Journal of large-scale research facilities, 2, A42 (2016) http://dx.doi.org/10.17815/jlsrf-2-67 Published: 01.02.2016 FEI Titan 80-300 STEM Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich and RWTH Aachen* Instrument O�cer: - Dr. Marc Heggen, Ernst Ruska-Centre, Jülich Research Centre, 52425 Jülich, Germany, phone: ++49.2461.61.9479, e-mail: m.heggen@fz-juelich.de Deputy Instrument O�cer: - Dr. Dr. Martina Luysberg, Ernst Ruska-Centre, Jülich Research Centre, 52425 Jülich, Germany, phone: ++49.2461.61.2417, e-mail: m.luysberg@fz-juelich.de General Management: - Dr. Karsten Tillmann, Ernst Ruska-Centre, Jülich Research Centre, 52425 Jülich, Germany, phone: ++49.2461.61.1438, e-mail: k.tillmann@fz-juelich.de Abstract: The FEI Titan 80-300 STEM is a scanning transmission electron microscope equipped with a �eld emission electron gun, a three-condenser lens system, a monochromator unit, and a Cs probe corrector (CEOS), a post-column energy �lter system (Gatan Tridiem 865 ER) as well as a Gatan 2k slow scan CCD system. Characterised by a STEM resolution of 80 pm at 300 kV, the instrument was one of the �rst of a small number of sub-ångström resolution scanning transmission electron microscopes in the world when commissioned in 2006. *Cite article as: Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons. (2016). FEI Titan 80-300 STEM . Journal of large-scale research facilities, 2, A42. http://dx.doi.org/10.17815/jlsrf-2-67 1 http://jlsrf.org/ http://dx.doi.org/10.17815/jlsrf-2-67 http://dx.doi.org/10.17815/jlsrf-2-67 https://creativecommons.org/licenses/by/4.0/ Journal of large-scale research facilities, 2, A42 (2016) http://dx.doi.org/10.17815/jlsrf-2-67 1 System Overview Figure 1: FEI Titan STEM 80-300 scanning transmission electron microscope (photograph by courtesy of Ralf-Uwe Limbach (Forschungszentrum Jülich)). 2 Typical Applications and Limitations of Use The FEI Titan 80-300 STEM allows a variety of advanced scanning transmission electron microscopy investigations to a wide range of materials. Techniques like electron energy loss spectroscopy (EELS), energy �ltered transmission electron microscopy (EFTEM), high resolution scanning transmission elec- tron microscopy (HRSTEM) with detectors for bright-�eld, annular dark-�eld, and high-angle annular dark �eld (HAADF) imaging, electron tomography (ET), and combinations of the previous techniques. The FEI Titan 80-300 STEM is not intended for the investigation of aqueous, contaminated, ferromag- netic or organic samples without further discussions with both of the instruments o�cers and the ER-C general management. 3 Sample Environment Apart from the special case of the utilisation of dedicated cooling or heating stages, the FEI Titan 80-300 STEM will allow samples to be investigated either under room temperature or liquid nitrogen cooling conditions at a vacuum level of about 10−8 mbar. Besides this standard setup, the sample environment can be adapted to various conditions, e.g. thermal treatment under vacuum or under gas atmosphere up to 1 bar using a MEMS-based closed-cell holder, or the application of external electric or magnetic �elds to samples, making use of a wide portfolio of in situ TEM holders available at the ER-C. 2 http://dx.doi.org/10.17815/jlsrf-2-67 https://creativecommons.org/licenses/by/4.0/ http://dx.doi.org/10.17815/jlsrf-2-67 Journal of large-scale research facilities, 2, A42 (2016) 4 Technical Speci�cations • electron acceleration voltage 200 kV ... 300 kV • electron beam current < 140 nA • resolution (STEM) @ 300 kV < 80 pm • information limit (TEM) @ 80 kV < 200 pm • system energy resolution @ 300 kV & 40pA < 0.12 eV 5 Detectors • Peltier-cooled Gatan Ultrascan 2k charge coupled device (CCD) camera. • Gatan Tridiem 865 ER image �lter (GIF) with fully 2nd and 3rd order and partially 4th cor- rected prisms and a maximum �eld of view of 17 µm for imaging and 120 mR for di�raction analyses, with additional STEM detectors implemented. • Fischione Model 3000 HAADF detector. 6 Specimen Stages • double tilt low background holder ± 40 ° • high �eld of view single tilt tomography holder ± 70 ° • dual-axis tomography holder ± 50 ° • on axis rotation tomography holder 360 ° • further in situ specimen stages available References Cui, C., Gan, L., Heggen, M., Rudi, S., & Strasser, P. (2013). Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Materials, 12(8), 765-771. http://dx.doi.org/10.1038/nmat3668 Heggen, M., Houben, L., & Feuerbacher, M. (2010). Plastic-deformation mechanism in complex solids. Nature Materials, 9(4), 332-336. http://dx.doi.org/10.1038/nmat2713 Heidelmann, M., Barthel, J., & Houben, L. (2009). StripeSTEM, a technique for the isochronous acqui- sition of high angle annular dark-�eld images and monolayer resolved electron energy loss spectra. Ultramicroscopy, 109(12), 1447-1452. http://dx.doi.org/10.1016/j.ultramic.2009.07.007 Luysberg, M., Heidelmann, M., Houben, L., Boese, M., Heeg, T., Schubert, J., & Roeckerath, M. (2009). Intermixing and charge neutrality at DyScO3/SrTiO3 interfaces. Acta Materialia, 57(11), 3192-3198. http://dx.doi.org/10.1016/j.actamat.2009.03.031 3 http://dx.doi.org/10.17815/jlsrf-2-67 http://dx.doi.org/{10.1038/nmat3668} http://dx.doi.org/{10.1038/nmat2713} http://dx.doi.org/10.1016/j.ultramic.2009.07.007 http://dx.doi.org/10.1016/j.actamat.2009.03.031 https://creativecommons.org/licenses/by/4.0/ System Overview Typical Applications and Limitations of Use Sample Environment Technical Specifications Detectors Specimen Stages