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ABSTRACT
Hybrid electric vehicle (HEV) powertrains with parallel topologies are among the frequently used layouts, because of their easy 
applicability on an existing conventional powertrain, by the addition of hybrid modules with mild, full, or a plug-in capability. 
This paper investigates three of such parallel HEV topologies: P2, P3, and P4; all in a plug-in variant, to find-out which one 
performs best. Apart from the topology consideration, one of the other common questions or challenges in HEV development 
is the ICE concept selection. To address it, the paper combines the three HEV topologies with three technologically different 
internal combustion engines, all with the same power outputs. Then, all the powertrain and ICE combinations are tested in 
homologation driving cycles and vehicle dynamics simulation test – different acceleration tests – giving a holistic methodology 
suitable for thorough HEV topology evaluation, identifying all possible hybridization benefits. To find the maximum CO2 potential, 
it is convenient to exclude the effect of the energy management control strategy on the CO2 result in a charge sustaining driving 
cycle; therefore, to use some optimal control method. For this task, the paper compares the Equivalent Consumption Minimization 
Strategy, that realizes a Pontryagin’s minimum principle against the Dynamic Programming optimal control method, which is 
based on Bellman’s principle of optimality. Both control methods are available as a part of GT-Suite 0D/1D/3D multi-physics CAE 
simulation software, that is used in our whole study.
KEYWORDS: HYBRID ELECTRIC VEHICLE, OPTIMAL CONTROL METHOD, ENERGY MANAGEMENT STRATEGY, DYNAMIC 
PROGRAMMING, ECMS, PONTRYAGIN’S MINIMUM PRINCIPLE, PARALLEL HYBRID POWERTRAIN TOPOLOGY, PLUG-IN 
HYBRID, VEHICLE DYNAMICS SIMULATION, GT-SUITE

SHRNUTÍ
Hybridní elektrická vozidla (HEV) v paralelních topologiích patří mezi běžná uspořádání zejména díky snadné aplikovatelnosti 
ve stávajících pohonných řetězcích přidáním hybridních modulů, a to v různých úrovních hybridizace od mild, full až po plug-in HEV. 
Tento článek se věnuje třem paralelním topologiím: P2, P3 a P4 v plug-in variantě s cílem jejich celkového porovnání. Kromě výběru 
topologie hybridního vozidla je také častou otázkou výběr konceptu spalovacího motoru vhodného pro použití v hybridním vozidle. 
Abychom se na tuto otázku pokusili odpovědět, porovnáváme v této práci tři topologie hybridních pohonů se třemi technicky 
různými spalovacími motory o stejném maximálním výkonu. Všechny varianty jsou simulovány v homologačních jízdních cyklech 
a dalších dynamických testech, které by měly poskytnout ucelenou metodologii pro kompletní porovnání hybridních topologií 
a identifikovat možné přínosy hybridizace. Při hledání maximální úspory CO2 je vhodné omezit vliv řídící strategie na výsledné 
hodnoty CO2 v „charge sustaining" módu použitím některé z optimálních metod řízení. Proto tato práce porovnává ECMS strategii, 
která je založena na Pontryaginově minimálním principu a metodu dynamického programování založené na Bellmanově principu 
optimality. Obě metody jsou dostupné jako součást 0D/1D/3D multi-fyzikálního simulačního softwaru GT-Suite, který je v celé 
studii využíván. 
KLÍČOVÁ SLOVA: HYBRIDNÍ ELEKTRICKÉ VOZIDLO, OPTIMÁLNÍ STRATEGIE ŘÍZENÍ, ŘÍZENÍ ENERGETICKÝCH TOKŮ VE VOZIDLE, 
DYNAMICKÉ PROGRAMOVÁNÍ, ECMS, PONTRYAGINŮV MINIMÁLNÍ PRINCIP, TOPOLOGIE PARALELNÍHO HYBRIDNÍHO 
HNACÍHO ÚSTROJÍ, PLUG-IN HYBRID, SIMULACE DYNAMIKY VOZIDLA, GT-SUITE

EVALUATION OF PLUG-IN PARALLEL HEV TOPOLOGIES 
USING OPTIMAL CONTROL METHODS AND VEHICLE 
DYNAMICS SIMULATION
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1. INTRODUCTION
The current mandatory fleet-wide average emission target in 
EU – set to 95 grams of CO2/km starting with 2020 "phase-
-in" period and following full application from 2021 [1] – 
pushes the automotive industry into the realm of powertrain 
electrification. A fleet-wide electrification, either by pure 
electric vehicles (EV), or by hybrid electric vehicles (HEV), 
brings the obvious economic implications, especially the higher 
development and production costs.
The US and EU OEMs try to address these economic implications 
mainly by adopting the plug-in HEV powertrains (PHEV), 
combined with parallel topologies. The popularity of plug-ins 
from the side of OEMs is caused by two factors: first is, that the 
low average emission targets indirectly push for them; the second 
then, that a plug-in size battery allows for higher electrical power 
output and "fun-to-drive" factor of these vehicles. The parallel 
HEV topologies then give a great variety of options – usually in 
a form of hybrid modules applied on a conventional powertrain 
(ICEV) – allowing for relatively small changes in already existing 
powertrains, and help this way to manage development costs 
(especially compared to a pure EV powertrain, or more "HEV-
tailored" solutions) and reduce complexity at the OEM.
However, there are many technical challenges that need to 
be addressed in the early development stages of any new 
HEV powertrain. These revolve mainly around the overall CO2 
emission reduction potential, of the chosen parallel topology, 
different internal combustion engine (ICE) technology, or battery 
size, but also – when talking about the PHEV solutions – the 
performance gains in dynamic tasks.
The one variable affecting the CO2 performance of a studied 
HEV powertrain and its components is the energy management 
control strategy. It is therefore ideal to exclude its effects on 
the overall CO2 results, and ensure a globally optimal solution, 
when performing this type of study. GT-Suite multi-physics CAE 
simulation software already contains two built-in optimal control 
strategies: Dynamic Programming algorithm (DP), and Equivalent 
Consumption Minimization Strategy (ECMS). DP algorithm 
solves the highly nonlinear HEV system’s behavior, in a globally 
optimal manner. It is a numerical control method of solving 
a multi-stage decision-making optimal control problem ([2] or 
[3]), based on the Bellman’s principle of optimality, requiring 
a priori information about the entire optimization horizon (in 
our case the entire driving cycle). Although it is not applicable 
for real-time control for its high computation demand, it can 
serve as a very good benchmarking tool, exactly according to 
the needs of our paper. A more computationally efficient option 
for the energy management strategy is the ECMS algorithm, that 
realizes the Pontryagin’s minimum principle (PMP). Although the 
ECMS is also an "optimal control method", it is not intrinsically 

optimal as such [4], meaning it is only optimal locally in each 
time step, not globally during the whole driving cycle. Keeping 
the terminology from [4], we could further distinguish between 
the ECMS and PMP methods: nowadays, the term ECMS is more 
often used for the online causal method, whereas the PMP term 
is reserved for the offline non-causal application.
Some implementations of DP were used to study the optimal 
hybridization level in two parallel HEV topologies in [2], to 
instruct rule-based energy management strategies in [5, 6], to 
optimize the transmission’s shifting strategy in [7], or to study 
the optimal strategy for a series-parallel Toyota Prius powertrain 
in [8]. Then, Zeng et al. presented an ECMS implementation 
as a casual suboptimal method performed online, by using 
several simplifying assumptions for the equivalence factor 
based on past and present driving in [9], or Nüesch et al. in [10] 
extended the Hamiltonian function with a pollutant emissions 
minimization. There are also some comparative studies of DP vs. 
PMP performance, one from Yuan et al. [11]. Finally, Zeman et 
al. [12] present a broad HEV topologies’ CO2 comparative study 
combined with modular simulation models within the GT-Suite 
simulation platform, using only heuristic control methods.
Our paper is divided into four main chapters, following this 
introductory chapter 1. Chapter 2 shows the vehicle data and 
parameters, together with more details on HEV topologies, and 
internal combustion engines (ICE). Chapter 3 then presents our 
benchmarking simulation methodology, different simulation 
models, and homologation calculations. Chapter 4 is dedicated 
to the results; and finally, chapter 5 presents some overall 
conclusions.

1.1 GOALS OF THE PAPER
The main objective of our study is to showcase and apply a full 
development and benchmarking methodology for HEV vehicle 
powertrains.
This main objective then specifies in two following goals:

• First, to present a sensitivity on a parallel HEV topology 
type, comparing P2, P3, and P4 variants;

• Second, to test for a synergy effect between the ICE 
downsizing and powertrain hybridization, comparing 
three ICE technologies with three different downsizing 
levels.

The presented methodology consists of vehicle CO2 homologation 
results (using WLTP methodology), together with some dynamic 
tasks. These can be easily expanded with other user dynamic 
tasks, or driving cycles, together with future RDE cycles, or any 
other real-life user scenarios – if requested. All our simulation 
tests are carried-out on a C-class vehicle, with the same plug-in 
size battery, and hence pure electric drive capability (EV mode).



Evaluation of Plug-in Parallel HEV Topologies Using Optimal Control Methods and Vehicle Dynamics Simulation
RASTISLAV TOMAN, JOLANA HEŘMANOVÁ MECCA   02 2020   PAGE 23

The additional goals of our paper are:
• To compare the two optimal control methods 

implemented in GT-Suite;
• To study the ECMS CO2 sensitivity on different heuristic 

criteria with our HEV powertrains;
• To study the HEV powertrains’ performances in some 

dynamic tasks (different acceleration tests, and 
maximum vehicle speed).

2. VEHICLE DATA AND PARAMETERS
TABLE 1: Main vehicle parameters
TABULKA 1: Hlavní parametry vozidla

Base vehicle mass 1240 [kg]

Frontal area 2.20 [m2]

Drag coefficient 0.31 [-]

Tire rolling resistance factor 0.009 [-]

Tire rolling radius 307 [mm]

We have chosen a C-class vehicle with front-wheel drive 
(FWD) as a baseline for all the simulations in our study. Table 
1 summarizes its main vehicle parameters (base vehicle mass 
is without ICE). This baseline vehicle is compared to the three 
parallel HEV topologies (figure 1). The first two of the investigated 
HEV topologies – P2 and P3 – are FWD, the P4 offers the AWD 
(all-wheel drive) capability, although aspects such as climbing 
ability are not considered. P2 and P4 solutions are especially 
common nowadays, with P2 being probably cheaper and easier 
to integrate into an existing conventional powertrain (depending 
on the original vehicle that is hybridized). The additional masses 
are then in Table 2: HEV masses include high voltage battery 
mass of 110 kg, EM mass of 35 kg, and estimated masses for 
transmission adjustments, and additional clutches (K0 clutch for 
P2; P4 clutch). 

High voltage battery is based on a Samsung SDI lithium ion 
prismatic battery cells with capacity of 37 Ah, and nominal 
voltage of 3.7 V. The battery system is then configured into 
104s1p (104 cells in series, one in parallel), giving the total 
energy capacity of 14.8 kWh at nominal voltage of 400 V.

TABLE 2: Additional masses of ICE and HEV components
TABULKA 2: Dodatečné hmotnosti spalovacích motorů a hybridních 
komponentů.

2.0 NA 130 [kg]

1.5 TC 120 [kg]

1.0 TC 110 [kg]

P2 HEV 165 [kg]

P3 HEV 150 [kg]

P4 HEV 190 [kg]

The powertrain hybridization ratio (PICE /PEM) is kept fixed: three 
ICE concepts with power output of around 135 kW are combined 
with the same electric motor (EM) of 54 kW (Table 3). The BSFC 
and efficiency maps are displayed in figure 2.

TABLE 3: ICE and EM main parameters
TABULKA 3: Hlavní parametry spalovacích motorů a elektromotoru.

Maximum 
Torque 
[Nm]

Maximum 
Power 
[kW]

Speed 
Limit 
[RPM]

BSFC  
[g/kWh]

Efficiency 
[%]

2.0 NA 227 137 6500 224.9 -

1.5 TC 245 135 6000 237.7 -

1.0 TC 245 135 6000 238.5 -

EM 141 54 8000 - 92.9

The EM presents a classical high torque – high efficiency 
synchronous traction machine with permanent magnets. It is 
downscaled from GKN’s commercial AF130 traction motor with 
130 kW, keeping the same efficiency map.

Three spark ignition, direct injection ICE concepts represent 
different levels of ICE downsizing:

• naturally aspirated 2.0 L four cylinder (2.0 NA);
• turbocharged 1.5 L three cylinder (1.5 TC) with a BMEP 

of 20.5 bar;
• highly turbocharged 1.0 L three cylinder (1.0 TC) with 

a BMEP of 31.0 bar.
FIGURE 1: Parallel HEV topologies components’ layout
OBRÁZEK 1: Uspořádání komponentů v paralelních HEV topologiích
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Turbocharged concepts use a single-stage charging 
system with charge-air-cooler, lowered compression ratios 
(compared to 2.0 NA), together with intake and exhaust 
variable valve timing (VVT); the 2.0 NA concept uses VVT 
only on the intake side.
The 2.0 NA concept represents a state-of-the-art direct 
injection naturally aspirated engine, with the best BSFC 
from all concepts. A great advantage – in comparison to the 
turbocharged concepts – should be its relative simplicity, 
reliability, and therefore also cost. The 1.5 TC concept’s 
performance and technology represent a standard in current 
downsizing era. The 1.0 TC should be the best from the 
packaging and mass viewpoint. However, this is offset by 
higher price, and poorer low-end-torque performance.
All three ICE concepts are matched to a distinct six-speed 
transmission with progressive and sporty gear ratios (figure 3). 
The transmissions’ efficiencies are taken from a similar 
production transmission, the other driveline efficiencies are kept 
constant. P4 variant adds a single-speed transmission, again 
with constant efficiency, and total gear ratio of 6.2 (transmission 

gear ratio of 2.48 and differential gear ratio of 2.5), that allows 
for the EM use below 150 km/h, then it is de-clutched.

3. SIMULATION METHODOLOGY
There are two basic vehicle simulation methods in GT-Suite: 
a kinematic method, and a dynamic method. Our simulation 
methodology fully exploits these two different modelling 
options, together with the modularity of GT-Suite simulation 
software package.
The first one – backward kinematic – calculates the ICE/EM 
operating point from the imposed vehicle speed, and from the 
vehicle external loads (optionally imposing ICE/EM speed and 
load, then called a forward kinematic method).
The second method – dynamic – performs the physical 
sequence of actions as in the real-life vehicle with a driver: 
driver operates the accelerator and brake pedals, and shifts 
gears; his commands are then interpreted in an ECU model, 
and sent to the plant models (ICE, EM, etc.), the same way as 
in a real vehicle, resulting in vehicle acceleration.

 

 
FIGURE 2: BSFC maps of ICE concepts; EM efficiency map
OBRÁZEK 2: Měrná spotřeba konceptů spalovacích motorů; mapa účinnosti elektromotoru
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The next chapters from 3.1. to 3.5. give a comprehensive look 
on the use of the two vehicle simulation methods in our studies: 
3.1. shows how we work with these different simulation 
models; then we discuss the two optimal control methods (in 
3.2. and 3.3.) with some heuristic criteria (in 3.4.); and 3.5. 
finally shows the different simulation test, that serve either for 
benchmark studies, or for vehicle homologation results. 

3.1. SIMULATION MODELS
There are two models for each HEV powertrain topology: 
a dynamic model (DYN), and a kinematic model (KIN). Both 
are built using interchangeable modules or sub-systems 
(e.g. ICE model, EM model, HV-Battery model etc.) for each 
simulation method, with the same database containing the 
vehicle data and parameters from chapter 2. This combined 
approach of using modular models in combination with 
parameter database aids the general use and simulation 
work, together with simple possible replacement of some 
sub-system with a new one, that for instance accounts for 
more detailed physical behavior, or control logic. These 
changes can be then done easily and quickly for each HEV 
powertrain model.
KIN models are used for the ICEV CO2 results simulation and 
since the optimal control methods – that will be discussed 
in next chapters – are coupled with the kinematic method, 
also the "Charge sustaining" (CS) CO2 results. DYN models 
are then used for the E-range estimation and all other vehicle 
dynamics studies.
Driveline model in GT-Suite is built by the combination with 
1D inertias with either rigid or compliant connections. The 
vehicle data in our simulation models (KIN and DYN) are then 
mostly map based.
High voltage battery is simulated as a resistive electrical-
equivalent model with separate open-circuit voltage, and 
internal resistance maps for charge and discharge.
Then, combustion engines are simulated through map-based 
models with fuel consumption maps, and torque limits 
dependent on rotational speed. This map-based approach 
for the ICE simulation does not capture well the dynamic 
effects in transient behavior, which is especially apparent for 
the turbocharged ICE concepts at vehicle dynamics test. On 
the other hand, the map-based approach is very simple and 
giving fast simulation times, and its accuracy in the driving 
cycle simulation depends on ICEs relative power to the total 
vehicle loads (smaller ICE leads to more demanding transient 
behavior). The problem with ICE transients can be mitigated 
with additional torque rise limit maps (in [Nm/s]), or by 
more detailed physical ICE sub-system using either full 1D 
or simplified 1D fast-running model. However, these are not 
used in our study.
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FIGURE 3: Transmission layouts for all three ICE concepts
OBRÁZEK 3: Pilové diagramy tří použitých převodovek
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The EM model is also map-based with an efficiency map, and 
torque limits dependent on the rotational speed. Thanks to the 
very fast EMs transient response, the map-based approach is 
accurate enough.
Finally, also the transmission models are map-based (together 
with other gear ratios), with efficiencies that are taken from 
a similar production manual transmission, and maps dependent 
on input torque, rotational speed, and engaged gear.

3.2. DYNAMIC PROGRAMMING CONTROL METHOD IN GT-SUITE
Bellman’s principle of optimality used in the DP control method 
states [13]: “An optimal policy has the property that whatever 
the initial state and initial decision are, the remaining decisions 
must constitute an optimal policy with regard to the state 
resulting from the "rst decision. A complex multistage optimal 
problem can be divided into a  series of single-stage optimal 
problem. Each single-stage optimal problem is solved by 
optimal solutions, and cost function is minimized according to 
a sequence of decisions for each step.”
DP algorithm implementation within GT-Suite is described in 
more detail in [3], therefore, we will reproduce only some of the 
most important concepts here.
The DP cost function J is defined by the equation 1, where:

• gN (xN) represents the final cost, and additional Terminal 
State Penalty TN (xN) , that partially constrains the final 
state;

• Function Lk (xk, uk(xk)) represents the cost of applying 
control μk(xk) at xk, according to the control problem’s 
Hamiltonian function;

problem can be divided into a series of single-stage optimal problem. Each single-stage optimal problem 
is solved by optimal solutions, and cost function is minimized according to a sequence of decisions for 
each step.” 
DP algorithm implementation within GT-Suite is described in more detail in [3], therefore, we will 
reproduce only some of the most important concepts here. 
The DP cost function 𝐽𝐽 is defined by the equation 1, where: 

• 𝑔𝑔%(𝑥𝑥%) represents the final cost, and additional Terminal State Penalty 𝑇𝑇%(𝑥𝑥%), that partially 
constrains the final state; 

• Function 𝐿𝐿&*𝑥𝑥& , 𝑢𝑢&(𝑥𝑥&)- represents the cost of applying control 𝜇𝜇&(𝑥𝑥&) at 𝑥𝑥&, according to the 
control problem’s Hamiltonian function; 

•  

𝐽𝐽'(𝑥𝑥() = 𝑔𝑔%(𝑥𝑥%) + 𝑇𝑇%(𝑥𝑥%) + 1 𝐿𝐿&*𝑥𝑥& , 𝑢𝑢&(𝑥𝑥&)- + 𝑝𝑝&(𝑥𝑥&)
%)*

&)(
 (1) 

 
𝑇𝑇% is then defined in equation 2, with its Terminal State Penalty Weight	𝛾𝛾, and Terminal State Penalty 
Exponent 𝛽𝛽. Penalty function 𝑝𝑝&(𝑥𝑥&) enforces the state constraints for 𝑘𝑘 = 0,1, … , 𝑁𝑁 − 1. Equation 3 
gives the definition of 𝑝𝑝&(𝑥𝑥&), with Penalty Function Weight 𝜆𝜆, and Penalty Function Exponent 𝛼𝛼. 
Battery SOC related units here are the SOC limits 𝑆𝑆𝑆𝑆𝑆𝑆+,- and 𝑆𝑆𝑆𝑆𝑆𝑆+./, Target Battery SOC 𝑆𝑆𝑆𝑆𝑆𝑆0,1230, 
and the discretized SOC points 𝑆𝑆𝑆𝑆𝑆𝑆21.4, that is used only in the equation 2. 
 

𝑇𝑇% = 𝛾𝛾*𝑆𝑆𝑆𝑆𝑆𝑆21.4 − 𝑆𝑆𝑆𝑆𝑆𝑆0,1230-
5

 (2) 
 

𝑝𝑝(𝑆𝑆𝑆𝑆𝑆𝑆) = 𝜆𝜆 A 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) − 𝑆𝑆𝑆𝑆𝑆𝑆0,1230
(𝑆𝑆𝑆𝑆𝑆𝑆+,- − 𝑆𝑆𝑆𝑆𝑆𝑆+./)

2
D

6

 (3) 

 
The optimal policy minimizes 𝐽𝐽'(𝑥𝑥() for all admissible policies – meaning control inputs (e.g. 
powertrain mode, electrical motor torque, transmission gear etc.), where 𝜋𝜋 is the set of all of them 
(equation 4). 
 

𝐽𝐽∗(𝑥𝑥() = min
-∈'

𝐽𝐽'(𝑥𝑥() (4) 
 
Based on the principle of optimality, DP evaluates the optimal cost-to-go function 𝐽𝐽&*𝑥𝑥.- – or optimal 
control trajectory – at every node in discretized grid points (𝑥𝑥&

.  is one of the state variables, at a node 
with time index 𝑘𝑘 and state index 𝑖𝑖), with SOC being the state variable (DP implementation in GT-Suite 
version v2020 uses only one state variable – SOC). DP then proceeds backward in time, with equation 
5 yielding the end cost calculation, and equation 6 the cost calculation for steps 𝑘𝑘 = 0,1, … , 𝑁𝑁 − 1. 
 

𝐽𝐽%*𝑥𝑥.- = 𝑔𝑔%*𝑥𝑥.- + 𝑇𝑇%*𝑥𝑥.- (5) 

 
𝐽𝐽&*𝑥𝑥.- = min

9!∈:!
J𝐿𝐿&*𝑥𝑥. , 𝑢𝑢&- + 𝑝𝑝&(𝑥𝑥&) … + 𝐽𝐽&;* K𝑓𝑓&*𝑥𝑥. , 𝑢𝑢&-MN (6) 

 
The right-hand side of equation 6 is minimized at each state-time node, for each 𝑥𝑥&

.  leading to the optimal 
control policy. However, 𝐽𝐽&;*(𝑥𝑥) is only evaluated for discretized points; output function 𝑓𝑓&*𝑥𝑥. , 𝑢𝑢&- 
must be interpolated, since the state output is continuous in the state space, and so generally does not 
coincide with the state grid nodes. This introduces numerical errors and bounds the solution’s accuracy 
to the discretization of the state space, and control inputs. If the discretization resolution increases, also 
the DP’s accuracy increases. Though, also the computation load is higher. Outputs from equations 5 and 
6 create the optimal control map, from which the algorithm derives the optimal control trajectory. 
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DP algorithm implementation within GT-Suite is described in more detail in [3], therefore, we will 
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The DP cost function 𝐽𝐽 is defined by the equation 1, where: 
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(equation 4). 
 

𝐽𝐽∗(𝑥𝑥() = min
-∈'

𝐽𝐽'(𝑥𝑥() (4) 
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𝑇𝑇% is then defined in equation 2, with its Terminal State Penalty Weight	𝛾𝛾, and Terminal State Penalty 
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The optimal policy minimizes 𝐽𝐽'(𝑥𝑥() for all admissible policies – meaning control inputs (e.g. 
powertrain mode, electrical motor torque, transmission gear etc.), where 𝜋𝜋 is the set of all of them 
(equation 4). 
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with time index 𝑘𝑘 and state index 𝑖𝑖), with SOC being the state variable (DP implementation in GT-Suite 
version v2020 uses only one state variable – SOC). DP then proceeds backward in time, with equation 
5 yielding the end cost calculation, and equation 6 the cost calculation for steps 𝑘𝑘 = 0,1, … , 𝑁𝑁 − 1. 
 

𝐽𝐽%*𝑥𝑥.- = 𝑔𝑔%*𝑥𝑥.- + 𝑇𝑇%*𝑥𝑥.- (5) 

 
𝐽𝐽&*𝑥𝑥.- = min

9!∈:!
J𝐿𝐿&*𝑥𝑥. , 𝑢𝑢&- + 𝑝𝑝&(𝑥𝑥&) … + 𝐽𝐽&;* K𝑓𝑓&*𝑥𝑥. , 𝑢𝑢&-MN (6) 

 
The right-hand side of equation 6 is minimized at each state-time node, for each 𝑥𝑥&

.  leading to the optimal 
control policy. However, 𝐽𝐽&;*(𝑥𝑥) is only evaluated for discretized points; output function 𝑓𝑓&*𝑥𝑥. , 𝑢𝑢&- 
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The DP cost function 𝐽𝐽 is defined by the equation 1, where: 
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𝑇𝑇% is then defined in equation 2, with its Terminal State Penalty Weight	𝛾𝛾, and Terminal State Penalty 
Exponent 𝛽𝛽. Penalty function 𝑝𝑝&(𝑥𝑥&) enforces the state constraints for 𝑘𝑘 = 0,1, … , 𝑁𝑁 − 1. Equation 3 
gives the definition of 𝑝𝑝&(𝑥𝑥&), with Penalty Function Weight 𝜆𝜆, and Penalty Function Exponent 𝛼𝛼. 
Battery SOC related units here are the SOC limits 𝑆𝑆𝑆𝑆𝑆𝑆+,- and 𝑆𝑆𝑆𝑆𝑆𝑆+./, Target Battery SOC 𝑆𝑆𝑆𝑆𝑆𝑆0,1230, 
and the discretized SOC points 𝑆𝑆𝑆𝑆𝑆𝑆21.4, that is used only in the equation 2. 
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The optimal policy minimizes 𝐽𝐽'(𝑥𝑥() for all admissible policies – meaning control inputs (e.g. 
powertrain mode, electrical motor torque, transmission gear etc.), where 𝜋𝜋 is the set of all of them 
(equation 4). 
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control trajectory – at every node in discretized grid points (𝑥𝑥&

.  is one of the state variables, at a node 
with time index 𝑘𝑘 and state index 𝑖𝑖), with SOC being the state variable (DP implementation in GT-Suite 
version v2020 uses only one state variable – SOC). DP then proceeds backward in time, with equation 
5 yielding the end cost calculation, and equation 6 the cost calculation for steps 𝑘𝑘 = 0,1, … , 𝑁𝑁 − 1. 
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must be interpolated, since the state output is continuous in the state space, and so generally does not 
coincide with the state grid nodes. This introduces numerical errors and bounds the solution’s accuracy 
to the discretization of the state space, and control inputs. If the discretization resolution increases, also 
the DP’s accuracy increases. Though, also the computation load is higher. Outputs from equations 5 and 
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the state variable (DP implementation in GT-Suite version v2020 
uses only one state variable – SOC). DP then proceeds backward 
in time, with equation 5 yielding the end cost calculation, and 
equation 6 the cost calculation for steps k = 0, 1, ... , N-1.
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𝑇𝑇% is then defined in equation 2, with its Terminal State Penalty Weight	𝛾𝛾, and Terminal State Penalty 
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𝑇𝑇% is then defined in equation 2, with its Terminal State Penalty Weight	𝛾𝛾, and Terminal State Penalty 
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Battery SOC related units here are the SOC limits 𝑆𝑆𝑆𝑆𝑆𝑆+,- and 𝑆𝑆𝑆𝑆𝑆𝑆+./, Target Battery SOC 𝑆𝑆𝑆𝑆𝑆𝑆0,1230, 
and the discretized SOC points 𝑆𝑆𝑆𝑆𝑆𝑆21.4, that is used only in the equation 2. 
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The optimal policy minimizes 𝐽𝐽'(𝑥𝑥() for all admissible policies – meaning control inputs (e.g. 
powertrain mode, electrical motor torque, transmission gear etc.), where 𝜋𝜋 is the set of all of them 
(equation 4). 
 

𝐽𝐽∗(𝑥𝑥() = min
-∈'

𝐽𝐽'(𝑥𝑥() (4) 
 
Based on the principle of optimality, DP evaluates the optimal cost-to-go function 𝐽𝐽&*𝑥𝑥.- – or optimal 
control trajectory – at every node in discretized grid points (𝑥𝑥&

.  is one of the state variables, at a node 
with time index 𝑘𝑘 and state index 𝑖𝑖), with SOC being the state variable (DP implementation in GT-Suite 
version v2020 uses only one state variable – SOC). DP then proceeds backward in time, with equation 
5 yielding the end cost calculation, and equation 6 the cost calculation for steps 𝑘𝑘 = 0,1, … , 𝑁𝑁 − 1. 
 

𝐽𝐽%*𝑥𝑥.- = 𝑔𝑔%*𝑥𝑥.- + 𝑇𝑇%*𝑥𝑥.- (5) 

 
𝐽𝐽&*𝑥𝑥.- = min

9!∈:!
J𝐿𝐿&*𝑥𝑥. , 𝑢𝑢&- + 𝑝𝑝&(𝑥𝑥&) … + 𝐽𝐽&;* K𝑓𝑓&*𝑥𝑥. , 𝑢𝑢&-MN (6) 

 
The right-hand side of equation 6 is minimized at each state-time node, for each 𝑥𝑥&

.  leading to the optimal 
control policy. However, 𝐽𝐽&;*(𝑥𝑥) is only evaluated for discretized points; output function 𝑓𝑓&*𝑥𝑥. , 𝑢𝑢&- 
must be interpolated, since the state output is continuous in the state space, and so generally does not 
coincide with the state grid nodes. This introduces numerical errors and bounds the solution’s accuracy 
to the discretization of the state space, and control inputs. If the discretization resolution increases, also 
the DP’s accuracy increases. Though, also the computation load is higher. Outputs from equations 5 and 
6 create the optimal control map, from which the algorithm derives the optimal control trajectory. 

(6)

The right-hand side of equation 6 is minimized at each state-time 
node, for each xk

i leading to the optimal control policy. However, 
Jk+1(x) is only evaluated for discretized points; output function 
fk(xi,uk) must be interpolated, since the state output is continuous 
in the state space, and so generally does not coincide with the 
state grid nodes. This introduces numerical errors and bounds the 
solution’s accuracy to the discretization of the state space, and 
control inputs. If the discretization resolution increases, also the DP’s 
accuracy increases. Though, also the computation load is higher. 
Outputs from equations 5 and 6 create the optimal control map, 
from which the algorithm derives the optimal control trajectory.
A challenge for each new DP simulation problem is to understand the 
results’ sensitivity on state variable resolution and limits (min/max 
values); sensitivities on four penalty parameters from equations 2 
(β, γ) and 3 (α, λ); and sensitivity on control variables’ discretization. 
This process can be very time consuming, but necessary.

3.3. ECMS CONTROL METHOD IN GT-SUITE
The equivalent consumption in ECMS refers in its basic form in 
equation 7, to converting the battery power Pb to an equivalent 
fuel power by using a non-dimensional equivalence factor s, and 
adding it to an actual fuel power Pf [4].

� challenge for each new DP simulation problem is to understand the results’ sensitivity on state variable 
resolution and limits (min
max values); sensitivities on four penalty parameters from equations 2 (𝛽𝛽, 𝛾𝛾) 
and 3 (𝛼𝛼, 𝜆𝜆); and sensitivity on control variables’ discretization. This process can be very time 
consuming, but necessary. 
 
3.3. ECMS control method in GT-Suite 
The equivalent consumption in EC$S refers in its basic form in equation �, to converting the battery 
power �� to an equivalent fuel power by using a non-dimensional equivalence factor $, and adding it to 
an actual fuel power �� [4]. 
 

�(𝑡𝑡, $, 𝑢𝑢) = ��(𝑡𝑡, 𝑢𝑢) + $(𝑡𝑡) � ��(𝑡𝑡, 𝑢𝑢) (�) 
 
This equivalence factor $ depends on the driving cycle, and on battery initial
final conditions; it 
represents the cost of recharging the battery power in future (by regenerative braking or ICE charging). 
Therefore, to set the equivalence factor accurately, the future conditions (e.g. the driving cycle) need to 
be known beforehand (either for the online or offline applications). 
EC$S algorithm implementation in GT-Suite calculates the equivalent fuel consumption using the 
equation �, combining the equivalence factor $, with a penalty function 𝑝𝑝. The equivalence factor $ can 
generally vary during the driving cycle, however in this implementation it is used as a constant. 
The penalty function 𝑝𝑝 (equation �) helps to keep the 𝑆𝑆𝑆𝑆𝑆𝑆 within the certain limits and thus reach the 
final 𝑆𝑆𝑆𝑆𝑆𝑆 state at the end of the simulated driving cycle, where the penalty function’s exponent	𝛼𝛼 
changes it’s YaggressivenessZ with 𝑆𝑆𝑆𝑆𝑆𝑆 value deviating from 𝑆𝑆𝑆𝑆𝑆𝑆0,1230. 
The user then controls the EC$S by varying these two parameters: equivalence factor $, and the penalty 
function exponent	𝛼𝛼 (%ote: the penalty function exponent	𝛼𝛼 is not related to the one used in DP and can 
generally have different integer values). To simulate a Ycharge-sustainingZ (CS) cycle, the YoptimalZ 
value of the $ factor must be found for the chosen hybrid powertrain and its initial
final conditions. 
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We could say, that based on the terminology mentioned in the introductory chapter from [4], this GT-
Suite’s implementation could be called a P$P method, since it works offline, and in combination with 
iterative approach to find the equivalence factor $. �lso, the nature of this implementation – numerical 
minimization of the equivalent fuel consumption in each time step – should lead to an YaggressiveZ 
behavior and results close to DP control method – /uan et al. [11] presented a difference only of 0.4� 
between the two methods. 
 
3.4. Additional heuristic conditions for optimal control methods 
When using either one of the optimal control algorithms above, it is suitable to have some additional 
options to YguideZ the algorithm apart from the basic limits, such as battery or E$ power limits etc. 
These can represent real-life scenarios and limits, that cannot be imposed by the simple control limits: 
e.g. forced ICE starts to account for heating of the catalytic converter, limiting conditions on the use of 
E, mode to ensure more predictable powertrain mode switching behavior, or imposing the limit 
conditions on maximum allowable gear when optimizing the gear shifting strategy. This way the user 
can get some idea of an impact of these criteria or conditions on the global FC (fuel consumption) 
optima. 
In the case of EC$S, this can further improve its results – and in some cases ensure method’s 
convergence to CS result, which is not guaranteed (as will be shown in a chapter 4.5). When we have a 
look on the W#TC and CS simulation, the local EC$S’s optimality leads to an almost continual battery 
charge roughly in the first half of the cycle, followed by discharge in during the second half (figure 4, 

(7)

This equivalence factor s depends on the driving cycle, and on 
battery initial/final conditions; it represents the cost of recharging 
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the battery power in future (by regenerative braking or ICE 
charging). Therefore, to set the equivalence factor accurately, 
the future conditions (e.g. the driving cycle) need to be known 
beforehand (either for the online or offline applications).
ECMS algorithm implementation in GT-Suite calculates the 
equivalent fuel consumption using the equation 8, combining the 
equivalence factor s, with a penalty function p. The equivalence 
factor s can generally vary during the driving cycle, however in this 
implementation it is used as a constant.
The penalty function p (equation 9) helps to keep the SOC within 
the certain limits and thus reach the final SOC state at the end of 
the simulated driving cycle, where the penalty function’s exponent 
α changes it’s "aggressiveness" with SOC value deviating from 
SOCtarget.
The user then controls the ECMS by varying these two parameters: 
equivalence factor s, and the penalty function exponent α (Note: 
the penalty function exponent α is not related to the one used in 
DP and can generally have different integer values). To simulate 
a "charge-sustaining" (CS) cycle, the "optimal" value of the s 
factor must be found for the chosen hybrid powertrain and its 
initial/final conditions.

� challenge for each new DP simulation problem is to understand the results’ sensitivity on state variable 
resolution and limits (min
max values); sensitivities on four penalty parameters from equations 2 (𝛽𝛽, 𝛾𝛾) 
and 3 (𝛼𝛼, 𝜆𝜆); and sensitivity on control variables’ discretization. This process can be very time 
consuming, but necessary. 
 
3.3. ECMS control method in GT-Suite 
The equivalent consumption in EC$S refers in its basic form in equation �, to converting the battery 
power �� to an equivalent fuel power by using a non-dimensional equivalence factor $, and adding it to 
an actual fuel power �� [4]. 
 

�(𝑡𝑡, $, 𝑢𝑢) = ��(𝑡𝑡, 𝑢𝑢) + $(𝑡𝑡) � ��(𝑡𝑡, 𝑢𝑢) (�) 
 
This equivalence factor $ depends on the driving cycle, and on battery initial
final conditions; it 
represents the cost of recharging the battery power in future (by regenerative braking or ICE charging). 
Therefore, to set the equivalence factor accurately, the future conditions (e.g. the driving cycle) need to 
be known beforehand (either for the online or offline applications). 
EC$S algorithm implementation in GT-Suite calculates the equivalent fuel consumption using the 
equation �, combining the equivalence factor $, with a penalty function 𝑝𝑝. The equivalence factor $ can 
generally vary during the driving cycle, however in this implementation it is used as a constant. 
The penalty function 𝑝𝑝 (equation �) helps to keep the 𝑆𝑆𝑆𝑆𝑆𝑆 within the certain limits and thus reach the 
final 𝑆𝑆𝑆𝑆𝑆𝑆 state at the end of the simulated driving cycle, where the penalty function’s exponent	𝛼𝛼 
changes it’s YaggressivenessZ with 𝑆𝑆𝑆𝑆𝑆𝑆 value deviating from 𝑆𝑆𝑆𝑆𝑆𝑆0,1230. 
The user then controls the EC$S by varying these two parameters: equivalence factor $, and the penalty 
function exponent	𝛼𝛼 (%ote: the penalty function exponent	𝛼𝛼 is not related to the one used in DP and can 
generally have different integer values). To simulate a Ycharge-sustainingZ (CS) cycle, the YoptimalZ 
value of the $ factor must be found for the chosen hybrid powertrain and its initial
final conditions. 
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We could say, that based on the terminology mentioned in the introductory chapter from [4], this GT-
Suite’s implementation could be called a P$P method, since it works offline, and in combination with 
iterative approach to find the equivalence factor $. �lso, the nature of this implementation – numerical 
minimization of the equivalent fuel consumption in each time step – should lead to an YaggressiveZ 
behavior and results close to DP control method – /uan et al. [11] presented a difference only of 0.4� 
between the two methods. 
 
3.4. Additional heuristic conditions for optimal control methods 
When using either one of the optimal control algorithms above, it is suitable to have some additional 
options to YguideZ the algorithm apart from the basic limits, such as battery or E$ power limits etc. 
These can represent real-life scenarios and limits, that cannot be imposed by the simple control limits: 
e.g. forced ICE starts to account for heating of the catalytic converter, limiting conditions on the use of 
E, mode to ensure more predictable powertrain mode switching behavior, or imposing the limit 
conditions on maximum allowable gear when optimizing the gear shifting strategy. This way the user 
can get some idea of an impact of these criteria or conditions on the global FC (fuel consumption) 
optima. 
In the case of EC$S, this can further improve its results – and in some cases ensure method’s 
convergence to CS result, which is not guaranteed (as will be shown in a chapter 4.5). When we have a 
look on the W#TC and CS simulation, the local EC$S’s optimality leads to an almost continual battery 
charge roughly in the first half of the cycle, followed by discharge in during the second half (figure 4, 

(8)

� challenge for each new DP simulation problem is to understand the results’ sensitivity on state variable 
resolution and limits (min
max values); sensitivities on four penalty parameters from equations 2 (𝛽𝛽, 𝛾𝛾) 
and 3 (𝛼𝛼, 𝜆𝜆); and sensitivity on control variables’ discretization. This process can be very time 
consuming, but necessary. 
 
3.3. ECMS control method in GT-Suite 
The equivalent consumption in EC$S refers in its basic form in equation �, to converting the battery 
power �� to an equivalent fuel power by using a non-dimensional equivalence factor $, and adding it to 
an actual fuel power �� [4]. 
 

�(𝑡𝑡, $, 𝑢𝑢) = ��(𝑡𝑡, 𝑢𝑢) + $(𝑡𝑡) � ��(𝑡𝑡, 𝑢𝑢) (�) 
 
This equivalence factor $ depends on the driving cycle, and on battery initial
final conditions; it 
represents the cost of recharging the battery power in future (by regenerative braking or ICE charging). 
Therefore, to set the equivalence factor accurately, the future conditions (e.g. the driving cycle) need to 
be known beforehand (either for the online or offline applications). 
EC$S algorithm implementation in GT-Suite calculates the equivalent fuel consumption using the 
equation �, combining the equivalence factor $, with a penalty function 𝑝𝑝. The equivalence factor $ can 
generally vary during the driving cycle, however in this implementation it is used as a constant. 
The penalty function 𝑝𝑝 (equation �) helps to keep the 𝑆𝑆𝑆𝑆𝑆𝑆 within the certain limits and thus reach the 
final 𝑆𝑆𝑆𝑆𝑆𝑆 state at the end of the simulated driving cycle, where the penalty function’s exponent	𝛼𝛼 
changes it’s YaggressivenessZ with 𝑆𝑆𝑆𝑆𝑆𝑆 value deviating from 𝑆𝑆𝑆𝑆𝑆𝑆0,1230. 
The user then controls the EC$S by varying these two parameters: equivalence factor $, and the penalty 
function exponent	𝛼𝛼 (%ote: the penalty function exponent	𝛼𝛼 is not related to the one used in DP and can 
generally have different integer values). To simulate a Ycharge-sustainingZ (CS) cycle, the YoptimalZ 
value of the $ factor must be found for the chosen hybrid powertrain and its initial
final conditions. 
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We could say, that based on the terminology mentioned in the introductory chapter from [4], this GT-
Suite’s implementation could be called a P$P method, since it works offline, and in combination with 
iterative approach to find the equivalence factor $. �lso, the nature of this implementation – numerical 
minimization of the equivalent fuel consumption in each time step – should lead to an YaggressiveZ 
behavior and results close to DP control method – /uan et al. [11] presented a difference only of 0.4� 
between the two methods. 
 
3.4. Additional heuristic conditions for optimal control methods 
When using either one of the optimal control algorithms above, it is suitable to have some additional 
options to YguideZ the algorithm apart from the basic limits, such as battery or E$ power limits etc. 
These can represent real-life scenarios and limits, that cannot be imposed by the simple control limits: 
e.g. forced ICE starts to account for heating of the catalytic converter, limiting conditions on the use of 
E, mode to ensure more predictable powertrain mode switching behavior, or imposing the limit 
conditions on maximum allowable gear when optimizing the gear shifting strategy. This way the user 
can get some idea of an impact of these criteria or conditions on the global FC (fuel consumption) 
optima. 
In the case of EC$S, this can further improve its results – and in some cases ensure method’s 
convergence to CS result, which is not guaranteed (as will be shown in a chapter 4.5). When we have a 
look on the W#TC and CS simulation, the local EC$S’s optimality leads to an almost continual battery 
charge roughly in the first half of the cycle, followed by discharge in during the second half (figure 4, 

(9)

We could say, that based on the terminology mentioned in the 
introductory chapter from [4], this GT-Suite’s implementation could 
be called a PMP method, since it works offline, and in combination 
with iterative approach to find the equivalence factor s. Also, the 
nature of this implementation – numerical minimization of the 
equivalent fuel consumption in each time step – should lead to an 
"aggressive" behavior and results close to DP control method – 
Yuan et al. [11] presented a difference only of 0.4% between the 
two methods.

3.4. ADDITIONAL HEURISTIC CONDITIONS FOR OPTIMAL 
CONTROL METHODS
When using either one of the optimal control algorithms above, it is 
suitable to have some additional options to "guide" the algorithm 
apart from the basic limits, such as battery or EM power limits etc. 
These can represent real-life scenarios and limits, that cannot be 
imposed by the simple control limits: e.g. forced ICE starts to account 
for heating of the catalytic converter, limiting conditions on the use 
of EV mode to ensure more predictable powertrain mode switching 
behavior, or imposing the limit conditions on maximum allowable 

gear when optimizing the gear shifting strategy. This way the user 
can get some idea of an impact of these criteria or conditions on the 
global FC (fuel consumption) optima.
In the case of ECMS, this can further improve its results – and 
in some cases ensure method’s convergence to CS result, which 
is not guaranteed (as will be shown in a chapter 4.5). When we 
have a look on the WLTC and CS simulation, the local ECMS’s 
optimality leads to an almost continual battery charge roughly 
in the first half of the cycle, followed by discharge during the 
second half (figure 4, blue line). This results in sub-optimal fuel 
consumption for the CS cycle and PHEV powertrain from the 
global point of view.
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FIGURE 4: SOC comparison of DP vs. ECMS with EVlim heuristic parameter 
turned on/off in CS WLTC
OBRÁZEK 4: Porovnání průběhů SOC algoritmů DP a ECMS s heuristickým 
parametrem EVlim zapnutým/vypnutým v „charge sustaining” módu 
jízdního cyklu WLTC

This specific problem can be mitigated by the additional heuristic 
criteria, that limits the maximum vehicle speed, when the electric 
motor can act as a "primary mover" (EVlim). Above this limit, 
the electric motor can only fulfill the load point shifting function. 
Similar methods are listed in [4]. The addition of EVlim changes 
the "charge sustaining equivalence factor s", and also affects the 
overall powertrain behavior: the battery discharges in the first 
phases of the cycle, and charges in the later phases, improving the 
overall fuel consumption (figure 4, green line). Red line in figure 4 
represents the SOC obtained with the DP algorithm.

3.5. SIMULATION TYPES AND CO2 HOMOLOGATION 
CALCULATIONS
Since one of the goals of this paper is to give a comprehensive 
benchmarking study of the three HEV topologies combined 
with three representatives of ICE downsizing level, here we 
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enumerate all simulation types and calculations, whose results 
will be presented in the next result chapter:

• First, there are two simulation tasks, that use KIN 
models: ICEV CO2 and CS CO2 (the latter combined with 
the two optimal control strategies);

• Second, the All Electric Range (AER) simulations using 
DYN models;

• Third, homologation CO2 can be calculated from 
AER and CS CO2 results, using the utility factor (UF) 
according to the WLTP homologation procedure – brief 
description follows;

• Fourth and final are the vehicle dynamics simulations 
using DYN models.

CO2 homologation procedure of hybrid vehicles (OVC-HEVs – 
Off-Vehicle Charging Hybrid Electric Vehicles) according to 
WLTP includes mainly CS, "Charge Depleting" (CD), and AER 
test [14]. The final combined WLTP fuel consumption (FCWLTP) is 
calculated from CS and CD consumptions, and UF corresponding 
to the AER, according the equation 10.

blue line). This results in sub-optimal fuel consumption for the CS cycle and PHE, powertrain from the 
global point of view. 
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The fractional utility factor UFj is determined by the equation 11 
for a distance dj driven at the jth period of the WLTC: Ci is a set of 
coefficients determined by the WLTP standard, and dn represents 
a normalized distance.

The fractional utility factor ��� is determined by the equation 11 for a distance �� driven at the j�� period 
of the W#TC: 𝑆𝑆. is a set of coefficients determined by the W#TP standard, and �/ represents a 
normalized distance. 
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The �ll Electric (ange represents a distance driven from fully charged battery, until the W#TC phase, 
when the engine first starts. 
 
4. Simulation results 
The W#TP requires a CS, and �E( tests for CO2 or fuel consumption evaluation. Since the analyzed 
powertrains are all PHE, type, the CS driving cycle initial and target SOC values are set to 30 �, which 
would correspond to a usual PHE, battery use: when the battery is charged, the vehicle uses mostly E, 
mode; then if the SOC level is low (usually around 20-30 � SOC) it switches to HE, mode. 
During the entire CS test all three topologies can use the ICE load-point-shifting (#PS) in HE, mode 
(in case of P4 it is Ythrough-the-roadZ), together with E, mode. The optimal use of E, to HE, mode 
switching, and #PS is determined by the DP or EC$S control algorithms, switching the ICE off in the 
E, mode. 
The �E( tests start at SOC of �6 �, the �E( test stops then at 35 �. Similarly, the vehicle dynamics 
tests start with full battery (HE, and E, tests), disregarding any derating behavior of the electrical 
components. 
(egarding the gear shifting strategy, all the sets of results, except for 4.3, use shifting strategy generated 
by the W#TP. The sensitivity in 4.3 compares the W#TP strategy with the YDP-optimizedZ shifting, 
only for the P2 topology. 
The combination of CO2 homologation simulations and vehicle dynamics tasks presents a full 
development and benchmarking methodology for HE, powertrains comparison. The results show the 
sensitivities on a topology type and a synergy effect between the ICE downsizing and powertrain 
hybridization. The vehicle dynamic tests results further show the importance of holistic approach to the 
optimization of these powertrains.  
 
4.�. �CE� sensiti0it3 on �CE technolo#3 
This first ICE, powertrain sensitivity on different ICE concepts (Table 4) reveals an anticipated fact, 
that the downsized engines provide better fuel economy in homologation driving cycles. Higher ICE 
downsizing levels achieve lower fuel consumption and CO2 production. 
 

ICE FC 
[L/100km] 

CO2 
[g/km] 

2.0 NA 6.115 13�.42 

1.5 TC 5.��� 131.�2 

1.0 TC 5.251 11�.�2 
��b�e 4: �uel consumption and CO2 sensitivity on different �CE concepts 
��bu�k� 4: SpotLeba paliva a produkce CO2 pro různ: koncepty spalovacích motorů 

 
4.�. �0erall �C�C�2 results ��E� topolo#ies 0s. �CE concepts� 
Table 5 shows the overall results of all three PHE, topologies, combined with the three ICE concepts: 
CS mode and combined values, together with �E(, +F, and gCO2 potential compared to respective 
ICE, concepts. The CS mode results were simulated using DP control method, with the SOC resolution 
(𝑆𝑆𝑆𝑆𝑆𝑆21.4) of 1� (101 SOC levels), with �� .+ parameter turned off. 
 

 ICE CS mode 
FC 

CS mode 
CO2 

AER 
[km] 

UF 
[-] 

Combined 
FC 

Combined 
CO2 

Combined 
ΔCO2 

(11)

The All Electric Range represents a distance driven from fully 
charged battery, until the WLTC phase, when the engine first starts.

4. SIMULATION RESULTS
The WLTP requires a CS, and AER tests for CO2 or fuel consumption 
evaluation. Since the analyzed powertrains are all PHEV type, 
the CS driving cycle initial and target SOC values are set to 30 %, 
which would correspond to a usual PHEV battery use: when the 
battery is charged, the vehicle uses mostly EV mode; then if the 
SOC level is low (usually around 20-30 % SOC) it switches to 
HEV mode.
During the entire CS test all three topologies can use the 
ICE load-point-shifting (LPS) in HEV mode (in case of P4 it is 
"through-the-road"), together with EV mode. The optimal use of 
EV to HEV mode switching, and LPS is determined by the DP or 
ECMS control algorithms, switching the ICE off in the EV mode.

The AER tests start at SOC of 96 %, the AER test stops then at 
35 %. Similarly, the vehicle dynamics tests start with full battery 
(HEV and EV tests), disregarding any derating behavior of the 
electrical components.
Regarding the gear shifting strategy, all the sets of results, 
except for 4.3, use shifting strategy generated by the WLTP. 
The sensitivity in 4.3 compares the WLTP strategy with the 
"DP-optimized" shifting, only for the P2 topology.
The combination of CO2 homologation simulations and vehicle 
dynamics tasks presents a full development and benchmarking 
methodology for HEV powertrains comparison. The results show 
the sensitivities on a topology type and a synergy effect between 
the ICE downsizing and powertrain hybridization. The vehicle 
dynamic tests results further show the importance of holistic 
approach to the optimization of these powertrains. 

4.1. ICEV SENSITIVITY ON ICE TECHNOLOGY
This first ICEV powertrain sensitivity on different ICE concepts 
(Table 4) reveals an anticipated fact, that the downsized engines 
provide better fuel economy in homologation driving cycles. 
Higher ICE downsizing levels achieve lower fuel consumption 
and CO2 production.

TABLE 4: Fuel consumption and CO2 sensitivity on different ICE concepts
TABULKA 4: Spotřeba paliva a produkce CO2 pro různé koncepty 
spalovacích motorů

ICE FC
[L/100km]

CO2

[g/km]

2.0 NA 6.115 139.42

1.5 TC 5.777 131.72

1.0 TC 5.251 119.72

4.2. OVERALL FC/CO2 RESULTS  
(HEV TOPOLOGIES VS. ICE CONCEPTS)
Table 5 shows the overall results of all three PHEV topologies, 
combined with the three ICE concepts: CS mode and combined 
values, together with AER, UF, and ∆CO2 potential compared to 
respective ICEV concepts. The CS mode results were simulated 
using DP control method, with the SOC resolution (SOCgrid) of 
1% (101 SOC levels), with EVlim parameter turned off.
First main observation is that the P4 topology has the biggest 
overall homologation CO2 potential (∆CO2 in the last column in 
table 5), followed by P2, and P3 topologies. The same applies for 
the AER values, that dictate the UF then used for the combined 
homologation FC/CO2 calculation (equations 10 and 11, with CD 
mode gCO2/km equal to zero).
Considering that the P3 and P4 topologies work in a very similar 
way, the AER potential and subsequent combined FC results are 
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much better for the P4. The difference comes mainly from the 
much more favorable total gear ratio for the P4, together with 
better efficiencies in EV mode. The comparison of EM operating 
points in figure 5 indicates, that the EM in P3 topologies spends 
a lot of time in low speed – high torque regions; the P4 gear 
ratio on the other hand allows for generally higher EM operating 
speeds with better overall efficiencies.

A natural expectation for the P2 topology is, that it would 
use the ability to shift gears also in EV mode to offset the 
transmission efficiency disadvantage (compared for instance 
to P3 or P4). However, for the case of overall results, the gear 
shifting strategy comes from WLTP – generated based on ICE 
performance, not EMs – which proves to be problematic. It is 
once again in full display in figure 5 with EM operating points, 

TABLE 5: Overall fuel consumption and CO2 results (HEV topologies vs. ICE concepts)
TABULKA 5: Celkové výsledky spotřeb paliva a produkce CO2 (topologie HEV vs. koncepty spalovacích motorů)

ICE CS mode
FC

[L/100km]

CS mode
CO2

[g/km]
AER
[km]

UF
[-]

Combined
FC

[L/100km]

Combined
CO2

[g/km]

Combined
∆CO2

[g/km]

P2W

2.0 NA 4.446 101.37 62.5 0.777 0.989 22.56 -116.86

1.5 TC 4.618 105.29 62.2 0.777 1.028 23.43 -108.28

1.0 TC 4.438 101.19 62.3 0.777 0.988 22.52 -97.20

P3

2.0 NA 4.273 97.42 56.1 0.753 1.058 24.11 -115.31

1.5 TC 4.506 102.74 53.6 0.734 1.198 27.32 -104.40

1.0 TC 4.378 99.82 55.0 0.753 1.084 24.70 -95.02

P4

2.0 NA 4.213 96.06 66.4 0.777 0.938 21.38 -118.05

1.5 TC 4.364 99.50 66.7 0.777 0.971 22.14 -109.57

1.0 TC 4.293 97.88 66.9 0.777 0.955 21.78 -97.94

FIGURE 5: EM operating points in WLTC, driven in EV mode
OBRÁZEK 5: Pracovní body elektromotoru v jízdním cyklu WLTC, v elektrickém módu
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where the EM operating points for P2 are "compressed" to the 
low speed regions with lower efficiencies.
Figure 6 depicts the CS mode CO2 values only, and gives 
us another interesting observation, that the best CS mode 
results are achieved with 2.0 NA concept and not with the 
turbocharged concepts: there is no synergy effect between the 
powertrain hybridization and ICE downsizing. The explanation 
lays in the BSFC maps: 2.0 NA best value is 12.8/13.7 g/kWh 
better compared to 1.5 TC and 1.0 TC respectively. CO2 value 
for 1.0 TC in ICEV powertrain is already very good, thus it’s 
hybridization CS mode potential in all PHEV topologies is 
the smallest. However, for 1.5 TC versus 1.0 TC comparison 
the downsizing effect is lowered by the effect of powertrain 
hybridization.
From the vehicle homologation perspective, these CS mode 
sensitivities do not play any role. The only important result is 
the combined CO2 values from the table 5, where the WLTP 
calculation clearly prefers the AER before the CS mode. However, 
the CS mode results could be interesting from the point of view 
of the OEMs: cheaper, higher-displacement ICEs, hybridized in 
a clever way can bring some economic benefits.

4.3. P2 SENSITIVITY ON GEAR SHIFTING
The overall results from the above chapter showed P2 fuel 
consumption using WLTP generated gear shifting points. Further 
gear shifting optimization using DP algorithm for the P2 topology 
in CS mode shows another CO2 potential ("DP-optimized" in 
and figure 7) in comparison to the WLTP shifting strategy.
The 1.5 TC and 2.0 NA concept achieve a very similar additional 
CS mode CO2 improvement (both at ~10 gCO2/km), and the 1.0 
TC only ~5 gCO2/km.

We did not calculate the further CO2 potential from the 
homologation perspective, because this requires also the AER 
simulation with optimized gear shifting strategy. However, the 
CS mode improvement indicates, that the AER results will also 
be improved, leading to even lower homologation CO2 values.
Concluding this sensitivity, it is important to once again 
stress, that 2.0 NA concept still proves having the highest 
hybridization potential.

4.4. DP VS. ECMS CONTROL STRATEGY SENSITIVITY
This next sensitivity compares ECMS and DP algorithms’ 
performance. Figure 8 shows three of the nine total combinations 
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of HEV topology and ICE concept. All the results use the same 
EVlim parameter of 77 km/h. For the ECMS results, we had to 
calibrate the equivalence factor s for each of the simulations – 
to reach the CS cycle; for the DP simulations we have tried 
different SOC resolutions, starting with 1% of the SOC span 
(defined by the SOCmax and SOCmin values), that divides the 
SOC span to 101 SOC levels. The 0.5% resolution uses 201 
levels, and 0.1% 1001 levels. Higher number of SOC level leads 
to results closer to global optimum, but also the simulation 
times are longer: 0.1% resolution leads to approximately 
10-times longer simulation than 1%.
However, a look on figure 8 reveals, that the GT-Suite’s ECMS 
implementation performs better than DP implementation for 
two of the three topologies (results are consistent for all ICE 
concepts). The only case when the DP is closer to a global 
optimum are the P3 topology results. Differences of FC/CO2 are 
in favor of ECMS for the P2 (~2%), and P4 (~4%), and in favor 
of the DP (~1.5%) for the case of P3 topology.
It is also important to note, that the procedure of finding the 
CS equivalence factor s requires an iterative process – usually 
20-40 simulations. It takes approximately the same simulation 
time to reach the CS results with ECMS, as to simulate one DP 
run with 1% SOC resolution.
The first reason for the rather unexpected result for the P2 
and P4 topologies can be the way how the ECMS and DP 
use their penalty functions: it is possible, that using the same 
formulation of penalty functions, or not using any at all, could 

resolve the difference. The second possible reason is the 
different sensitivities of both methods on control variables, 
that were set-up the same way in our simulations.
However, from the user point of view, the simulations with DP 
algorithm may take more time, and not always reach the global 
optima "as advertised", but they may be more comfortable to 
work with, since they do not require the iterative process of 

TABLE 6: Acceleration results for 2.0 NA concept and all HEV topologies
TABULKA 6: Akcelerace pro koncept spalovacího motoru 2.0 NA a všechny HEV topologie 

Mode Topology 0-100 km/h [s] 60-80 km/h [s] 60-100 km/h [s] 80-120 km/h [s]

Gear 5 Gear 6 Gear 5 Gear 6 Gear 5 Gear 6

HEV

P2 5.1 3.1 3.7 5.8 7.2 5.8 7.4

P3 6.3 3.0 3.2 5.6 6.3 5.6 6.5

P4 5.8 2.4 2.5 4.8 5.3 5.4 6.1

ICEV

P2 8.2 5.7 7.0 10.9 14.1 10.7 14.5

P3 8.1 5.7 7.0 10.9 14.1 10.7 14.5

P4 8.3 5.8 7.1 11.1 14.4 10.9 14.8

EV

P2 15.8 7.1 9.3 15.3 19.4 16.9 22.2

P3 32.2 6.9 6.8 14.0 14.0 15.4 15.4

P4 20.3 4.1 4.1 9.6 9.6 13.7 13.7

EVlim 77km/h optimized EVlim no EVlim
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equivalence factor s calibrations. The crucial fact is, that the 
results for both the ECMS and DP GT-Suite implementations 
are qualitatively the same (general behavior is the same with 
all ICE concepts and HEV topologies), although quantitatively 
there are some differences.

4.5. ECMS SENSITIVITY ON MAXIMUM VEHICLE SPEED 
IN EV MODE
The last set of CS mode simulations is the ECMS control method 
sensitivity on the EVlim parameter. Similarly, as for the penultimate 
sensitivity in chapter 4.4, we show only some of the results.
The optimized EVlim values generally achieve the best CO2 
results (figure 9). But, the sensitivity of all ICE concept and HEV 
topology combinations in CS mode vary:

• P4 topology with 1.0 TC concept, and all the P2 
combinations are not able to reach the CS mode 
in simulations with EVlim parameter turned off 
(explanation in chapter 3.4);

• 2.0 NA concept – for all topologies – achieves the best 
results using EVlim above 100 km/h;

• P3 topology also achieves the best results using EVlim 
above 100 km/h – for all ICE concepts;

• 1.0 TC concept uses relatively low EVlim values in 
combination with P2 and P4 topologies;

• P4 topology’s optimal EVlim values decrease with 
increasing ICE downsizing level;

• The lowest sensitivity of all combinations is for P4 
topology with 1.5 TC concept, where the CO2 results 
change only around one gCO2/km.

Finally, for some combinations, the EVlim optimization can bring 
up to 5 gCO2/km potential.

4.6. OVERALL VEHICLE DYNAMICS RESULTS
We have prepared several vehicle dynamics scenarios to compare 
the different hybridization variants: acceleration of 0-100 km/h, 
60-80 km/h, 60-100 km/h, and 80-120 km/h, and the maximum 
vehicle speed simulation. We have simulated all HEV powertrain 
and ICE concept combination; however, here we present only the 
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2.0 NA concept results, as the map-based approach does not 
capture well the dynamic effects of turbocharged ICE concepts 
1.0 TC, and 1.5 TC – as it was discussed in chapter 3.1. The P2, 
P3, and P4 topologies are compared in three different modes: 
hybrid (HEV), conventional (ICEV), and pure electric (EV).

4.6.1 ACCELERATION RESULTS
The acceleration tests consist of 0-100 km/h acceleration, and 
then the tests of 60-80 km/h, 60-100 km/h, and 80-120 km/h 
accelerations at the 5th and 6th gear, for all driving modes (HEV, 
ICEV, EV). The gear shifting strategy for 0-100 km/h acceleration 
considers the maximum ICE or EM speed. All acceleration results 
are listed in table 6, and shown in figures 10, and 11.
The P2 topology achieves the best 0-100 km/h acceleration in 
combined HEV mode, followed by the P4, and P3 topologies 
(figure 10). The case of EV acceleration shows the same 
order in topologies’ performance: the best result is achieved 
by the P2, followed by P4, and finally P3. The ICEV 0-100 
km/h accelerations are the only accelerations, where the 
variation is very low: all achieve results around 8.2 seconds. 
The HEV and EV results are strongly influenced by the gear 
ratios available for the EM: the P2 topology can shift gears, 
whereas the P3, and P4 can only make use of single gear, 
which is more beneficial for P4. Finally, the EV accelerations 
are logically also limited by the maximum EM power.
The rest of the table 6 contains the other accelerations at constant 
gear: sensitivities 60-80 km/h, 60-100 km/h, and 80-120 km/h, 
both on 5th gear, and 6th gear; all for 2.0 NA engine concept. The 
80-120 km/h scenario at 5th gear is shown in figure 11.
Also, these results are influenced mostly by the total gear ratios 
for different machines (ICE, EM): the P4 topology performs 
consistently as the best for both the HEV and EV acceleration 
modes, and P2 as the worst; the ICEV accelerations show 
very little sensitivity, because the only differences are the 
drivetrain efficiencies, and vehicle masses. The biggest 
variation happens again in case of EV acceleration mode, as 
the topologies vary greatly in their final gear ratios.
The 6th gear acceleration modes are qualitatively the same as 
on 5th gear.

4.6.2 MAXIMUM VEHICLE SPEED
The final test is the vehicle maximum speed, which depends 
mainly on the maximum total powertrain power, available 
for different driving modes (figure 12). The combined HEV 
maximum speed is transmission range limited and exceeds 
the vehicle speeds of 250 km/h for both the P2 and P3 
topology. The P4 maximum HEV speed is in this case the same 
as for ICEV driving mode, due to P4 electric motor speed limit, 
as the EM is declutched above 150 km/h, and therefore not 

providing power. The ICEV maximum speeds are all around 
238 km/h.
Finally, the maximum achievable EV speeds are all limited by 
the EM maximum power of 54 kW, the P3 performing better 
then P2 topology. P4 maximum EV speed is also limited by 
abovementioned EM speed limit, that is bound to the rear 
axle gear ratio design. 

5. CONCLUSIONS
Our paper presents a full development and benchmarking 
methodology for HEV powertrains, that is built on GT-Suite 
simulation software platform. The methodology consists 
of a combination of vehicle CO2 homologation simulations 
(using WLTP methodology), and some vehicle dynamics 
tasks (different accelerations test, and maximum vehicle 
speed test).
We have prepared HEV simulation models using two different 
simulation approaches: a backward-kinematic approach 
(KIN models), and a dynamic approach (DYN models). Our 
KIN models are combined with GT-Suite’s built-in optimal 
energy management control methods ECMS and Dynamic 
Programming (DP). Both KIN and DYN models were then used 
for the CO2 WLTP homologation studies, obtaining Charge 
Sustaining (CS) CO2, and All Electric Range (AER) results, 
together with the already mentioned additional vehicle 
dynamics results.
The whole presented methodology was tested on three 
different HEV topologies (P2, P3, and P4) in combination with 
three different ICE concepts (2.0 NA, 1.5 TC, and 1.0 TC), at 
the same hybridization level (with PICE of 135 kW and PEM of 
54 kW), using a six-speed transmissions, for a C-class plug-in 
HEV with a 14.8 kWh high voltage battery. All combinations 
show very good results compared to conventional powertrain, 
either in CO2 homologation tests, or in vehicle dynamics tests:

• ICEV comparison of the three ICE concepts with 
different downsizing levels reveal a well-known 
fact, that downsized engines perform better in 
homologation driving cycles, such as WLTC;

• Total CO2 reduction potentials from ICEV to 
PHEV homologation CO2 values are similar for all 
powertrains, ranging from -95 to -119 gCO2/km;

• The first part of the homologation are the AER tests, 
that show greater potentials for P4 and P2 HEV 
variants, since these use the EM in a more efficient 
manner, reaching AER values of ~66.7 km (P4), 
~62.3 km (P2). However, the P3 also achieves high AER 
values of ~54.9 km;

• The second part of the homologation are the CS tests, 
where the different HEV powertrain combinations 
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reach CO2 reduction potentials from -22 to -45 gCO2/
km (using DP control method);

• The P4 powertrains perform the best in the CS tests, together 
with the 2.0 NA ICE concept – on the other end of the 
results were the P2 topology, and the 1.5 TC concept;

• The P2 topology CS results can be further improved 
by the gear shifting strategy optimization: bringing 
additional ~5-10 gCO2/km improvement, beating the 
abovementioned P4 results;

• The vehicle 0-100 km/h acceleration tests show the 
biggest performance benefit for P2 – that shifts gears 
also for the EM – followed by the P4, and then P3;

• The P4 topology then performs best at constant gear 
vehicle acceleration tests, followed by the P3, and P2.

There are three main conclusions from the PHEV homologation 
and vehicle dynamics studies:
1. There is no synergy effect between the powertrain 

hybridization and ICE downsizing, the trend seems to be 
rather opposite: 2.0 NA concept is reaching the highest 
CO2 reduction potentials;

2. It is valuable to optimize the HEV topology having the ICE 
concept in mind; however, the current PHEV homologation 
favors the AER, which may discourage developments in 
this area: the "simple" addition of a large enough battery 
(with AER of 50 km), reduces the homologation CO2 by 
90 gCO2/km or more;

3. The vehicle dynamics tests further stress the importance 
of holistic HEV powertrain optimization: especially the 
transmissions gear ratios, with the goal of getting the best 
also out of the EM operation.

Apart from the overall homologation CO2 and vehicle dynamics 
studies, we have also tested the performance of the GT-Suite’s 
implementations of ECMS and DP optimal control methods:

• DP control method is generally more computationally 
demanding, but offers a user advantage of not having to 
calibrate for a correct equivalence factor to reach a CS 
cycle condition, as for the ECMS method;

• Rather surprising result of the comparison of these 
two control methods in GT-Suite is, that in some cases 
the ECMS can reach values closer to the theoretical 
global optimum compared to DP method, which is 
"advertised" as the globally optimal control method;

• However, both methods are consistent, providing 
qualitatively the same results, showing similar trends;

• Both methods are sensitive on their settings: in the case 
of DP it is the discretization of control inputs, and of state 
variable; ECMS is sensitive on the equivalence factor;

• Additional heuristic parameters help ensure the CS 
convergence of ECMS method and can further improve 
the CO2 results.

Our further work will focus mainly on two areas: first is the 
amplification of the HEV model database – adding more HEV 
topologies; and second, embedding our simulation methodology 
into a multi-parametric and multi-objective HEV powertrain 
optimization strategy.
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LIST OF NOTATIONS AND ABBREVIATIONS
AER All Electric Range
AWD All-wheel drive
BSFC Brake-specific fuel consumption
CAE Computer Aided Engineering
CD Charge Depleting
CO2 Carbon dioxide
CS Charge Sustaining
DP Dynamic Programming
DYN Dynamic model
ECMS Equivalent Consumption Minimization Strategy
ECU Engine Control Unit
EM Electric motor
EV Electric Vehicle
FC Fuel Consumption
FWD Front-wheel drive
GT Gamma Technologies
HEV Hybrid electric vehicle
HV High voltage
ICE Internal combustion engine
ICEV Internal Combustion Engine Vehicle
KIN Kinematic model
LPS Load Point Shifting
NA Naturally aspirated 
OEM Original Equipment Manufacturer
OVC-HEV Off-Vehicle Charging Hybrid Electric Vehicle
PHEV Plug-In Hybrid Electric Vehicle
PMP Pontryagin’s minimum principle 
RDE Real Driving Emissions
RPM Revolutions per minute
SOC State of Charge
TC Turbocharged
UF Utility Factor
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VVT Variable valve timing
WLTC Worldwide Harmonized Light-Duty Vehicles Test Cycle
WLTP Worldwide Harmonized Light-Duty Vehicles Test 

Procedure
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