J. Nig. Soc. Phys. Sci. 2 (2020) 218–227

Journal of the
Nigerian Society

of Physical
Sciences

Original Research

Numerical Algorithms for Direct Solution of Fourth Order
Ordinary Differential Equations

J. O. Kuboye, O. R. Elusakin∗, O. F. Quadri

Department of Mathematics, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria

Abstract

This paper examines the derivation of hybrid numerical algorithms with step length(k) of five for solving fourth order initial value problems
of ordinary differential equations directly. In developing the methods, interpolation and collocation techniques are considered. Approximated
power series is used as interpolating polynomial and its fourth derivative as the collocating equation. These equations are solved using Gaussian-
elimination approach in finding the unknown variables a j, j=0,...,10 which are substituted into basis function to give continuous implicit scheme.
The discrete schemes and its derivatives that form the block are obtained by evaluating continuous implicit scheme at non-interpolating points. The
developed methods are of order seven and the results generated when the methods were applied to fourth order initial value problems compared
favourably with existing methods.

DOI:10.46481/jnsps.2020.100

Keywords: Interpolation, Collocation, Block methods, Fourth order, Ordinary differential equations

Article History :
Received: 07 May 2020
Received in revised form: 10 August 2020
Accepted for publication: 15 August 2020
Published: 01 November 2020

c©2020 Journal of the Nigerian Society of Physical Sciences. All rights reserved.
Communicated by: F. Y. Eguda

1. Introduction

The general fourth order initial value problem of ordinary
differential equations of the form

yiv = f (x, y(x), y′(x), y′′(x), y′′′(x)),

y(x0) = y1, y
′(x0) = y2, y

′′(x0) = y3 (1)

is considered in this article. In the past, solving fourth or-
der ordinary differential equations (ODEs) requires reducing

∗Corresponding author tel. no: +23480xxxx572
Email address: opeyemielusakin21@gmail.com (O. R. Elusakin )

the differentials to systems of first order ODEs and approxi-
mate numerical method for the first order would be used to
solve the system. This approach is been attached with lots of
setbacks which include: computational burden, lots of human
effort, complexity in developing computer code which affects
the accuracy of the method in terms of error. This was exten-
sively discussed by researchers like Awoyemi [1], Fatunla [2]
and Lambert [3]. Due to several disadvantages found in reduc-
tion method, the direct method of solving ODEs of higher order
was developed by lots of scholars which include Akeremale et
al. [4], Abolarin et al. [5], Kuboye et. al [6], Omar & Kuboye
[7], Adeyefa [8], Abdullahi et al. [9], Adeniyi & Mohammed
[10], Olabode [11], Adesanya et al.[12], Omar & Suleiman [13]

218



Kuboye et al. / J. Nig. Soc. Phys. Sci. 2 (2020) 218–227 219

and Familua & Omole [14]. Specifically, numerical methods for solving equation (1) were proposed by Omar and Kuboye[15],
Areo and Omole[16] and Mohammed[17]. These current methods solved directly equation (1) but its accuracy in terms of error
can still be improved. Therefore, this paper examines the derivation and implementation of the efficient numerical algorithm for
solving fourth order ordinary differential equations directly and it focuses on improving the accuracy of the existing methods.

2. Methodology

This section considers derivation of block methods for direct solution of fourth order ODEs.

2.1. Derivation of First Block Method(FBM)

Power series approximate solution of the form

y(x) =
k+5∑
j=0

a j x
j (2)

is used as interpolating polynomial where k=5.The fourth derivative of equation(2) gives:

yiv(x) =
k+5∑
j=4

j( j − 1)( j − 2)( j − 3)a j x
j−4 (3)

Equation (2) is interpolated at x = xn+i, i = 0(1)2 and
5
2 and equation (3) is collocated at x = xn+i, i = 0(1)5 and

5
2 . Interpolation

and collocation equations are combined together to give a non-linear system of equations of the form:

k+5∑
j=0

a j x
j
n+i = yn+i

k+5∑
j=4

j( j − 1)( j − 2)( j − 3)a j x
j−4
n+i = fn+i

(4)

The unknown variables a′j s in (4) are gotten with the use of Gaussian elimination approach which are substituted into equation (2)
and this yields a continuous implicit scheme of the form

k−3∑
j=0

α j(t)yn+ j + α 5
2
yn+ 52 = h

4
k∑

j=0

β j(t) fn+ j + h
4λ 5

2
fn+ 52 (5)

where t = x−xn+k−1h


α0(t)
α1(t)
α2(t)
α 5

2
(t)

 =


−9
5

−27
10

−13
10

−1
5

8
34
3

5
2
3

−18
45
2

17
2

1

64
5

208
15

24
5

8
15




t0

t1

t2

t3

 (6)

219



Kuboye et al. / J. Nig. Soc. Phys. Sci. 2 (2020) 218–227 220



β0(t)

β1(t)

β2(t)

β 5
2
(t)

β3(t)

β4(t)

β5(t)



= T



t0

t1

t2

t3

t5

t6

t7

t8

t9

t10



(7)

where T =



297000
290304000

404694
290304000

75279
290304000

−102185
290304000

72576
290304000

36288
290304000

−2880
290304000

−7200
290304000

−2080
290304000

−192
290304000

3441528
11612160

5154498
11612160

2433933
11612160

323717
11612160

32256
11612160

15232
11612160

−1728
11612160

−3072
11612160

−800
11612160

−64
11612160

6797304
5806080

10732194
5806080

5745021
5806080

1207573
5806080

−145152
5806080

−6048
5806080

10944
5806080

12384
5806080

2720
5806080

192
5806080

560520
2268000

690174
2268000

419859
2268000

267195
2268000

−129024
2268000

−46592
2268000

11520
2268000

9600
2268000

1920
2268000

128
2268000

1716984
5806080

3760866
5806080

3494877
5806080

153384
5806080

−290304
5806080

−72576
5806080

27072
5806080

16704
5806080

3040
5806080

192
5806080

187272
11612160

129150
11612160

−353709
11612160

−650629
11612160

−169344
11612160

−3136
11612160

20160
11612160

7392
11612160

1120
11612160

64
11612160

428760
290304000

508266
290304000

−76719
290304000

−322779
290304000

290304
290304000

266112
290304000

118080
290304000

2880
290304000

3680
290304000

192
290304000


The coefficient of first and higher derivatives of (5) give

α′0(t)

α′1(t)

α′2(t)

α′5
2
(t)


=



27
10

26
10

−6
10

34
3

30
3

6
3

45
2

34
2

−6
2

208
15

144
15

124
15


1
h

(8)

220



Kuboye et al. / J. Nig. Soc. Phys. Sci. 2 (2020) 218–227 221



β′0

β′1

β′2

β′5
2

β′3(t)

β′4(t)

β′5(t)



= S



t0

t1

t2

t4

t5

t6

t7

t8

t9



(9)

where S =



−134898
96768000

−50186
96768000

102185
96768000

−120960
96768000

−72576
96768000

6720
96768000

19200
96768000

6240
96768000

640
96768000

5154498
11612160

4867866
11612160

971151
11612160

161280
11612160

91392
11612160

−12096
11612160

−24576
11612160

−7200
11612160

−640
11612160

3577398
1935360

3830014
1935360

1207573
1935360

−241920
1935360

−120960
1935360

25536
1935360

33024
1935360

8160
1935360

640
1935360

690174
2268000

839718
2268000

801585
2268000

−645120
2268000

−2795520
2268000

80640
2268000

76800
2268000

17280
2268000

1280
2268000

1253622
1935360

2329918
1935360

1533845
1935360

−483840
1935360

−145152
1935360

63168
1935360

44544
1935360

9120
1935360

640
1935360

−129150
11612160

707418
11612160

1951887
11612160

846720
11612160

18816
11612160

−141120
11612160

−59136
11612160

−10080
11612160

−640
11612160

169422
96768000

−51146
96768000

−322775
96768000

4838405
96768000

532224
96768000

275520
96768000

76800
96768000

11040
96768000

640
96768000




α′′0 (t)

α′′1 (t)

α′′2 (t)

α′′5
2
(t)


=



13
5h2

−6
5h2

10
h2

4
h2

17
h2

−6
h2

48
5h2

16
5h2




t0

t1

 (10)

221



Kuboye et al. / J. Nig. Soc. Phys. Sci. 2 (2020) 218–227 222



β′′0 (t)

β′′1 (t)

β′′2 (t)

β′′5
2
(t)

β′′3 (t)

β′′4 (t)

β′′5 (t)



= U



t0

t1

t3

t4

t5

t6

t7

t8



(11)

where U =



−25093
48384000

102185
48384000

−241920
48384000

−181440
48384000

20160
48384000

67200
48384000

24960
48384000

2880
48384000

811311
1935360

323717
1935360

107520
1935360

76160
1935360

−12096
1935360

−28672
1935360

−9600
1935360

−960
1935360

1915007
967680

1207573
967680

−483840
967680

−302400
967680

76608
967680

11558
967680

32640
967680

2880
967680

139953
378000

267195
378000

−430080
378000

−232960
378000

80640
378000

89600
378000

23040
378000

1920
378000

1164959
967680

1533845
967680

−967680
967680

−362880
967680

18950
967680

155904
967680

36480
967680

2880
967680

117903
1935360

650629
1935360

564480
1935360

15680
1935360

−141120
1935360

−68992
1935360

−13440
1935360

−960
1935360

−25573
48384000

−322775
48384000

967680
48384000

1330560
48384000

826560
48384000

268800
48384000

44160
48384000

2880
48384000




α′′′0 (t)

α′′′1 (t)

α′′′2 (t)

α′′′5
2

(t)


=



−6
5

4

−6

16
5


t0 (12)



β′′′0 (t)

β′′′1 (t)

β′′′2 (t)

β′′′5
2

(t)

β′′′3 (t)

β′′′4 (t)

β′′′5 (t)



= V



t0

t2

t3

t4

t5

t6

t7



(13)

222



Kuboye et al. / J. Nig. Soc. Phys. Sci. 2 (2020) 218–227 223

where V =



20437
9676800

−14515
9676800

−145152
9676800

20160
9676800

80640
9676800

3494
9676800

4608
9676800

323717
967680

322560
967680

304640
967680

−60480
967680

−172032
967680

−67200
967680

−7680
967680

1207573
967680

−1451520
967680

−1209600
967680

383040
967680

69350
967680

228480
967680

23040
967680

−53439
75600

258048
75600

186368
75600

−80640
75600

−107520
75600

−32256
75600

−3072
75600

1533845
967680

−2903040
967680

−1451520
967680

947520
967680

935424
967680

255360
967680

23040
967680

650629
1935360

1935360
1693440

62720
1935360

−705600
1935360

−413952
1935360

−94080
1935360

−7680
1935360

−64555
9676800

580608
9676800

1064448
9676800

826560
9676800

322560
9676800

61824
9676800

4608
9676800


Discrete schemes and its derivatives are derived by evaluating (5) as well as its derivatives at grid points and non-grid points

which are used to form the block

yn+1

yn+2

yn+ 52

yn+3

yn+4

yn+5



=



1

1

1

1

1

1



[
yn
]

+



1

2

5
2

3

4

5



[
hy′n
]

+



1
2

2

25
8

9
2

8

25
2



[
h2y′′n
]

+



1
6

4
3

125
48

9
2

32
3

125
6



[
h3y′′′n

]
+ h4



0 0 0 0 0 579232268000

0 0 0 0 0 1967670875

0 0 0 0 0 1075412518579456

0 0 0 0 0 5850956000

0 0 0 0 0 18534470875

0 0 0 0 0 478759072





fn−4

fn−3

fn− 52

fn−2

fn−1

fn



+ h4



413
10368

−8977
90720

9292
70875

−2279
36288

29
3780

−6593
9072000

428
567

−122
81

140288
70875

−2672
2835

4
35

764
70875

33640625
18579456

−30109375
9289728

89375
20736

−19109375
9289728

171875
688128

−437875
18579456

16137
4480

3267
560

6948
875

−243
64

207
448

−4887
112000

28928
2835

−7936
567

1441792
70875

−27136
2835

32
27

−7936
70875

1609375
72576

−484375
18144

23500
567

−671875
36288

15625
6048

−2375
10368





fn+1

fn+2

fn+ 52

fn+3

fn+4

fn+5



(14)

2.2. Derivation of Second Block Method(SBM)

Equation(2) is interpolated at x = xn+i, i = 0(1)2 and
9
4 and equation(3) is collocated at x = xn+i, i = 0(1)5 and

9
4 . The same

steps used in deriving the first block method are also employed and this produces the block method

223



Kuboye et al. / J. Nig. Soc. Phys. Sci. 2 (2020) 218–227 224



yn+1

yn+2

yn+ 94

yn+3

yn+4

yn+5



=
[
yn
]

+



1

2

9
4

3

4

5



[
hy′n
]

+



1
2

2

81
32

9
2

8

25
2



[
h2y′′n
]

+



1
6

4
3

243
128

9
2

32
3

125
6



[
h3y′′′n

]
+ h4



0 0 0 0 0 690432721600

0 0 0 0 0 1169642525

0 0 0 0 0 11919084392936012800

0 0 0 0 0 57935600

0 0 0 0 0 220168505

0 0 0 0 0 568625108864





fn−4

fn−3

fn−94

fn−2

fn−1

fn



+ h4



76921
1814400

−1139
6480

594688
3274425

−6749
181440

7421
1270080

−11717
19958400

11248
14175

−7558
2835

8978432
3274425

−1576
2835

344
3969

−1352
155925

3705501897
2936012800

−169057287
41943040

229379121
55193600

−247763043
293601280

540947889
4110417920

−425211849
32296140800

84159
22400

−2349
224

148224
13475

−5031
2240

1377
3920

−8667
246400

150272
14175

−10496
405

8388608
297675

−15872
2835

17888
19845

−256
2835

1668125
72576

−115625
2268

7520000
130977

−378125
36288

509375
254016

−147625
798336





fn+1

fn+2

fn+ 94

fn+3

fn+4

fn+5



(15)

3. Analysis of the method

Properties of the methods are examined in this section.

3.1. Order of block methods

In finding the order of the block methods,the method proposed by Lambert[3] is employed whereby Taylor series expansion are
used in expanding the y and f-functions and by further comparing the coefficients of h,this gives the block methods to be of order
[7, 7, 7, 7, 7, 7]T .

3.2. Zero-stability

A linear multi-step method is said to be zero-stable if the roots rs, s=1,2,..., N(grid and non grid points) of the first characteristics
polynomial defined by p(r) = det(rA

′

− B
′

) satisfy |rs| < 1 and the root |r| = 1 having multiplicity not exceeding one.(Lambert [3])

Where A
′

=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


224



Kuboye et al. / J. Nig. Soc. Phys. Sci. 2 (2020) 218–227 225

,

B
′

=



0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1


Therefore r=0,0,0,0,0,1. Hence the zero-stability of first block method is confirmed which is also applied to the second block
method.

3.3. Convergence

According to Awoyemi[1], Equation(5) converges if it is zero-stable and consistent.This implies that the developed methods
converged.

4. Test Problems

The following fourth order initial value problems[I.V.P] are solved in order to examine the accuracy of the methods

Problem 1:

yiv = x, y(0) = 0, y
′

(0) = 1, y
′′

(0) = y
′′′

= 0, h = 0.1

E xactsolution : y(x) = x
5

120 + x

Source: Mohammed[17]
Problem 2:

yiv − y = 0, y(0) = 1, y
′

(0) = 0, y
′′

(0) = −2, y
′′′

(0) = 0, h = 1320

E xactsolution : y(x) = −14 e
x −

1
4 e
−x + 32 cos(x)

Source: Areo and Omole[16]
Problem 3:

yiv = (y
′

)2 − yy
′′′

− 4x2 + ex(1 − 4x + x2), y(0) = 1, y
′

(0) = 1, y
′′

(0) = 3, y
′′′

(0) = 1, h = 0.132

E xactsolution : y(x) = x2 + ex

Source: Familua and Omole [14]

The following acronyms are used in the Tables below
ES - Exact Solution

CS - Computed Solution
FBM – First Block Method

225



Kuboye et al. / J. Nig. Soc. Phys. Sci. 2 (2020) 218–227 226

SBM – Second Block Method
EIM[17] - Error in Mohammed[17]
EIAO[16]- Error in Areo and Omole[16]
EIOK [15]- Error in Omar and Kuboye[15]
EIFBM - Error in First Block Method
EISBM - Error in Second Block Method
EIFO [14] - Error in Familua and Omole [14]

Table 1. ES and CS of FBM for Problem 1
x ES CS

0.1 0.100000083333333340 0.100000083333333340
0.2 0.200002666666666690 0.200002666666666690
0.3 0.300020250000000040 0.300020250000000040
0.4 0.400085333333333350 0.400085333333333400
0.5 0.500260416666666650 0.500260416666666760
0.6 0.600647999999999960 0.600648000000000070
0.7 0.701400583333333330 0.701400583333333550
0.8 0.802730666666666700 0.802730666666666700
0.9 0.904920750000000050 0.904920750000000160
1.0 1.008333333333333300 1.008333333333333500

Table 2. ES and CS of SBM for Problem 1
x ES CS

0.1 0.100000083333333340 0.100000083333333340
0.2 0.200002666666666690 0.200002666666666690
0.3 0.300020250000000040 0.300020250000000100
0.4 0.400085333333333350 0.400085333333333400
0.5 0.500260416666666650 0.500260416666666650
0.6 0.600647999999999960 0.600648000000000070
0.7 0.701400583333333330 0.701400583333333220
0.8 0.802730666666666700 0.802730666666666810
0.9 0.904920750000000050 0.904920750000000160
1.0 1.008333333333333300 1.008333333333333300

5. Discussion of Results

In Tables 1 and 2, exact and computed solutions of FBM
and SBM for solving problem 1 are shown. Table 3 reveals the
efficiency of these block methods (EISBM and EISBM) as com-
pared favourably with EIM[17] and EIOK[15]. Furthermore,
exact and computed solutions of the newly developed block

Table 3. Comparison of EIFBM and EISBM with EIM[17] and EIOK[15] for
solving problem 1

x EIFBM EISBM EIM(2010) EIOK(2016)
0.1 0.0000000e+00 0.0000000e+00 7.000024E-10 1.002087E-12
0.2 0.0000000e+00 0.0000000e+00 8.9999912-10 0.000000E+00
0.3 0.0000000e+00 5.5511151e-17 2.599993E-09 0.000000E+00
0.4 5.5511151e-17 5.5511151e-17 5.100033E-09 0.000000E+00
0.5 1.1102230e-16 0.0000000e+00 7.799979E-09 1.002087E-12
0.6 1.1102230e-16 1.1102230e-16 1.180009E-08 2.755907E-12
0.7 2.2204460e-16 1.1102230e-16 1.180009E-08 3.507306E-12
0.8 0.0000000e+00 1.1102230e-16 1.410006E-08 3.507306E-12
0.9 1.1102230e-16 1.1102230e-16 1.880000E-08 4.175549E-12
1.0 2.2204460e-16 0.0000000e+00 1.008335E-08 4.759970E-12

Table 4. ES and CS of FBM for Problem 2
x ES CS

0.0031250 1.000009765628973500 1.000009765628973700
0.0062500 1.000039062563578400 1.000039062563578400
0.0093750 1.000087890946866900 1.000087890946867100
0.0125000 1.000156251017263000 1.000156251017263500
0.0156250 1.000244143108567400 1.000244143108567400
0.0187500 1.000351567649961900 1.000351567649962400
0.0218750 1.000478525166021100 1.000478525166021300
0.0250000 1.000625016276719800 1.000625016276719600
0.0281250 1.000791041697446400 1.000791041697446800
0.0312500 1.000976602239017000 1.000976602239017000

Table 5. ES and CS of SBM for Problem 2
x ES CS

0.0031250 1.000009765628973500 1.000009765628973900
0.0062500 1.000039062563578400 1.000039062563578400
0.0093750 1.000087890946866900 1.000087890946866900
0.0125000 1.000156251017263000 1.000156251017263500
0.0156250 1.000244143108567400 1.000244143108567100
0.0187500 1.000351567649961900 1.000351567649962100
0.0218750 1.000478525166021100 1.000478525166021100
0.0250000 1.000625016276719800 1.000625016276719600
0.0281250 1.000791041697446400 1.000791041697445900
0.0312500 1.000976602239017000 1.000976602239017200

Table 6. Comparison of EIFBM and EISBM with EIAO[16] for solving prob-
lem 2

x EIFBM EISBM EIAO (2015)
0.0031250 2.2204460e-016 4.4408921e-016 4.440892e-16
0.0062500 0.0000000e+000 0.0000000e+000 2.176037e-14
0.0093750 2.2204460e-016 0.0000000e+000 .771916e-13
0.0125000 4.4408921e-016 4.4408921e-016 7.666090e-13
0.0156250 0.0000000e+000 2.2204460e-016 2.367773e-12
0.0187500 4.4408921e-016 2.2204460e-016 5.932477e-12
0.0218750 2.2204460e-016 0.0000000e+000 1.287681e-11
0.0250000 2.2204460e-016 2.2204460e-016 2.517841e-11
0.0281250 4.4408921e-016 4.4408921e-016 4.546752e-11
0.0312500 0.0000000e+000 2.2204460e-016 7.712331e-11

’

Table 7. ES and CS of FBM for Problem 3
x ES CS

0.103125 1.119264744787591900 1.119264744969084200
0.206250 1.271599493198048500 1.271599504741302500
0.306250 1.452110907065013100 1.452111029006491400
0.406250 1.666216862500122800 1.666217515460942200
0.506250 1.915347109920916500 1.915349507140536000
0.603125 2.191581593606204900 2.191588302867649500
0.703125 2.514440293333696500 2.514456732090109900
0.803125 2.877516387746607200 2.877551937602963200
0.903125 3.282936158805099100 3.283006004031709900
1.003125 3.733049511495175400 3.733176679391747100

226



Kuboye et al. / J. Nig. Soc. Phys. Sci. 2 (2020) 218–227 227

Table 8. ES and CS of SBM for Problem 3
x ES CS

0.103125 1.119264744787591900 1.119264744966372600
0.206250 1.271599493198048500 1.271599504536039800
0.306250 1.452110907065013100 1.452111026692671300
0.406250 1.666216862500122800 1.666217502634746300
0.506250 1.915347109920916500 1.915349459022614800
0.603125 2.191581593606204900 2.191588166231517800
0.703125 2.514440293333696500 2.514456393591375100
0.803125 2.877516387746607200 2.880551715825508700
0.903125 3.282936158805099100 3.283004543615038400
1.003125 3.733049511495175400 3.733174005515217600

Table 9. Comparison of EIFBM and EISBM with EIFO [14] for solving prob-
lem 3

x EIFBM EISBM EIFO[14]
0.103125 1.8149238e-010 1.7878077e-010 9.02145880e-10
0.206250 1.1543254e-008 1.1337991e-008 1.216821428e-09
0.306250 1.2194148e-007 1.1962766e-007 1.21681228e-09
0.406250 6.5296082e-007 6.4013462e-007 1.713796095e-09
0.506250 2.3972196e-006 2.3491017e-006 1.481970916e-08
0.603125 6.7092614e-006 6.5726253e-006 3.058338503e-08
0.703125 1.6438756e-005 1.6100258e-005 4.941858156e-08
0.803125 3.5549856e-005 3.5007632e-005 7.128679089e-08
0.903125 6.9845227e-005 6.8384810e-005 1.058773080e-07
1.003125 1.2716790e-004 1.2449402e-004 1.445520074e-07

methods for the solution of problems 2 and 3 are demonstrated
in Tables 4, 5, 7 and 8. These methods outperform method pro-
posed by Areo and Omole [16] in terms of accuracy. In addi-
tion, the performance of these methods in solving problem 3 is
not encouraging as the accuracy is lower when the comparison
is made with EIFO [14]. However, the capability of these meth-
ods in solving the nonlinear equation is established in Table 9.
Finally, it is evident in Tables 3, 6 and 9 that SBM is better than
FBM in solving fourth order ODEs.

6. Conclusion

In this paper, new numerical algorithms for solving fourth
order initial value problems of ODEs via multistep collocation
approach were developed. The use of approximated power se-
ries as a basis function and its fourth derivatives as collocating
equation were considered. The derived methods are efficient in
the solution of fourth order ODEs as depicted in Tables 3, 6
and 9. The accuracy of these numerical models is found better
compared with some of the existing methods in terms of error.
Hence, FBM and SBM are viable numerical methods for solv-
ing fourth order initial value problems.

Acknowledgments

We thank the referees and editor for the creative comments
in making improvements to this paper.

References

[1] D. A. Awoyemi, “Class of continuous methods for general second order
initial value problems in ordinary differential equations”, International
Journal of Computer Mathematics 72 (2009) 29.

[2] S. O. Fatunla, Numerical methods for initial value problems in ordinary
differential equations, Academic press Inc. Harcourt Brace Jovanovich
Publishers, New York. (1988)

[3] J. D. Lambert, Computational method in ordinary differential equation,
John Wiley and Sons, Inc. (1973)

[4] O. C. Akeremale, J. O. Kuboye, S. H. Yeak, E. A. Abununyi & S. Olaiju,
” Hybrid-block numerical method for solving second order ordinary dif-
ferential equations”, International Journal of Computational Analysis 3
(2020) 25.

[5] O. E. Abolarin, E. O. Adeyefa, J. O. Kuboye & B. G. Ogunware, “A novel
multi derivative hybrid method for numerical treatment of higher order or-
dinary differential equations”, Al Dar Research Journal of Sustainability
4 (2020) 43.

[6] J. O. Kuboye, Z. Omar, O. E. Abolarin & R. Abdelrahim, “Generalized
hybrid block method for solving second order ordinary differential equa-
tions directly”, Research and Reports on Mathematics 2 (2018) 2.

[7] Z. Omar & J. O. Kuboye, “Comparison of block methods with differ-
ent step-lengths for solving second order ordinary differential equations”,
Journal of Computational and Theoretical Nanoscience Science and Tech-
nology 15 (2018) 966.

[8] E.O. Adeyefa, “Orthogonal-based hybrid block method for solving gen-
eral second order initial value problems,” Italian journal of pure and ap-
plied mathematics 37 (2017) 659.

[9] Y. A. Abdullahi, Z. Omar & J. O. Kuboye, “Derivation of block predic-
tor–block corrector method for direct solution of third order ordinary dif-
ferential equations”, Global Journal of Pure and Applied Mathematics 12
(2016) 342.

[10] U. Mohammed & R.B. Adeniyi, “Derivation of five –step block hybrid
backward differential formulas (HBDF) through the continuous multi-
step collocation for solving second order differential equation”, Pacific
Journal of Science and Technology 15 (2014) 89.

[11] B. T. Olabode, “An accurate scheme by block method for the third order
ordinary differential equation”, Pacific journal of science and technology
10 (2009) 136.

[12] A. O. Adesanya, M. O. Udoh & A. M. Ajileye, “A new hybrid block
method for direct solution of general third order initial value problems
of ordinary differential equations”, International Journal of Pure and Ap-
plied Mathematics 4 (2013) 42.

[13] Z. Omar & M. Suleiman, “Solving higher order odes directly using
parallel 2-point explicit block method”, Matematika. Pengintegrasian
Teknologi Dalam Sains Matematik. Universiti Sains Malaysia 21 (2005)
15.

[14] A. B. Familua & E. O. Omole, “Five points mono hybrid linear multi-
step method for solving nth order ordinary differential equations using
power series function”, Asian Research Journal of Mathematics (Science
Domain International) 3 (2017) 1.

[15] J. O. Kuboye & Z. Omar, “New Zero-stable block method for direct so-
lution of fourth order ordinary differential equation”, Indian Journal of
Science and Technology 8 (2015) 1.

[16] E. A. Areo & E. O. Omole, “Half-Step symmetric continuous hybrids
block method for the numerical solutions of fourth order ordinary differ-
ential equations”, Archives of Applied Science Research 7 (2015) 39.

[17] U. Mohammed, “A six step block method for solution of fourth order
ordinary differential equations”, The Pacific Journal of Science and Tech-
nology 11 (2010) 259.

227