Journal of large-scale research facilities, 3, A113 (2017) http://dx.doi.org/10.17815/jlsrf-3-143 Published: 23.05.2017 The Nanocluster Trap endstation at BESSY II Helmholtz-Zentrum Berlin für Materialien und Energie * Instrument Scientists: - Dr. Tobias Lau, Helmholtz-Zentrum Berlin für Materialien und Energie phone: +49 30 8062-14786, email: tobias.lau@helmholtz-berlin.de Abstract: The Nanocluster Trap endstation at BESSY II combines a cryogenic linear radio-frequency ion trap with an applied magnetic �eld for x-ray magnetic circular dichroism studies of cold and size- selected trapped ions. Applications include atomic, molecular, and cluster ions as well as ionic com- plexes. 1 Introduction With the Nanocluster Trap endstation, BESSY II hosts a unique experimental setup for x-ray mag- netic circular dichroism (XMCD) spectroscopy of size selected and trapped cold ions (Hirsch et al., 2015; Langenberg et al., 2014; Niemeyer et al., 2012; Zamudio-Bayer, Hirsch, Langenberg, Kossick, et al., 2015; Zamudio-Bayer, Hirsch, Langenberg, Ławicki, et al., 2015; Zamudio-Bayer, Hirsch, Lan- genberg, Niemeyer, et al., 2015; Zamudio-Bayer et al., 2013). The setup consists of a cryogenic linear radio-frequency (RF) quadrupole ion trap inside a superconducting solenoid for XMCD spectroscopy of size-selected atomic, molecular, and cluster ions ions as well as ionic complexes. Nanocluster trap is jointly operated by Helmholtz-Zentrum Berlin, Uni Freiburg, TU Berlin, Kyushu University, and Toyota Technological Institute. *Cite article as: Helmholtz-Zentrum Berlin für Materialien und Energie. (2017). The Nanocluster Trap endstation at BESSY II. Journal of large-scale research facilities, 3, A113. http://dx.doi.org/10.17815/jlsrf-3-143 1 http://jlsrf.org/ http://dx.doi.org/10.17815/jlsrf-3-143 http://dx.doi.org/10.17815/jlsrf-3-143 https://creativecommons.org/licenses/by/4.0/ Journal of large-scale research facilities, 3, A113 (2017) http://dx.doi.org/10.17815/jlsrf-3-143 Figure 1: View of the Nanocluster Trap endstation. Figure 2: Schematic view of the Nanocluster Trap endstation with sample preparation (cluster source, ion guide/collision cell, and mass �lter) and spectroscopy (ion trap, superconducting solenoid, and re�ectron time-of-�ight mass spectrometer) stages. 2 Instrument application The Nanocluster Trap endstation at BESSY II is used to investigate magnetic phenomena on the atomic scale. It is routinely used in combination with a magnetron cluster source. Magnetic spin and orbital moments of size-selected pure and mixed transition metal clusters, molecules, and complexes can be determined. The ion trap can also be combined with a variety of di�erent ion sources (e.g., electro- spray ionization (Egorov et al., 2015) or laser evaporation) because of a �exible interface to the �rst ion guide. Nanocluster Trap is currently being upgraded to even more �exible ion trapping schemes and even lower cryogenic (T < 5 K) ion temperature within BMBF project 05K13Vf2 hosted at Universität Freiburg. 2 http://dx.doi.org/10.17815/jlsrf-3-143 https://creativecommons.org/licenses/by/4.0/ http://dx.doi.org/10.17815/jlsrf-3-143 Journal of large-scale research facilities, 3, A113 (2017) 3 Technical Data Experiment in vacuum Yes Temperature range 5 - 300 K Detector High transmission re�ectron time-of-�ight mass spectrometer for ion yield spectroscopy Manipulator cryogenic linear quadrupole ion trap Applied magnetic �eld 0 - 5 T Mass range 10 - 4000 amu Circularly polarized radiation Yes Table 1: Technical parameters of the Nanocluster Trap endstation. References Egorov, D., Sadia, B., Hoekstra, R., Ławicki, A., Hirsch, K., Zamudio-Bayer, V., . . . Schlathölter, T. (2015). An intense electrospray ionization source for soft X-ray photoionization of gas phase protein ions. Journal of Physics: Conference Series, 635(11), 112083. http://dx.doi.org/1088/1742- 6596/635/11/112083 Hirsch, K., Zamudio-Bayer, V., Langenberg, A., Niemeyer, M., Langbehn, B., Möller, T., . . . Lau, J. T. (2015). Magnetic Moments of Chromium-Doped Gold Clusters: The Anderson Impurity Model in Finite Systems. Phys. Rev. Lett., 114, 087202. http://dx.doi.org/10.1103/PhysRevLett.114.087202 Langenberg, A., Hirsch, K., Ławicki, A., Zamudio-Bayer, V., Niemeyer, M., Chmiela, P., . . . Lau, J. T. (2014). Spin and orbital magnetic moments of size-selected iron, cobalt, and nickel clusters. Phys. Rev. B, 90, 184420. http://dx.doi.org/10.1103/PhysRevB.90.184420 Niemeyer, M., Hirsch, K., Zamudio-Bayer, V., Langenberg, A., Vogel, M., Kossick, M., . . . Lau, J. T. (2012). Spin Coupling and Orbital Angular Momentum Quenching in Free Iron Clusters. Phys. Rev. Lett., 108, 057201. http://dx.doi.org/10.1103/PhysRevLett.108.057201 Zamudio-Bayer, V., Hirsch, K., Langenberg, A., Kossick, M., Ławicki, A., Terasaki, A., . . . Lau, J. T. (2015). Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap. The Journal of Chemical Physics, 142(23), 234301. http://dx.doi.org/10.1063/1.4922487 Zamudio-Bayer, V., Hirsch, K., Langenberg, A., Ławicki, A., Terasaki, A., v. Issendor�, B., & Lau, J. T. (2015). Electronic ground states of Fe2+ and Co2+ as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy. The Journal of Chemical Physics, 143(24), 244318. http://dx.doi.org/10.1063/1.4939078 Zamudio-Bayer, V., Hirsch, K., Langenberg, A., Niemeyer, M., Vogel, M., Ławicki, A., . . . von Issendor�, B. (2015). Maximum Spin Polarization in Chromium Dimer Cations as Demonstrated by X-ray Magnetic Circular Dichroism Spectroscopy. Angewandte Chemie International Edition, 54(15), 4498– 4501. http://dx.doi.org/10.1002/anie.201411018 Zamudio-Bayer, V., Leppert, L., Hirsch, K., Langenberg, A., Rittmann, J., Kossick, M., . . . Lau, J. T. (2013). Coordination-driven magnetic-to-nonmagnetic transition in manganese-doped silicon clusters. Phys. Rev. B, 88, 115425. http://dx.doi.org/10.1103/PhysRevB.88.115425 3 http://dx.doi.org/10.17815/jlsrf-3-143 http://dx.doi.org/1088/1742-6596/635/11/112083 http://dx.doi.org/1088/1742-6596/635/11/112083 http://dx.doi.org/10.1103/PhysRevLett.114.087202 http://dx.doi.org/10.1103/PhysRevB.90.184420 http://dx.doi.org/10.1103/PhysRevLett.108.057201 http://dx.doi.org/10.1063/1.4922487 http://dx.doi.org/10.1063/1.4939078 http://dx.doi.org/10.1002/anie.201411018 http://dx.doi.org/10.1103/PhysRevB.88.115425 https://creativecommons.org/licenses/by/4.0/ Introduction Instrument application Technical Data