18 Journal of Multidisciplinary Applied Natural Science Vol. 1 No. 1 (2021) Research Article Received : August 27, 2020 Revised : September 1, 2020 Accepted : November 16, 2020 Online : November 19, 2020 Climate change increases the concentration of the greenhouse effect, this was caused by the lack of trees as a function of carbon sequestration. Therefore, this study aims to map the vegetation distribution in the streets of the city of Malang and to measure its carbon stocks. The used method was vegetation analysis, to calculate the estimation of biomass, carbon storage and CO2 absorption using the allometric equation Brown; Brown and Lugo; and Morikawa. The study was conducted at the street lots of traffic activity, there are six stations representing the city of Malang, those are Tlogomas Street, North of Ahmad Yani Street, Letjend Sutoyo Street, Panglima Sudirman Street, Sudanco Supriadi Street and Kolonel Sugiono Street. The results of this study are that the most carbon-absorbing tree is Albizia saman with a value of 287,656 kg and the region that absorbs the most carbon is Panglima Su- dirman Street, that located in the middle of the city. Copyright Holder: © Madapuri, G. N., Azwar, H. N., and Hasyim, M. A. (2021) First Publication Right: Journal of Multidisciplinary Applied Natural Science This Article is Licensed Under: https://doi.org/10.47352/jmans.v1i1.5 OPEN ACCESS https://creativecommons.org/licenses/by-sa/4.0/deed.id https://doi.org/10.47352/jmans.v1i1.5 https://crossmark.crossref.org/dialog/?doi=10.47352/jmans.v1i1.5&domain=pdf&date_stamp=2021-01-09 J. Multidiscip. Appl. Nat. Sci. 19 Figure 1. Malang City Map and Research Location (Scale 1:20.000 km) [24]. The tools used in this study include a tape meas- ure, rope, lux meter, GPS, writing instruments, identification books, digital cameras.The material used is a shade tree along the arterial road which is the object of research and the organ of the shade tree. 2.2. Inventaritation The inventory in this study aims to determine tree conditions, composition and dominance. The inventory is carried out through a vegetation J. Multidiscip. Appl. Nat. Sci. 20 Type Biomass (kg) Stock Carbon (kg) CO2 absorption (kg) Albizia saman 156888,85 78444,43 287655,71 Annona muricata 72796,40 36398,20 133472,20 Artocarpus elasticus 47208,69 23604,35 86557,14 Barringtonia asiatica 45834,25 22917,13 84037,10 Aridelia sp. 41124,16 20562,08 75401,14 Leucaena leucocephala 37273,03 18636,52 68340,1 Felicium decipiens 36942,79 18471,4 67734,61 Cerbera manghas 13235,72 6617,86 24267,69 Mangifera indica 7835,56 3917,78 14366,50 Sterculia foetida 6911,027 3455,51 12671,37 Chrysophyllum cainito 3894,22 1947,11 7140,05 Polyalthia sp. 3264,58 1632,29 5985,62 Ficus benjamina 3147,21 1573,61 5770,42 Bauhinia purpurea 2969,67 1484,84 5444,90 Ficus vens 2803,66 1401,83 5140,52 Hibiscus tiliaceus 1872,50 936,25 3433,22 Dimocarpus longan 1389,50 694,75 2547,64 Lagestroemia speciosa 1254,99 627,50 2301,039 Morinda citrifolia 772,56 386,28 1416,49 Spathodea campanulata 735,05 367,53 1347,72 Mimusops elengi 659,01 329,50 1208,2 Mangifera ordonata 539,06 269,53 988,36 Psidium guajava 506,82 253,41 929,26 Pterocarpus indicus 445,53 222,76 816,88 Terminalia catappa 409,67 204,83 751,14 Persea americana 381,56 190,78 699,59 Pinus merkusii 216,54 108,27 397,03 Roystonea regia 124,10 62,05 227,54 Peltophorum pterocarpum 93,69 46,84 171,78 Melaleuca leucadendra 50,01 25,00 91,71 Swietenia macrophylla 45,34 22,67 83,15 Erythrina cristagalli 37,38 18,69 68,53 Syzigium sp. 30,41 15,20 55,76 Tamarindus indica 30,41 15,20 55,76 Gliricidia sepium 24,68 12,344 45,27 Table 1. Biomass; Stock Carbon; and CO2 absorption of plants in Malang city roads. analysis, the following is an outline of the vegetation analysis procedure: 1. Determined the location of the sampling using the principle of purposive sampling, which is based on the spacing. 2. This study uses 6 stations. Each station has a length of 1,000m × 2m based on the Guidelines for the Provision and Utilization of RTH in Urban Areas. 3. Each station has 5 substations with a size of 200 m × 2 meters. 4. The coordinates of each station are determined by GPS. 5. Shade tree species are identified, if the species name is not known, identification is carried out in the laboratory. J. Multidiscip. Appl. Nat. Sci. 21 6. Measuring the circumference of the stem Diameter at Breast Height (DBH) is carried out. 7. Criteria for road shade trees to be used include a minimum trunk diameter of 15 cm and a fork of at least 2 meters from the top of the ground. 8. Measuring the temperature, light intensity, and air humidity. 9. Enter all field data into the observation form and then analyz vegetation data [25][26]. 2.3. Estimation of CO2 Absorption, Biomass, and Carbon Deposit Calculation of CO2 absorption, Estimation of Biomass and Carbon Deposits. Estimation procedure for CO2 sequestration and carbon storage based on Ning et al. [27]: 1. Record the local name and Latin name of the tree to be measured. 2. The diameter of the shade trees is measured along with the vegetation analysis measurement procedure (to make it easier to use a 1.3 meter long wooden stick). If the ground surface and trunk are uneven, it can be seen in the DBH measurement rules. 3. The biomass of shade trees was measured using the allometric equation. 4. Measurement of CO2 absorption, biomass and carbon deposits is carried out by entering the biomass value of shade trees in the equation. 3. RESULTS AND DISCUSSIONS The results of carbon calculations on Arterial Road in Malang showed in the Table 1. Based on the result showed that the plant that had the highest absorption and carbon storage was Albizia saman. The Albizia saman plant has a wide cover and wide tree diameter. This was confirmed in the research that said the greater base area, that the greater carbon stock. This carbon deposit will make the tree bigger [22]. Based on experiment results by Setiawan [24]. St. Tlogomas has carbon absorption 269.837 kg and carbon stock 73.585 kg, St. Ahmad Yani has carbon absorption 352.727 kg and carbon stock 96.189 kg, St. Jendral Sutoyo has carbon absorption 263.262 kg and carbon stock 71.792 kg, St. Panglima Sudirman has carbon absorption 285.642 kg and carbon stock 77.895 kg, St. Sudanco Supriadi has carbon absorption 284.318 kg and carbon stock 77.534 kg, St. Kolonel Sugiono has carbon absorption 118.007 kg and carbon stock 32.181 kg. By compare with data we got on the below, carbon absorption and carbon stock on every street has decreased cause many trees are cut down for road repair, construction and land conversion for industry. The highest carbon deposits and uptake is in the St. Panglima Sudirman (Figure 2). This is because this area has high density vegetation. According of the literature states that the amount of carbon stored between land varies, depending on the diversity and density of existing plants, soil types and how they are managed [28]–[30]. 4. CONCLUSIONS From this research, we conclude that carbon stocks and uptake in Malang city has increased be- cause there are many new plants planted. The larg- est carbon stocks and uptake are in the Panglima Sudirman road area and the plants that store the most carbon stock and absorption are Albizia sa- man. AUTHOR INFORMATION Corresponding Author Gita Niken Madapuri — Department of Biolo- St . P an gl im a Su di rm an St . L et je n Su to yo St . T lo go m as St . N or th A hm ad Y an i St . K ol on el S ug io no St . S . S up ri ad i 0 50000 100000 150000 200000 250000 300000 350000 Biomass (kg) Carbon deposits (kg) CO2 absorption (kg) Figure 2. Regional observation result. J. Multidiscip. Appl. Nat. Sci. 22 gy, Maulana Malik Ibrahim State Islamic Univer- sity of Malang, Malang-65144 (Indonesia); Email: gitaniken1203@gmail.com Authors Haidar Nazarudin Azwar — Department of Biology, Maulana Malik Ibrahim State Islamic University of Malang, Malang- 65144 (Indonesia); Muhammad Asmuni Hasyim — Department of Biology, Maulana Malik Ibrahim State Islamic University of Malang, Malang- 65144 (Indonesia); ACKNOWLEDGEMENT This research supported by Science and Technol- ogy Faculty, Maulana Malik Ibrahim Malang Islam- ic State University which has lent research tools and Green Tech for give us research funding. REFERENCES [1] R. J. Keenan. (2015). “Climate change impacts and adaptation in forest management: a review”. Annals of Forest Science. 72 (2): 145–167. 10.1007/s13595- 014-0446-5. [2] Y. Boulanger, D. Arseneault, Y. Boucher, S. Gauthier, D. Cyr, A. R. Taylor, D. T. Price, and S. Dupuis. (2019). “Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada”. Landscape Ecology. 34 (1): 159–174. 10.1007/s10980-018-0761- 6. [3] L. J. R. Nunes, C. I. R. Meireles, C. J. P. Gomes, and N. M. C. A. Ribeiro. (2020). “Forest contribution to climate change mitigation: Management oriented to carbon capture and storage”. Climate. 8 (2). 10.3390/cli8020021. [4] X. Zheng, D. Streimikiene, T. Balezentis, A. Mardani, F. Cavallaro, and H. Liao. (2019). “A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players”. Journal of Cleaner Production. 234: 1113–1133. 10.1016/ j.jclepro.2019.06.140. [5] A. T. Trugman, L. D. L. Anderegg, B. T. Wolfe, B. Birami, N. K. Ruehr, M. Detto, M. K. Bartlett, and W. R. L. Anderegg. “Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity”. Global Change Biology. 25 (10): 3395–3405. 10.1111/ gcb.14680. [6] M. E. Dusenge, A. G. Duarte, and D. A. Way. (2019). “Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration”. New Phytologist. 221 (1): 32–49. 10.1111/ nph.15283. [7] R. D. Lasco. (2002). “Forest carbon budgets in Southeast Asia following harvesting and land cover change”. Science China. 45 (October): 55–64. [8] M. P. Mchenry, S. N. Kulshreshtha, and S. Lac. (2015). “Land use, land-use change and forestry”. Land Use, Land-use Change and Forestry. 1–160. 10.4337/9781849805834.00023. [9] J. M. Northrup, J. W. Rivers, Z. Yang, and M. G. Betts. (2019). “Synergistic effects of climate and land-use change influence broad -scale avian population declines”. Global Change Biology. 25 (5): 1561–1575. 10.1111/gcb.14571. [10] G. H. Stoffberg, M. W. van Rooyen, M. J. van der Linde, and H. T. Groeneveld. (2010). “Carbon sequestration estimates of indigenous street trees in the City of Tshwane, South Africa”. Urban Forestry and Urban Greening. 9 (1): 9–14. 10.1016/ j.ufug.2009.09.004. [11] R. C. R. Abreu, W. A. Hoffmann, H. L. Vasconcelos, N. A. Pilon, D. R. Rossatto, and G. Durigan. (2017). “The biodiversity cost of carbon sequestration in tropical savanna,” Science Advances. 3 (8). 10.1126/ sciadv.1701284. [12] J. Fang, G. Yu, L. Liu, S. Hu, and F. S. Chapin. (2018). “Climate change, human impacts, and carbon sequestration in China”. Proceedings of the National Academy of mailto:gitaniken1203@gmail.com http://doi.org/10.1007/s13595-014-0446-5 http://doi.org/10.1007/s13595-014-0446-5 http://doi.org/10.1007/s10980-018-0761-6 http://doi.org/10.1007/s10980-018-0761-6 http://doi.org/10.1007/s10980-018-0761-6 http://doi.org/10.1016/j.jclepro.2019.06.140 http://doi.org/10.1016/j.jclepro.2019.06.140 http://doi.org/10.1111/gcb.14680 http://doi.org/10.1111/gcb.14680 http://doi.org/10.1111/nph.15283 http://doi.org/10.1111/nph.15283 http://doi.org/10.4337/9781849805834.00023 http://doi.org/10.1111/gcb.14571 http://doi.org/10.1016/j.ufug.2009.09.004 http://doi.org/10.1016/j.ufug.2009.09.004 http://doi.org/10.1126/sciadv.1701284 http://doi.org/10.1126/sciadv.1701284 J. Multidiscip. Appl. Nat. Sci. 23 Sciences of the United States of America. 115 (16): 4015–4020. 10.1073/ pnas.1700304115. [13] Y. Yang, D. Tilman, G. Furey, and C. Lehman. (2019). “Soil carbon sequestration accelerated by restoration of grassland biodiversity”. Nature Communications. 10 (1). 10.1038/s41467-019-08636-w. [14] M. Daud, B. M. Bustam, and B. Arifin. (2019). “A comparative study of carbon dioxide absorption capacity of seven urban forest plant species of banda aceh, Indonesia”. Biodiversitas. 20 (11): 3372– 3379. 10.13057/biodiv/d201134. [15] R. V. Pouyat and T. L. E. Trammell. (2019). “Climate change and urban forest soils”. Developments in Soil Science. 36 : 189–211. 10.1016/b978-0-444-63998-1.00010-0. [16] K. C. Seto, B. Güneralp, and L. R. Hutyra. (2012). “Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools”. Proceedings of the National Academy of Sciences of the United States of America. 109 (40): 16083– 16088. 10.1073/pnas.1211658109. [17] Y. Tang, A. Chen, and S. Zhao. (2016). “Carbon storage and sequestration of urban street trees in Beijing, China”. Frontiers in Ecology and Evolution. 4 (5). 10.3389/ fevo.2016.00053. [18] S. M. Raciti, L. R. Hutyra, and J. D. Newell. (2014). “Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods”. Science of the Total Environment. 501 : 72–83. 10.1016/ j.scitotenv.2014.08.070. [19] S. Zhao, C. Zhu, D. Zhou, D. Huang, and J. Werner. (2013). “Organic Carbon Storage in China’s Urban Areas”. PLoS One. 8 (8). 10.1371/journal.pone.0071975. [20] Z. G. Davies, J. L. Edmondson, A. Heinemeyer, J. R. Leake, and K. J. Gaston. (2011). “Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale”. Journal of Applied Ecology. 48 (5): 1125–1134. 10.1111/j.1365-2664.2011.02021.x. [21] M. R. McHale, I. C. Burke, M. A. Lefsky, P. J. Peper, and E. G. McPherson. (2009). “Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees?”. Urban Ecosystems. 12 (1): 95–113. 10.1007/ s11252-009-0081-3. [22] L. R. Hutyra, B. Yoon, and M. Alberti. (2011). “Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region”. Global Change Biology. 17 (2): 783–797. 10.1111/j.1365- 2486.2010.02238.x. [23] G. Churkina. (2016). “The role of urbanization in the global carbon cycle”. Frontiers in Ecology and Evolution. 3 (1). 10.3389/fevo.2015.00144. [24] B. Setiawan. (2014). “Inventarisasi Pohon Pelindung Dan Potensinya Sebagai Penyerap Karbon Dioksida (CO2) Serta Penyimpan Karbon Di Jalan Raya Kota Malang Universitas Islam Negeri”. Universitas Islam Negeri Maulana Malik Ibrahim. [25] A. G. Asfaw. (2018). “Woody Species Composition, Diversity and Vegetation Structure of Dry Afromontane Forest, Ethiopia”. Journal of Agriculture and Ecology Research International. 16 (3): 1– 20. 10.9734/jaeri/2018/44922. [26] M. Cao, P. Pan, X. Z. Ouyang, H. Zang, J. K. Ning, L. L. Guo, and Y. Li. (2018). “Relationships between the composition and diversity of understory vegetation and environmental factors in aerially seeded Pinus massoniana plantations”. Chinese Journal of Ecology. 37 (1): 1–8. 10.13292/ j.1000-4890.201801.009. [27] Z. H. Ning, R. Chambers, and K. Abdollahi. (2016). “Modeling air pollutant removal, carbon storage, and CO2 sequestration potential of urban forests in Scotlandville, Louisiana, USA”. IForest. 9 (6): 860–867. 10.3832/ifor1845-009. [28] D. R. Williams, F. Alvarado, R. E. Green, A. Manica, B. Phalan, and A. Balmford. (2017). “Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico”. Global Change Biology. 23 (12): http://doi.org/10.1073/pnas.1700304115 http://doi.org/10.1073/pnas.1700304115 http://doi.org/10.1038/s41467-019-08636-w http://doi.org/10.13057/biodiv/d201134 http://doi.org/10.1016/b978-0-444-63998-1.00010-0 http://doi.org/10.1073/pnas.1211658109 http://doi.org/10.3389/fevo.2016.00053 http://doi.org/10.3389/fevo.2016.00053 http://doi.org/10.1016/j.scitotenv.2014.08.070 http://doi.org/10.1016/j.scitotenv.2014.08.070 http://doi.org/10.1371/journal.pone.0071975 http://doi.org/10.1111/j.1365-2664.2011.02021.x http://doi.org/10.1007/s11252-009-0081-3 http://doi.org/10.1007/s11252-009-0081-3 http://doi.org/10.1111/j.1365-2486.2010.02238.x http://doi.org/10.1111/j.1365-2486.2010.02238.x http://doi.org/10.3389/fevo.2015.00144 http://doi.org/10.9734/jaeri/2018/44922 http://doi.org/10.13292/j.1000-4890.201801.009 http://doi.org/10.13292/j.1000-4890.201801.009 http://doi.org/10.3832/ifor1845-009 J. Multidiscip. Appl. Nat. Sci. 24 5260–5272. 10.1111/gcb.13791. [29] D. Thom and W. S. Keeton. (2019). “Stand structure drives disparities in carbon storage in northern hardwood-conifer forests”. Forest Ecology and Management. 442 : 10–20. 10.1016/j.foreco.2019.03.053. [30] Z. Ma, H. Y. H. Chen, E. W. Bork, C. N. Carlyle, and S. X. Chang. (2020). “Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis”. Global Ecology and Biogeography. 29 (10): 1817–1828. 10.1111/geb.13145. http://doi.org/10.1111/gcb.13791 http://doi.org/10.1016/j.foreco.2019.03.053 http://doi.org/10.1111/geb.13145