{Glutathione detection at carbon paste electrode modified with ethyl 2-(4-Ferrocenyl-[1,2,3]Triazol-1-yl)Acetate, ZnFe2O4 nanoparticles and ionic liquid:} http://dx.doi.org/10.5599/jese.1230 209 J. Electrochem. Sci. Eng. 12(1) (2022) 209-217; http://dx.doi.org/10.5599/jese.1230 Open Access : : ISSN 1847-9286 www.jESE-online.org Original scientific paper Glutathione detection at carbon paste electrode modified with ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl)acetate, ZnFe2O4 nano- particles and ionic liquid Hadi Beitollahi1,2,, Somayeh Tajik3, Mohammad Reza Aflatoonian4 and Asghar Makarem 1School of Medicine, Bam University of Medical Sciences, Bam, Iran 2Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran 3Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran 4Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran 5Department of Rehabmanagement, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran Corresponding author:  h.beitollahi@yahoo.com; Tel.: +983426226613 Received: January 2, 2022; Accepted: February 13, 2022; Published: February 21, 2022 Abstract The purpose of the present study was to introduce a newly designed approach for deter- mination of glutathione using modified carbon paste electrode with ZnFe2O4 nanoparticles, ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) and ethyl-2-(4-ferrocenyl- -[1,2,3]triazol-1-yl)acetate (EFTA/ZFO/IL/CPE). According to the results from the electro- chemical experiments, oxidation current of glutathione on the modified electrode surface was incremented and its oxidation potential was decreased compared to bare CPE. A linear response was observed for the electrode at different glutathione concentrations (0.2 to 300.0 μM). Keywords Chemically modified electrode, cyclic voltammetry, differential pulse voltammetry, real sample analysis Introduction Glutathione (GSH,γ-glutamyl-L-cysteinyl-glycine) is an important tripeptide thiol within a eukaryotic and mammalian cell and contributes to several biological functionalities (e.g., expressing gene, synthesizing DNA and protein, producing cytokine, and toxin metabolism). Studies found that glutathione exists in the tissues of mammals and plants at concentrations of about 1 to 10 mM. Unusual levels of glutathione are one of the indexes of different illnesses, including Alzheimer's http://dx.doi.org/10.5599/jese.1230 http://dx.doi.org/10.5599/jese.1230 http://www.jese-online.org/ mailto:h.beitollahi@yahoo.com J. Electrochem. Sci. Eng. 12(1) (2022) 209-217 GLUTATHIONE DETECTION AT CARBON PASTE ELECTRODE 210 disease, diabetes, Parkinson diseases (PD), AIDS, arthritis, atherosclerosis, and several kinds of cancers. Therefore, it is of high importance to develop a fast and efficient analytical method for glutathione determination for early medical diagnoses and the prevention of initial outset of side effects [1-3]. There are numerous potential analytical methods for glutathione determination such as spectrophotometry, titrimetry, mass spectrometry, high-performance liquid chromatography, and spectrofluorimetry [4-8]. However, a majority of the mentioned techniques generally have a lot of shortcomings, including complex and costly devices, laborious processes, and the requirements of the trained staff. Therefore, developing of a simple, fast, inexpensive, and accurate technique should be of key importance in this case [9-23]. Electrochemical methods are methods of choice due to their inherent properties, such as cost-effectiveness, easy operation, rapid response, sensitivity and selectivity [24-39]. Due to the inherent sluggishness of heterogenous charge transfer of glutathione at carbon and metallic electrodes, its electrochemical oxidation/reduction is usually performed at modified electrodes coated with the substances which serve as electron transfer mediators, increasing the charge transfer rate. Modifiers are usually prepared in the form of nanomaterials [40-50] which, apart from charge transfer mediation properties, take advantage of their very high surface area, increasing the selectivity and the sensitivity of the method [51-54]. Various nanoparticles are currently being applied in sensors’ construction as modifiers. Among them, zinc ferrite nanoparticles caught significant attention in nano-medicine because of low Zn2+ toxicity. This is especially desirable for biocompatible MRI contrast agents in medicine due to the high toxicity of existing contrast agents. On the other hand, permissible dosages for ZnFe2O4 nanoparticles are 18 and 15 mg/day for Fe and Zn, respectively, making them a suitable option for MRI contrast agents. This is considerably higher than other biocompatible materials [55]. Efficient mediator needs to have a low relative molar mass while being reversible, fast reacting, regenerated at low potentials, pH independent, stable in both oxidized and reduced forms, unreactive with oxygen and nontoxic. Among the most successful mediators are those based on ferrocene and its derivatives that meet the above criteria [56]. Ionic liquids (ILs) have been generating increasing interest over the last decade. Ionic liquids have a great potential for possible electrochemical applications due to the high thermal stability, no volatility, high polarity, large viscosity, high intrinsic conductivity, and wide electrochemical window [56]. In this study we focused on the electrochemical oxidation of glutathione using ethyl-2-(4-fer- rocenyl-[1,2,3]triazol-1-yl)acetate (EFTA) as a mediator in a composite electrode consisting of EFTA/ZnFe2O4 NPs/ionic liquid modified carbon paste electrodes surfaces (EFTA/ZFO/IL/CPE). Experimental Chemicals and instruments A potentiostat/galvanostat Autolab PGSTAT 302N instrument equipped with a general-purpose electrochemical system (GPES) software has been utilized to measure electrochemical parameters. An Ag/AgCl/KCl (3.0 M) electrode, a platinum wire, and EFTA/ZFO/IL/CPE were used as the reference, auxiliary and working electrodes, respectively. A digital pH-meter (Metrohm 710) was employed for measuring the pH values. H. Beitollahi et al. J. Electrochem. Sci. Eng. 12(1) (2022) 209-217 http://dx.doi.org/10.5599/jese.1230 211 The chemicals and solvents were used without further purifications from Aldrich. The buffer solutions of different pH values (between 2.0 and 9.0) were prepared from orthophosphoric acid and its salts. Preparation of modified electrode EFTA (0.01 g) was mixed manually with graphite powder (0.95 g) and ZnFe2O4 nanoparticles (0.04 g). Then certain levels of ionic liquid and liquid paraffin were added and blended for 20 minutes. The uniform wet paste was appended into the bottom of a tube made up of glass of 15 cm length and 3.4 mm in diameter. Electrical contacts were created by positioning copper wires inside the carbon paste. Additionally, extra paste was inserted into the tube and polished by a weighing paper to establish a fresh surface. Results and discussion Electrocatalytic oxidation of glutathione at EFTA/ZFO/IL/CPE Figure 1 shows cyclic voltammograms of the EFTA/ZFO/IL/CPE with (trace a) and without (trace b) added glutathione in the solution. For comparison, the response of unmodified CPE in the presence of glutathione is also shown (trace c). The redox reaction shows one reversible redox peak pair at the potentials of 330 mV. According to the literature the peaks correspond to one-electron reduction/oxidation of ferrocene moiety. By adding the glutathione into the solution, anodic current is significantly increased while cathodic current disappeared. Such behavior is a characteristic of a mediated electron transfer confirming the hypothesis of a mediated oxidation reaction of glutathione by EFTA at modified CPE. The reaction mechanism of glutathione at EFTA mediated electrode is described by Scheme I. pH dependence of the glutathione oxidation at modified electrode shows mediated current maximum in neutral solution so the medium of pH 7.0 was used for further study. Figure 1. CVs of (a) EFTA/ZFO/IL/CPE in 0.1 M PBS (pH 7.0) consisting of 100.0 µM glutathione, (b) EFTA/ZFO/IL/CPE in 0.1 M PBS (pH 7.0), and (c) un-modified CPE in 0.1 M PBS (pH 7.0) with 100.0 µM glutathione http://dx.doi.org/10.5599/jese.1230 J. Electrochem. Sci. Eng. 12(1) (2022) 209-217 GLUTATHIONE DETECTION AT CARBON PASTE ELECTRODE 212 Linear sweep voltammetry (LSV) method was performed to assess the scan rate effect on electrochemical oxidation of glutathione in 0.1 M phosphate buffer solution (PBS) at a pH of 7.0. As seen in Figure 2 an increase of the scan rate from 5 mV/s to 100 mV/s caused an increase of the oxidation current and a slight positive shift of oxidation peak potential. The plot of the oxidation peak current (Ip) vs. the square root of scan rate (ν1/2) is linear (Figure 2 inset) indicating a diffusion- controlled oxidation process [57]. In order to determine the diffusion coefficient of glutathione, potential steps from 0 to 380 mV were taken at several concentration of glutathione and current versus time were recorded (Figure 3). From the linear plots of I vs. t-1/2 (Figure 3 inset), at various concentrations indicated in the figure, the mean diffusion coefficient of 3.0 ×10-6 cm2/s was calculated. Scheme 1. Electrocatalytic oxidation mechanism of glutathione at modified electrode Figure 2. LSVs of EFTA/ZFO/IL/CPE in 0.1 M PBS (pH 7.0) with 100.0 μM glutathione at different rates of scans. Values 1 to 6 respectively is corresponding to 5, 10, 30, 50, 75 and 100 mV s-1. Inset: Changes in the anodic peak currents against ν1/2 H. Beitollahi et al. J. Electrochem. Sci. Eng. 12(1) (2022) 209-217 http://dx.doi.org/10.5599/jese.1230 213 Figure 3. Chronoamperograms gained at EFTA/ZFO/IL/CPE in 0.1 M PBS (pH 7.0) at various levels of glutathione concentra- tion. 1 to 5 is corresponding to 0.1, 0.55, 0.75, 0.9, and 1.2 mM of glutathione. Insets: up - plots of I versus t-1/2 achieved by chrono- amperegrams 1–5; down - Plot of the straight line slop vs. gluta- thione concentrations Electroanalysis of glutathione The peak current of glutathione using EFTA/ZFO/IL/CPE was utilized for quantitative analysis of glutathione. Since DPV has benefits in terms of the greater sensitivity and better informative application features, the adjusted electrode has been employed as the working electrodes in analysing DPV. Regarding the DPV of glutathione using the EFTA/ZFO/IL/CPE, linear response was observed in a range from 2.0×10-7 - 3.0×10-4 M with the correlation coefficient of 0.9991 (Figure 4). In addition, the related limit of detection of 0.07 µM has been obtained. Table 1. presents a comparison of the analytical figures of merit of the proposed work with other modified electrodes for the detection of glutathione. Figure 4. DPVs of EFTA/ZFO/IL/CPE in 0.1 M (pH 7.0) with various levels of glutathione concentration. 1 to 8 is corresponding to 0.2, 5.0, 15.0, 40.0, 70.0, 100.0, 200.0 and 300.0 µM of glutathione. Inset: DPVs of EFTA/ZFO/IL/CPE in 0.1 M (pH 7.0) with distinct levels of glutathione concentration http://dx.doi.org/10.5599/jese.1230 J. Electrochem. Sci. Eng. 12(1) (2022) 209-217 GLUTATHIONE DETECTION AT CARBON PASTE ELECTRODE 214 Table 1. Comparison of the efficiency of some modified carbon paste electrodes used in the electro-oxidation of glutathione, used method - voltammetry Modifier LOD, µM LDR, µM Ref. 2CBFAZ 0.02 0.05-200.0 [17] Ferrocene 2.1 2.2-35.00 [58] Ferrocene carboxylic acid 0.098 0.1-12.0 [59] 2,7-BFEF 0.5 0.92-11.0 [60] TTF–TCNQ 0.3 5.0-340.0 [61] EFTA/ZnFe2O4 nanoparticles/ionic liquid 0.07 0.2-300.0 This work Conclusion This work demonstrates that electrocatalytic activity of EFTA/ZFO/IL/CPE can be successfully utilized for the development for the fast and efficient electroanalytical methodology for glutathione determination. The electrode has linear response over wide concentration range with the limit of detection of 0.07 µM. Acknowledment: The authors acknowledge the financial support provided for this project by the Bam University of Medical Sciences, Bam, Iran and Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. References [1] F. K. Choudhury, A. R. Devireddy, R. K. Azad, V. Shulaev, R. Mittler, Plant Physiology 178 (2018) 1461-1472. https://doi.org/10.1104/pp.18.01031 [2] F.Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Talanta 176 (2018) 208- 213. https://doi.org/10.1016/j.talanta.2017.08.027 [3] T. Priya, N. Dhanalakshmi, S. Thennarasu, N. Thinakaran, Carbohydrate Polymers 197 (2018) 366-374. https://doi.org/10.1016/j.carbpol.2018.06.024 [4] A. Besada, N. B. Tadros, Y. A. Gawargious, Microchimica Acta 99 (1989) 143-146. https://doi.org/10.1007/BF01242800 [5] K. J. Huang, Q. S. Jing, C. Y. Wei, Y. Y. Wu, Spectrochimica Acta 79 (2011) 1860-1865. https://doi.org/10.1016/j.saa.2011.05.076 [6] C. M. Dieckhaus, C. L. Fernández-Metzler, R. King, P. H. Krolikowski, T. A. Baillie, Chemical Research in Toxicology 18 (2005) 630-638 https://doi.org/10.1021/tx049741u. [7] D. J. Reed, J. R. Babson, P. W. Beatty, A. E. Brodie, W. W. Ellis, D. W. Potter, Analytical Biochemistry 106 (1980) 55-62. https://doi.org/10.1016/0003-2697(80)90118-9 [8] E. F. Schroeder, G. E. Woodward, Journal of Biological Chemistry 129 (1939) 283-294. https://doi.org/10.1016/S0021-9258(18)73670-3 [9] S. Tajik, H. Beitollahi, F. Garkani-Nejad, I. Sheikhshoaie, A. Sugih Nugraha, H. Won Jang, Y. Yamauchi, M. Shokouhimehr, Journal of Materials Chemistry A 9 (2021) 8195-8220. https://doi.org/10.1039/D0TA08344E [10] S. Luo, Y. Wu, H. Gou, Ionics 19 (2013) 673-680. https://doi.org/10.1007/s11581-013-0868-3 [11] Y. Tian, P. Deng, Y. Wu, J. Li, J. Liu, G. Li, Q. He, Journal of The Electrochemical Society 167 (2020) 046514. https://doi.org/10.1149/1945-7111/ab79a7 [12] H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Materials Chemistry and Physics 250 (2020) 123042. https://doi.org/10.1016/j.matchemphys.2020.123042 [13] Q. Feng, K. Duan, X. Ye, D. Lu, Y. Du, C. Wang, Sensors and Actuators B 192 (2014) 1-8. https://doi.org/10.1016/j.snb.2013.10.087 [14] H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen, Scientific Reports 10 (2020) 11699. https://doi.org/10.1038/s41598-020-68663-2 https://doi.org/10.1104/pp.18.01031 https://doi.org/10.1016/j.talanta.2017.08.027 https://doi.org/10.1016/j.carbpol.2018.06.024 https://doi.org/10.1007/BF01242800 https://doi.org/10.1016/j.saa.2011.05.076 https://doi.org/10.1016/0003-2697(80)90118-9 https://doi.org/10.1016/S0021-9258(18)73670-3 https://doi.org/10.1039/D0TA08344E https://doi.org/10.1007/s11581-013-0868-3 https://doi.org/10.1149/1945-7111/ab79a7 https://doi.org/10.1016/j.matchemphys.2020.123042 https://doi.org/10.1016/j.snb.2013.10.087 https://doi.org/10.1038/s41598-020-68663-2 H. Beitollahi et al. J. Electrochem. Sci. Eng. 12(1) (2022) 209-217 http://dx.doi.org/10.5599/jese.1230 215 [15] V. Vinothkumar, A. Sangili, S. M. Chen, T. W. Chen, M. Abinaya, V. Sethupathi, International Journal of Electrochemical Science 15 (2020) 2414-2429. https://doi.org/10.20964/2020.03.08 [16] S. Cheemalapati, S. Palanisamy, V. Mani, S. M. Chen, Talanta 117 (2013) 297-304. https://doi.org/10.1016/j.talanta.2013.08.041 [17] M. Miraki, H. Karimi-Maleh, M. A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V. K. Gupta, Journal of Molecular Liquids 278 (2019) 672-676. https://doi.org/10.1016/j.molliq.2019.01.081 [18] G. Emir, Y. Dilgin, A. Ramanaviciene, A. Ramanavicius, Microchemical Journal 161 (2021) 105751. https://doi.org/10.1016/j.microc.2020.105751 [19] F. Terzi, J. Pelliciari, C. Zanardi, L. Pigani, A. Viinikanoja, J. Lukkari, R. Seeber, Analytical and Bioanalytical Chemistry 405 (2013) 3579-3586. https://doi.org/10.1007/s00216-012-6648-5 [20] A. Baghizadeh, H. Karimi-Maleh, Z. Khoshnama, A. Hassankhani, M. Abbasghorbani, Food Analytical Methods 8 (2015) 549-557. https://doi.org/10.1007/s12161-014-9926-3 [21] H. Karimi-Maleh, F. Karimi, S. Malekmohammadi, N. Zakariae, R. Esmaeili, S. Rostamnia, M. Lütfi Yola, N. Atar, S. Movaghgharnezhad, S. Rajendran, A. Razmjou, Y. Orooji, S. Agarwal, V. K. Gupta, Journal of Molecular Liquids 310 (2020) 113185. https://doi.org/10.1016/j.molliq.2020.113185 [22] D. Yuan, S. Chen, R. Yuan, J. Zhang, X. Liu, Sensors and Actuators B 191 (2014) 415-420. https://doi.org/10.1016/j.snb.2013.10.013 [23] M. D. Jerez-Masaquiza, L. Fernández, G. González, M. Montero-Jiménez, P. J. Espinoza- Montero, Nanomaterials 10 (2010) 1328. https://doi.org/10.3390/nano10071328 [24] N. P. Shetti, D. S. Nayak, S. J. Malode, R. M. Kulkarni, Sensors and Actuators B 247 (2017) 858-867. https://doi.org/10.1016/j.snb.2017.03.102 [25] Z. Xing, Q. Chu, X. Ren, J. Tian, A. M. Asiri, K. A. Alamry, A. O. Al-Youbi, X. Sun, Electrochemistry Communications 32 (2013) 9-13. https://doi.org/10.1016/j.elecom.2013.03.033 [26] W. Dang, Y. Sun, H. Jiao, L. Xu, M. Lin, Journal of Electroanalytical Chemistry 856 (2020) 113592. https://doi.org/10.1016/j.jelechem.2019.113592 [27] Q. Feng, K. Duan, X. Ye, D. Lu, Y. Du, C. Wang, Sensors and Actuators B 192 (2014) 1-8. https://doi.org/10.1016/j.snb.2013.10.087 [28] N. Qiao, J. Zheng, Microchimica Acta 177 (2012) 103-109. https://doi.org/10.1007/s00604- 011-0756-3 [29] H. Karimi-Maleh, O.A. Arotiba, Journal of Colloid and Interface Science 560 (2020) 208-212. https://doi.org/10.1016/j.jcis.2019.10.007 [30] S. Tajik, H. Beitollahi, H. Won Jang, M. Shokouhimehr, Talanta 232 (2021) 122379. https://doi.org/10.1016/j.talanta.2021.122379 [31] G. Zhang, P. He, W. Feng, S. Ding, J. Chen, L. Li, H. He, S. Zhang, F. Dong, Journal of Electroanalytical Chemistry 760 (2016) 24-31. https://doi.org/10.1016/j.jelechem.2015.11.035 [32] S. Güney, T. Arslan, S. Yanık, O. Güney, Electroanalysis 33 (2021) 46-56. https://doi.org/10.1002/elan.202060129 [33] A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh, A. Abbaspourrad, S. Agarwal, V. K. Gupta, Sensors and Actuators B 284 (2019) 568-574. https://doi.org/10.1016/j.snb.2018.12.164 [34] D. R. Ulrich, Journal of Non-crystalline Solids 121 (1990) 465-479. https://doi.org/10.1016/0022-3093(90)90177-N [35] X. Xiao, Z. Zhang, F. Nan, Y. Zhao, P. Wang, F. He, Y. Wang, Journal of Alloys and Compounds 852 (2021) 157045. https://doi.org/10.1016/j.jallcom.2020.157045 http://dx.doi.org/10.5599/jese.1230 https://doi.org/10.20964/2020.03.08 https://doi.org/10.1016/j.talanta.2013.08.041 https://doi.org/10.1016/j.molliq.2019.01.081 https://doi.org/10.1016/j.microc.2020.105751 https://doi.org/10.1007/s00216-012-6648-5 https://doi.org/10.1007/s12161-014-9926-3 https://doi.org/10.1016/j.molliq.2020.113185 https://doi.org/10.1016/j.snb.2013.10.013 https://doi.org/10.3390/nano10071328 https://doi.org/10.1016/j.snb.2017.03.102 https://doi.org/10.1016/j.elecom.2013.03.033 https://doi.org/10.1016/j.jelechem.2019.113592 https://doi.org/10.1016/j.snb.2013.10.087 https://doi.org/10.1007/s00604-011-0756-3 https://doi.org/10.1007/s00604-011-0756-3 https://doi.org/10.1016/j.jcis.2019.10.007 https://doi.org/10.1016/j.talanta.2021.122379 https://doi.org/10.1016/j.jelechem.2015.11.035 https://doi.org/10.1002/elan.202060129 https://doi.org/10.1016/j.snb.2018.12.164 https://doi.org/10.1016/0022-3093(90)90177-N https://doi.org/10.1016/j.jallcom.2020.157045 J. Electrochem. Sci. Eng. 12(1) (2022) 209-217 GLUTATHIONE DETECTION AT CARBON PASTE ELECTRODE 216 [36] H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W. Maxakato, A. Abbaspourrad, New Journal of Chemistry 43 (2019) 2362-2367. https://doi.org/10.1039/C8NJ05581E [37] S. S. Fu, G. A. Samorijai, The Journal of Physical Chemistry 96 (1992) 4542-4549. https://doi.org/10.1021/j100190a076 [38] N. S. Anuar, W. J. Basirun, M. Shalauddin, S. Akhter, RSC Advances 10 (2020) 17336-17344. https://doi.org/10.1039/C9RA11056A [39] F. Garkani-Nejad, S. Tajik, H. Beitollahi, I. Sheikhshoaie, Talanta 228 (2021) 122075. https://doi.org/10.1016/j.talanta.2020.122075 [40] L. Yue-ming, L. Jing, T. Zhan-liang, C. Jun, Materials Research Bulletin 43 (2008) 2380-2385. https://doi.org/10.1016/j.materresbull.2007.07.045 [41] H. Beitollahi, S. Tajik, F. Garkani-Nejad, M. Safaei, Journal of Materials Chemistry B 8 (2020) 5826-5844. https://doi.org/10.1039/D0TB00569J [42] S. Kolahi-Ahari, B. Deiminiat, G.H. Rounaghi, Journal of Electroanalytical Chemistry 862 (2020) 113996. https://doi.org/10.1016/j.jelechem.2020.113996 [43] Y. P. Dong, L. Huang, X. F. Chu, L. Z. Pei, Russian Journal of Electrochemistry 49 (2013) 571- 576. https://doi.org/10.1134/S1023193513060037 [44] F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Composites Part B 172 (2019) 666-670. https://doi.org/10.1016/j.compositesb.2019.05.065 [45] A. R. Marlinda, S. Sagadevan, N. Yusoff, A. Pandikumar, N. M. Huang, O. Akbarzadeh, M. R. Johan, Journal of Alloys and Compounds 847 (2020) 156552. https://doi.org/10.1016/j.jallcom.2020.156552 [46] Y. Li, W.C. Chen, S. M. Chen, B. S. Lou, Colloids and Surfaces B 113 (2014) 85-91. https://doi.org/10.1016/j.colsurfb.2013.08.028 [47] H. Karimi-Maleh, Y. Orooji, F. Karimi, M. Alizadeh, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V. K. Gupta, S. Rajendran, A. Ayati, L. Fu, A. L. Sanati, B. Tanhaei, F. Sen, M. Shabani-Nooshabadi, P. Naderi Asrami, A. Al-Othman, Biosensors and Bioelectronics 184 (2021)113252. https://doi.org/10.1016/j.bios.2021.113252 [48] H. Karimi-Maleh, M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V. K. Gupta, S. Rajendran, S. Rostamnia, L. Fu, F. Saberi-Movahed, S. Malekmohammadi, Industrial and Engineering Chemistry Research 60 (2021) 816-823. https://doi.org/10.1021/acs.iecr.0c04698 [49] S. Luo, Y. Wu, H. Gou, Ionics 19 (2013) 673-680. https://doi.org/10.1007/s11581-013-0868-3 [50] H. Karimi-Maleh, M. Lütfi Yola, N. Atar, Y. Orooji, F. Karimi, P. Senthil Kumar, J. Rouhi, M. Baghayeri, Journal of Colloid and Interface Science 592 (2021) 174-185. https://doi.org/10.1016/j.jcis.2021.02.066 [51] A. Le Goff, V. Artero, B. Jousselme, P.D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin, M. Fontecave, Science 326 (2009) 1384-1387. https://doi.org/10.1126/science.1179773 [52] L. Li, D. Deng, S. Huang, H. Song, K. Xu, L. Zhang, Y. Lv, Analytical Chemistry 90 (2018) 9598- 9605. https://doi.org/10.1021/acs.analchem.8b02532 [53] Y. Zhang, H. Xu, S. Dong, R. Han, X. Liu, Y. Wang, S. Li, Q. Bu, X. Li, J. Xiang, Journal of Materials Science: Materials in Electronics 29 (2018) 2193-2200. https://doi.org/10.1007/s10854-017-8132-7 [54] Q. Zhou, W. Chen, L. Xu, R. Kumar, Y. Gui, Z. Zhao, C. Tang, S. Zhu, Ceramics International 44 (2018) 4392-4399. https://doi.org/10.1016/j.ceramint.2017.12.038. [55] S. Tajik, M. Safaei, H. Beitollahi, Measurement, 143 (2019) 51-57. https://doi.org/10.1016/j.measurement.2019.04.057 [56] S. Tajik, M. A. Taher, H. Beitollahi, Sensors and Actuators B 197 (2014) 228–236. http://dx.doi.org/10.1016/j.snb.2014.02.096 https://doi.org/10.1039/C8NJ05581E https://doi.org/10.1021/j100190a076 https://doi.org/10.1039/C9RA11056A https://doi.org/10.1016/j.talanta.2020.122075 https://doi.org/10.1016/j.materresbull.2007.07.045 https://doi.org/10.1039/D0TB00569J https://doi.org/10.1016/j.jelechem.2020.113996 https://doi.org/10.1134/S1023193513060037 https://doi.org/10.1016/j.compositesb.2019.05.065 https://doi.org/10.1016/j.jallcom.2020.156552 https://doi.org/10.1016/j.colsurfb.2013.08.028 https://doi.org/10.1016/j.bios.2021.113252 https://doi.org/10.1021/acs.iecr.0c04698 https://doi.org/10.1007/s11581-013-0868-3 https://doi.org/10.1016/j.jcis.2021.02.066 https://doi.org/10.1126/science.1179773 https://doi.org/10.1021/acs.analchem.8b02532 https://doi.org/10.1007/s10854-017-8132-7 https://doi.org/10.1016/j.ceramint.2017.12.038 https://d.docs.live.net/595bad50a54dda5b/03_jESE/02_prhvaceni/1230/143 https://doi.org/10.1016/j.measurement.2019.04.057 http://dx.doi.org/10.1016/j.snb.2014.02.096 H. Beitollahi et al. J. Electrochem. Sci. Eng. 12(1) (2022) 209-217 http://dx.doi.org/10.5599/jese.1230 217 [57] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, second ed, Wiley, New York (2001). [58] J. B. Raoof, R. Ojani, M. Kolbadinezhad, Journal of Solid State Electrochemistry 13 (2009)1411-1416. https://doi.org/10.1007/s10008-008-0690-4 [59] J. B. Raoof, R. Ojani, M. Baghayeri, Sensors and Actuators B 143 (2009) 261-269. https://doi.org/10.1016/j.snb.2009.08.046 [60] J. B. Raoof, R. Ojani, H. Karimi-Maleh, Journal of Applied Electrochemistry 39 (2009) 1169- 1175. https://doi.org/10.1007/s10800-009-9781-x [61] P. Calvo-Marzal, K. Y. Chumbimuni-Torres, N. F. Hoehr, L. T. Kubota, Clinica Chimica Acta 371 (2006) 152-158. https://doi.org/10.1016/j.cca.2006.03.006 ©2022 by the authors; licensee IAPC, Zagreb, Croatia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) http://dx.doi.org/10.5599/jese.1230 https://doi.org/10.1007/s10008-008-0690-4 https://doi.org/10.1016/j.snb.2009.08.046 https://doi.org/10.1007/s10800-009-9781-x https://doi.org/10.1016/j.cca.2006.03.006 https://creativecommons.org/licenses/by/4.0/)