Journal of large-scale research facilities, 3, A114 (2017) http://dx.doi.org/jlsrf-3-154 Published: 24.05.2017 V6: The Re�ectometer at BER II Helmholtz-Zentrum Berlin für Materialien und Energie * Instrument Scientists: - Dr. Marcus Trapp, Helmholtz-Zentrum Berlin für Materialien und Energie phone: +49 30 8062-43020, email: marcus.trapp@helmholtz-berlin.de Abstract: V6 is a �xed wavelength re�ectometer dedicated to the investigation of thin �lms and surface structures at solid-air, solid-liquid and free liquid surfaces. The instrument is equipped with polariza- tion analysis for studies of magnetic thin �lms, also in external magnetic �elds and at low temperature. 1 Introduction The re�ectometer V6 allows measuring the neutron optical re�ectivities on �at surfaces at grazing an- gles. The re�ectivity is related to the variation of the refractive index within a depth of about 200 nm, thus structural depth pro�les can be studied at solid-air, solid-liquid and free liquid surfaces. Using polarized neutrons magnetic properties and magnetic depth pro�les can be reconstructed in a unique way. For solid samples the angle of incidence is varied by a precise tilting of the sample surface relative to the (�xed) collimated neutron beam. Liquid samples can also be measured. In this mode the sample surface is kept horizontal and the angle of incidence is varied by precise and synchronized movement of the monochromator tilt angle, the slit system and the sample stage. The sample-detector distance is variable between 1 m and 3 m. *Cite article as: Helmholtz-Zentrum Berlin für Materialien und Energie. (2017). V6: The Re�ectometer at BER II. Journal of large-scale research facilities, 3, A114. http://dx.doi.org/jlsrf-3-154 1 http://jlsrf.org/ http://dx.doi.org/jlsrf-3-154 http://dx.doi.org/jlsrf-3-154 https://creativecommons.org/licenses/by/4.0/ Journal of large-scale research facilities, 3, A114 (2017) http://dx.doi.org/jlsrf-3-154 Figure 1: View of V6. 2 Instrument application Typical applications are: • Multilayers (inorganic or organic materials) • Liquid and solid surfaces, solid-liquid interfaces • Properties of in-plane structured layers 2 http://dx.doi.org/jlsrf-3-154 https://creativecommons.org/licenses/by/4.0/ http://dx.doi.org/jlsrf-3-154 Journal of large-scale research facilities, 3, A114 (2017) 3 Instrument layout Figure 2: Schematic view of V6 3 http://dx.doi.org/jlsrf-3-154 https://creativecommons.org/licenses/by/4.0/ Journal of large-scale research facilities, 3, A114 (2017) http://dx.doi.org/jlsrf-3-154 4 Technical Data Neutron guide NL 4 Collimation 2 Cd slits (computer controlled) Monochromator PG (002) mosaicity: δ λ /λ = 2% Wave length λ = 0.466 nm Scattering plane Vertical Flux 3·104 n/cm2s Range of re�ectivities 2·105 (with sample site 10x40 mm) q resolution 2·10−2 nm−1 (depending on collimation) Detector 48 3He-detector tubes Optionally multiwire PSD (180 x 180 mm, res- olution 1.5 mm) Angular range: 10°(for liquids: 0°- 2.7°) Vertical collimation: 0.01°- 0.05° Angular precision: 0.001° Polarized neutrons No Instrument options • Solid sample mode • Liquid sample mode Sample environment • Sample rotation table (360°) • Heatable sample cells for air-liquid and solid-liquid interfaces • High pressure cell (100MPa) for solid-liquid interfaces • Vacuum and gas loading cells • Langmuir �lm balance Table 1: Technical parameters of V6. References Früh, J., Rühm, A., Möhwald, H., Krastev, R., & Köhler, R. (2015). Re�ectometry on curved interfaces. Physica B: Condensed Matter, 457, 202 - 211. http://dx.doi.org/10.1016/j.physb.2014.08.030 Jerliu, B., Dörrer, L., Huger, E., Borchardt, G., Steitz, R., Geckle, U., . . . Schmidt, H. (2013). Neutron re�ectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries. Phys. Chem. Chem. Phys., 15, 7777-7784. http://dx.doi.org/10.1039/C3CP44438D Jerliu, B., Hüger, E., Dörrer, L., Seidlhofer, B.-K., Steitz, R., Oberst, V., . . . Schmidt, H. (2014). Volume Expansion during Lithiation of Amorphous Silicon Thin Film Electrodes Studied by In- Operando Neutron Re�ectometry. The Journal of Physical Chemistry C, 118(18), 9395-9399. http://dx.doi.org/10.1021/jp502261t 4 http://dx.doi.org/jlsrf-3-154 http://dx.doi.org/10.1016/j.physb.2014.08.030 http://dx.doi.org/10.1039/C3CP44438D http://dx.doi.org/10.1021/jp502261t https://creativecommons.org/licenses/by/4.0/ http://dx.doi.org/jlsrf-3-154 Journal of large-scale research facilities, 3, A114 (2017) Köhler, R., Steitz, R., & von Klitzing, R. (2014). About di�erent types of water in swollen polyelectrolyte multilayers. Advances in Colloid and Interface Science, 207, 325 - 331. http://dx.doi.org/10.1016/j.cis.2013.12.015 Koo, J., Erlkamp, M., Grobelny, S., Steitz, R., & Czeslik, C. (2013). Pressure-Induced Protein Adsorption at Aqueous-Solid Interfaces. Langmuir, 29(25), 8025-8030. http://dx.doi.org/10.1021/la401296f Menéndez, E., Dias, T., Geshev, J., Lopez-Barbera, J. F., Nogués, J., Steitz, R., . . . Temst, K. (2014). Interdependence between training and magnetization reversal in granular Co-CoO exchange bias systems. Phys. Rev. B, 89, 144407. http://dx.doi.org/10.1103/PhysRevB.89.144407 Paul, A., Teichert, A., Krist, T., & Steitz, R. (2015). Substrate-stress-induced magnetic and nonmagnetic structural correlations in Fe/Si multilayers. Journal of Applied Crystallography, 48(4), 1023–1033. http://dx.doi.org/10.1107/S1600576715009942 Reinhardt, M., Dzubiella, J., Trapp, M., Gutfreund, P., Kreuzer, M., Gröschel, A. H., . . . Steitz, R. (2013). Fine-Tuning the Structure of Stimuli-Responsive Polymer Films by Hydrostatic Pressure and Tem- perature. Macromolecules, 46(16), 6541-6547. http://dx.doi.org/10.1021/ma400962p 5 http://dx.doi.org/jlsrf-3-154 http://dx.doi.org/10.1016/j.cis.2013.12.015 http://dx.doi.org/10.1021/la401296f http://dx.doi.org/10.1103/PhysRevB.89.144407 http://dx.doi.org/10.1107/S1600576715009942 http://dx.doi.org/10.1021/ma400962p https://creativecommons.org/licenses/by/4.0/ Introduction Instrument application Instrument layout Technical Data