Duplex electroless Ni-P/Ni-Cu-P coatings: Preparation, evaluation of microhardness, friction, wear, and corrosion performance http://dx.doi.org/10.5599/jese.1359 1 J. Electrochem. Sci. Eng. 00(0) (2022) 000-000; http://dx.doi.org/10.5599/jese.1359 Open Access : : ISSN 1847-9286 www.jESE-online.org Original scientific paper Novel electrochemical sensing platform for detection of hydrazine based on modified screen-printed graphite electrode Farideh Mousazadeh1, Sayed Zia Mohammadi2,, Maryam Mohammadhasani-Pour2 1School of Medicine, Bam University of Medical Sciences, Bam, Iran 2Department of Chemistry, Payame Nour University, Tehran, Iran Corresponding authorс: szmohammadi@yahoo.com Received: April 26, 2022; Accepted: July 29, 2022; Published: October 25, 2022 Abstract The current work aimed to fabricate a screen-printed graphite electrode (SPGE) modified by MnO2 nanorods (MnO2 NRs) for sensing hydrazine. Thus, a facile protocol was adopted to construct the MnO2 nanorods that were subsequently applied to modify the SPGE surface directly. As-synthesized MnO2 NRs/SPGE sensor exhibited a strong sensing behavior towards the hydrazine, with a large peak current and small oxidation potential. This electrochemical sensor in the optimized conditions to detect the hydrazine possessed a low detection limit (0.02 μM), a broad linear dynamic range (0.05–275.0 μM) and an admirable sensitivity (0.0625 μA μM-1). The sensor applicability was practically estimated in real water samples, which revealed successful recovery values. Keywords MnO2 nanorods; electrochemical sensor; hydrazine diffusion coefficient Introduction Hydrazine, a vital chemical reagent, has attracted widespread research interest due to its industrial application and poisonousness. It is a robust reducing agent with various applications in the production of pesticides and medicine [1-3]. It is also a chemical deoxidizer with broad applications as an oxygen scavenger in water boilers [4]. Hydrazine is a key raw material in the construction of rockets and explosives [5,6]. Although hydrazine plays a great role in human production and life, it is easy to be absorbed by living organisms. The persistent contact with this agent may be associated with complications, such as some disturbances in the reproductive system, central nervous system, liver, kidneys and lungs [7-9]. According to the U.S. Environmental Protection Agency (US EPA), hydrazine is positioned in a class of possibly carcinogenic to humans, with a recommended threshold limit value (TLV) of less than 10 ppb [10]. Accordingly, it is substantial to achieve a practical and efficient sensing protocol for the determination of this agent in various media. In this regard, different analytical and instrumental http://dx.doi.org/10.5599/jese.1359 http://dx.doi.org/10.5599/jese.1359 http://www.jese-online.org/ mailto:szmohammadi@yahoo.com J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 ELECTROCHEMICAL SENSING PLATFORM FOR DETECTION OF HYDRAZINE 2 protocols have been designed to detect hydrazine so far, such as gas chromatography, capillary electrophoresis, chemiluminescence, high-performance liquid chromatography, liquid chroma- tography, colorimetry, and spectrophotometry [11-17]. Despite the unique benefits of each of these techniques, they typically require precision instrumentation and length of time. Among these, electrochemical approaches have been concerned by many researchers owing to their peculiar traits, which are simplicity, rapidity, affordability and short response time [18-34]. Voltammetric measurements typically use economical manners to detect analytes by recording variations in response current over alteration in electrode potential [35-42]. The recent development of electrochemical approaches has been greatly simplified by screen- printed electrodes (SPEs) due to their high sensitivity, functionality and versatility [43-45]. The main performance features of a sensor are all gathered in SPEs, including cost-effectiveness, minimal sample preparation, ease of operation, high speed, small size, limited background, and comfortable surface modification. There is always a need for further research to develop electrode materials to improve the selectivity and sensitivity of electrochemical sensors [46-51]. Many advances in nanotechnology have been made in diverse fields in recent years [52-75], which have led to the introduction of highly efficient sensing platforms. Types of nano-scale materials have so far been identified with distinct physicochemical properties that can be employed in the electrochemical sensors to detect various analytes exhibiting admirable results [76-82]. A popular oxide material is manganese dioxide (MnO2), whose behavior can be enhanced by changing its morphology and surface area. MnO2 is a polymorph owing to an octahedral [MnO6] spatial arrangement. Nano-sized MnO2 exhibits commendable benefits due to a larger surface-to- volume ratio and further reactive surface for electrochemical reactions. The diverse application of this substance in electrochemistry and sensor fabrication can be attributed to the simple reduction of MnO2 to Mn2O3 and MnO and, at the proper potential, the re-oxidation to MnO2 as a catalytic circle for electrochemical detection [83-87]. The current work aimed to fabricate a new screen-printed graphite electrode (SPGE) supported by MnO2 nanorods (MnO2 NRs/SPGE) for sensitively sensing hydrazine. The sensor applicability was tested in real water samples, the results of which revealed successful recovery values. Experimental Chemicals and instrumentations All materials with analytical grades applied throughout this work were supplied from Aldrich and Merck. Electrochemical experiments were recorded using a PGSTAT-302N Autolab potentiostat/galvanostat (Eco Chemie, The Netherlands). The control of all experiments was carried out by a General Purpose Electrochemical System (GPES) software. The SPGEs were purchased from DropSens (Spain) and consisted of an Ag pseudo-reference electrode, graphite axillary electrode, and graphite working electrode. All pH values were measured by a digital Metrohm 710 pH meter. Synthesis of MnO2 nanorods The MnO2 NRs were obtained by dissolving KMnO4 (0.316 g) in deionized water (30 mL) while vigorously stirring, followed by the addition of 3 M HCl (1.4 mL) under vigorous stirring for another half hour. Then, the solution was placed in a 50-mL Teflon-lined autoclave at 160 °C for six hours. Next, the products were cooled down to room temperature and subsequently centrifuged and thoroughly rinsed with ethanol and deionized water to clean any impurities, followed by drying at 60 °C for 12 h. F. Mousazadeh et al. J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 http://dx.doi.org/10.5599/jese.1359 3 Preparation of MnO2 NRs/SPGE First, 1 mg of prepared MnO2 nanorods was added into an aqueous solution (1 ml), followed by sonication for 30 min to give a homogeneous solution. Then, 4 μL of MnO2 NRs was dispersed on the surface of SPGE dropwise. Following the solvent's evaporation, the sensor's surface was washed several times with deionized water to clean free modifier molecules and subsequently air-dried. The obtained electrode was noted as MnO2 NRs/SPGE. Results and discussion Characterization of MnO2 nanorods Figure 1 illustrates the FE-SEM images captured for the as-fabricated MnO2 NRs, and observing them confirmed rod-shaped MnO2 nanorods with a thickness ranging from 15 to 25 nm and a length of about 3 µm. The MnO2 NRs showed an almost uniform size distribution. Figure 1. The FESEM images of synthesized MnO2 nanorods Electrochemical response of hydrazine at different electrodes The differential pulse voltammetry (DPV) method was recruited to study the effect pH value of electrolyte solution in different pH values (2.0-9.0) in the presence of 40.0 μM of hydrazine in phosphate buffer solution (0.1 M PBS) on the MnO2 NRs/SPGE surface. The peak current of hydrazine oxidation was maximum at the pH value of 7.0, thereby selecting this value as the optimum pH in the hydrazine detection. Figure 2 shows the application of the cyclic voltammetry (CV) method to evaluate the electro- chemical behavior of 200.0 μM hydrazine at different electrodes (unmodified SPGE, and MnO2 NRs/SPGE) in PBS (0.1 M, pH 7.0) at the scan rate of 50 mV/s. Based on the results, there was an oxidation peak on the surfaces of the electrodes, but no reduction peak, highlighting an irreversible electrochemical response of hydrazine on the electrodes. A relatively wide and weak peak current (Ipa) of hydrazine oxidation was found on the unmodified SPGE (at 1000 mV with 3.0 μA), which reveals that the electrochemical oxidation does not happen spontaneously due to high activation overpotential. The hydrazine Ipa on MnO2 NRs/SPGE, when compared with unmodified SPGE, displayed further elevation to 13.0 μA, meaning an increase up to 4.3 times that on the unmodified SPGE. In addition, hydrazine oxidation occurred at a lower potential than unmodified SPGE. http://dx.doi.org/10.5599/jese.1359 J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 ELECTROCHEMICAL SENSING PLATFORM FOR DETECTION OF HYDRAZINE 4 E / V Figure 2. CV curves of unmodified SPGE (curve a), and MnO2 NRs/SPGE (curve b) in 0.1 M PBS containing 200.0 μM hydrazine; Scan rate: 50 mV s-1 Effect of the scan rate (ʋ) on the results The influence of various scan rates between 10 and 400 mV/s on the anodic peak currents for hydrazine (100.0 μM) was studied using the MnO2 NRs/SPGE (Figure 3). The regression equation was Ipa (hydrazine) = 1.7036 ½ - 4.2319 (R2=0.9994) (Figure 3, inset). This result indicates that the oxidation process is controlled by diffusion. Further, there was a shift in the oxidation peak potential of hydrazine toward a more positive potential by increasing the scan rates. E / mV Figure 3. CV curves of 100.0 μM hydrazine in 0.1 M PBS (pH 7.0) at a scan rate of 10 to 400 mV s-1 at MnO2 NRs/SPGE (a-h refers to 10, 25, 50, 75, 100, 200.0, 300.0 and 400.0 mV s-1) Inset: Plot of the square root of the scan rate vs. the oxidation peak current of hydrazine I /  A I /  A I /  A 1/2 / mV1/2 s-1/2 y = 1.7036x – 4.2319 R2 = 0.9994 F. Mousazadeh et al. J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 http://dx.doi.org/10.5599/jese.1359 5 To study the rate-determining step as shown in Figure 4, the data of the rising part of the current- voltage curve obtained at 10 mV/s scan rate were applied to draw a Tafel plot for 100.0 μM of hydrazine. The linearity of the E versus log I plot, implies the intervention of the kinetics of the elec- trode process. The slope of this plot was utilized to estimate the number of electrons transferred in the rate-determining step. Figure 4 shows the Tafel slope of 0.2153 V for the linear section of the plot, which means the rate-limiting step of one-electron transfer with a transfer coefficient of α = 0.72. E / mV Figure 4. CV response for 100.0 μM hydrazine with 10 mVs-1 scan rate and the inset is the Tafel plot derived from the rising part or the corresponding voltammogram Chronoamperometric analysis Chronoamperometric determinations for different concentrations of hydrazine on the surface of MnO2 NRs/SPGE were measured by adjusting the potential of the working electrode at 0.94 V in PBS (0.1 M, pH 7.0), see Figure 5. For an electroactive material (hydrazine in this case) with a diffusion coefficient of D, the current observed for the electrochemical reaction at the mass transport limited condition is described by the Cottrell equation [88]. As shown in Figure 5A, I versus t−1/2 plots were used with the optimal fit for various hydrazine concentrations. We drew the slopes from straight lines against different concentrations of hydrazine, see Figure 5B. According to the Cottrell equation and obtained slope, the mean D value was 2.7×10−5 cm2/s. y = 0.2153x + 0.6494 R2 = 0.9991 I /  A I / A E / V http://dx.doi.org/10.5599/jese.1359 J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 ELECTROCHEMICAL SENSING PLATFORM FOR DETECTION OF HYDRAZINE 6 t / s Figure 5. The chronoamperograms obtained at MnO2 NRs/SPGE in 0.1 M PBS at pH of 7.0 for different concentrations of hydrazine. Noted that a–d related to 0.1, 0.5, 1.3, and 2.0 mM of hydrazine Inset A: the I plot versus t-1/2 observed by chronoamperograms a to d. Inset B: slope plot of the straight line vs. concentration of hydrazine Calibration curve, linear range and detection limit MnO2 NRs/SPGE sensor was used to electrochemically detect different hydrazine concentrations (Figure 6). A gradual elevation was observed for the peak currents of hydrazine oxidation by raising its concentrations, which means an advanced performance of our sensor in the electrocatalytic oxidation of hydrazine. Oxidation peak currents of hydrazine versus Chydrazine (Figure 6, inset) showed a wide linear range from 0.05 to 275.0 μM. The detection limit (LOD=3σ/S; where σ is the standard deviation of blank response, and S is the slope of the calibration curve with a linear range of concentrations of the analyte) was calculated to be 0.02 μM. Interference study The effect of some interference species on the determination of hydrazine was studied. The results show that the interfering effects of glucose, sucrose, urea, uric acid, Na+, Cl-, No3-, pb2+, and Ag+ on the anodic peak current of hydrazine is less than 5%. Hence, the MnO2 NRs/SPGE has a superior selectivity for hydrazine. I /  A I /  A y = 17.693x + 7.7016 R2 = 0.9991 t-½ / s--½ Chydrazine / mM F. Mousazadeh et al. J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 http://dx.doi.org/10.5599/jese.1359 7 E / V Figure 6. DPV responses of hydrazine on MnO2 NRs/SPGE at different hydrazine concentrations (a-m refers to: 0.05, 3.0, 10.0, 20.0, 30.0, 60.0, 100.0, 130.0, 160.0, 200.0, 225.0, 250.0 and 275.0 μM) in 0.1 M PBS (pH 7.0). Inset: The relationship between the oxidation peak currents and [hydrazine] Analytical application The detection of hydrazine in the water samples (drinking water and tap water) was performed using MnO2 NRs/SPGE sensor. The concentration values of hydrazine were calculated via the method of standard addition. Attained findings are summarized in Table 1, the recovery is between 96.7 and 102.5 %, and the relative standard deviations are all less than or equal to 3.0%. The experimental results confirmed that the MnO2 NRs/SPGE sensor has great potential for analytical application. Table 1. Determining hydrazine in water samples through MnO2 NRs/SPGE. (n=3). Sample C / μM Recovery, % RSD, % Spiked Found Drinking water 0 - - - 4.0 4.1 102.5 3.2 6.0 5.8 96.7 2.4 Tap water 0 - - - 5.0 4.9 98.0 1.9 7.0 7.1 101.4 3.0 Chydrazine / mM I /  A y = 0.0625x + 1.2841 R2 = 0.999 I /  A http://dx.doi.org/10.5599/jese.1359 J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 ELECTROCHEMICAL SENSING PLATFORM FOR DETECTION OF HYDRAZINE 8 Conclusion The present work utilized an ultra-facile protocol to construct MnO2 nanorods-modified SPGE (MnO2 NRs/SPGE) for the electrochemical determination of hydrazine. According to CV findings, the as-fabricated sensor exhibited an electrocatalytic performance compared with the unmodified SPGE for the oxidation of hydrazine. The linear current response to the hydrazine level was between 0.05 and 275.0 μM, and the limit of detection was 0.02 μM with a sensitivity of 0.0625 μA μM-1. The diffusion coefficient for hydrazine using MnO2 NRs/SPGE, 2.7×10−5 cm2 s-1, was obtained. The developed sensor applicability was practically tested to detect the concentrations of hydrazine in real water samples, which revealed successful recovery values. References [1] K. F. Khaled, Applied Surface Science 252 (2006) 4120–4128. https://doi.org/10.1016/j.apsusc.2005.06.016 [2] U. Ragnarsson, Chemical Society Reviews 30 (2001) 205–213. https://doi.org/10.1039/B010091A [3] V. Rosca, M. T. M. Koper, Electrochimica Acta 53 (2008) 5199–205. https://doi.org/10.1016/j.electacta.2008.02.054 [4] I. Cruz Vieira, K. Omuro Lupetti, O. Fatibello-Filho, Analytical Letters 35 (2002) 2221–2231. https://doi.org/10.1081/AL-120016097 [5] R. Lan, J. T. S. Irvine, S. Tao, International Journal of Hydrogen Energy 37 (2012) 1482–1494. https://doi.org/10.1016/j.ijhydene.2011.10.004 [6] A. Serov, C. Kwak, Applied Catalysis B: Environmental 98(1-2) (2010) 1–9. https://doi.org/10.1016/j.apcatb.2010.05.005 [7] C. A. Reilly, S. D. Aust, Chemical Research in Toxicology 10 (1996) 328–334. https://doi.org/10.1021/tx960189l [8] S. Garrod, M. E. Bollard, A. W. Nicholls, S. C. Connor, J. Connelly, J. K. Nicholson, E. Holmes, Chemical Research in Toxicology 18 (2005) 115-122. https://doi.org/10.1021/tx0498915 [9] B. Toth, Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews 2 (2008) 51–102. https://doi.org/10.1080/10590508409373321 [10] G. Choudhary, H. Hansen, Chemosphere 37 (1998) 801–843. https://doi.org/10.1016/S0045- 6535(98)00088-5 [11] J. R. Holtzclaw, S. L. Rose, J. R. Wyatt, Analytical Chemistry 56 (1984) 2952–2956. https://doi.org/10.1021/ac00278a074 [12] M. Khan, S. Kumar, K. Jayasree, K. K. Reddy, P. K. Dubey, Chromatographia 76 (2013) 801- 809. https://doi.org/10.1007/s10337-013-2467-x [13] J. Liu, J. Jiang, Y. Dou, F. Zhang, X. Liu, J. Qu, Q. Zhu, Organic and Biomolecular Chemistry 17 (2019) 6975-6979. https://doi.org/10.1039/C9OB01407A [14] V. M. Dhalape, S. T. Khadangale, R. V. Pinjari, Materials Today: Proceedings 23 (2020) 400- 409. https://doi.org/10.1016/j.matpr.2020.02.060 [15] R. R. Gopireddy, A. Maruthapillai, J. A. Selvi, S. Mahapatra, Materials Today: Proceedings 34 (2021) 430-436. https://doi.org/10.1016/j.matpr.2020.02.659 [16] N. Pourreza, R. Abdollahzadeh, Microchemical Journal 150 (2019) 104067. https://doi.org/10.1016/j.microc.2019.104067 [17] D. S. Kosyakov, A. S. Amosov, N. V. Ul’yanovskii, A. V. Ladesov, Y. G. Khabarov, O. A. Shpigun, Journal of Analytical Chemistry 72 (2017) 171-177. https://doi.org/10.1134/S106193481702006X [18] Y. Pei, M. Hu, Y. Xia, W. Huang, Z. Li, S. Chen, Sensors Actuators B 304 (2020) 127416. https://doi.org/10.1016/j.snb.2019.127416 https://doi.org/10.1016/j.apsusc.2005.06.016 https://doi.org/10.1039/B010091A https://doi.org/10.1016/j.electacta.2008.02.054 https://doi.org/10.1081/AL-120016097 https://doi.org/10.1016/j.ijhydene.2011.10.004 https://doi.org/10.1016/j.apcatb.2010.05.005 https://doi.org/10.1021/tx960189l https://doi.org/10.1021/tx0498915 https://doi.org/10.1080/10590508409373321 https://doi.org/10.1016/S0045-6535(98)00088-5 https://doi.org/10.1016/S0045-6535(98)00088-5 https://doi.org/10.1021/ac00278a074 https://doi.org/10.1007/s10337-013-2467-x https://doi.org/10.1039/C9OB01407A https://doi.org/10.1016/j.matpr.2020.02.060 https://doi.org/10.1016/j.matpr.2020.02.659 https://doi.org/10.1016/j.microc.2019.104067 https://doi.org/10.1134/S106193481702006X https://doi.org/10.1016/j.snb.2019.127416 F. Mousazadeh et al. J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 http://dx.doi.org/10.5599/jese.1359 9 [19] N. S. K. Gowthaman, S. Shankar, S. A. John, ACS Sustainable Chemistry & Engineering 6 (2018) 17302-17313. https://doi.org/10.1021/acssuschemeng.8b04777 [20] S. Tajik, H. Beitollahi, H. Won Jang, M. Shokouhimehr, Talanta 232 (2021) 122379. https://doi.org/10.1016/j.talanta.2021.122379 [21] I. Sheikhshoaie, H. Beitollahi, Food and Chemical Toxicology 162 (2022) 112864-112864. https://doi.org/10.1016/j.fct.2022.112864 [22] H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Food Chemistry 286 (2019) 191-196. https://doi.org/10.1016/j.foodchem.2019.01.143 [23] H. Karimi-Maleh, H. Beitollahi, P. S. Kumar, S. Tajik, P. M. Jahani, F. Karimi, C. Karaman, Y. Vasseghian, M. Baghayeri, J. Rouhi, P. L. Show, Food and Chemical Toxicology (2022) 112961. https://doi.org/10.1016/j.fct.2022.112961 [24] F. G. Nejad, I. Sheikhshoaie, H. Beitollahi, Food and Chemical Toxicology 162 (2022) 112864. https://doi.org/10.1016/j.fct.2022.112864 [25] S. Tajik, Z. Dourandish, F. G. Nejad, H. Beitollahi, A. A. Afsha, P. M. Jahani, A. Di Bartolomeo, Journal of The Electrochemical Society 169 (4) (2022) 046504. https://doi.org/10.1149/1945- 7111/ac62c3 [26] S. S. Moshirian-Farahi; H.A. Zamani; M. Abedi, Eurasian Chemical Communications 2(9) (2020) 702-711. http://www.echemcom.com/article_105259.html [27] M. Payehghadr; Y. Taherkhani; A. Maleki; F. Nourifard, Eurasian Chemical Communications 2(9) (2020) 982-990. http://www.echemcom.com/article_114589.html [28] A. Hosseini Fakhrabad; R. Sanavi Khoshnood; M.R. Abedi; M. Ebrahimi, Eurasian Chemical Communications 3(9) (2021) 627-634. http://www.echemcom.com/article_134775.html [29] J. Mohanraj, D. Durgalakshmi, R. A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh,. Journal of Colloid and Interface Science 566 (2020) 463-472. https://doi.org/10.1016/j.jcis.2020.01.089 [30] H. Karimi-Maleh, A. F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri, R. Moradi, Biosensors and Bioelectronics, 86 (2016) 879-884. https://doi.org/10.1016/j.bios.2016.07.086 [31] T. Eren, N. Atar, M. L. Yola, H. Karimi-Maleh, Food Chemistry 185 (2015) 430-436. https://doi.org/10.1016/j.foodchem.2015.03.153 [32] H. Karimi-Maleh, R. Darabi, M. Shabani-Nooshabadi, M. Baghayeri, F. Karimi, J. Rouhi, M. Alizadeh, O. Karaman, Y. Vasseghian, C. Karaman, Food and Chemical Toxicology 162 (2022) 112907. https://doi.org/10.1016/j.fct.2022.112907 [33] J.D. Lović, Journal of Electrochemical Science and Engineering 12 (2022) 275-282. https://doi.org/10.5599/jese.1166 [34] N. M. Abdul Khader Jailani, M. Chinnasamy, N. S. K. Gowthaman, Journal of Electrochemical Science and Engineering 12 (2022) 275-282. https://doi.org/10.5599/jese.1207 [35] A. Hosseini Fakhrabad, R. Sanavi Khoshnood, M. R. Abedi, M. Ebrahimi, Eurasian Chemical Communications 3 (2021) 627-634. http://dx.doi.org/10.22034/ecc.2021.288271.1182 [36] H. Karimi-Maleh, F. Tahernejad-Javazmi, A. A. Ensafi, R. Moradi, S. Mallakpour, H. Beitollahi, Biosensors and Bioelectronics 60 (2014) 1-7. https://doi.org/10.1016/j.bios.2014.03.055 [37] Z. Dourandish, S. Tajik, H. Beitollahi, P. M. Jahani, F. G. Nejad, I. Sheikhshoaie, A. Di Bartolomeo, Sensor 22 (2022) 2238. https://doi.org/10.3390/s22062238 [38] H. Karimi-Maleh, Q. A. Arotiba, Journal of Colloid and Interface Science 560 (2020) 208-212. https://doi.org/10.1016/j.jcis.2019.10.007 [39] M. R. Aflatoonian, S. Tajik, B. Aflatoonian, M. S. Ekrami-Kakhki, K. Divsalar, I. Sheikh Shoaie, Z. Dourandish, M. Sheikhshoaie, Eurasian Chemical Communications 2(4) (2020) 505-515. http://www.echemcom.com/article_99027.html http://dx.doi.org/10.5599/jese.1359 https://doi.org/10.1021/acssuschemeng.8b04777 https://doi.org/10.1016/j.talanta.2021.122379 https://doi.org/10.1016/j.fct.2022.112864 https://doi.org/10.1016/j.foodchem.2019.01.143 https://doi.org/10.1016/j.fct.2022.112961 https://doi.org/10.1016/j.fct.2022.112864 https://doi.org/10.1149/1945-7111/ac62c3 https://doi.org/10.1149/1945-7111/ac62c3 http://www.echemcom.com/article_105259.html http://www.echemcom.com/article_114589.html http://www.echemcom.com/article_134775.html https://doi.org/10.1016/j.jcis.2020.01.089 https://doi.org/10.1016/j.bios.2016.07.086 https://doi.org/10.1016/j.foodchem.2015.03.153 https://doi.org/10.1016/j.fct.2022.112907 https://doi.org/10.5599/jese.1166 https://doi.org/10.5599/jese.1207 https://dx.doi.org/10.22034/ecc.2021.288271.1182 https://doi.org/10.1016/j.bios.2014.03.055 https://doi.org/10.3390/s22062238 https://doi.org/10.1016/j.jcis.2019.10.007 http://www.echemcom.com/article_99027.html J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 ELECTROCHEMICAL SENSING PLATFORM FOR DETECTION OF HYDRAZINE 10 [40] H. Karimi-Maleh, A. Khataee, F. Karimi, M. Baghayeri, L. Fu, J. Rouhi, C. Karaman, O. Karaman, R. Boukherroub, Chemosphere 291 (2022) 132928. https://doi.org/10.1016/j.chemosphere.2021.132928 [41] H. Pyman; H. Roshanfekr; S. Ansari, Eurasian Chemical Communications 2(2) (2020) 213-225. http://www.echemcom.com/article_92411.html [42] M. R. Aflatoonian; B. Aflatoonian; R. Alizadeh; R. Abbasi Rayeni, Eurasian Chemical Communications 2 (2020) 35-43. http://www.echemcom.com/article_96655.html [43] M. A. Tapia, C. Perez-Rafols, R. Gusmao, N. Serrano, Z. Sofer, J. M. Díaz-Cruz, Electrochimica Acta 362 (2020) 137144. https://doi.org/10.1016/j.electacta.2020.137144 [44] W. Shi, J. Li, J. Wu, Q. Wei, C. Chen, N. Bao, H. Gu, Analytical and Bioanalytical Chemistry 412 (2020) 7275-7283. https://doi.org/10.1007/s00216-020-02860-w [45] S.Z. Mohammadi, H. Beitollahi, T. Rohani, H. Allahabadi, Journal of Electrochemical Science and Engineering 9 (2019) 113-123. https://doi.org/10.5599/jese.637 [46] S. Tajik, H. Beitollahi, F. Garkani-Nejad, M. Safaei, P. Mohammadzadeh Jahani, International Journal of Environmental Analytical Chemistry 102(7) (2020) 1477-1490. https://doi.org/10.1080/03067319.2020.1738418 [47] O. C. Bodur, S. Dinç, M. Özmen, F. Arslan, Biotechnology and Applied Biochemistry 68 (2021) 20-29. https://doi.org/10.1002/bab.1886 [48] T. Jamali, H. Karimi-Maleh, M. A. Khalilzadeh, LWT - Food Science and Technology 57 (2014) 679-685. https://doi.org/10.1016/j.lwt.2014.01.023 [49] P. Prasad, N. Y. Sreedhar, Chemical Methodologies 2 (2018) 277-290. https://doi.org/10.1016/j.lwt.2014.01.023 [50] F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Talanta 176 (2018) 208- 213. https://doi.org/10.1016/j.talanta.2017.08.027 [51] S. Tajik, Y. Orooji, F. Karimi, Z. Ghazanfari, H. Beitollahi, M. Shokouhimehr, R. S. Varma, H. W. Jang, Journal of Food Measurement and Characterization 15(5) (2021) 4617-4622. https://doi.org/10.1007/s11694-021-01027-0 [52] A. A. Ensafi, H. Karimi-Maleh, S. Mallakpour, Colloids Surface B 104 (2013) 186-193. https://doi.org/10.1016/j.colsurfb.2012.12.011 [53] V. Karthika, P. Kaleeswarran, K. Gopinath, A. Arumugam, M. Govindarajan, N. S. Alharbi, G. Benelli, Materials Science and Engineering C 90 (2018) 589-601. https://doi.org/10.1016/j.msec.2018.04.094 [54] R. Jabbari, N. Ghasemi, Chemical Methodologies 5 (2021) 21-29. https://doi.org/10.22034/chemm.2021.118446 [55] A. A. Ensafi, H. Bahrami, B. Rezaei, H. Karimi-Maleh, Materials Science and Engineering C 33 (2013) 831-835. https://doi.org/10.1016/j.msec.2012.11.008 [56] S. Tajik, A. A. Afshar, S. Shamsaddini, M. B. Askari, Z. Dourandish, F. Garkani Nejad, H. Beitollahi, A. Di Bartolomeo, Industrial & Engineering Chemistry Research (2022) https://doi.org/10.1021/acs.iecr.2c00370 [57] S. Gupta, M. Lakshman, Journal of Medicinal and Chemical Sciences 2 (2019) 51-54. https://doi.org/10.26655/JMCHEMSCI.2019.3.3 [58] H. Beitollahi, M. Shahsavari, I. Sheikhshoaie, S. Tajik,P. M. Jahani, S. Z. Mohammadi, A. A. Afshar, Food and Chemical Toxicology 161 (2022) 112824. https://doi.org/10.1016/j.fct.2022.112824 [59] S. Tajik, H. Beitollahi, S. Shahsavari, F. G. Nejad, Chemosphere 291 (2022) 132736. https://doi.org/10.1016/j.chemosphere.2021.132736 [60] H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen, Scientific reports 10(1) (2020) 1-13. https://doi.org/10.1038/s41598-020-68663-2 https://doi.org/10.1016/j.chemosphere.2021.132928 http://www.echemcom.com/article_92411.html http://www.echemcom.com/article_96655.html https://doi.org/10.1016/j.electacta.2020.137144 https://doi.org/10.1007/s00216-020-02860-w https://doi.org/10.5599/jese.637 https://doi.org/10.1080/03067319.2020.1738418 https://doi.org/10.1002/bab.1886 https://doi.org/10.1016/j.lwt.2014.01.023 https://doi.org/10.1016/j.lwt.2014.01.023 https://doi.org/10.1016/j.talanta.2017.08.027 https://doi.org/10.1007/s11694-021-01027-0 https://doi.org/10.1016/j.colsurfb.2012.12.011 https://doi.org/10.1016/j.msec.2018.04.094 https://doi.org/10.22034/chemm.2021.118446 https://doi.org/10.1016/j.msec.2012.11.008 https://doi.org/10.1021/acs.iecr.2c00370 https://dx.doi.org/10.26655/jmchemsci.2019.3.3 https://doi.org/10.1016/j.fct.2022.112824 https://doi.org/10.1016/j.chemosphere.2021.132736 https://doi.org/10.1038/s41598-020-68663-2 F. Mousazadeh et al. J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 http://dx.doi.org/10.5599/jese.1359 11 [61] S. Tajik, Z. Dourandish, F. G. Nejad, A. Aghaei Afshar, H. Beitollahi, Micromachines 13(3) (2022) 369. https://doi.org/10.3390/mi13030369 [62] H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N. W. Maxakato, A. Abbaspourrad, New Journal of Chemistry 43(5) (2019) 2362-2367. https://doi.org/10.1039/C8NJ05581E [63] S. Tajik, A. Lohrasbi-Nejad, P. Mohammadzadeh Jahani, M. B. Askari, P. Salarizadeh, H. Beitollahi, Journal of Food Measurement and Characterization 16(1) (2022) 722-730. https://doi.org/10.1007/s11694-021-01201-4 [64] S. A. Alavi-Tabari, M. A. Khalilzadeh, H. Karimi-Maleh, Journal of Electroanalytical Chemistry 811 (2018) 84-88. https://doi.org/10.1016/j.jelechem.2018.01.034 [65] S. Tajik, M. B. Askari, S. A. Ahmadi, F. G. Nejad, Z. Dourandish, R. Razavi, H. Beitollahi, A. Di Bartolomeo, Nanomaterials 12(3) (2022) 491. https://doi.org/10.3390/nano12030491 [66] H. Karimi-Maleh, C. Karaman, O. Karaman, F. Karimi, Y. Vasseghian, L. Fu, M. Baghayeri, J. Rouhi, P. Senthil Kumar, P. L. Show, S. Rajendran, Journal of Nanostructure in Chemistry 12 (2022) 429–439. https://doi.org/10.1007/s40097-022-00492-3 [67] Y. Orooji, P. N. Asrami, H. Beitollahi, S. Tajik, M. Alizadeh, S. Salmanpour, M. Baghayeri, J. Rouhi, A. L. Sanati, F. Karimi, Journal of Food Measurement and Characterization 15(5) (2021) 4098-4104. https://doi.org/10.1007/s11694-021-00982-y [68] S. Tajik, Y. Orooji, Z. Ghazanfari, F. Karimi, H. Beitollahi, R. S. Varma, H. W. Jang, M. Shokouhimehr, Journal of Food Measurement and Characterization 15(4) (2021) 3837-3852. https://doi.org/10.1007/s11694-021-00955-1 [69] M. Miraki, H. Karimi-Maleh, M. A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V. K. Gupta, Journal of Molecular Liquids 278 (2019) 672-676. https://doi.org/10.1016/j.molliq.2019.01.081 [70] S. Mafi, K. Mahanpoor, Eurasian Chemical Communications 2(1) (2020) 59-77. http://www.echemcom.com/article_96613.html [71] S. S. Mohammadi; N. Ghasemi; M. Ramezani, Eurasian Chemical Communications 2(1) (2020) 87-102. http://www.echemcom.com/article_96615.html [72] F. Raoufi; H. Aghaei; M. Ghaedi, Eurasian Chemical Communications 2(2) (2020) 226-233. http://www.echemcom.com/article_92414.html [73] S. Sarli; N. Ghasemi, Eurasian Chemical Communications 2(3) (2020) 302-318. http://www.echemcom.com/article_96625.html [74] M. Ozdal, S. Gurkok, Recent advances in nanoparticles as antibacterial agent, ADMET and DMPK 10(2) (2022) 115-129. https://doi.org/10.5599/admet.1172 [75] S. Staroverov, S. Kozlov, A. Fomin, K. Gabalov, V. Khanadeev, D. Soldatov, I. Domnitsky, L. Dykman, S.V. Akchurin, O. Guliy, ADMET and DMPK 9(4) (2021) 255-266. https://doi.org/10.5599/admet.1023 [76] M. R. Ganjali, F. Garkani-Nejad, S. Tajik, H. Beitollahi, E. Pourbasheer, B. Larijanii, International Journal of Electrochemical Science 12 (2017) 9972-9982. https://doi.org/10.20964/2017.11.49 [77] M. Taei, H. Salavati, M. Fouladgar, E. Abbaszadeha, Quarterly Journal of Iranian Chemical Communication 8 (2020) 67-79. https://doi.org/10.30473/ICC.2019.45932.1543 [78] S. Tajik, H. Beitollahi, F. Garkani-Nejad, I. Sheikhshoaie, A. Sugih Nugraha, H. Won Jang, Y. Yamauchi, M. Shokouhimehr, Journal of Materials Chemistry A 9 (2021) 8195-8220. https://doi.org/10.1039/D0TA08344E [79] H. Karimi-Maleh, M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V. K. Gupta, Journal of Industrial and Engineering Chemistry 60 (2021) 816-823. https://doi.org/10.1021/acs.iecr.0c04698 http://dx.doi.org/10.5599/jese.1359 https://doi.org/10.3390/mi13030369 https://doi.org/10.1039/C8NJ05581E https://doi.org/10.1007/s11694-021-01201-4 https://doi.org/10.1016/j.jelechem.2018.01.034 https://doi.org/10.3390/nano12030491 https://doi.org/10.1007/s40097-022-00492-3 https://doi.org/10.1007/s11694-021-00982-y https://doi.org/10.1007/s11694-021-00955-1 https://doi.org/10.1016/j.molliq.2019.01.081 http://www.echemcom.com/article_96613.html http://www.echemcom.com/article_96615.html http://www.echemcom.com/article_92414.html http://www.echemcom.com/article_96625.html https://doi.org/10.5599/admet.1172 https://doi.org/10.5599/admet.1023 https://doi.org/10.20964/2017.11.49 https://doi.org/10.30473/ICC.2019.45932.1543 https://doi.org/10.1039/D0TA08344E https://doi.org/10.1021/acs.iecr.0c04698 J. Electrochem. Sci. Eng. 00(0) (2022) 000-000 ELECTROCHEMICAL SENSING PLATFORM FOR DETECTION OF HYDRAZINE 12 [80] D. Vishnu, B. Dhandapani, S. R. Ramakrishnan, P. K. Pandian, T. Raguraman, Journal of Nanostructure in Chemistry 11 (2021) 215-228. https://doi.org/10.1007/s40097-020-00360-y [81] H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Materials Chemistry and Physics 250 (2020) 123042. https://doi.org/10.1016/j.matchemphys.2020.123042 [82] S. Sepahi, M. Kalaee, S. Mazinani, M. Abdouss, S. M. Hosseini, Journal of Nanostructure in Chemistry 11 (2021) 245-258. https://doi.org/10.1007/s40097-020-00362-w [83] S. Ghafour, Taher, K. Abdulkareem Omar, B. Mohammed Faqi-Ahmed, Asian Journal of Green Chemistry 4 (2019) 231–238. https://dx.doi.org/10.22034/AJGC/2020.2.10 [84] N. Jaiswal, I. Tiwari, C. W. Foster, C. E. Banks, Electrochimica Acta 227 (2017) 255–266. https://doi.org/10.1016/j.electacta.2017.01.007 [85] M. A. Prathap, B. Satpati, R. Srivastava, Sensors and Actuators B 186 (2013) 67–77. https://doi.org/10.1016/j.snb.2013.05.076 [86] F. T. Goh, Z. Liu, X. Ge, Y. Zong, G. Du, T. A. Hor, Electrochimica Acta 114 (2013) 598–604. https://doi.org/10.1016/j.electacta.2013.10.116 [87] Y. Huang, C. Cheng, X. Tian, B. Zheng, Y. Li, H. Yuan, M. M. Choi, Electrochimica Acta 89 (2013) 832–839. https://doi.org/10.1016/j.electacta.2012.11.071 [88] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York, 2nd edition, 2001. ISBN: 978-0-471-04372-0 ©2022 by the authors; licensee IAPC, Zagreb, Croatia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) https://doi.org/10.1007/s40097-020-00360-y https://doi.org/10.1016/j.matchemphys.2020.123042 https://doi.org/10.1007/s40097-020-00362-w https://dx.doi.org/10.22034/AJGC/2020.2.10 https://doi.org/10.1016/j.electacta.2017.01.007 https://doi.org/10.1016/j.snb.2013.05.076 https://doi.org/10.1016/j.electacta.2013.10.116 https://doi.org/10.1016/j.electacta.2012.11.071 https://creativecommons.org/licenses/by/4.0/)