Final SPH -JHS Coverpage 16-2 Jan 2021 single C O N T E N T S JOURNAL OF HORTICULTURAL SCIENCES Volume 16 Issue 2 June 2021 In this Issue i-ii Review Phytoremediation of indoor air pollutants: Harnessing the potential of 131-143 plants beyond aesthetics Shalini Jhanji and U.K.Dhatt Research Articles Response of fruit yield and quality to foliar application of micro-nutrients in 144-151 lemon [Citrus limon (L.) Burm.] cv. Assam lemon Sheikh K.H.A., Singh B., Haokip S.W., Shankar K., Debbarma R. Studies on high density planting and nutrient requirement of banana in 152-163 different states of India Debnath Sanjit Bauri F.K., Swain S., Patel A.N., Patel A.R., Shaikh N.B., Bhalerao V.P., Baruah K., Manju P.R., Suma A., Menon R., Gutam S. and P. Patil Mineral nutrient composition in leaf and root tissues of fifteen polyembryonic 164-176 mango genotypes grown under varying levels of salinity Nimbolkar P.K., Kurian R.M., Varalakshmi L.R., Upreti K.K., Laxman R.H. and D. Kalaivanan Optimization of GA3 concentration for improved bunch and berry quality in 177-184 grape cv. Crimson Seedless (Vitis vinifera L) Satisha J., Kumar Sampath P. and Upreti K.K. RGAP molecular marker for resistance against yellow mosaic disease in 185-192 ridge gourd [Luffa acutangula (L.) Roxb.] Kaur M., Varalakshmi B., Kumar M., Lakshmana Reddy D.C., Mahesha B. and Pitchaimuthu M. Genetic divergence study in bitter gourd (Momordica charantia L.) 193-198 Nithinkumar K.R., Kumar J.S.A., Varalakshmi B, Mushrif S.K., Ramachandra R.K. , Prashanth S.J. Combining ability studies to develop superior hybrids in bell pepper 199-205 (Capsicum annuum var. grossum L.) Varsha V., Smaranika Mishra, Lingaiah H.B., Venugopalan R., Rao K.V. Kattegoudar J. and Madhavi Reddy K. SSR marker development in Abelmoschus esculentus (L.) Moench 206-214 using transcriptome sequencing and genetic diversity studies Gayathri M., Pitchaimuthu M. and K.V. Ravishankar Generation mean analysis of important yield traits in Bitter gourd 215-221 (Momordica charantia) Swamini Bhoi, Varalakshmi B., Rao E.S., Pitchaimuthu M. and Hima Bindu K. Influence of phenophase based irrigation and fertigation schedule on vegetative 222-233 performance of chrysanthemum (Dendranthema grandiflora Tzelev.) var. Marigold Vijayakumar S., Sujatha A. Nair, Nair A.K., Laxman R.H. and Kalaivanan D. Performance evaluation of double type tuberose IIHR-4 (IC-0633777) for 234-240 flower yield, quality and biotic stress response Bharathi T.U., Meenakshi Srinivas, Umamaheswari R. and Sonavane, P. Anti-fungal activity of Trichoderma atroviride against Fusarium oxysporum f. sp. 241-250 Lycopersici causing wilt disease of tomato Yogalakshmi S., Thiruvudainambi S., Kalpana K., Thamizh Vendan R. and Oviya R. Seed transmission of bean common mosaic virus-blackeye cowpea mosaic strain 251-260 (BCMV-BlCM) threaten cowpea seed health in the Ashanti and Brong-Ahafo regions of Ghana Adams F.K., Kumar P.L., Kwoseh C., Ogunsanya P., Akromah R. and Tetteh R. Effect of container size and types on the root phenotypic characters of Capsicum 261-270 Raviteja M.S.V., Laxman R.H., Rashmi K., Kannan S., Namratha M.R. and Madhavi Reddy K. Physio-morphological and mechanical properties of chillies for 271-279 mechanical harvesting Yella Swami C., Senthil Kumaran G., Naik R.K., Reddy B.S. and Rathina Kumari A.C. Assessment of soil and water quality status of rose growing areas of 280-286 Rajasthan and Uttar Pradesh in India Varalakshmi LR., Tejaswini P., Rajendiran S. and K.K. Upreti Qualitative and organoleptic evaluation of immature cashew kernels under storage 287-291 Sharon Jacob and Sobhana A. Physical quality of coffee bean (Coffea arabica L.) as affected by harvesting and 292-300 drying methods Chala T., Lamessa K. and Jalata Z Vegetative vigour, yield and field tolerance to leaf rust in four F1 hybrids of 301-308 coffee (Coffea arabica L.) in India Divya K. Das, Shivanna M.B. and Prakash N.S. Limonene extraction from the zest of Citrus sinensis, Citrus limon, Vitis vinifera 309-314 and evaluation of its antimicrobial activity Wani A.K., Singh R., Mir T.G. and Akhtar N. Event Report 315-318 National Horticultural Fair 2021 - A Success Story Dhananjaya M.V., Upreti K.K. and Dinesh M.R. Subject index 319-321 Author index 322-323 199 J. Hortl. Sci. Vol. 16(2) : 199-205, 2021 This is an open access article d istributed under the terms of Creative Commons Attribution-NonCommer cial-ShareAl ike 4.0 International License, which permits unrestricted non-commercial use, d istribution, and reproduction in any med ium, provide d the original author and source are credited. Original Research Paper Combining ability studies to develop superior hybrids in bell pepper (Capsicum annuum var. grossum L.) Varsha V.1, Smaranika Mishra2*, Lingaiah H.B.1, Venugopalan R.3 , Rao K.V.4 Kattegoudar J.5 and Madhavi Reddy K.2 1Department of Vegetable Science, College of Horticulture, Bengaluru, India. 2,7Division of Vegetable Crops, 3Division of Social Sciences; 4Division of Plant Basic Sciences, Indian Institute of Horticultural Research, Hesaraghatta lake post, Bengaluru-89, India.; 5Department of Vegetable Science, KVK, Kolar, Karnataka, India. *Corresponding author email : Smaranika.mishra@icar.gov.in ABSTRACT General combining ability (GCA) among parents and specific combining ability (SCA) of crosses were studied to identify horticulturally superior crosses for growth, yield and component traits in bell pepper. Experimental material included 21 F1 hybrids developed by crossing seven parents in half diallel mating design. Parents and crosses were planted in randomized complete block design (RCBD) during Rabi 2019 to estimate the effects of combining ability. Among parents, Arka Mohini showed good GCA effects for most of the traits (number of secondary branches, early flowering and harvesting, fruit weight and yield) whereas among crosses, Arka Mohini × CW308, Arka Mohini× California Wonder and Yolo Wonder × California Wonder were identified as potential hybrids for yield and attributing traits based on SCA effects. Key words : Bell pepper, half-diallel mating, general combining ability, hybrids, specific combining ability and yield INTRODUCTION Bell pepper (Capsicum annuum var. grossum), also known as capsicum, sweet pepper or Shimla mirch is a popular vegetable worldwide for its pleasant flavour and delicate taste. Further, it is an abundant source of ascorbic acid, vitamin A a nd other minerals (Shar ma et al. 2013). It belongs to the family Solanaceae and have a diploid chromosome number 2n=24. Both green as well as coloured (red and yellow) fruits of bell pepper have gained a status of high value crop in India. The demand for bell pepper in recent years has increased with the emergence of continental food industry (Sood et al. 2010). It always fetches premium price in the market because of its regular demand and inadequate supply owing to average productivity. The basic reason for this is lack of superior quality indigenous varieties and hybrids with high yield and tolerance to biotic as well as abiotic stresses. Indian bell pepper seed market is dominated by imported private sector hybrids and varieties, which increases the input cost for the farmers. Hence, there is an urgent need to strengthen the crop improvement programme for developing new va r iet ies or hybr ids in t his c r op c a pa b le of s a t is f ying t he needs of f a r mer s a s well a s consumers. For development of F 1 hybrids, selection of parents is of utmost importance. Parents are generally selected based on their combining ability. Here, combining ability refers to the ability of lines or parents to combine well during hybridization process so that desirable genes or characters get transmitted to their progenies (Fasahat et al. 2016). General combining ability and specific combining ability are the two main types of combining ability. The study on general combining ability of parents and specific combining ability of the crosses helps in ident if ica tion of bes t pa r ent s a nd c r oss es respectively. Further, the combining ability of the parents also depends upon the nature of genetic system oper a ting in them whic h p r edict s t he efficiency of selection. Keeping this in view, the objective of this investigation was to work out general combining ability (GCA) among parents and specific combining ability of crosses (SCA) to identify the promising hybrids. 200 Varsha et al J. Hortl. Sci. Vol. 16(2) : 199-205, 2021 MATERIALS AND METHODS The study was conducted at ICAR- Indian Institute of Horticultural Research, Hessaraghatta lake post, Bengaluru-89 during the year 2019-2020 for two seasons. During Kharif, 2019 hybrids were developed using seven diverse and elite capsicum genotypes viz., Arka Mohini, Arka Gaurav, Arka Basant, Yolo Wonder, California Wonder, UHFBP-4 and CW-308. They were crossed in half diallel fashion to obtain twenty-one cross combinations/hybrids. In Rabi, 2020, seedlings of 7 pa r ents a nd 21 cr osses wer e transplanted in open field in randomized block design with three replications at a spacing of 60x30 cm. The standard cultural practices were followed as per the package of practices of bell pepper by Indian Institute of Horticulture Research, 2011.Observations were recorded on number of primary branches (NPB), number of secondary branches (NSB), plant height (cm) (PH), days to 50% flowering (DF), days to first harvest (DFH), fruit length in cm (FL), fruit width in cm (FW), number of lobes per fruit (NLF), pericarp thickness in cm (PT), average fruit weight in gm (AFW) , number of fruits per plant (NFP), total yield per plant in gm (YP). Indostat software was used for statistical analysis of the data. RESULTS AND DISCUSSION Analysis of variance for GCA was found significant for a ll the tr a its except NPB a nd a na lysis of variance for SCA was found significant for all the traits (Table 1).With respect to GCA and SCA variance, there was predominance of SCA for all the studied traits indicating the presence of non- additive gene action which could be attributed to dominance and epistatic components like dominance x dominance and additive ‘x’ dominance type of interactions indicating sufficient scope for heterosis breeding. The parents a nd crosses were scored based on their GCA and SCA status. Significantly negative GCA and SCA was scored as “-1” and non-significant GCA and SCA was scored as “0” whereas “+1” scor e was given to significantly positive GCA and SCA effects. By taking these scores into consideration, parents and hybrids were classified as poor, average and good combiners (Table 2 & 3). Arka Mohini was identified as good general combiner for NSB, DF, DFH, AFW and YP. Arka Basant for PH, DFH, FL and NFP whereas, Yolo wonder for DFH and PT (Table 2). In SCA studies, crosses based on Arka Mohini, Arka Basant and Yolo Wonder as one of the parents exhibited good combining effects. Arka Mohini x Yolo Wonder, Arka Mohini x CW308, Arka Mohini x UHFBP4, Arka Basant x California Wonder and Arka Basant x CW308, Yolo Wonder x California Wonder exhibited good SCA effects for most of the traits (Table 3). Arka Mohini based crosses showed higher yield attributed to more number of big and heavy fruits per plant. Arka Mohini x Yolo Wonder showed good SCA for traits like NPB, NSB, PT, AFW and YP; Arka Mohini x CW308 for PH, FW, NFP, AFW and YP; Arka Mohini x UHFBP4 for NSB, PT, NFP, AFW and YP whereas, Arka Basant based hybrids showed earliness along with higher yield. Arka Basant x California Wonder exhibited good SCA for PH, DF, DFH, NFP, AFW and YP; and Arka Basant x CW308 for FL, PT, NFP, AFW a nd YP. Yolo Wonder x C a lif or nia Wonder exhibited good SCA for NPB, NSB, NLF, PT, NFP, AFW and YP. The results Obtained indicates that traits like NPB, NPS, PH, DF, DFH, FW, PT, NFP, AFW and YP are governed by non-additive genes hence, highly amenable for exploitation through heterosis. Similar results were reported by Hegde (2019), Praveen et al. (2017) and Aditika (2018) for NPB, NSB and PH in capsicum. Kaur et al. (2018), Praveen et al. (2017) and Devi et al. (2018) reported non additive gene action for earliness traits in capsicum. Kamble et al. (2009), Hegde (2016), Praveen et al. (2017) and Devi et al. (2018) have also reported good SCA for fruit length and fruit width. Kaur et al. (2018), Aditika (2018) and Devi et al. (2018) have reported high SCA effects for pericarp thickness and average number of fruits per plant. Good SCA for average fruit weight and yield has been reported by Ga la l et al. (2018) a nd Aditika (2018) supporting the present investigation. Based on the general combining ability of parents and specific combining ability of crosses, only three crosses showing good SCA coupled with good or, average GCA of the parents involved in it viz., Arka Mohini x CW308, Arka Mohini x Yolo Wonder and Yolo Wonder x California Wonder with GG and GA intera ctions (table 3) ar e identified for futur e considerations. Further studies on the heterosis of the traits in the developed crosses will be useful in identifying the best heterotic combinations among them. 201 Combining ability studies to develop superior hybrids Ta bl e 1. A N O VA f or c om bi ni ng a bi lit y   df N P B N SB P H D F D F H F L F W N L F P T N F P A F W Y P G C A 6 0. 05 0. 24 * 50 .1 9* 47 .6 2* 71 .1 0* 1. 12 * 0. 15 * 0. 08 * 0. 00 3* 1. 12 * 15 9. 13 * 97 63 .4 5 * SC A 21 0. 05 * 0. 24 * 18 .0 1 * 27 .9 0 * 32 .6 5 * 1. 81 * 0. 07 * 0. 05 * 0. 00 7* 1. 39 * 13 3. 86 * 34 15 6. 48 * E rr or 54 0. 03 0. 06 5. 03 8. 16 6. 13 0. 29 0. 04 0. 03 0. 00 1 0. 06 2. 92 43 .8 8 *: S ig ni fic an ce a t p= 0 .0 5; G C A : G en er al c om bi ni ng a bi lit y, S C A : Sp ec ifi c co m bi ni ng a bi lit y, N P B : N o. o f pr im ar y br an ch es , N SB : N o. o f se co nd ar y br an ch es , PH : P la nt h ei gh t, D F: D ay s to 5 0% f lo w er in g, D FH : D ay s to f ir st h ar ve st , FL : Fr ui t le ng th , FW : Fr ui t w id th , N L F: N o. o f lo be s pe r fr ui t, PT : pe ric ar p th ic kn es s, A FP : A ve ra ge f ru it pe r pl an t, A FW : A ve ra ge f ru it w ei gh t, Y P: Y ie ld p er p la nt Ta bl e 2. O ve ra ll ge ne ra l c om bi ni ng a bi lit y (G C A ) of p ar en ts f or d iff er en t tr ai ts Sl . P ar en ts N P B N SB P H D F D F H F L F W N L F P T N F P A F W Y P To ta l G C A N o. +v e -v e 1. A rk a M oh in i 0 +1 -1 +1 +1 0 0 0 0 0 +1 +1 5 1 G oo d 2. A rk a G au ra v 0 0 0 -1 0 0 0 +1 0 -1 -1 -1 1 4 Po or 3. A rk a B as an t 0 0 +1 0 +1 +1 -1 -1 0 +1 -1 -1 4 4 A ve ra ge 4. Y ol o W on de r 0 0 0 0 +1 0 0 0 +1 0 +1 0 3 0 G oo d 5. C al if or ni a W on de r 0 0 +1 0 0 -1 0 0 -1 0 0 +1 2 2 A ve ra ge 6. U H FB P- 4 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 3 Po or 7. C W 30 8 0 0 0 -1 0 0 +1 0 +1 0 0 0 2 1 G oo d N P B : N o. o f pr im ar y br an ch es , N SB : N o. o f se co nd ar y br an ch es , PH : P la nt h ei gh t, D F: D ay s to 5 0% f lo w er in g, D FH : D ay s to f ir st h ar ve st , FL : Fr ui t le ng th , FW : Fr ui t w id th , N L F: N o. o f lo be s pe r fr ui t, PT : pe ri ca rp t hi ck ne ss , N FP : N um be r of f ru its p er p la nt , A FW : A ve ra ge f ru it w ei gh t, Y P : Y ie ld p er p la nt J. Hortl. Sci. Vol. 16(2) : 199-205, 2021 202 Ta bl e 3. O ve ra ll sp ec ifi c co m bi ni ng a bi lit y (S C A ) of c ro ss es f or d iff er en t tr ai ts S. N o. C ro ss es N PB N SB PH D F D FH FL FW N LF PT N FP A FW Y P To ta l S C A e ffe ct s +v e -v e C ro ss es Pa re nt s 1. A M x A G 0 0 0 -1 -1 0 0 0 +1 0 0 -1 1 3 P G x P 2. A M x A B 0 0 -1 +1 0 0 0 0 -1 +1 +1 +1 4 2 A G x P 3. A M x Y W +1 +1 0 -1 -1 0 0 0 +1 0 +1 +1 5 2 G G x G 4. A M x C W 0 -1 0 0 0 0 0 0 0 -1 -1 -1 0 4 P G x A 5. A M x U H F BP 4 0 +1 -1 0 -1 0 0 0 +1 +1 +1 +1 5 2 G G x P 6. A M x C W 30 8 0 0 +1 -1 -1 0 +1 0 -1 +1 +1 +1 5 3 G G x G 7. A G x A B 0 0 +1 0 0 0 +1 0 +1 0 -1 -1 3 2 A P x P 8. A G x Y W 0 0 0 0 -1 0 0 +1 -1 0 +1 -1 2 3 P P x G 9. A G x C W 0 +1 0 0 0 0 0 0 +1 0 +1 +1 4 0 A P x A 10 . A G x U H FB P4 0 -1 0 0 0 0 0 +1 -1 0 +1 +1 3 2 A P x P 11 . A G x C W 30 8 0 0 0 0 0 0 0 0 +1 0 -1 +1 2 1 A P x G 12 . A B x YW 0 0 0 0 0 0 0 0 +1 -1 -1 -1 1 3 P P x G 13 . A B x CW 0 0 +1 +1 +1 +1 0 0 -1 +1 +1 +1 7 1 G P x A 14 . A B x U H FB P4 0 0 0 -1 0 0 0 +1 -1 0 +1 -1 2 3 P P x P 15 . A B x CW 30 8 0 0 0 -1 -1 +1 0 0 +1 +1 +1 +1 5 2 G P x G 16 . YW x C W +1 +1 0 0 0 0 0 +1 +1 +1 +1 +1 7 0 G G x A 17 . YW x U H FB P4 0 0 0 0 0 +1 0 0 +1 0 -1 +1 3 1 A G x P 18 . YW x U H FC W 30 8 0 0 0 0 0 -1 0 0 0 0 +1 -1 1 2 P G x G 19 . CW x U H FB P4 0 +1 +1 -1 -1 -1 0 0 0 0 +1 +1 4 3 A A x P 20 . CW x C W 30 8 0 0 -1 0 0 0 0 0 0 0 +1 +1 2 1 A A x G 21 . U H FB P4 x C W 30 8 0 0 0 0 0 +1 0 0 +1 0 -1 -1 2 2 A P x G N PB : N o. o f pr im ar y br an ch es , N SB : N o. o f se co nd ar y br an ch es , PH : Pl an t he ig ht , D F: D ay s to 5 0% f lo w er in g, D FH : D ay s to f ir st h ar ve st , FL : Fr ui t le ng th , FW : Fr ui t w id th , N L F: N o. o f lo be s pe r fr ui t, PT : pe ri ca rp t hi ck ne ss , N FP : N um be r of f ru its p er p la nt , A FW : A ve ra ge f ru it w ei gh t, Y P: Y ie ld p er p la nt , A M : A rk a M oh in i, A G : A rk a G au ra v, A B : A rk a B as an t, Y W : Y ol o W on de r, C W : C al if or ni a W on de r Varsha et al J. Hortl. Sci. Vol. 16(2) : 199-205, 2021 203 Sl .N o. P ar en ts N P B N SB P H D F D F H F L F W N L F P T N F P A F W Y P 1. A rk a M oh in i 0. 09 0. 28 * -4 .7 2* 3. 55 * 2. 89 * -0 .2 5 0. 05 -0 .0 03 -0 .0 1 0. 08 8. 19 * 47 .3 7* 2. A rk a G au ra v 0. 02 -0 .1 2 0. 08 -2 .4 9* -3 .8 8 -0 .0 8 0. 10 0. 14 * 0. 01 -0 .5 8 * -1 .8 6 * -3 5. 07 * 3. A rk a B as an t -0 .0 2 -0 .0 07 1. 87 * 2. 14 3. 45 * 0. 50 * -0 .1 8 * -0 .1 4* 0. 01 0. 60 * -3 .7 8 * -3 9. 91 * 4. Y ol o W on de r -0 .0 4 0. 07 -1 .2 8 -1 .1 2 2. 11 * 0. 27 -0 .0 2 -0 .0 6 0. 02 * 0. 00 2 2. 38 * 3. 33 5. C al if or ni a W on de r -0 .0 9 -0 .1 5 1. 93 * 0. 21 -1 .9 5 -0 .5 7 * -0 .0 3 0. 06 -0 .0 3 ** 0. 05 -0 .9 7 35 .8 0* 6. U H FB P- 4 0. 10 0. 08 1. 08 0. 36 -0 .9 2 -0 .0 5 -0 .1 3 0. 04 -0 .0 1 -0 .1 9 * -3 .8 1 * -1 2. 19 * 7. C W 30 8 -0 .0 6 -0 .1 7 1. 03 -2 .6 4* -1 .6 9 0. 17 0. 20 * -0 .0 3 0. 02 * 0. 04 -0 .1 5 0. 67 SE m ± 0. 05 0. 07 0. 69 0. 88 0. 76 0. 05 0. 06 0. 05 0. 00 1 0. 07 3 0. 53 2. 04 C D a t 5% 0. 12 0. 19 1. 69 2. 16 1. 87 0. 41 0. 14 0. 12 0. 01 0. 18 1. 29 5. 00 *: S ig ni fi ca nc e at p = 0. 05 ; N PB : N o. o f pr im ar y br an ch es , N SB : N o. o f se co nd ar y br an ch es , PH : P la nt h ei gh t, D F: D ay s to 5 0% f lo w er in g, D FH : D ay s to f ir st h ar ve st , FL : Fr ui t le ng th , FW : Fr ui t w id th , N L F: N o. o f lo be s pe r fr ui t, PT : pe ri ca rp t hi ck ne ss , A FP : A ve ra ge f ru it pe r pl an t, A FW : A ve ra ge f ru it w ei gh t, Y P : Y ie ld p er p la nt Su pp le m en ta ry T ab le 1 : G en er al c om bi ni ng a bi lit y ef fe ct s (G C A ) of p ar en ts g ro w th a nd y ie ld p ar am et er s Combining ability studies to develop superior hybrids J. Hortl. Sci. Vol. 16(2) : 199-205, 2021 204 Sl .N o. C ro ss es N P B N SB P H D F D F H F L F W N L F P T N F P A F W Y P 1. A M A G -0 .1 2 0. 28 -2 .4 8 -6 .2 3* -4 .7 1* 0. 41 0. 11 0. 03 0. 10 * -0 .1 3 0. 43 -4 7. 83 * 2. A M A B 0. 19 0. 34 -5 .2 3* 7. 14 * 0. 95 -0 .3 6 0. 08 0. 05 -0 .0 3* 1. 06 * 9. 75 * 22 3. 50 * 3. A M Y W 0. 38 * 0. 49 * -1 .0 8 -7 .2 7 * -5 .0 5* -0 .1 0 0. 07 0. 00 4 0. 06 * 0. 53 5. 89 * 11 5. 16 * 4. A M C W -0 .2 3 -0 .5 5* -2 .2 9 3. 07 2. 36 0. 28 -0 .0 2 -0 .0 8 -0 .0 2 -1 .1 8* -4 .4 6* -2 02 .0 4* 5. A M U H FB P4 0. 24 0. 76 * -4 .2 0* -3 .0 8 -4 .0 1* 0. 23 0. 13 0. 17 0. 06 * 1. 33 * 7. 79 * 15 0. 59 * 6. A M C W 30 8 0. 13 -0 .2 2 9. 61 * -5 .0 8* -6 .5 7* 0. 18 0. 41 * 0. 00 4 -0 .0 5* 1. 16 * 8. 72 * 20 2. 99 * 7. A G A B 0. 07 -0 .0 9 5. 86 * -3 .1 5 -3 .2 7 -0 .1 4 0. 41 * 0. 00 7 0. 07 * -0 .1 1 -1 1. 32 * -1 59 .4 9* 8. A G Y W 0. 18 -0 .3 8 -3 .1 6 -1 .5 7 -5 .2 7* 0. 44 -0 .0 49 0. 36 * -0 .0 6* 0. 12 5. 72 * -3 0. 76 * 9. A G C W -0 .0 3 0. 72 * 3. 56 3. 10 -1 .8 6 -0 .1 6 -0 .0 2 0. 00 7 0. 13 * 0. 44 0. 94 * 11 7. 23 * 10 . A G U H FB P4 0. 04 -0 .5 1* 1. 51 -3 .0 4 -1 .8 9 0. 08 0. 08 0. 32 * -0 .0 3* 0. 52 16 .8 4* 18 2. 83 * 11 . A G C W 30 8 0. 16 0. 30 0. 83 3. 29 3. 55 -0 .2 3 0. 18 -0 .1 1 0. 07 * 0. 76 -8 .1 2* 85 .3 9* 12 . A B Y W 0. 23 0. 39 3. 29 -2 .5 3 -3 .9 3 -0 .9 6 0. 03 -0 .2 2 0. 07 * -0 .9 6* -8 .2 3* -1 07 .8 3* 13 . A B C W 0. 19 -0 .1 2 3. 64 * 7. 81 * 8. 14 * 1. 91 * 0. 10 -0 .0 7 -0 .1 0* 1. 29 * 2. 02 * 13 5. 08 * 14 . A B U H FB P4 -0 .0 5 -0 .1 5 -1 .3 1 8. 99 * 3. 77 -0 .7 3 -0 .1 1 0. 31 * -0 .1 4* -0 .4 6 3. 52 * -5 9. 20 * 15 . A B C W 30 8 -0 .1 9 -0 .3 2 -1 .0 6 -4 .6 8* -8 .4 5* 3. 08 * 0. 09 -0 .0 6 0. 09 * 2. 31 * 21 .2 8* 28 6. 86 * 16 . Y W C W 0. 36 * 0. 50 * 0. 06 2 -3 .6 0 -0 .8 6 -0 .3 0 0. 33 0. 28 * 0. 06 * 1. 93 * 14 .9 9* 21 1. 16 * 17 . Y W U H FB P4 -0 .1 6 0. 07 0. 78 2. 92 2. 77 3. 36 * 0. 24 0. 13 0. 09 * -0 .5 6 -1 3. 91 * 13 3. 23 * 18 . Y W C W 30 8 -0 .2 4 -0 .2 4 1. 69 1. 92 -3 .7 9 -1 .1 4* 0. 12 -0 .0 7 0. 00 2 -0 .2 2 7. 60 * -4 2. 61 * 19 . C W U H FB P4 -0 .0 06 0. 73 * 7. 90 * -4 .7 5* -4 .8 2* -0 .7 4* 0. 02 -0 .1 6 0. 01 0. 63 12 .2 2* 13 7. 06 * 20 . C W C W 30 8 0. 02 0. 32 -4 .9 8* -1 .0 8 -1 .3 8 0. 13 0. 02 0. 18 -0 .0 2 -0 .6 3 3. 93 * 34 .7 5* 21 . U H FB P4 C W 30 8 0. 08 7 -0 .3 8 -1 .2 6 -1 .2 3 -2 .7 5 1. 14 * 0. 10 0. 13 0. 08 * -0 .5 3 -9 .2 1* -7 8. 02 * SE m ± 0. 12 0. 19 1. 71 2. 18 1. 89 0. 41 0. 14 0. 12 0. 01 0. 41 0. 14 0. 12 C D a t 5% 0. 26 0. 40 3. 57 4. 55 3. 94 0. 86 0. 29 0. 25 0. 03 0. 86 0. 29 0. 25 *: S ig ni fi ca nc e at p = 0. 05 ; N PB : N o. o f pr im ar y br an ch es , N SB : N o. o f se co nd ar y br an ch es , PH : P la nt h ei gh t, D F: D ay s to 5 0% f lo w er in g, D FH : D ay s to f ir st h ar ve st , FL : Fr ui t le ng th , FW : Fr ui t w id th , N L F: N o. o f lo be s pe r fr ui t, PT : pe ric ar p th ic kn es s, A FP : A ve ra ge f ru it pe r pl an t, A FW : A ve ra ge f ru it w ei gh t, Y P: Y ie ld p er p la nt ; A M : A rk a M oh in i, A G : A rk a G ou ra v, A B : A rk a B as an t, Y W : Y ol o W on de r, C W : C al ifo rn ia W on de r Su pp le m en ta ry T ab le 2 : Sp ec ifi c co m bi ni ng a bi lit y ef fe ct s (S C A ) fo r cr os se s Varsha et al J. Hortl. Sci. Vol. 16(2) : 199-205, 2021 205 Aditika, 2018. Studies on heterosis, combining ability and confirmation of hybridity in bell pepper (Capsicum annuum L.). Ph. D Thesis, Dr. Ya shwa nt Singh Pa r ma r Univer sity of Horticulture and Forestry. Solan (Nauni), Himachal Pradesh (India). Devi, M. B., Pathania, N. K. and Thakur, N, 2018. Estimation of genetic variability, GCA and SCA effects for development of early and high yielding bell pepper hybr ids suitable for protected cultivation. J. Nat. Appl. Sci., 10(1): 410-416 Fasahat, P., Rajabi, A., Rad, J. M. and Derera, J., 2016. Principles and utilization of combining a bility in pla nt br eeding. Biometrics & Biostatistics International Journal., 4(1): 1-24. Galal, R. M., Mohamed, A. G. and Ismail, H. E. M, 2018. Combining ability for yield and fruit quality in sweet pepper (Capsicum annuum L.). Zagazig. J. Agric. Res., :835-850. Hegde, C. B. , Pa nt, S. C. , T hila k, J. C. a nd Punetha, S., 2019. Analysis of combining ability and studies of gene action for yield and yield contributing traits in a half diallel cross of capsicum (Capsicum annuum L. var. REFERENCES G ro s s u m S endt . ) . J . Ph a r m a c o g n Phytochem., 8(3): 274-277. Kamble, C., Mulge, R. and Madalageri, M. B, 2009. Combining ability for earliness and productivity in sweet pepper (Capsicum annuum L.). J. Agric. Sci., 22(1): 151-154. Ka ur, J. , Spehia, R. S. a nd Ver ma , N, 2018. Estimating combining ability for earliness and yield contr ibuting tr a its in bell pepper (Capsicum annuum var grossum L.) under protected conditions. Int. J. Microbial. App. Sci., 7(8): 308-319. Praveen, Y., Srinivasa, V. , Lakshmana, D. and Hadapad, B, 2017. Combining ability studies for growth and yield characters in bell pepper (Capsicum annuum L.)., Environ. Ecol., 35(2): 1521-1525. Sharma, V. K., Punetha, S. and Sharma, B. B, 2013. Heterosis studies for earliness, fruit yield and yield attributing traits in bell pepper. Afr. J. Agric. Res., 8(29): 4088-4098. Sood, S. and Kumar, N, 2010. Heterosis for fruit yield and related horticultural traits in bell pepper. Int. J. Veg. Sci., 16(4): 361-373. (Received on 26.08.2021, Revised on 26.11.2021 and Accepted on 30.11.2021) Combining ability studies to develop superior hybrids J. Hortl. Sci. Vol. 16(2) : 199-205, 2021 00 Contents.pdf 08 Varsha.pdf 19 Lamesssa.pdf 20 Divya.pdf 21 Wani.pdf 23 Index and Last Pages.pdf