, S. Taş, Y. Yardım, Z. Sentürk, Electroanalysis 27(5) (2015) 1219-1228. https://doi.org/10.1002/elan.201400627 [180] U. Bulut, S. Sanli, S. C. Cevher, A. Cirpan, S. Donmez, S. Timur, Journal of Applied Polymer Science 137(43) (2020) 49332. https://doi.org/10.1002/app.49332 [181] W. Liu, Y. Ma, G. Sun, S. Wang, J. Deng, H. Wei, Biosensors and Bioelectronics 92 (2017) 305-312. https://doi.org/10.1016/j.bios.2016.11.007 [182] S. L. Moura, R. R. de Moraes, M. A. Pereira dos Santos, M. I. Pividori, J. A. Dantas Lopes, D. de Lima Moreira, V. Zucolotto, J. R. dos Santos Júnior, Sensors and Actuators B: Chemical 202 (2014) 469-474. https://doi.org/10.1016/j.snb.2014.05.104 [183] A. Levent, A. Altun, Y. Yardım, Z. Şentürk, Electrochimica Acta 128 (2014) 54-60. https://doi.org/10.1016/j.electacta.2013.10.024 https://doi.org/10.1016/j.jelechem.2021.115023 https://doi.org/10.1016/j.aca.2018.10.019 https://doi.org/10.1016/j.snb.2019.126934 https://doi.org/10.1016/j.snb.2019.126934 https://doi.org/10.1016/j.bios.2018.04.044 https://doi.org/10.1016/j.bios.2018.04.044 https://doi.org/10.1016/j.jelechem.2008.03.008 https://doi.org/10.1016/j.bios.2004.09.009 https://doi.org/10.1016/j.snb.2017.10.008 https://doi.org/10.1080/00032719.2017.1298118 https://doi.org/10.1007/s00216-008-1928-9 https://doi.org/0.1159/000504670 https://doi.org/10.3389/fnins.2015.00012 https://doi.org/10.3909/riu0716 https://doi.org/10.5935/1984-6835.20140029 https://hal.archives-ouvertes.fr/hal-01006335 https://doi.org/‌10.1016/j.yhbeh.2011.09.010 https://doi.org/‌10.1016/j.yhbeh.2011.09.010 https://doi.org/10.2174/0929867324666170724102602 https://doi.org/10.1080/00032719.2017.1298118 https://doi.org/10.1002/elan.201400627 https://doi.org/10.1002/app.49332 https://doi.org/10.1016/j.bios.2016.11.007 https://doi.org/10.1016/j.snb.2014.05.104 https://doi.org/10.1016/j.electacta.2013.10.024 G. Tigari et al. J. Electrochem. Sci. Eng. 12(1) (2022) 3-23 http://dx.doi.org/10.5599/jese.1094 23 [184] R. N. Goyal, V. K. Gupta, S. Chatterjee, Analytica Chimica Acta 657(2) (2010) 147-153. https://doi.org/10.1016/j.aca.2009.10.035 [185] R. Heidarimoghadam, O. Akhavan, E. Ghaderi, E. Hashemi, S. S. Mortazavi, A. Farman, Materials Science and Engneering: C 61 (2016) 246-250. https://doi.org/10.1016/j.msec.2015.12.005 [186] V. Serafín, M. Eguílaz, L. Agüí, P. Yáñez‐Sedeño, J. M. Pingarrón, Electroanalysis 23 (2010) 169-176. https://doi.org/10.1002/elan.201000419 [187] M. Eguílaz, M. Moreno-Guzmán, S. Campuzano, A. González-Cortés, P. Yáñez-Sedeño, J. M. Pingarrón, Biosensors and Bioelectronics 26(2) (2010) 517-522. https://doi.org/10.1016/j.bios.2010.07.060 [188] E. Kellens, H. Bové, T. Vandenryt, J. Lambrichts, J. Dekens, S. Drijkoningen, J. D’Haen, W. De Ceuninck, R. Thoelen, T. Junkers, K. Haenen, A. Ethirajan, Biosensors and Bioelectronics 118 (2018) 58-65. https://doi.org/10.1016/j.bios.2018.07.032 [189] G. Li, M. Zhu, L. Ma, J. Yan, X. Lu, Y. Shen, Y. Wan, ACS Applied Materials and Interfaces 8(22) (2016) 13830-13839. https://doi.org/10.1021/acsami.6b04658 [190] M. M. Alam, M. M. Rahman, A. M. Asiri, M. A. Fazal, Journal of Material Science: Materials in Electronics 32 (2021) 5259-5273. https://doi.org/10.1007/s10854-021-05257-2 ©2021 by the authors; licensee IAPC, Zagreb, Croatia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) http://dx.doi.org/10.5599/jese.1094 https://doi.org/10.1016/j.aca.2009.10.035 https://doi.org/10.1016/j.msec.2015.12.005 https://doi.org/10.1002/elan.201000419 https://doi.org/10.1016/j.bios.2010.07.060 https://doi.org/10.1016/j.bios.2018.07.032 https://doi.org/10.1021/acsami.6b04658 https://doi.org/10.1007/s10854-021-05257-2 https://creativecommons.org/licenses/by/4.0/)