J. Hortl. Sci. Vol. 8(2):249-254, 2013 Short communication Egg plant or brinjal (Solanum melongena L.) is an important, highly productive vegetable crop and is often referred to as the poor man’s crop (Bindu et al, 2004). Heterosis breeding is an efficient approach in crop improvement, and selection of parental lines is very important in developing hybrids for commercialization. A knowledge of combining ability helps identify the best combiners, aids heterosis breeding or to accumulate fixable genes through selection. Such information forms the backbone of any breeding programme. Among the various methods, Line X Tester analysis provides information on the combining ability of genotypes. Combining ability effects rank among the important parameters commonly used by plant breeders to evaluate genetic potential of the material being handled by them. Dhillion (1975) opined that combining ability of parents gave useful information on making the choice of parents in terms of expected performance of their hybrids and progenies. The gca effect is considered as an intrinsic genetic value of the parent for a trait, which is due to additive genetic effects and is fixable (Simmonds, 1979). Singh and Hari Singh (1985) suggested that parents with high gca tend to produce transgressive segregants in F2 or later generations. Gravios and McNew (1993) reported that if additive gene action was predominant in a self-pollinated species, the breeder could effectively select various levels of inbreeding, because additive effects are readily transmissible from one generation to another. In view of this, we undertook combining ability analysis using ten lines and four testers. The experimental material comprised of 40 F1s and 14 parents (10 lines and 4 testers) which were evaluated, during 2010-2011 in RBD, with three replications, at College Orchard, Agricultural College and Research Institute, Madurai which is situated at 9°5 latitude and 78°5 longitude and at an elevation of 147m above MSL. Cultural practices were followed as per the package of practices in TNAU Crop Production Guide (2005) with plants spaced at 60cm x 60cm. Observations were recorded in five plants selected randomly in each genotype. Data were recorded for 15 biometrical traits viz., plant height, days to first flowering, number of branches per plant, fruit length, fruit pedicel length, fruit circumference, calyx length, number of fruits per plant, average fruit weight, shoot borer infestation, fruit borer infestation, little leaf incidence, ascorbic acid content, total phenol content and fruit yield per plant in 14 parents and 40 hybrids. This data was used for estimating combining ability. Combining ability analysis was computed as per Kempthorne (1957). Parents/hybrids that showed negative and significant gca effects were considered for days to first flowering, fruit length, calyx length, shoot and fruit borer Gene action and combining ability analysis in brinjal (Solanum melongena L.) S. Ramesh Kumar1 and T. Arumugam Department of Horticulture, Agricultural College and Research Institute Tamil Nadu Agricultural University Madurai - 625 104, India E-mail: rameshamar06@gmail.com ABSTRACT Combining ability analysis in brinjal genotypes indicated significant genotypic and environmental variations for all the 15 characters studied. Both general combining ability (GCA) and specific combining ability (SCA) variances showed significant interactions. Genotypes Palamedu Local (L5), Alagarkovil Local (L4), Melur Local (L6) and Annamalai (T1) were found to be good general combiners, and the crosses L3 x T3 (Kariapatty Local x Punjab Sadabahar), L8 x T1, (Nilakottai Local x Annamalai), L4 x T1 (Alagarkovil Local x Annamalai), L6 x T2 (Melur Local x KKM 1), L7 x T3 (Keerikai Local x Punjab Sadabahar) and L7 x T2 (Keerikai Local x KKM 1) were identified as good specific combiners for fruit yield and other related traits. These hybrid combinations can be used for commercial exploitation for fruit yield in brinjal. Key words: Brinjal, gene action, combining ability, GCA and SCA 1Department of Horticulture, Vanavarayar Institute of Agriculture, Manakkadavu, Pollachi-642103, TNAU, Tamil Nadu, India 250 infestation and little leaf incidence; while, for the other traits, parents /hybrids with positively significant gca effects were taken into consideration. Combining ability analysis was carried out using TNAUSTAT software package. Analysis of Variance revealed highly significant differences among all parents and hybrids for all the characters studied, indicating the presence of considerable amount of genetic variability (Table 1). Hybrids vs Parents comparison was significant for all the traits, revealing occurrence of heterotic effects. Knowledge of relative importance of additive and non-additive gene action is essential to the plant breeder for developing an efficient hybridization programme. Panse (1942) suggested that if additive genetic variance was greater, the chance of fixing superior genotypes in early-segregating generation would be greater; whereas, if dominant and epistatic interactions were predominant, selection should be postponed to a later generation, and appropriate breeding techniques should be applied to obtain a useful genotype. From an analysis of the combining ability estimates, it was seen that non-additive gene action operated for all the characters in our study, as, variance due to general combining ability (GCA) and specific combining ability (SCA) was highly significant (Table 2). Further, it was observed that variance due to SCA was higher in magnitude than GCA for all the traits studied. Thus, it supports predominance of non-additive gene effects on governing the expression of most of the characters. These results are in accordance with Prabhu (2005), Muthulakshmi (2007) and Prakash (2008) for plant height; Indiresh et al (2005) for days to first flowering; Prakash (2008) for number of branches per plant; Suneetha (2006), Muthulakshmi (2007) and Prakash (2008) for number of fruits per plant; Muthulakshmi (2007) for average fruit Table 1. Analysis of Variance for parents and hybrids for 15 characters Source df PH DFF NB/ P FL FPL FC CL Hybrids 39 346.5306* 54.8730* 17.4039* 5.4570* 1.4005* 9.9952* 1.0970* Lines 9 973.0851* 76.5412* 40.2728* 4.9768* 2.1125* 20.0498* 2.5695* Testers 3 66.6626* 17.7451* 12.1612* 9.7032* 0.4415* 16.6776* 0.5407* Line x Testers 27 168.7756* 51.7756* 10.3635* 5.1453* 1.2698* 5.9011* 0.6680* Errors 78 85.0412 3.3519 4.3914* 0.0933 0.0216 0.4478 0.0424 Source df NF/P AFW SBI FBI LLI ACC TPC FY/P Hybrids 39 161.9557* 149.5525* 54.4746* 63.3535* 69.4393* 12.9752* 533.5026* 0.6288* Lines 9 197.8137* 328.0857* 104.8571* 80.0248* 128.8896* 24.3787* 998.8697* 0.9020* Testers 3 234.2205* 72.4168* 41.9781* 34.1338* 70.4679* 33.1344* 55.7529* 0.4214* Line x Testers 27 141.9736* 98.6121* 39.0689* 61.0430* 49.5083* 6.9342* 431.4635* 0.5608* Errors 78 1.8176 4.0138 0.9524 2.1378 0.8543 0.1632 4.1422 0.0100 *Significant at 5% level PH - Plant height (cm) DFF - Days to first flowering NB/P - Number of branches per plant FL - Fruit length (cm) FPL - Fruit pedicel length (cm) FC - Fruit circumference (cm) CL - Calyx length (cm) NF/P - Number of fruits per plant AFW - Average fruit weight (g) SBI - Shoot borer infestation (%) FBI - Fruit borer infestation (%) LLI - Little leaf incidence (%) ACC - Ascorbic acid content (mg/100g) TPC - Total phenol content (mg/100g) FY/P - Fruit yield per plant (kg) Table 2. Magnitude of Variance for yield components Character GCA SCA δ2 A δ2 D Ratio of variance variance δ2 A: δ2 D Plant height (cm) 67.02 98.15 2.91 98.15 0.02 Days to first 2.06 14.97 0.20 14.97 0.01 flowering Number of 4.52 17.34 0.26 17.34 0.01 branches per plant Fruit length (cm) -0.01 2.15 0.05 2.15 0.02 Fruit pedicel 0.07 0.41 0.03 0.41 0.07 length (cm) Fruit 1.17 4.40 0.06 4.40 0.01 circumference (cm) Calyx length (cm) 0.15 0.38 0.007 0.38 0.01 Number of fruits 11.80 62.29 0.75 62.29 0.01 per plant Average fruit 19.12 51.88 0.83 51.88 0.01 weight (g) Shoot borer 5.48 19.66 0.25 19.66 0.01 infestation (%) Fruit borer 1.58 18.65 0.03 18.65 1.60 infestation (%) Little leaf ) 6.61 26.49 0.32 26.49 0.01 incidence (% Ascorbic acid 1.45 6.84 0.09 6.84 0.01 content (mg/100g) Total phenol 47.28 159.27 1.67 159.27 0.01 content (mg/100g) Fruit yield per 0.02 0.20 0.02 0.20 0.10 plant (kg) J. Hortl. Sci. Vol. 8(2):249-254, 2013 Ramesh Kumar and Arumugam 251 Ta bl e 3. G en er al c om bi ni ng a bi lit y ef fe ct s of p ar en ts Pa re nt Pl an t D ay s t o N um be r o f Fr ui t Fr ui t Fr ui t Ca ly x he ig ht fir st br an ch es le ng th pe di ce l ci rc um - le ng th (c m ) flo w er in g pe r p la nt (c m ) le ng th fe re nc e (c m ) (c m ) (c m ) L 1 11 .2 9* * 1. 30 * 0. 24 0. 31 ** -0 .1 1* 1. 78 ** -0 .1 8* * L 2 13 .9 2* * 3. 14 ** -2 .8 7* * 0. 25 ** -0 .4 2* * -0 .4 8* -0 .3 2* * L 3 6. 51 * 3. 19 ** -2 .2 3* * -0 .2 7* * 0. 38 ** -2 .0 8* * 0. 59 ** L 4 1. 14 -3 .1 6* * -0 .3 5 0. 53 ** 0. 28 ** -1 .3 1* * 0. 63 ** L 5 -7 .6 8* * -2 .1 6* * 3. 53 ** -0 .0 7 0. 39 ** 1. 79 ** 0. 38 ** L 6 -9 .6 9* * -3 .4 8* * 3. 03 ** -0 .2 5* * 0. 41 ** 0. 69 ** 0. 39 ** L 7 5. 36 * -1 .0 3 2. 26 ** -0 .0 4 -0 .8 0* * -0 .5 5* * -0 .4 6* * L 8 -2 .2 0 1. 52 ** -0 .1 2 1. 26 ** -0 .4 1* * -0 .9 1* * -0 .6 8* * L 9 -7 .8 3* * -1 .2 9* 0. 66 -0 .6 4* * 0. 23 ** 0. 16 -0 .2 7* * L 10 -1 0. 83 ** 1. 97 ** -4 .1 3* * -1 .0 8* * 0. 05 0. 89 ** -0 .0 7 SE 2. 66 0. 52 0. 49 0. 08 0. 04 0. 19 0. 05 T 1 1. 54 -0 .9 6* * 1. 32 ** -0 .7 1* * -0 .0 2 0. 86 ** -0 .0 7 T 2 -2 .0 1 -0 .1 7 1. 34 ** 0. 08 -0 .1 5* * -0 .0 5 -0 .1 5* * T 3 0. 48 0. 26 -1 .0 5* * -0 .0 5 0. 02 -0 .9 5* * 0. 14 ** T 4 -0 .0 1 0. 86 * -1 .6 1* * 0. 68 ** 0. 15 ** 0. 14 0. 08 * SE 1. 68 0. 33 0. 31 0. 05 0. 02 0. 12 0. 03 ** S ig ni fi ca nt a t 1 % le ve l * S ig ni fi ca nt a t 5 % le ve l N um be r Av er ag e Sh oo t Fr ui t Li ttl e A sc or bi c To ta l Fr ui t of fr ui ts fr ui t bo re r bo re r lea f ac id ph en ol s yi el d pe r p la nt w ei gh t in fe st at io n in fe st at io n in ci de nc e co nt en t co nt en t pe r p la nt (g ) (% ) (% ) (% ) (m g/ 10 0g ) (m g/ 10 0g ) (k g) -4 .7 3* * 6. 34 ** -3 .3 3* * -0 .4 0 1. 38 ** 2. 90 ** -4 .9 5* * -0 .0 7* 2. 10 ** -0 .9 8 0. 38 -2 .4 5* * 0. 74 ** 0. 35 ** -4 .6 6* * 0. 07 * -6 .1 2* * -4 .7 4* * -5 .9 1* * 1. 26 ** -2 .7 3* * 0. 51 ** 1. 94 ** -0 .4 5* * 4. 53 ** 2. 20 ** 0. 81 ** -1 .8 6* * -4 .7 1* * -0 .4 1* * 8. 96 ** 0. 30 ** 8. 13 ** 4. 17 ** -0 .6 7* -0 .7 6 -3 .6 1* * -0 .4 6* * 0. 64 0. 43 ** -0 .2 1 -1 .0 5 -1 .2 0* * 0. 25 -2 .7 7* * -0 .1 7 5. 87 ** -0 .0 4 -2 .5 7* * 5. 48 ** 0. 58 * -1 .2 8* * 1. 67 ** 0. 19 18 .2 8* * 0. 06 * 4. 47 ** -1 0. 28 ** 3. 01 ** 3. 36 ** 2. 44 ** -1 .5 7* * -1 1. 06 ** 0. 03 0. 41 -3 .9 5* * 3. 62 ** 5. 03 ** 2. 02 ** 1. 01 ** -1 0. 24 ** -0 .0 6* -6 .0 3* * 2. 80 ** 2. 71 ** -3 .1 6* * 5. 57 ** -2 .3 5* * -4 .7 7* * -0 .2 7* * 0. 39 0. 57 0. 28 0. 42 0. 26 0. 11 0. 58 0. 02 1. 44 ** 0. 11 0. 52 ** -0 .6 8* 0. 56 ** 1. 14 ** -0 .4 8 0. 11 ** 3. 43 ** -0 .7 8* 1. 29 ** -0 .5 1 -0 .1 0 -0 .0 7 0. 34 0. 15 ** -4 .1 3* * 2. 12 ** -0 .3 4 1. 59 ** -2 .0 5* * 0. 31 ** -1 .5 4* * -0 .1 7* * -0 .7 4* * -1 .4 6* * -1 .4 7* * -0 .4 1 1. 59 ** -1 .3 8* * 1. 69 ** -0 .0 9* * 0. 25 0. 36 0. 17 0. 26 0. 16 0. 07 0. 37 0. 01 LI N ES T E ST E R S J. Hortl. Sci. Vol. 8(2):249-254, 2013 Combining ability in brinjal 252 Ta bl e 4. S pe ci fi c co m bi ni ng a bi lit y ef fe ct s of h yb ri ds H yb ri d P H D F F N B / P FL FP L FC C L N F/ P A FW SB I FB I LL I A C C T P C FY /P L 1 X T 1 -1 3. 03 * -2 .8 0* * 2. 62 * 0. 17 -0 .1 2 -1 .4 6* * -0 .3 6* * 6. 95 ** 8. 88 ** 4. 91 ** -1 .3 4 2. 07 ** -0 .3 7 1. 57 0. 71 ** L 1 X T 2 -2 .4 8 -0 .0 8 -0 .0 7 -0 .2 9 -0 .3 6* * 1. 02 ** -0 .1 3 -5 .9 8* * -5 .0 1* * -2 .7 8* * 1. 27 -3 .5 7* * -0 .2 0 -2 .6 5* -0 .4 6* * L 1 X T 3 -2 .6 8 1. 58 -1 .3 6 -0 .2 5 0. 79 ** 0. 96 * 0. 53 ** -2 .5 5* * 3. 25 ** -4 .1 1* * 1. 50 -3 .0 2* * 0. 74 ** 3. 09 * -0 .1 3* L 1 X T 4 18 .1 9* * 1. 30 -1 .1 9 0. 37 * -0 .3 1* * -0 .5 2 -0 .0 4 1. 58 * -7 .1 2* * 1. 98 ** -1 .4 3 4. 52 ** -0 .1 6 -2 .0 1 -0 .1 2* L 2 X T 1 13 .0 8* 2. 82 ** -1 .5 1 1. 42 ** -0 .3 3* * 2. 28 ** 0. 06 7. 54 ** -5 .2 1* * -0 .6 7 4. 02 ** 2. 01 ** -0 .6 8* * 10 .9 8* * 0. 16 ** L 2 X T 2 -5 .4 4 -2 .9 8* * -0 .9 1 -1 .2 9* * -0 .1 1 -0 .6 2 0. 22 -1 1. 26 ** 2. 01 5. 59 ** -0 .3 5 -0 .1 2 0. 88 ** 18 .8 7* * -0 .5 2* * L 2 X T 3 0. 13 4. 10 ** 0. 54 -0 .3 9* -0 .1 4 -0 .8 2* 0. 08 7. 02 ** 2. 60 * -2 .1 9* * -0 .9 9 -3 .8 9* * -0 .9 7* * 13 .7 2* * 0. 51 ** L 2 X T 4 -7 .7 7 -3 .9 4* * 1. 88 0. 26 0. 58 ** -0 .8 3* -0 .3 7* * -3 .3 2* * 0. 60 -2 .7 4* * -2 .6 9* * 2. 00 ** 0. 77 ** -2 1. 61 ** -0 .1 5* * L 3 X T 1 8. 55 4. 48 ** 1. 59 0. 32 -0 .7 6* * 0. 53 -0 .6 6* * 6. 03 ** -5 .9 5* * 1. 44 * -1 .1 9 -0 .3 1 0. 02 9. 34 ** 0. 06 L 3 X T 2 0. 34 5. 67 ** -0 .5 8 -0 .1 1 -0 .4 2* * -0 .0 4 -0 .2 6* -6 .9 4* * -4 .1 2* * -2 .4 9* * 4. 04 ** -0 .2 4 -2 .0 1* * -9 .3 9* * -0 .4 3* * L 3 X T 3 -3 .4 4 -4 .4 4* * -2 .1 1* 0. 47 ** -0 .1 5 -0 .2 1 0. 06 6. 42 ** 10 .5 3* * -2 .3 9* * -3 .9 7* * -3 .9 1* * 0. 72 * * 7. 77 ** 0. 63 ** L 3 X T 4 -5 .4 6 -5 .7 1* * 1. 11 -0 .6 8* * 1. 32 ** -0 .2 8 0. 87 ** -5 .5 2* * -0 .4 7 3. 43 * * 1. 12 4. 46 ** 1. 26 ** -7 .7 2* * -0 .2 7* * L 4 X T 1 1. 83 -1 .2 8 3. 37 ** -0 .3 0 -0 .1 7* 1. 79 ** 0. 25 * 3. 08 ** 4. 52 ** -7 .0 4 ** 3. 76 ** -2 .0 5* * -0 .7 9* * 4. 09 ** 0. 26 ** L 4 X T 2 -3 .1 5 -1 .3 1 2. 32 * -0 .0 9 -0 .5 4* * 0. 75 0. 08 4. 03 ** -2 .8 6* -1 .1 1 1. 54 -1 .4 8* * 1. 64 ** -0 .0 8 0. 14 * L 4 X T 3 3. 92 1. 76 -3 .5 2* * -1 .4 3* * -0 .0 0 -0 .6 9 -0 .6 4* * -4 .3 1* * -5 .0 2* * 5. 40 * * -2 .9 3* * 4. 35 ** -0 .4 7 * -4 .1 8* * -0 .3 7* * L 4 X T 4 -2 .5 9 0. 83 -2 .1 5* 1. 81 ** 0. 72 ** -1 .8 5* * 0. 31 * -2 .8 1* * 3. 36 ** 2. 76 * * -2 .3 7* * -0 .8 2 -0 .3 8 0. 18 -0 .0 3 L 5 X T 1 -2 .6 2 -2 .1 3* -3 .9 0* * -0 .0 5 -0 .0 2 -0 .5 0 -0 .2 0 -1 1. 37 ** 7. 78 ** -0 .7 7 -5 .8 2* * 3. 56 ** 2. 09 ** -9 .2 4* * -0 .5 6* * L 5 X T 2 -0 .4 4 0. 44 0. 03 -0 .4 2* -0 .3 1* * -0 .9 5* -0 .4 7* * 0. 98 2. 17 0. 97 0. 32 4. 43 ** -0 .7 0* * 4. 76 ** 0. 04 L 5 X T 3 7. 13 3. 88 ** 2. 11 * 0. 03 -0 .0 1 1. 12 ** 0. 89 ** 6. 31 ** -4 .3 3* * 0. 13 -3 .6 4* * -3 .5 3* * -1 .0 4* * -5 .6 8* * 0. 38 ** L 5 X T 4 -4 .0 7 -2 .2 0* 1. 81 0. 43 * 0. 34 ** 0. 33 -0 .2 2 4. 04 ** -5 .6 2* * -0 .3 2 9. 14 ** -4 .4 5* * -0 .3 5 10 .1 6* * 0. 14 * L 6 X T 1 4. 25 2. 59 * -3 .4 7* * -1 .4 9* * 0. 96 ** -0 .4 6 -0 .2 4* -4 .5 7* * -1 .4 9 2. 99 ** 2. 82 ** -6 .3 0* * 2. 63 ** -1 6. 57 ** -0 .3 2* * L 6 X T 2 1. 94 -1 .5 6 1. 97 * 3. 50 ** 0. 67 ** -0 .9 0* 0. 58 ** 4. 85 ** 3. 72 ** -4 .2 6* * -6 .0 5* * 0. 21 -1 .1 5* * 0. 85 0. 41 ** L 6 X T 3 -1 4. 13 ** -1 .0 6 0. 91 -0 .2 0 -0 .6 4* * -0 .8 0* 0. 21 -2 .1 3* * -1 .6 7 3. 46 * * 6. 15 ** 4. 74 ** -1 .1 2* * 3. 35 ** -0 .1 6* * L 6 X T 4 7. 94 0. 03 0. 59 -1 .8 1* * -0 .9 9* * 2. 17 ** -0 .5 5* * 1. 85 * -0 .5 6 -2 .1 8* * -2 .9 1* * 1. 35 * -0 .3 8 12 .3 7* * 0. 07 L 7 X T 1 -5 .8 3 4. 52 ** -2 .0 8 * -0 .4 8* * 0. 16 -0 .2 3 0. 29 * -1 0. 8* * -3 .1 1* * 1. 48 * 3. 27 ** 1. 40 * -0 .0 1 4. 12 ** -0 .7 7* * L 7 X T 2 4. 19 1. 11 1. 74 1. 03 ** 0. 73 ** 1. 69 ** -0 .1 9 8. 24 ** 10 .7 1* * 0. 74 -1 .1 9 -4 .2 4* * -1 .6 4* * 5. 06 ** 0. 91 ** L 7 X T 3 5. 42 -6 .1 2* * -0 .6 6 -0 .9 9* * -0 .2 5* * 0. 96 * -0 .4 6* * 1. 13 -7 .1 7* * -1 .2 8 * -1 .8 6* 6. 59 ** 1. 99 ** -1 0. 10 ** -0 .1 8* * L 7 X T 4 -3 .7 8 0. 48 1. 00 0. 45 * -0 .6 4* * -2 .4 2* * 0. 36 ** 1. 46 -0 .4 3 -0 .9 4 -0 .2 2 -3 .7 5* * -0 .3 4 0. 92 0. 04 L 8 X T 1 -1 .2 4 -8 .0 0* * 3. 45 ** -0 .5 0* * 0. 35 ** -0 .7 4 0. 16 1. 67 * -1 .8 6 4. 76 * * 10 .6 9* * -1 .3 9* -2 .0 5* * 3. 32 ** 0. 39 ** L 8 X T 2 -4 .8 5 1. 00 -0 .3 9 -2 .2 6* * 0. 58 ** -1 .1 0* * -0 .1 1 4. 86 ** -0 .2 7 0. 55 4. 82 ** 1. 28 * 3. 03 ** -8 .3 7* * -0 .2 4* * L 8 X T 3 2. 72 -2 .4 6* 1. 20 2. 67 ** -0 .8 4* * 0. 10 -0 .2 1 -0 .9 7 -5 .0 7* * -1 .1 5 * 6. 32 ** -3 .0 7* * -0 .9 1 ** 5. 97 ** -0 .5 4* * L 8 X T 4 3. 38 9. 46 ** -4 .2 6* * 0. 08 -0 .0 9 1. 74 ** 0. 16 -6 .6 6* * 7. 20 ** -4 .1 6 ** -0 .4 5 3. 18 ** -0 .0 7 -0 .9 2 0. 39 ** L 9 X T 1 -2 .8 5 1. 63 4. 08 ** 0. 03 -0 .2 6* * -1 .1 9* * 0. 44 ** 5. 95 ** -3 .5 8* * -4 .5 4* * 2. 34 ** 2. 94 ** 1. 05 ** -1 1. 79 ** 0. 51 ** L 9 X T 2 7. 38 -0 .7 4 -4 .6 9* * -0 .5 6* * 0. 01 -1 .2 6* * 0. 00 9. 17 ** -2 .4 8* 3. 17 ** -1 .7 6* -0 .3 0 0. 50 * -5 .2 8* * -0 .0 8 L 9 X T 3 -1 .0 4 2. 59 * 1. 11 0. 65 ** 0. 84 ** 0. 69 -0 .5 7* * 1. 06 4. 18 ** 2. 00 * * 1. 42 3. 65 ** 0. 36 -1 .1 6 -0 .2 7* * L 9 X T 4 -3 .4 9 -3 .4 9* * -0 .4 9 -0 .1 2 -0 .5 9* * 1. 76 ** 0. 13 -6 .6 0* * 1. 87 -0 .6 3 -2 .0 0* -6 .2 9* * -1 .9 0* * 18 .2 3* * -0 .1 6* * L 10 X T 1 -2 .1 3 -1 .8 4 -4 .0 9* * 0. 88 ** 0. 18 * -0 .0 1 0. 25 * -3 .6 3* * 0. 02 -2 .5 5* * 2. 83 ** -1 .9 2* * -1 .9 5* * 26 .1 4* * -0 .4 5* * L 10 X T 2 2. 51 -1 .5 6 0. 58 0. 48 ** -0 .2 5* * 1. 43 ** 0. 30 * -7 .7 3* * -3 .8 9* * -0 .3 8 -2 .6 4* * 4. 04 ** -0 .3 5 -3 .7 8* * 0. 24 ** L 10 X T 3 1. 95 0. 16 1. 81 -0 .5 7* * 0. 41 ** -1 .3 2* * 0. 10 5. 97 ** 2. 70 * 0. 12 -2 .0 0* -1 .9 1* * 0. 75 ** -1 2. 77 ** 0. 14 * L 10 X T 4 -2 .3 3 3. 23 ** 1. 70 -0 .7 9* * -0 .3 4* * -0 .1 0 -0 .6 5* * 1. 37 1. 17 2. 80 * * 1. 80 * -0 .2 1 1. 55 ** -9 .5 9* * 0. 08 SE 5. 32 1. 05 1. 20 0. 17 0. 08 0. 38 0. 11 0. 77 1. 15 0. 56 0. 84 0. 53 0. 23 1. 17 0. 05 *S ig ni fi ca nt a t 5 % le ve l, * *S ig ni fi ca nt a t 1 % le ve l N F/ P - N um be r of f ru its p er p la nt A FW - A ve ra ge fr ui t w ei gh t ( g) SB I - Sh oo t b or er in ci de nc e (% ) FB I - Fr ui t b or er in ci de nc e (% ) LL I - L itt le le af in ci de nc e (% ) A C C - A sc or bi c ac id c on te nt (m g/ 10 0g ) T P C - To ta l ph en ol c on te nt FY /P - Fr ui t y ie ld p er p la nt (k g) (m g/ 10 0g ) P H - Pl an t h ei gh t ( cm ) D F F - D ay s to f ir st f lo w er in g N B /P - N um be r of b ra nc he s pe r pl an t FL - Fr ui t l en gt h (c m ) FP L - Fr ui t p ed ic el le ng th (c m ) FC - Fr ui t c ir cu m fe re nc e (c m ) C L - C al yx le ng th (c m ) J. Hortl. Sci. Vol. 8(2):249-254, 2013 Ramesh Kumar and Arumugam 253 weight; Prasath (1997) for ascorbic acid content; and, Jerard (1996) and Suneetha (2006) for fruit yield per plant. General combining ability estimates are presented in Table 3. In the present study, the line L5 (Palamedu Local) was adjudged as the best general combiner, since, it expressed significant GCA effects for nine traits, viz., days to first flowering, number of branches per plant, fruit pedicel length, fruit circumference, number of fruits per plant, average fruit weight, shoot borer infestation, little leaf incidence and fruit yield per plant. This was followed by L4 (Alagarkovil Local) which showed good general combining ability for the traits days to first flowering, fruit pedicel length, number of fruits per plant, average fruit weight, fruit borer infestation, little leaf incidence, total phenol content and fruit yield per plant. Among the lines, Alavayal Local (L1) and Sedapatty Local Green (L2) were also good general combiners, because of having high GCA values for seven characters. Among the testers, T1 (Annamalai) was adjudged as a good general combiner, as, it showed significantly favourable gca effect for days to first flowering, number of branches per plant, fruit length, fruit circumference, number of fruits per plant, fruit borer infestation, ascorbic acid content and fruit yield per plant. From the above information, it is inferred that Palamedu Local (L5), Alagarkovil Local (L4), Melur Local (L6) and Annamalai (T1), among parents, were found to be the best general combiners, since these expressed good GCA effects for a majority of the traits (including growth, yield and quality characters). Estimates for specific combining ability are given in Table 3. Sprague and Tatum (1942) reported that specific combining ability was due to non-additive gene action. SCA effect of hybrids have been attributed to a combination of positive, favourable genes from different parents or due to presence of linkage in repulsion phase (Sarsar et al, 1986). Therefore, selection of hybrids based on SCA effects would excel in heterotic effect. In the present study, hybrid L3xT3 (Kariapatty Local x Punjab Sadabahar) excelled, with superior SCA effect for nine characters, viz., days to first flowering, number of fruits per plant, average fruit weight, shoot and fruit borer infestation, little leaf incidence, ascorbic acid content, total phenol content and fruit yield per plant. The crosses, L8 x T1 and L4 x T1, were the next best specific combiners for eight traits each. These were followed by L6 x T2, L10 x T3, L7 x T3 and L7 x T2, which were identified as specific combiners for seven traits each. In general, among the 40 hybrids studied, hybrids L3 x T3 (Kariapatty Local x Punjab Sadabahar), L8 x T1, (Nilakottai Local x Annamalai), L4 x T1 (Alagarkovil Local x Annamalai), L6 x T2 (Melur Local x KKM 1), L7 x T3 (Keerikai Local x Punjab Sadabahar) and L7 x T2 (Keerikai Local x KKM 1) were good specific combiners for a majority of growth and yield attributing characters, including fruit yield. REFERENCES Bindu, Sharma, Pathania, N.K. and Gautham Vishal. 2004. Combining ability studies in brinjal (Solanum melongena L.). Himachal J. Agril. Res., 30:54-59 Dhillion, B.S. 1975. The application of partial diallel crosses in plant breeding – A review. Crop Improv., 2:17 Gravios, K.A. and McNew. R.W. 1993. Genetic relationships and selection for rice yield and yield components. Crop Sci., 33:249-252 Indiresh, K.M., Shivasankar, T. and Kulkarni, R.S. 2005. Gene action for yield and its components in brinjal (Solanum melongena L.). Mysore J. Agril. Sci., 39:50-56 Jerard, B.A. 1996. Studies on heterosis and combining ability in egg plant (Solanum melongena L.). M.Sc. (Hort.) thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India Kempthorne, O. 1957. An Introduction to genetic statistics. John Wiley & Sons Inc., New York, USA Muthulakshmi, R. 2007. Heterosis and Line x Tester analysis of combining ability in brinjal (Solanum melongena L.). M.Sc. (Hort.) thesis, Agricultural College and Research Institute, Madurai, Tamil Nadu, India Panse, V.G. 1942. Genetics of quantitative characters in relation to plant breeding. Indian J. Genet., 2:318- 327 Prabhu, M. 2005. Breeding for high yield with shoot and fruit borer (Leucinodes orbonalis Guen.) resistance in brinjal (Solanum melongena L.), Ph.D. (Hort.) thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India Prakash, T. 2008. Heterosis and combining ability studies in brinjal (Solanum melongena L.). M.Sc. (Hort.) thesis, University of Agricultural Sciences, Dharwad, Karnataka, India Prasath, D. 1997. Studies on per se performance, heterosis and combining ability in egg plant (Solanum melongena L.). M.Sc. (Hort.) thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India J. Hortl. Sci. Vol. 8(2):249-254, 2013 Combining ability in brinjal 254 Sarsar, S.M., Patil, B.A. and Bhatade, S.S. 1986. Heterosis and combining ability in upland cotton. Indian J. Agril. Sci., 56:567-573 Simmonds, N.W. 1979. Principles of crop improvement. Longman Group Ltd., London, pp. 110-116 Singh, S.N. and Harisingh. 1985. Note on the relationship between per se performance and general combining ability of parents in egg plant. Indian J. Agril. Sci., 52:614-615 Sprague, G.R. and Tatum, L.A. 1942. General vs Specific combining ability in single crosses of corn. J. Amer. Soc. Agron., 34:923-932 Suneetha, Y. 2006. Heterosis and association analysis for yield quality and physiological characters in late summer brinjal. J. Res. ANGRAU, 34:18-24 TNAU Crop Production Guide. 2005. Cultivation practices of brinjal. Pp. 46-47 (MS Received 11 June 2012, Revised 15 May 2013, Accepted 04 June 2013) J. Hortl. Sci. Vol. 8(2):249-254, 2013 Ramesh Kumar and Arumugam