Journal of large-scale research facilities, 2, A41 (2016) http://dx.doi.org/10.17815/jlsrf-2-66 Published: 29.01.2016 FEI Titan 80-300 TEM Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich and RWTH Aachen* Instrument O�cer: - Dr. Andreas Thust, Ernst Ruska-Centre, Jülich Research Centre, 52425 Jülich, Germany, phone: ++49.2461.61.6644, e-mail: a.thust@fz-juelich.de Deputy Instrument O�cer: - Dr. Juri Barthel, Ernst Ruska-Centre, Jülich Research Centre, 52425 Jülich, Germany, phone: ++49.2461.61.9277, e-mail: ju.barthel@fz-juelich.de General Management: - Dr. Karsten Tillmann, Ernst Ruska-Centre, Jülich Research Centre, 52425 Jülich, Germany, phone: ++49.2461.61.1438, e-mail: k.tillmann@fz-juelich.de Abstract: The FEI Titan 80-300 TEM is a high-resolution transmission electron microscope equipped with a �eld emission gun and a corrector for the spherical aberration (Cs) of the imaging lens system. The instrument is designed for the investigation of a wide range of solid state phenomena taking place on the atomic scale, which requires true atomic resolution capabilities. Under optimum optical settings of the image Cs-corrector (CEOS CETCOR) the point-resolution is extended up to the information limit of well below 100 pm with 200 keV and 300 keV electrons. A special piezo-stage design allows ultra- precise positioning of the specimen in all 3 dimensions. Digital images are acquired with a Gatan 2k x 2k slow-scan charged coupled device camera. *Cite article as: Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons. (2016). FEI Titan 80-300 TEM . Journal of large-scale research facilities, 2, A41. http://dx.doi.org/10.17815/jlsrf-2-66 1 http://jlsrf.org/ http://dx.doi.org/10.17815/jlsrf-2-66 http://dx.doi.org/10.17815/jlsrf-2-66 https://creativecommons.org/licenses/by/4.0/ Journal of large-scale research facilities, 2, A41 (2016) http://dx.doi.org/10.17815/jlsrf-2-66 1 System Overview Figure 1: FEI Titan 80-300 transmission electron microscope (photograph by courtesy of Ralf-Uwe Limbach (Forschungszentrum Jülich)). 2 Typical Applications and Limitations of Use The con�guration of the FEI Titan 80-300 TEM is dedicated to provide optimum performance for high- resolution transmission electron microscopy imaging techniques to be applied to solid state materi- als. The typical setup used for high-resolution transmission electron microscopy (HRTEM) imaging involves an intentional over-compensation of the intrinsically positive spherical aberration of the ob- jective lens towards a total negative spherical aberration of the imaging system. The negative spheri- cal-aberration imaging (NCSI) technique provides maximum contrast transfer up to the information limit of the instrument yielding bright-atom contrast. The NCSI technique enables on the one hand a more intuitive interpretation of HRTEM images in terms of direct structure projections of e.g. structural defects and interfaces. On the other hand, the superior image contrast at minimum delocalisation allows one to quantify individual atomic displacements with picometre precision from a single image to study for example local electric polarisation phenomena. A further technique applied with this instrument is the reconstruction of the electron wave function based on a focal series of HRTEM images, which allows one to eliminate nonlinear contrast artifacts and residual imaging aberrations from the experimental data. The FEI Titan 80-300 TEM is not intended for the investigation of aqueous, contaminated, ferromag- netic or organic samples without further discussions with both of the instruments o�cers and the ER-C general management. 2 http://dx.doi.org/10.17815/jlsrf-2-66 https://creativecommons.org/licenses/by/4.0/ http://dx.doi.org/10.17815/jlsrf-2-66 Journal of large-scale research facilities, 2, A41 (2016) 3 Sample Environment Apart from the special case of the utilisation of dedicated cooling or heating stages, the FEI Titan 80-300 TEM will allow samples to be investigated either under room temperature or liquid nitrogen cooling conditions at a vacuum level of about 10−8 mbar. Besides this standard setup, the sample environment can be adapted to various conditions, e.g. the thermal treatment or the application of external electric or magnetic �elds to samples, making use of a wide portfolio of in situ TEM holders available through the ER-C user services. 4 Technical Speci�cations • electron acceleration voltage 80, 200, and 300 kV • information limit (TEM) @ 300 kV < 90 pm • information limit (TEM) @ 200 kV < 100 pm • information limit (TEM) @ 80 kV < 200 pm • total system drift (TEM) < 300 pm min−1 (rms) 5 Detectors • Peltier cooled Gatan Ultrascan 1000P charge coupled device camera (CCD) with a readout speed of 4 M pixel sec−1 and a format of 2048 x 2048 pixels of 14 microns in size. 6 Specimen Stages • piezo stage extension for ultra-precise sample positioning and linear drift compensation • double tilt low background holder ± 40 ° • high �eld of view single tilt holder ± 50 ° References Barthel, J., & Thust, A. (2008, Nov). Quanti�cation of the information limit of transmission electron microscopes. Phys. Rev. Lett., 101, 200801. http://dx.doi.org/10.1103/PhysRevLett.101.200801 Barthel, J., & Thust, A. (2010). Aberration measurement in HRTEM: Implementation and diagnostic use of numerical procedures for the highly precise recognition of di�ractogram patterns . Ultrami- croscopy, 111(1), 27 - 46. http://dx.doi.org/10.1016/j.ultramic.2010.09.007 Barthel, J., & Thust, A. (2013). On the optical stability of high-resolution transmission electron micro- scopes. Ultramicroscopy, 134, 6 - 17. http://dx.doi.org/10.1016/j.ultramic.2013.05.001 Jia, C., Houben, L., Thust, A., & Barthel, J. (2010). On the bene�t of the negative-spherical- aberration imaging technique for quantitative HRTEM. Ultramicroscopy, 110(5), 500 - 505. http://dx.doi.org/10.1016/j.ultramic.2009.10.006 3 http://dx.doi.org/10.17815/jlsrf-2-66 http://dx.doi.org/10.1103/PhysRevLett.101.200801 http://dx.doi.org/10.1016/j.ultramic.2010.09.007 http://dx.doi.org/10.1016/j.ultramic.2013.05.001 http://dx.doi.org/10.1016/j.ultramic.2009.10.006 https://creativecommons.org/licenses/by/4.0/ Journal of large-scale research facilities, 2, A41 (2016) http://dx.doi.org/10.17815/jlsrf-2-66 Jia, C. L., Mi, S. B., Barthel, J., Wang, D. W., Dunin-Borkowski, R. E., Urban, K. W., & Thust, A. (2014). Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image. Nature Materials, 13(11), 1044-1049. http://dx.doi.org/10.1038/nmat4087 Thust, A., Overwijk, M., Coene, W., & Lentzen, M. (1996). Numerical correction of lens aberrations in phase-retrieval HRTEM. Ultramicroscopy, 64(1–4), 249 - 264. http://dx.doi.org/10.1016/0304- 3991(96)00022-8 4 http://dx.doi.org/10.17815/jlsrf-2-66 http://dx.doi.org/{10.1038/nmat4087} http://dx.doi.org/10.1016/0304-3991(96)00022-8 http://dx.doi.org/10.1016/0304-3991(96)00022-8 https://creativecommons.org/licenses/by/4.0/ System Overview Typical Applications and Limitations of Use Sample Environment Technical Specifications Detectors Specimen Stages