J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 Journal of the Nigerian Society of Physical Sciences Approximate Analytical Solution of Fractional Lane-Emden Equation by Mittag-Leffler Function Method Richard Olu Awonusika∗, Oluwaseun Akinlo Mogbojuri Department of Mathematical Sciences, Adekunle Ajasin University, P.M.B. 001, Akungba Akoko, Ondo State, Nigeria Abstract The classical Lane-Emden differential equation, a nonlinear second-order differential equation, models the structure of an isothermal gas sphere in equilibrium under its own gravitation. In this paper, the Mittag-Leffler function expansion method is used to solve a class of fractional Lane- Emden differential equation. In the proposed differential equation, the polytropic term f (y(x)) = ym(x) (where m = 0, 1, 2, . . . is the polytropic index; 0 < x ≤ 1) is replaced with a linear combination f (y(x)) = a0 + a1y(x) + a2y2(x) + · · · + amym(x) + · · · + aN yN (x), 0 ≤ m ≤ N, N ∈ N0. Explicit solutions of the fractional equation, when f (y) are elementary functions are presented. In particular, we consider the special cases of the trigonometric, hyperbolic and exponential functions. Several examples are given to illustrate the method. Comparison of the Mittag-Leffler function method with other methods indicates that the method gives accurate and reliable approximate solutions of the fractional Lane-Emden differential equation. DOI:10.46481/jnsps.2022.687 Keywords: Fractional differential equation, Lane-Emden differential equation, Mittag-Leffler function, Elementary functions, Series solution, Eigenfunction expansion method Article History : Received: 02 March 2022 Received in revised form: 07 April 2022 Accepted for publication: 10 April 2022 Published: 29 May 2022 c©2022 Journal of the Nigerian Society of Physical Sciences. All rights reserved. Communicated by: O. J. Oluwadare 1. Introduction Fractional calculus is a generalization and extension of clas- sical calculus to non-integer orders. In recent times, fractional calculus has attracted the attention of researchers in several ar- eas including mathematics, physics, biology, chemistry, engi- neering, economics and psychology ([1], [2], [3], [4], [5], [6], [7], [8], [9]). Several definitions of fractional calculus have been formulated by researchers. The most common and widely used definitions are the Caputo, Grünwald-Letnikov and ∗Corresponding author tel. no: Email address: richard.awonusika@aaua.edu.ng (Richard Olu Awonusika) Riemann-Liouville derivatives ([5], [8], [10]). The Grünwald- Letnikov derivative is mostly limited to numerical algorithms. The Riemann-Liouville fractional derivative has certain limi- tations and so becomes unsuitable in modeling some real-life phenomena since it requires the definition of fractional order initial conditions which have no physical meaningful explana- tion yet ([8]). The main advantage of the Caputo derivative is that it takes on the same form of initial conditions for the integer-order differential equations. Recently, the Lane-Emden equation has been investigated by several researchers due to its significant applications in math- ematical physics and astrophysics ([11]). The classical Lane- Emden equation, first introduced in 1870 by Lane and studied 265 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 266 in 1907 by Emden is of the form: y′′(x) + 2 x y′(x) + f (y(x)) = 0 (1) with initial conditions y(0) = A, y′(0) = B. (2) Equation (1) with various forms of f (y(x)) has been used to model several phenomena such as the theory of stellar struc- ture, thermal explosions, the thermal behavior of a spherical cloud of gas, isothermal gas spheres and thermionic currents ([12], [13]). Various methods have been presented by several authors to obtain the solution of the initial value problem (1) – (2). The Adomian decomposition method was employed in [11] to investigate the initial value problem (1) – (2). Solutions of the Lane-Emden equation have also been obtained via the series method (see e.g., [14], [15]). The series solutions ob- tained in [15] were compared with the results obtained using the homotopy perturbation method. A numerical algorithm was developed by Vanani and Aminataei [16] for solving the Lane- Emden equation. Ogunniran et al. in [17] investigated the linear stabilities of some explicit members of Runge-Kutta methods in integrating the Lane-Emden equation. However, the standard Lane-Emden differential equation is the one given precisely by the initial value problem ([14]) y′′(x) + 2 x y′(x) + ym(x) = 0, m ≥ 0; x > 0 y(0) = 1, y′(0) = 0, (3) where m is the polytropic index and y = y(x) is the polytrope. Clearly, the equation (3) is linear when m = 0, 1 and as a result the analytical solutions of the corresponding equations are real- isable in closed forms. By extension it is mentioned in [14] that a closed form solution is also possible for m = 5. For numer- ical solutions of second order ordinary differential equations, see [18] and [19]. As a result of the significant importance of fractional calcu- lus in modeling real-life phenomena accurately, the fractional Lane-Emden equation has been formulated and studied by re- searchers in very recent times. By using the collocation method, a numerical solution of (3) was obtained in [20]. Some other researchers have also sought numerical solutions to the frac- tional Lane-Emden equation (see, e.g., [21], [22]). Approxi- mate solutions based on orthonormal Bernoulli’s polynomials method, Homotopy-Adomian decomposition method and the series expansion method were treated in [23], [24] and [25] re- spectively. Other treatise on the fractional Lane-Emden equa- tion can be found in [26], [27], [28], [29] and [30]. In [28, Sub- section 5.2.2], the authors considered the power series solutions of the fractional Lane-Emden equation with the polytropic term ym with the fractional derivative described in the Caputo sense, while Malik and Mohammed [25] presented approximate so- lutions of fractional Lane-Emden equation using conformable Homotopy–Adomian decomposition method and conformable residual power series method. Arafa et al. in [31] used the Mittag-Leffler function method to solve a simple fractional differential equation of the form Dαy = Ay2, 0 < α ≤ 1, (4) with the fractional derivative described in the Caputo sense. In this paper, the Mittag-Leffler function expansion method is em- ployed to solve a class of fractional Lane-Emden initial value problem whose polytropic term f (y(x)) = ym(x) (where m = 0, 1, 2, . . . is the polytropic index; 0 < x ≤ 1) is replaced with a finite series f (y(x)) = a0 + a1y(x) + a2y2(x) + · · · + amym(x) + · · · + aN yN (x), 0 ≤ m ≤ N, N ∈ N0, with the frac- tional derivative described in the Caputo sense. The analytical solutions of the corresponding fractional equations, when f (y) are elementary functions, are presented, from which several ex- amples of fractional Lane-Emden equations are given. In par- ticular, we consider the special cases where f (y) are trigono- metric, hyperbolic and exponential functions. Comparison of the Mittag-Leffler function method with other methods shows that the method is reliably capable of solving analytically, non- linear fractional Lane-Emden differential equations, and by ex- tension, one can apply the method to solve several nonlinear fractional Lane-Emden equations when the functions f (y) are given by other special functions. The motivation for the forms of the nonlinear function f (y) considered in this paper arises from the need to address those situations where the expansion coefficients a0, a1, . . . , aN−1 are not identically zero. 2. Caputo Fractional Derivative and Its Basic Properties This section presents the definition and basic properties of Caputo derivative needed. For further discussions on fractional calculus and fractional differential equations, see, e.g., [5], [28], [32], [33], [34], [35], [36], [37], [38], [39], [40]. Definition 2.1. For α > 0, the Caputo fractional derivative of order α is defined as follows (m ≥ 1) : c Dα f (x) =Jm−αDm f (x) =  1 Γ(m−α) ∫ x 0 (x − ξ)m−α−1 f (m)(ξ) dξ, m − 1 < α < m, dm d xm f (x) α = m, (5) where J α f (x) := 1 Γ(α) ∫ x 0 (x − ξ)α−1 f (ξ) dξ (6) is the Riemann-Liouville fractional integral of order α. Here f (m)(x) = d m f (x) d xm . Remark 2.1. The Caputo derivative of the constant function C is zero, i.e c DαC = 0. 266 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 267 Corollary 2.1. For m − 1 < α < m, we have c Dαxβ =  0, β ∈ {0, 1, · · · , m − 1} , Γ(ν+1) Γ(β−α+1) x β−α β > m − 1 non existing otherwise. (7) The following properties of the Caputo derivative hold ( [8], [10]). Lemma 2.1. Suppose m − 1 < α < m; n, m ∈ N; α ∈ R; λ,σ ∈ C. Let f (x) and g(x) be such that c Dα f (x) and c Dαg(x) exist. We have that (a) lim α→n c Dα f (x) = f (n)(x) (b) lim α→n−1 c Dα f (x) = f (n−1)(x) − f (n−1)(0) (c) c Dα(λ f (x) + σg(x)) = λ c Dα f (x) + σ c Dαg(x) (d) c DαDm f (x) = c Dα+m f (x) , Dm c Dα f (x). 3. Mittag-Leffler Function In this section we examine the definition and properties of the Mittag-Leffler function as eigenfunctions of fractional deriva- tives ([1]). The Mittag-Leffler function plays an important role in the theory of fractional calculus. Just as the exponential func- tion naturally comes out of the solutions of classical differential equations, the Mittag-Leffler function plays an analogous role in the solution of fractional differential equations. It is thus a generalization of the exponential function. Definition 3.1. The Mittag-Leffler function is defined by: Eα(z) = ∞∑ k=0 zk Γ(αk + 1) , α > 0,α ∈ R, z ∈ C. (8) Definition 3.2. The Mittag-Leffler function can also be repre- sented in two arguments α and β as Eα,β(z) = ∞∑ k=0 zk Γ(αk + β) , α,β > 0,α,β ∈ R, z ∈ C; (9) with Eα,1 = Eα. In particular, the significance of the Mittag-Leffler function is in the fact that it serves as the eigenfunction of the Caputo and Riemann-Liouville derivatives in fractional calculus ([1]). It is easy to see that ([8], [41]) E1,1(z) = E1(z) = e z, E1,2(z) = ez − 1 z , E2,1(z 2) = cosh z, z ∈ C. E2,1(−z 2) = cos z, E2,2(z 2) = sinh z z , E2,2(−z 2) = sin z z , z ∈ C. Corollary 3.1. For α,β ∈ R, z ∈ C and m ∈ N, the following recurrence relations hold for the Mittag-Leffler function ([41]) : (a) Eα,β(z) = zEα,α+β(z) + 1 Γ(β) (b) Eα,β(z) = βEα,β+1(z) + αz d dz Eα,β(z) = βEα,β+1(z) (c) ( d dz )m [zβ−1 Eα,β(zα)] = zβ−m−1 Eα,β−m(zα). 4. Fractional Lane-Emden Equations and Their Approxi- mate Solutions In this section, we apply the Mittag-Leffler function dis- cussed in Section 3 to obtain approximate solutions to the frac- tional Lane-Emden initial value problem c Dαy(x) + ω xα−β c Dβy(x) + f (y(x)) = 0 y(0) = A, y′(0) = 0, A ∈ [0, 1], (10) with 0 < x ≤ 1, 0 < β ≤ 1, 1 < α ≤ 2, ω ∈ R. Here c Dµ denotes the Caputo fractional differential operator of order µ, µ > 0. The resulting solution is given as the Mittag-Leffler function. The function f (y(x)) will be chosen in such a way that it can be expanded in a power series, in particular, the Maclaurin series. Towards this end, let the function f (y(x)) be given by the power series f (y(x)) = ∞∑ m=0 amy m(x), (11) where am, m = 0, 1, 2, 3, . . . , are the expansion coefficients (constants). For computation reasons, one is interested in the approximation fN (y(x)) = N∑ m=0 amy m(x), aN , 0. (12) We proceed by giving the following result that will be needed in the sequel. Proposition 4.1. For 1 < α ≤ 2, 0 < x ≤ 1, the function fN (y(x)) admits the power series expansion FαN (x) := fN (y(x)) = ∞∑ `=0 Cα`,N x α`, N ∈ N0, (13) where the constants Cα `,N are given by Cα`,N = N∑ m=0 amB α,N `,m . (14) Here the numbers Bα,N `,m , m = 3, 4, 5, . . . are given by the finite series Bα,N `,m = ∑̀ pm−1 =0 pm−1∑ pm−2 =0 · · · p2∑ p1 =0 Aα`−pm−1,N A α pm−1−pm−2,N · · ·Aαp1,N, (15) with the Mittag-Leffler expansion coefficients given by Aα`,N = b`N Γ(α` + 1) , b`N are constants. (16) In particular, the special cases Bα,N `,m , m = 0, 1, 2, are given re- spectively by Bα,N `,0 =  1, ` = 0, 0, ` = 1, 2, · · · , Bα,N `,1 = A α `,N, B α,N `,2 = ∑̀ p1 =0 bp1N b `−p1 N Γ(αp1 + 1)Γ(α` −αp1 + 1) . (17) 267 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 268 Proof. By definition, we use the Mittag-Leffler function y(x) = Eα(bN x α) = ∞∑ k=0 bkN x αk Γ(αk + 1) (18) in (12) to see that FαN (x) := fN (y(x)) = N∑ m=0 am  ∞∑ k=0 bkN x αk Γ(αk + 1) m = N∑ m=0 amS α m,N (x), (19) where we have written (m ≥ 1) Sα0,N = 1, S α m,N (x) := y m(x) =  ∞∑ k=0 bkN x αk Γ(αk + 1) m . (20) Let Aαk,N be given by Aαk,N = bkN Γ(αk + 1) . (21) Then clearly, Sα1,N (x) = ∞∑ `=0 Aα`,N x α` = ∞∑ `=0 Bα,N `,1 x α`. (22) Furthermore, the classical Cauchy product tells us that Sα2,N (x) =  ∞∑ k=0 Aαk,N x αk 2 = ∞∑ m=0 Aαm,N x αm ∞∑ n=0 Aαn,N x αn = ∞∑ `=0 Bα,N `,2 x α`, (23) where Bα,N `,2 = ∑̀ p1 =0 Aαp1,N A α `−p1,N . (24) Also, in a similar way, we see that Sα3,N (x) =  ∞∑ k=0 Aαk,N x αk 3 =  ∞∑ k=0 Aαk,N x αk 2 ∞∑ n=0 Aαn,N x αn. (25) That is, one has Sα3,N (x) = S α 2,N (x)S α 1,N (x) =  ∞∑ m=0 Bα,Nm,2 x αm   ∞∑ m=0 Bα,Nn,1 x αn  = ∞∑ `=0 Bα,N `,3 x α`, (26) where Bα,N `,3 = ∑̀ p2 =0 Bα,Np2,2B α,N `−p2,1 = ∑̀ p2 =0 p2∑ p1 =0 Aαp1,N A α p2−p1,N Aα`−p2,N. (27) Similarly, by taking more products, we see that Sα4,N (x) =  ∞∑ k=0 Aαk,N x αk 4 =Sα3,N (x)S α 1,N (x) =  ∞∑ m=0 Bα,Nm,3 x αm   ∞∑ n=0 Bα,Nn,1 x αn  = ∞∑ `=0 ∑̀ p3 =0 Bα,Np3,3B α,N `−p3,1 xα` = ∞∑ `=0 Bα,N `,4 x α`, (28) where Bα,N `,4 = ∑̀ p3 =0 p3∑ p2 =0 p2∑ p1 =0 Aαp1,N A α p2−p1,N Aαp3−p2,N A α `−p3,N . (29) Continuing in this way, we obtain Sαm,N (x) =S α m−1,N (x)S α 1,N (x) =  ∞∑ k=0 Bα,Nk,m−1 x αk   ∞∑ n=0 Bα,Nn,1 x αn  = ∞∑ `=0 ∑̀ pm−1 =0 Bα,Npm−1,m−1B α,N `−pm−1,1 xα` = ∞∑ `=0 Bα,N `,m x α`, (30) where (m = 3, 4, 5, . . . ) Bα,N `,m = ∑̀ pm−1 =0 pm−1∑ pm−2 =0 · · · p2∑ p1 =0 Aα`−pm−1,N A α pm−1−pm−2,N · · ·Aαp1,N. (31) Upon inserting (30) – (31) into (19), one gets FαN (x) = N∑ m=0 am ∞∑ `=0 Bα,N `,m x α` = ∞∑ `=0 Cα`,N x α`, (32) where Cα`,N = N∑ m=0 amB α,N `,m (33) and we obtain the result as required. With the Proposition 4.1 in place we now present the main result of this paper. Theorem 4.1. For 0 < x ≤ 1, 0 < β ≤ 1, 1 < α ≤ 2, ω ∈ R, N ∈ N0; the fractional initial value problem c Dαy(x) + ω xα−β c Dβy(x) + N∑ m=0 amy m(x) = 0 y(0) = A, y′(0) = 0, A ∈ [0, 1], (34) 268 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 269 admits a series solution given by the Mittag-Leffler function y(x) = ∞∑ `=0 B`N (α,β; ω) Γ(α` + 1) xα`, (35) where B 0 N (α,β; ω) := b 0 N = A, (36) B `+1 N (α,β; ω) := b `+1 N = − Γ(α` + 1)Γ(α(` + 1) −β + 1)Cα `,N Γ(α(` + 1) −β + 1) + ωΓ(α` + 1) , ` ≥ 0. (37) The coefficients Cα `,N, ` ≥ 0, are as given in Proposition 4.1. Proof. The starting point is to substitute the Mittag-Leffler func- tion (18) in the equation (34) to evaluate the Caputo fractional derivatives c Dαy(x) and xβ−α c Dβy(x). Towards this end, using Corollary 2.1, we have that c Dαy(x) = ∞∑ k=0 bkN Γ(αk + 1) c Dαxαk = ∞∑ k=1 bkN Γ(αk + 1 −α) xαk−α = ∞∑ k=0 bk+1N Γ(αk + 1) xαk (38) and similarly one sees that xβ−α c Dβy(x) =xβ−α ∞∑ k=0 bkN Γ(αk + 1) c Dβxαk = ∞∑ k=0 bk+1N Γ(αk + α + 1 −β) xαk. (39) Substituting the series (38), (39) in (34) and then applying Propo- sition 4.1 gives ∞∑ `=0 b`+1N Γ(α` + 1) xα` + ∞∑ `=0 ωb`+1N Γ(α(` + 1) −β + 1) xα` + ∞∑ `=0 Cα`,N x α` = 0, (40) which implies that ∞∑ `=0  b`+1N Γ(α` + 1) + ωb`+1N Γ(α(` + 1) −β + 1) + Cα`,N  xα` = 0. (41) Comparing the coefficients of xα`, ` = 0, 1, 2, · · · on both sides of (41) gives b`+1N ( 1 Γ(α` + 1) + ω Γ(α(` + 1) −β + 1) ) = −Cα`,N and as a result, b`+1N = − Γ(α` + 1)Γ(α(` + 1) −β + 1)Cα `,N Γ(α(` + 1) −β + 1) + ωΓ(α` + 1) , (42) where the coefficients Cα `,N are as given in Proposition 4.1. Remark 4.1. For computation purposes, in addition to the first two coefficients Bα,N `,m , m = 1, 2, given in Propostion 4.1, we present explicitly the coefficients Bα,N `,m , 3 ≤ m ≤ 20: Bα,N `,3 = ∑̀ p2 =0 p2∑ p1 =0 bp1N b p2−p1 N b `−p2 N Γ(αp1 + 1)Γ(αp2 −αp1 + 1)Γ(α` −αp2 + 1) Bα,N `,4 = ∑̀ p3 =0 p3∑ p2 =0 p2∑ p1 =0 bp1N b p2−p1 N b p3−p2 N b `−p3 N Γ(αp1 + 1)Γ(αp2 −αp1 + 1)Γ(αp3 −αp2 + 1)Γ(α` −αp3 + 1) ... Bα,N `,10 = ∑̀ p9 =0 p9∑ p8 =0 · · · p2∑ p1 =0 b`−p9N b p9−p8 N · · ·b p1 N Γ(α` −αp9 + 1)Γ(αp9 −αp8 + 1) · · ·Γ(αp1 + 1) ... Bα,N `,20 = ∑̀ p19 =0 p19∑ p18 =0 · · · p2∑ p1 =0 b`−p19N b p19−p18 N · · ·b p1 N Γ(α` −αp19 + 1)Γ(αp19 −αp18 + 1) · · ·Γ(αp1 + 1) . (43) One sees that the fractional differential equation under con- sideration now takes the interesting form c Dαy(x) + ω xα−β c Dβy(x) + a0 + a1y(x) + a2y 2(x) + · · · + aN y N (x) = 0, (44) which clearly is a generalization of the fractional Lane-Emden equation c Dαy(x) + ω xα−β c Dβy(x) + ym(x) = 0, (45) in the sense that the new function f (y(x)) is a linear combination of the classical polytropic term ym(x), 0 ≤ m ≤ N. Equation (45) is the one considered in [28, Subsection 5.2.2] using the power series method. To make our calculations explicit and computationally in- teresting we consider those elementary functions whose expan- sion coefficients are explicitly known. Such elementary func- tions to be examined with their explicit associated expansion coefficients am, m = 0, 1, 2, 3, . . . , are the trigonometric, hyper- bolic and exponential functions. These functions are enumer- ated as follows. (a) f (y(x)) = sin y(x), a2m = 0, a2m+1 = (−1)m/(2m + 1)!; (b) f (y(x)) = cos y(x), a2m+1 = 0, a2m = (−1)m/(2m)!; (c) f (y(x)) = sinh y(x), a2m = 0, a2m+1 = 1/(2m + 1)!; 269 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 270 (d) f (y(x)) = cosh y(x), a2m+1 = 0, a2m = 1/(2m)!; (e) f (y(x)) = e±y(x), am = (±1)m/m!. For extensive discussions of models involving these functions as well as the physical interpretations of the solutions, see [12], [13], [42]. We proceed with the computation of the approximate solu- tion of the problem (10) according to whether the functions f (y) are trigonometric, hyperbolic or exponential functions. 4.1. Lane-Emden Equation Involving Trigonometric Functions In this subsection, we treat the equation (10) as well as (34) for which the functions f (y(x)) are trigonometric func- tions, namely, the sine function and cosine function. The Maclau- rin series representations for these trigonometric functions are employed. 4.1.1. The Special Case f (y(x)) = sin y(x) In this case the fractional initial value problem (10) reduces to a special one c Dαy(x) + ω xα−β c Dβy(x) + sin y(x) = 0, y(0) = 1, y′(0) = 0. (46) In solving the initial value problem (46), we consider the series expansion of sin y(x), namely, sin y(x) = N∑ m=0 a2m+1y 2m+1(x), a2m+1 = (−1)m (2m + 1)! , 0 ≤ m ≤ N, N ∈ N0. (47) In this case the problem (34) becomes c Dαy(x) + ω xα−β c Dβy(x) + N∑ m=0 (−1)m y2m+1(x) (2m + 1)! = 0 y(0) = 1, y′(0) = 0. (48) By Theorem 4.1, the analytical solution of the reduced frac- tional problem (48) is then given by the Mittag-Leffler function expansion y(x) = ∞∑ `=0 B`N (α,β; ω) Γ(α` + 1) xα`, (49) where the associated expansion coefficients are given explicitly by B 0 N (α,β; ω) := b 0 N = 1, (50) B `+1 N (α,β; ω) := b `+1 N = − Γ(α` + 1)Γ(α(` + 1) −β + 1)Cα `,N Γ(α(` + 1) −β + 1) + ωΓ(α` + 1) , ` ≥ 0. (51) The coefficients Cα `,N, ` ≥ 0, appearing in (51) take the formu- lation Cα`,N = N∑ m=0 (−1)m (2m + 1)! Bα,N `,2m+1. (52) In order to see explicitly the values of the coefficients Cα `,N , we consider the first values N ∈ N0 and this is presented as follows. (a) N = 0. In this case, equation (48) reduces to the initial value problem c Dαy(x) + ω xα−β c Dβy(x) + y(x) = 0, y(0) = 1, y′(0) = 0. (53) It follows from Theorem 4.1 that the solution of the initial value problem (53) is given by the Mittag-Leffler expansion y(x) = ∞∑ `=0 B`0(α,β; ω) Γ(α` + 1) xα`, (54) where the expansion coefficients B`0 admit the explicit for- mulation (` ≥ 0) B 0 0(α,β; ω) = 1, B `+1 0 (α,β; ω) = − Γ(α` + 1)Γ(α(` + 1) −β + 1)Cα `,0 Γ(α(` + 1) −β + 1) + ωΓ(α` + 1) , (55) with the numbers Cα `,0, ` ≥ 1, given by Cα`,0 = B α,0 `,1 = A α `,0 = b`0 Γ(α` + 1) . (56) For further explicit calculations we proceed by assigning special values to the parameters α,β and ω and this is done in the following way as examples. Example 4.1. Setting α = 2,β = 1,ω = 2, we see in this case that equation (53) reduces to the initial value problem y′′ + 2 x y′ + y = 0, y(0) = 1, y′(0) = 0. (57) It is seen from the series (54) that the solution of the initial value problem (57) takes the formulation y(x) = ∞∑ `=0 B`0(2, 1; 2) Γ(2` + 1) x2`, (58) where the expansion coefficients B`0 = B ` 0(2, 1; 2) admit the explicit formulation (` = 0, 1, 2, . . . ) B 0 0(2, 1; 2) = 1, B `+1 0 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,0 Γ(2` + 2) + 2Γ(2` + 1) , (59) 270 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 271 and C2`,0 = B 2,0 `,1 = A 2 `,0 = b`0 Γ(2` + 1) , ` = 0, 1, 2, . . . . (60) Clearly, the first Mittag-Leffler expansion coefficients B`0(2, 1; 2), ` = 1, 2, 3, 4 yield the following values. B 1 0(2, 1; 2) = − C 2 0,0 · 1 3 = −b00 · 1 3 = − 1 3 B 2 0(2, 1; 2) = − C 2 1,0 · 6 5 = − B10 2! · 6 5 = 1 6 · 6 5 = 1 5 B 3 0(2, 1; 2) = − C 2 2,0 · 5! 7 = − B20 4! · 5! 7 = − 1 5! · 5! 7 = − 1 7 B 4 0(2, 1; 2) = − C 2 3,0 · 560 = − B30 6! · 560 = 1 7! · 560 = 1 9 . (61) Substituting these coefficients into (58) gives the solution of the initial value problem (57): y(x) = 1 − 1 3! x2 + 1 5! x4 − 1 7! x6 + 1 9! x8 + · · · = sin x x . (62) Example 4.2. Indeed if we set α = 3/2,β = 1/2,ω = 2, then one sees that equation (53) becomes the initial value problem c D 3 2 y(x) + 2 x c D 1 2 y(x) + y(x) = 0, y(0) = 1, y′(0) = 0. (63) One clearly sees from the series (54) that the solution of the initial value problem (63) gives y(x) = ∞∑ `=0 B`0 ( 3 2 , 1 2 ; 2 ) Γ ( 3` 2 + 1 ) x 3`2 , (64) where the expansion coefficients B`0 = B ` 0 ( 3 2 , 1 2 ; 2 ) admit the Gamma function representation B 0 0 ( 3 2 , 1 2 ; 2 ) = 1, B `+1 0 ( 3 2 , 1 2 ; 2 ) = − Γ( 32 ` + 1)Γ( 3 2 ` + 2)C 3 2 `,0 Γ( 32 ` + 2) + 2Γ( 3 2 ` + 1) , ` ≥ 0, (65) and C 3 2 `,0 = B 3 2 ,0 `,1 = B 3 2 ,0 `,1 = b`0 Γ ( 3 2 ` + 1 ), ` = 0, 1, 2, . . . . (66) The first Mittag-Leffler expansion coefficients B`0 ( 3 2 , 1 2 ; 2 ) , ` = 1, 2, 3, 4, 5, 6, are computed as follows: B 1 0 ( 3 2 , 1 2 ; 2 ) = − C 3 2 0,0 · 1 3 = −b00 · 1 3 = − 1 3 B 2 0 ( 3 2 , 1 2 ; 2 ) = − C 3 2 1,0 · Γ( 52 ) · Γ( 7 2 ) Γ( 72 ) + 2Γ( 5 2 ) = − B10 Γ( 52 ) 5 √ π 12 = 5 27 B 3 0 ( 3 2 , 1 2 ; 2 ) = − C 3 2 2,0 · Γ(4) · Γ(5) Γ(5) + 2Γ(4) = − B20 Γ(4) · (4) = − 10 81 B 4 0 ( 3 2 , 1 2 ; 2 ) = − C 3 2 3,0 · Γ( 112 ) · Γ( 13 2 ) Γ( 132 ) + 2Γ( 11 2 ) = − B30 Γ( 112 ) · 693 √ π 32 = 22 243 B 5 0 ( 3 2 , 1 2 ; 2 ) = − C 3 2 4,0 · Γ(7) · Γ(8) Γ(8) + 2Γ(7) = − B40 Γ(7) · (560) = − 154 2187 B 6 0 ( 3 2 , 1 2 ; 2 ) = − C 3 2 5,0 · Γ ( 17 2 ) · Γ( 192 ) Γ( 192 ) + 2Γ( 17 2 ) = − B50 Γ ( 17 2 ) · 1640925√π 256 = 374 6561 . (67) Upon substituting these coefficients into (64) yields the so- lution y(x) = 1 − 4x 3 2 9 √ π + 5x3 162 − 64x9/2 15309 √ π + 11x6 87480 − 512x15/2 57572775 √ π + 187x9 1190427840 + · · · . (68) (b) N = 1. Indeed it is understood here that equation (48) reduces to the initial value problem c Dαy(x) + ω xα−β c Dβy(x) + y(x) − y3(x) 3! = 0, y(0) = 1, y′(0) = 0. (69) It is also seen here that the solution of the fractional prob- lem (69) gives y(x) = ∞∑ `=0 B`1(α,β; ω) Γ(α` + 1) xα`, (70) with the expansion coefficients B`1 = B ` 1(α,β; ω) (` ≥ 0) given by B 0 1(α,β; ω) = 1, B `+1 1 (α,β; ω) = − Γ(α` + 1)Γ(α(` + 1) −β + 1)Cα `,1 Γ(α(` + 1) −β + 1) + ωΓ(α` + 1) . (71) Here the coefficients Cα `,1, ` ≥ 0, on the right of (71) are given by Cα`,1 = B α,1 `,1 − 1 3! Bα,1 `,3 , (72) 271 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 272 where the numbers Bα,N `,m , m = 1, 3, are as illustrated in (16) and (27) respectively. Example 4.3. In this case, another special Lane-Emden equation can be obtained by setting α = 2,β = 1, ω = 2; and as a result, equation (69) reduces to y′′ + 2 x y′ + y − y3 3! = 0, y(0) = 1, y′(0) = 0, (73) whose solution admits the series representation y(x) = ∞∑ `=0 B`1(2, 1; 2) Γ(2` + 1) x2`. (74) From equations (71) and (72), we respectively have B 0 1(2, 1; 2) = 1, B `+1 1 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,1 Γ(2` + 2) + 2Γ(2` + 1) , ` ≥ 0; (75) and C2`,1 = b`1 Γ(2` + 1) − 1 6 ∑̀ p2 =0 p2∑ p1 =0 bp11 b p2−p1 1 b `−p2 1 Γ(2p1 + 1)Γ(2p2 − 2 p1 + 1)Γ(2` − 2p2 + 1)  . (76) It is straightforward to see that the first Mittag-Leffler ex- pansion coefficients B`1(2, 1; 2), ` = 1, 2, 3, 4, 5, 6, are cal- culated as follows. B 1 1(2, 1; 2) = −C 2 0,1 · 1 3 = − 5b01 6 · 1 3 = − 5 6 · 1 3 = − 5 18 B 2 1(2, 1; 2) = −C 2 1,1 · 6 5 = − B11 3 · 6 5 = 5 54 · 6 5 = 1 9 B 3 1(2, 1; 2) = −C 2 2,1 · 5! 7 = − B2136 − B 1 1B 1 1 4  · 1207 = 1 7776 · 120 7 = 5 2268 B 4 1(2, 1; 2) = −C 2 3,1 · 560 = −  B311080 − B 1 1B 2 1 144  · 560 = − 53 244944 · 560 = − 265 2187 B 5 1(2, 1; 2) = −C 2 4,1 · 362880 11 = −  B4160480 − B 1 1B 3 1 4320 − B21B 2 1 3456  · 36288011 = 287516038 B 6 1(2, 1; 2) = −C 2 5,1 · 39916800 13 = −  B515443200 − B 1 1B 4 1 241920 − B21B 3 1 51840  · 3991680013 = 2905085293. (77) Upon inserting the first coefficients (77) in (74) gives the solution y(x) =1 − 5 18 · 1 2! x2 + 1 9 · 1 4! x4 + 5 2268 · 1 6! x6 − 265 2187 · 1 8! x8 + 2875 16038 · 1 10! x10 + 29050 85293 · 1 12! x12 · · · =1 − 0.138889x2 + 0.00347222x4 + 0.0000030619x6 − 0.0000030052x8 + 0.0000000494x10 + 0.0000000007x12 + · · · (78) (c) N = 2. Another approximate solution of the problem(46) can be obtained in this case in view of the reduced problem (48): c Dαy(x) + ω xα−β c Dβy(x) + y(x) − y3(x) 3! + y5(x) 5! = 0, y(0) = 1, y′(0) = 0. (79) Example 4.4. Similarly, in this case of N = 2, we spe- cialise to the values α = 2,β = 1, ω = 2; to see that equation (79) becomes y′′ + 2 x y′ + y− y3 3! + y5 5! = 0, y(0) = 1, y′(0) = 0.(80) Clearly, the solution of the problem (80) takes the series formula y(x) = ∞∑ `=0 B`2(2, 1; 2) Γ(2` + 1) x2`, (81) with the coefficients described as follows: B 0 2(2, 1; 2) = 1, B `+1 2 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,2 Γ(2` + 2) + 2Γ(2` + 1) , C2`,2 = a1B 2,2 `,1 + a3B 2,2 `,3 + a5B 2,2 `,5 = B 2,2 `,1 − 1 3! B2,2 `,3 + 1 5! B2,2 `,5. (82) Here, one clearly understands that B2,2 `,1 = b`2 Γ(2` + 1) , B2,2 `,3 = ∑̀ p2 =0 p2∑ p1 =0 bp12 b p2−p1 2 b `−p2 2 Γ(2p1 + 1)Γ(2p2 − 2p1 + 1)Γ(2` − 2 p2 + 1) B2,2 `,5 = ∑̀ p4 =0 p4∑ p3 =0 p3∑ p2 =0 p2∑ p1 =0 bp12 b p2−p1 2 b p3−p2 2 b p4−p3 2 b `−p4 2 b ` 2[Γ(2` − 2p4 + 1)] −1 Γ(2p1 + 1)Γ(2p2 − 2p1 + 1)Γ(2 p3 − 2p2 + 1)Γ(2p4 − 2 p3 + 1) . (83) 272 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 273 As a result, the first Mittag-Leffler expansion coefficients B`3(2, 1; 2), ` = 1, 2, 3, 4, are computed as follows. B 1 2(2, 1; 2) = − C 2 0,2 · 1 3 = − 101 120 · 1 3 = − 101 360 B 2 2(2, 1; 2) = − C 2 1,2 · 6 5 = − 41B12 120 · 6 5 = 4141 36000 B 3 2(2, 1; 2) = − C 2 2,2 · 5! 7 = −  41B221440 − 19B 1 2B 1 2 480  · 5!7 = 49591 18144000 B 4 2(2, 1; 2) = − C 2 3,2 · (560) = −  41B3243200 − 19B 1 2B 2 2 2880  · 560 = − 16891139139968000 B 5 2(2, 1; 2) = − C 2 4,2 · 362880 11 = −  41B422419200 − 19B 1 2B 3 2 86400 − 19B22B 2 2 69120  · 36288011 = 93349921751 513216000000 . (84) Upon substituting these coefficients into the series formula (81) gives the solution y(x) =1 − 101 360 · 1 2! x2 + 4141 36000 · 1 4! x4 + 49591 18144000 · 1 6! x6 − 16891139 139968000 · 1 8! x8 + 93349921751 513216000000 · 1 10! x10 + · · · =1 − 0.14027778x2 + 0.00479282x4 + 0.000003796x6 + 0.000002993x8 + 0.0000000501x10 + · · · (85) 4.1.2. The Special Case f (y(x)) = cos y(x) It is seen here that the fractional Lane-Emden equation un- der consideration is c Dαy(x) + ω xα−β c Dβy(x) + cos y(x) = 0, y(0) = 1, y′(0) = 0. (86) Finding the approximate solution of the initial value prob- lem (86) amounts to solving the problem c Dαy(x) + ω xα−β c Dβy(x) + N∑ m=0 (−1)m (2m)! y2m(x) = 0, y(0) = 1, y′(0) = 0, (87) where we have used the truncated power series cos y(x) = N∑ m=0 a2my 2m(x) = N∑ m=0 (−1)m (2m)! y2m(x), N ∈ N0. (88) Theorem 4.1 tells us that the analytical solution of the initial value problem (87) admits the series solution y(x) = ∞∑ `=0 B`N (α,β; ω) Γ(α` + 1) xα`, (89) where we have B 0 N (α,β; ω) := b 0 N = 1, (90) B `+1 N (α,β; ω) := b `+1 N = − Γ(α` + 1)Γ(α(` + 1) −β + 1)Cα `,N Γ(α(` + 1) −β + 1) + ωΓ(α` + 1) , ` ≥ 0. (91) with Cα`,N = N∑ m=0 (−1)m (2m)! Bα,N `,2m. (92) We now proceed to the explicit computation of the first ex- pansion coefficients B`N (α,β; ω). This is carried out by first con- sidering the first values of N ∈ N0. (a) N = 0. In this case, equation (86) reduces to the initial value problem c Dαy(x) + ω xα−β c Dβy(x) + 1 = 0, y(0) = 1, y′(0) = 0. (93) One sees from (89) that the solution of the initial value problem (93) is given by y(x) = ∞∑ `=0 B`0(α,β; ω) Γ(α` + 1) xα`, (94) where (` ≥ 0) B 0 0(α,β; ω) = 1, B `+1 0 (α,β; ω) = − Γ(α` + 1)Γ(α(` + 1) −β + 1)Cα `,0 Γ(α(` + 1) −β + 1) + ωΓ(α` + 1) , (95) with the numbers Cα `,0, ` ≥ 0, given by Cα`,0 = a0B α,0 `,0 = B α,0 `,0 = δ`0. (96) Example 4.5. With the special values α = 2,β = 1 and ω = 2, we obtain a special case of the standard Lane-Emden equation y′′ + 2 x y′ + 1 = 0, y(0) = 1, y′(0) = 0, (97) whose solution is of the form y(x) = ∞∑ `=0 B`0(2, 1; 2) Γ(2` + 1) x2`. (98) Here we have B 0 0(2, 1; 2) = 1, B `+1 0 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,0 Γ(2` + 2) + 2Γ(2` + 1) , ` ≥ 0, (99) 273 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 274 with C2 `,0 = δ`0. Interestingly one has the formula B 1 0(2, 1; 2) =  − 1 3 , ` = 0, 0, ` = 1, 2, · · · , (100) and as a result we obtain the closed form solution y(x) = 1 − 1 6 x2. (101) (b) N = 1. In this case, equation (87) reduces to the initial value problem c Dαy(x) + ω xα−β c Dβy(x) + 1 − y2 2! = 0, y(0) = 1, y′(0) = 0. (102) Example 4.6. Considering the the special values α = 2,β = 1 and ω = 2; equation (102) becomes the initial value prob- lem y′′ + 2 x y′ + 1 − y2 2! = 0, y(0) = 1, y′(0) = 0, (103) with the solution y(x) = ∞∑ `=0 B`1(2, 1; 2) Γ(2` + 1) x2`. (104) It follows that B 0 1(2, 1; 2) = 1, B `+1 1 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,1 Γ(2` + 2) + 2Γ(2` + 1) , ` ≥ 0 (105) with C2`,1 =a0B 2,1 `,0 + a2B 2,1 `,2 =δ`0 − 1 2 ∑̀ p1 =0 bp11 b `−p1 1 Γ(2p1 + 1)Γ(2`− 2 p1 + 1) . Consequently, the first Mittag-Leffler expansion coefficients B`1(2, 1; 2), ` = 1, 2, 3, 4, 5, are now computed as follows. B 1 1(2, 1; 2) = − C 2 0,1 · 1 3 = − B01 2 · 1 3 = − 1 6 B 2 1(2, 1; 2) = − C 2 1,1 · 6 5 = B11 2 · 6 5 = − 1 10 B 3 1(2, 1; 2) = − C 2 2,1 · 5! 7 = B2124 + B 1 1B 1 1 8  · 5!7 = − 184 B 4 1(2, 1; 2) = − C 2 3,1 · 560 =  B31720 + B 1 1B 2 1 48  · 560 = 527 B 5 1(2, 1; 2) = − C 2 4,1 · 362880 11 =  B4140320 + B 1 1B 3 1 1440 + B21B 2 1 1152  · 36288011 = 2960. (106) Upon using the coefficients (106), one obtains the solution y(x) =1 − 1 6 · 1 2! x2 − 1 10 · 1 4! x4 − 1 84 · 1 6! x6 + 5 27 · 1 8! x8 + 29 60 · 1 10! x10 + · · · =1 − 0.0833333x2 − 0.00416667x4 − 0.00001653x6 + 0.00000459x8 + 0.00000013x10 + · · · (107) (c) N = 2. Here, equation (87) becomes the initial value prob- lem c Dαy(x) + ω xα−β c Dβy(x) + 1 − y2 2! + y4 4! = 0, y(0) = 1, y′(0) = 0. (108) Example 4.7. Consider the problem y′′+ 2 x y′+1− y2 2! + y4 4! = 0, y(0) = 1, y′(0) = 0.(109) The solution of (109) takes the form y(x) = ∞∑ `=0 B`2(2, 1; 2) Γ(2` + 1) x2`, (110) where the coefficients B`2(2, 1; 2) are given by B 0 2(2, 1; 2) = 1, B `+1 2 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,2 Γ(2` + 2) + 2Γ(2` + 1) , (` ≥ 0) C2`,2 = a0B 2,2 `,0 + a2B 2,2 `,2 + a4B 2,2 `,4 = B 2,2 `,0 − 1 2! B2,2 `,2 + 1 4! B2,2 `,4, (111) with B2,2 `,0 = δ`0, B 2,2 `,2 = ∑̀ p1 =0 bp12 b `−p1 2 Γ(2p1 + 1)Γ(2`− 2 p1 + 1) B2,2 `,4 = ∑̀ p3 =0 p3∑ p2 =0 p2∑ p1 =0 bp12 b p2−p1 2 b p3−p2 2 b `−p3 2 Γ(2p1 + 1)Γ(2p2 − 2p1 + 1)Γ(2 p3 − 2p2 + 1)Γ(2`− 2p3 + 1) . (112) The first Mittag-Leffler expansion coefficients B`+12 (2, 1; 2), ` = 0, 1, 2, . . . are computed as follows. B 1 2(2, 1; 2) = −C 2 0,2 · 1 3 = − 1 − B022 + B 0 2 24  · 13 = −1372 B 2 2(2, 1; 2) = −C 2 1,2 · 6 5 = − −B122 + B 1 2 24  · 65 = − 1431440 274 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 275 B 3 2(2, 1; 2) = − C 2 2,2 · 5! 7 =  11B22288 + 11B 1 2B 1 2 96  · 1207 = − 143 145152 B 4 2(2, 1; 2) = − C 2 3,2 · 560 =  11B328640 + 11B 1 2B 2 2 576  · 560 = 26741 139968 B 5 2(2, 1; 2) = − C 2 4,2 · 362880 11 =  11B42483840 + 11B 1 2B 3 2 17280 + 11B22B 2 2 1152  · 36288011 = 6059911 14929920 . (113) Upon substituting these coefficients in (110) yields the se- ries solution y(x) =1 − 13 72 · 1 2! x2 − 143 1440 · 1 4! x4 − 143 145152 · 1 6! x6 + 26741 139968 · 1 8! x8 + 6059911 14929920 · 1 10! x10 + · · · =1 − 0.09027778x2 − 0.00413773x4 − 0.00000137x6 + 0.000004738x8 + 0.000000112x10 + · · · . (114) 4.2. Lane-Emden Equation Involving Hyperbolic Functions This subsection discusses the approximate solution of the initial value problems (10) and (34) for which the functions f (y(x)) are the hyperbolic sine function and the hyperbolic co- sine function. We also make use of the Maclaurin series repre- sentations for these hyperbolic functions. 4.2.1. The Special Case f (y(x)) = sinh y(x) We consider the fractional Lane-Emden initial value prob- lem c Dαy(x) + ω xα−β c Dβy(x) + sinh y(x) = 0, y(0) = 1, y′(0) = 0. (115) In solving the initial value problem (115), we are interested in the series expansion of sinh y(x), namely (0 ≤ m ≤ N, N ∈ N0), sinh y(x) = N∑ m=0 a2m+1y 2m+1(x), a2m+1 = 1 (2m + 1)! , (116) so that finding the approximate solution of the problem (115) amounts to solving the corresponding problem c Dαy(x) + ω xα−β c Dβy(x) + N∑ m=0 1 (2m + 1)! y2m+1(x) = 0, y(0) = 1, y′(0) = 0. (117) We proceed to obtaining the solutions of the initial value problem (117) for the first values of N ∈ N. (a) N = 0. Clearly, in this case a1 = 1 and as a result the resulting initial value problem coincides with the problem in (53). (b) N = 1. Here, we have from (117) the problem c Dαy(x) + ω xα−β c Dβy(x) + y(x) + y3(x) 3! = 0, y(0) = 1, y′(0) = 0. (118) Example 4.8. Consider the initial value problem y′′ + 2 x y′ + y + y3 3! = 0, y(0) = 1, y′(0) = 0 (119) Clearly the expansion coefficients appearing in the series solution of (119) are given by B 0 1(2, 1; 2) = 1, B `+1 1 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,1 Γ(2` + 2) + 2Γ(2` + 1) , ` ≥ 0. (120) with C2`,1 = a1B 2,1 `,1 + a3B 2,1 `,3 = b`1 Γ(2` + 1) + 1 6 ∑̀ p2 =0 p2∑ p1 =0 bp11 b p2−p1 1 b `−p2 1 Γ(2p1 + 1)Γ(2p2 − 2 p1 + 1)Γ(2` − 2p2 + 1)  . (121) The first Mittag-Leffler expansion coefficients B`1(2, 1; 2), ` = 0, 1, 2, 3, 4, 5, are presented as follows. B 1 1(2, 1; 2) = −C 2 0,1 · 1 3 = − 7B01 6 · 1 3 = − 7 18 B 2 1(2, 1; 2) = −C 2 1,1 · 6 5 = − 2B11 3 · 6 5 = 14 45 B 3 1(2, 1; 2) = −C 2 2,1 · 5! 7 = − B2118 − B 1 1B 1 1 24  · 1207 = −131324 B 4 1(2, 1; 2) = −C 2 3,1 · 560 = −  B31540 + B 1 1B 2 1 144  · 560 = 19462187 B 5 1(2, 1; 2) = −C 2 4,1 · 362880 11 = −  B4130240 + B 1 1B 3 1 4320 + B21B 2 1 3456  · 36288011 = −24821380190 (122) Upon substituting the first coefficients (122) we obtain the 275 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 276 solution y(x) = ∞∑ `=0 B`1(2, 1; 2) Γ(2` + 1) x2` =1 − 7 18 · 1 2! x2 + 14 45 · 1 4! x4 − 131 324 · 1 6! x6 + 1946 2187 · 1 8! x8 − 248213 80190 · 1 10! x10 + · · · =1 − 0.19444444x2 + 0.01296296x4 − 0.00056156x6 + 0.000022069x8 − 0.000000853x10 + · · · . (123) (c) N = 2. Indeed it is easy to understand here that from (117) one obtains the initial value problem c Dαy(x) + ω xα−β c Dβy(x) + y(x) + y3(x) 3! + y5(x) 5! = 0, y(0) = 1, y′(0) = 0. (124) Example 4.9. Given the problem y′′+ 2 x y′+y+ y3 3! + y5 5! = 0, y(0) = 1, y′(0) = 0.(125) Clearly, the expansion coefficients of the series solution of (125) are B 0 2(2, 1; 2) = 1, B `+1 2 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,2 Γ(2` + 2) + 2Γ(2` + 1) , C2`,2 = a1B 2,2 `,1 + a3B 2,2 `,3 + a5B 2,2 `,5 = B 2,2 `,1 + 1 3! B2,2 `,3 + 1 5! B2,2 `,5, (126) where B2,2 `,1 = b`2 Γ(2` + 1) , B2,2 `,3 = ∑̀ p2 =0 p2∑ p1 =0 bp12 b p2−p1 2 b `−p2 2 Γ(2p1 + 1)Γ(2p2 − 2 p1 + 1)Γ(2` − 2p2 + 1) B2,2 `,5 = ∑̀ p4 =0 p4∑ p3 =0 p3∑ p2 =0 p2∑ p1 =0 bp12 b p2−p1 2 b p3−p2 2 b p4−p3 2 b `−p4 2 [Γ(2` − 2 p4 + 1)] −1 Γ(2p1 + 1)Γ(2p2 − 2 p1 + 1)Γ(2p3 − 2p2 + 1)Γ(2p4 − 2p3 + 1) . (127) The first expansion coefficients B`1(2, 1; 2), ` = 1, 2, 3, 4, 5 are computed as follows. B 1 2(2, 1; 2) = −C 2 0,2 · 1 3 = − 47b02 40 · 1 3 = − 47 120 B 2 2(2, 1; 2) = −C 2 1,2 · 6 5 = − 27B12 3 · 6 5 = 1269 4000 B 3 2(2, 1; 2) = −C 2 2,2 · 5! 7 = −  9B22160 − 7B 1 2B 1 2 160  · 1207 = − 282893 672000 B 4 2(2, 1; 2) = −C 2 3,2 · 560 = −  3B321600 + 7B 1 2B 2 2 960  · 560 = 4747 5000 B 5 2(2, 1; 2) = −C 2 4,2 · 362880 11 = −  3B4289600 + 7B 1 2B 3 2 28800 + 7B22B 2 2 23040  · 36288011 = −2379140611704000000 (128) Upon inserting the first coefficients into the series solution one obtains y(x) = ∞∑ `=0 B`2(2, 1; 2) Γ(2` + 1) x2` = 1− 47 120 · 1 2! x2 + 1269 4000 · 1 4! x4− 282893 672000 · 1 6! x6 + 4747 5000 · 1 8! x8 − 2379140611 704000000 · 1 10! x10 + · · · = 1 − 0.19583333x2 + 0.01321875x4 − 0.00058468x6 + 0.000023547x8 − 0.000000931x10 + · · · . (129) 4.2.2. The Special Case f (y(x)) = cosh y(x) We consider the fractional Lane-Emden equation c Dαy(x) + ω xα−β c Dβy(x) + cosh y(x) = 0, y(0) = 1, y′(0) = 0. (130) In order to solve the initial value problem (130), we consider the series expansion of cosh y(x): cosh y(x) = N∑ m=0 a2my 2m(x) = N∑ m=0 y2m(x) (2m)! , 0 ≤ m ≤ N, N ∈ N0, (131) and as a result we have the associated problem c Dαy(x) + ω xα−β c Dβy(x) + N∑ m=0 y2m(x) (2m)! = 0, y(0) = 1, y′(0) = 0. (132) For N = 0, we observe that the resulting initial value prob- lem coincides with the problem in (93). 276 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 277 Example 4.10. Given the initial value problem y′′ + 2 x y′ + 1 + y2 2! = 0, y(0) = 1, y′(0) = 0. (133) It follows immediately that the solution to the problem (133) is given by y(x) =1 − 1 2 · 1 2! x2 + 3 10 · 1 4! x4 − 3 4 · 1 6! x6 + 7 3 · 1 8! x8 − 2877 220 · 1 10! x10 + · · · =1 − 0.25000000x2 + 0.01250000x4 − 0.00104167x6 + 0.00005787x8 − 0.00000360x10 + · · · (134) Example 4.11. Consider the problem y′′ + 2 x y′ + 1 + y2 2! + y4 4! = 0, y(0) = 1, y′(0) = 0. (135) One easily sees that the solution to the problem (135) gives y(x) =1 − 37 72 · 1 2! x2 + 481 1440 · 1 4! x4 − 126503 145152 · 1 6! x6 + 406445 139968 · 1 8! x8 − 256054097 14929920 · 1 10! x10 · · · =1 − 0.25694444x2 + 0.01391782x4 − 0.00121045x6 + 0.00007202x8 − 0.00000473x10 + · · · . (136) 4.3. The Case of Exponential Functions f (y) = exp(±y) In this subsection, we compute the approximate solution of the fractional Lane-Emden problem (10) as well as the initial problem (34) for which the functions f (y(x)) are exponential functions. The Maclaurin series expansion for these exponen- tial functions are applied. 4.3.1. Fractional Isothermal Gas Sphere Equation The fractional isothermal gas sphere equation is given by c Dαy(x) + ω xα−β c Dβy(x) + ey(x) = 0, y(0) = 0, y′(0) = 0. (137) Also in this case, we look for the approximate solution of the problem (137) by solving the complementary equation c Dαy(x) + ω xα−β c Dβy(x) + N∑ m=0 ym(x) m! = 0, y(0) = 0, y′(0) = 0. (138) The problem y′′ + 2 x y′ + ey = 0, y(0) = 0, y′(0) = 0 (139) models the isothermal gas spheres where the temperature re- mains constant and the index m is infinite ([42]). Example 4.12. Given the problem y′′ + 2 x y′ + 1 = 0, y(0) = 0, y′(0) = 0. (140) It is straightforward to see by the initial conditions in (140) that the expansion coefficients appearing in the series solution of (140) are given by B 0 0(2, 1; 2) = 0, B `+1 0 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,0 Γ(2` + 2) + 2Γ(2` + 1) , ` ≥ 0, (141) with C2 `,0 = δ`0. Thus one has the Mittag-Leffler expansion co- efficient B 1 0(2, 1; 2) =  − 1 3 , ` = 0, 0, ` = 1, 2, · · · . (142) Consequently we obtain the closed form solution y(x) = ∞∑ `=0 B`0(2, 1; 2) Γ(2` + 1) x2` = − 1 6 x2. (143) Example 4.13. N = 1: It is seen here that y′′ + 2 x y′ + 1 + y = 0, y(0) = 0, y′(0) = 0. (144) The coefficients of the series solution of (144) has the formula- tion B 0 1(2, 1; 2) = 0, B `+1 1 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,1 Γ(2` + 2) + 2Γ(2` + 1) , ` ≥ 0 (145) with C2`,1 = δ`0 + b`1 Γ(2` + 1) . (146) Further simplification gives the following first expansion coef- ficients B`1(2, 1; 2), ` = 1, 2, 3, 4, 5. B 1 1(2, 1; 2) = − C 2 0,1 · 1 3 = −(1 + B01) · 1 3 = − 1 3 B 2 1(2, 1; 2) = − C 2 1,1 · 6 5 = − B11 2 · 6 5 = 1 5 B 3 1(2, 1; 2) = − C 2 2,1 · 5! 7 = − B21 24 · 120 7 = − 1 7 B 4 1(2, 1; 2) = − C 2 3,1 · 560 = − B31 720 · 560 = 1 9 B 5 1(2, 1; 2) = − C 2 4,1 · 362880 11 = − B41 40320 · 362880 11 = − 1 11 (147) 277 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 278 Upon substituting we obtain the solution y(x) = ∞∑ `=0 B`1(2, 1; 2) Γ(2` + 1) x2` = − 1 3 · 1 2! x2 + 1 5 · 1 4! x4 − 1 7 · 1 6! x6 + 1 9 · 1 8! x8 − 1 11 · 1 10! x10 + · · · = − 1 3! x2 + 1 5! x4 − 1 7! x6 + 1 9! x8 − 1 11! x10 + · · · (148) Example 4.14. N = 2 : Consider the initial value problem y′′ + 2 x y′ + 1 + y + y2 2! = 0, y(0) = 0, y′(0) = 0. (149) The series solution of (149) has the following expansion coeffi- cients. B 0 2(2, 1; 2) = 0, B `+1 2 (2, 1; 2) = − Γ(2` + 1)Γ(2` + 2)C2 `,2 Γ(2` + 2) + 2Γ(2` + 1) , ` ≥ 0, (150) where C2`,2 = δ`0 + b`2 Γ(2` + 1) + 1 2 ∑̀ p1 =0 bp12 b `−p1 2 Γ(2p1 + 1)Γ(2`− 2 p1 + 1)  . (151) Simplifying further gives the following first expansion coeffi- cients B`2(2, 1; 2), ` = 0, 1, 2, . . . . B 1 2(2, 1; 2) = −C 2 0,2 · 1 3 = −1 · 1 3 = − 1 3 B 2 2(2, 1; 2) = −C 2 1,2 · 6 5 = − B12 2 · 6 5 = 1 5 B 3 2(2, 1; 2) = −C 2 2,2 · 5! 7 = − B2224 + B 1 2B 1 2 8  · 1207 = − 821 B 4 2(2, 1; 2) = −C 2 3,2 · 560 = −  B32720 + B 1 2B 2 2 48  · 560 = 2927 B 5 2(2, 1; 2) = −C 2 4,2 · 362880 11 = −  B4240320 + B 1 2B 3 2 1440 + B22B 2 2 576  · 36288011 = −403208173 . (152) As a result we obtain the solution y(x) = ∞∑ `=0 B`2(2, 1; 2) Γ(2` + 1) x2` = − 1 3 · 1 2! x2 + 1 5 · 1 4! x4− 8 21 · 1 6! x6 + 29 27 · 1 8! x8− 40320 8173 · 1 10! x10 +· · · = − 1 3! x2 + 1 5! x4 − 8 3 · 7! x6 + 29 3 · 9! x8 − 40320 743 · 11! x10 + · · · (153) 4.3.2. Richardson’s Model of Thermionic Current Here, we consider the initial value problem c Dαy(x) + ω xα−β c Dβy(x) + e−y(x) = 0, y(0) = 0, y′(0) = 0. (154) The problem (Richardson’s model of thermionic current) y′′ + 2 x y′ + e−y = 0, y(0) = 0, y′(0) = 0 (155) models the density and electric force of an electron gas in the neighbourhood of a hot body in thermal equilibrium ( [13], [42]). Clearly, for N = 0 with α = 2,β = 1 and ω = 2, (154) coincides with (140). Example 4.15. Consider the problem y′′ + 2 x y′ + 1 − y = 0, y(0) = 0, y′(0) = 0. (156) As in the preceding calculations we easily see that the initial value problem (156) has the solution y(x) = − 1 3 · 1 2! x2− 1 5 · 1 4! x4− 1 7 · 1 6! x6− 1 9 · 1 8! x8− 1 11 · 1 10! x10+· · · = − 1 3! x2 − 1 5! x4 − 1 7! x6 − 1 9! x8 − 1 11! x10 + · · · . (157) Example 4.16. N = 2 : Given the initial value problem y′′ + 2 x y′ + 1 − y + y2 2! = 0, y(0) = 0, y′(0) = 0. (158) It is also easy to show that the solution to (158) yields y(x) = − 1 3 · 1 2! x2 − 1 5 · 1 4! x4 − 8 21 · 1 6! x6 − 29 27 · 1 8! x8 − 40320 8173 · 1 10! x10 + · · · = − 1 3! x2 − 1 5! x4 − 8 3 · 7! x6 − 29 3 · 9! x8 − 40320 743 · 11! x10 + · · · . (159) 5. Concluding Remarks In this paper, we have used the Mittag-Leffler function ex- pansion method to find approximate solutions of a class of frac- tional Lane-Emden equation whose nonlinear forms of f (y) are expressible as f (y(x)) = a0 + a1y(x) + a2y2(x) + · · ·+ amym(x) + · · · + aN yN (x), 0 ≤ m ≤ N, N ∈ N0; the values of the expansion coefficients am, 0 ≤ m ≤ N, were explicitly provided. We con- sidered the cases for which the functions f (y(x)) are trigono- metric, hyperbolic and exponential functions. In all these cases, the Lane-Emden equations for the special values N = 0; α = 2,β = 1,ω = 2, coincide with the classical and standard ones ((57), (97), (140)) and consequently the corresponding solu- tions are given in closed forms ((62), (101), (143)). In the case where the functions f (y) are exponential func- tions, our results can be compared with those of [11, equations 278 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 279 (59) and (70)] (see also [25, equation (25)]). The other non- linear forms of f (y) are the trigonometric and hyperbolic func- tions. Our approximate solutions in the case of trigonometric functions are comparable with the solutions [11, equations (81) and (83) ]; and in the case of hyperbolic functions, see [11, equations (89) and (91)] (see also [22]). The method employed in this paper can be applied to other similar cases in applied sciences where the models are given as strongly nonlinear ordinary differential equations. By exten- sion, the method, can therefore, be accurately and reliably used to compute approximate solutions of nonlinear fractional differ- ential equations of Lane-Emden type where the nonlinear forms of f (y) involve several other special functions. Acknowledgements The authors thank the anonymous referees for their careful reading of the manuscript and valuable comments for the im- provement of the quality of the paper. References [1] R. Garrappa, E. Kaslik & M. Popolizio, “Evaluation of fractional integrals and derivatives of elementary functions: overview and tutorial”, Mathematics 7, (2019) 407. [2] G. Jumarie, “A Fokker-Planck equation of fractional order with respect to time”, Journal of Math. Physics 33 (1992) 3536. [3] G. Jumarie, “Fractional Fokker-Planck equation, solutions and applications”, Physical Review, 63 (2001) 1. [4] G. Jumarie, “Schrödinger equation for quantum-fractal space- time of order n via the complex-valued fractional Brownian mo- tion”, Intern. Y. of Modern Physics A 16 (2001) 5061. [5] A. A. Kilbas, Theory and applications of fractional differential equations, Elsevier, (2006). [6] F. Mainardi & R. Gorenflo, “Time-fractional derivatives in re- laxation processes: A tutorial survey”, Fractional Calculus and Applied Analysis 10 (2007) 269. [7] M. D. Ortigueira, Fractional calculus for scientists and engineers Springer (2011). [8] I. Podlubny, Fractional differential equations, Academic Press, San Diego, (1999). [9] M. Žecová & J. Terpák, “Heat conduction modeling by using fractional-order derivatives”, Applied Mathematics and Compu- tation 257 (2015) 365. [10] K. Diethelm, The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type, Springer-Verlag Berlin Heidelberg (2010). [11] A. M. Wazwaz, “A new algorithm for solving differential equa- tions of Lane-Emden type”, Appl. Math. Comput. 118 (2001) 287. [12] S. Chandrasekhar, Introduction to the Study of Stellar Structure, Dover, New York, (1967). [13] O. U. Richardson, The Emission of Electricity from Hot Bodies, Longman, Green and Co., London, New York, (1921). [14] C. Mohan & A. R. Al-Bayaty, “Power series solutions of the Lane-Emden equation”, Astrophysics and Space Science 73 (1980) 227. [15] J. I. Ramos, “Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method”, Chaos, Solitons & Fractals 38 (2008) 400. [16] S. K. Vanani & A. Aminataei, “On the numerical solutions of dif- ferential equations of Lane-Emden type”, Computers and Mathe- matics with Applications 59 (2010) 2815. [17] M. O. Ogunniran, O. A. Tayo, Y. Haruna & A. F. Adebisi, “Lin- ear stability analysis of Runge-Kutta methods for singular Lane- Emden equations”, Journal of the Nigerian Society of Physical Sciences 2 (2020) 134. [18] E. O. Adeyefa & O. S. Esan, “Exponentially fitted Chebyshev based algorithm as second order initial value solver”, Journal of the Nigerian Society of Physical Sciences 2 (2020) 51. [19] S. E. Fadugba, S.N. Ogunyebi & B.O. Falodun, “An examina- tion of a second order numerical method for solving initial value problems”, Journal of the Nigerian Society of Physical Sciences 2 (2020) 120. [20] M. S. Mechee & N. Senu, “Numerical study of fractional differ- ential equations of Lane-Emden type by method of collocation”, Applied Mathematics 3 (2012) 851. [21] A. Akgül, M. Inc, E. Karatas & D. Baleanu, “Numerical solu- tions of fractional differential equations of Lane-Emden type by an accurate technique”, Advances in Difference Equations 2015 (2015) 220. [22] A. Saadatmandi, A. Ghasemi-Nasrabady & A. Eftekhari, “Nu- merical study of singular fractional Lane-Emden type equations arising in astrophysics”, J. Astrophys. Astr. (2019) 40 27. [23] P. K. Sahu & B. Mallick, “Approximate solution of fractional order Lane–Emden type differential equation by orthonormal Bernoulli’s polynomials”, Int. J. Appl. Comput. Math (2019) 5 89. [24] M. I. Nouh & E. A.-B. Abdel-Salam, “Approximate Solution to the Fractional Lane–Emden Type Equations”, Iran J. Sci. Tech. Trans. Sci. 42, (2018) 2199. [25] A. M. Malik & O.H. Mohammed, “Two efficient methods for solving fractional Lane–Emden equations with conformable frac- tional derivative”, Journal of the Egyptian Mathematical Society (2020) 28. [26] B. Cǎruntu, C. Bota, M. Lǎpǎdat & M. S. Paşca, “Polyno- mial least squares method for fractional Lane–Emden equations”, Symmetry 11 (2019) 479. [27] J. Davila, L. Dupaigne & J. Wei, “On the fractional Lane-Emden equation”, Trans. Am. Math. Soc. 369 (2017) 6087. [28] C. Milici, G. Drǎgǎnescu & J.T. Machado, “Introduction to frac- tional differential equations”, Nonlinear Systems and Complex- ity, 25 (2019). [29] U. Saeed, “Haar Adomian method for the solution of fractional nonlinear Lane-Emden type equations arising in astrophysics”, Taiwanese Journal of Mathematics 21 (2017) 1175. [30] O. A. Uwaheren, A. F. Adebisi & O. A. Taiwo, “Perturbed col- location method for solving singular multi-order fractional dif- ferential equations of Lane-Emden type”, Journal of the Nigerian Society of Physical Sciences 2 (2020) 141. [31] A. A. M. Arafa & S. Z. Rida, A. A. Mohammadein, H. M. Ali, “Solving nonlinear fractional differential equation by generalized Mittag-Leffler function method”, Communications in Theoretical Physics 59 (2013) 661. [32] A. Atangana & A. Secer, “A note on fractional order derivatives and table of fractional derivatives of some special functions”, Ab- stract and Applied Analysis 2013 (2013) 1. [33] M. Caputo & M. Fabrizio, “A new definition of fractional deriva- tive without singular kernel”, Progr. Fract. Differ. Appl. 1 (2015) 73. [34] S. Das, “Functional Fractional Calculus”, Springer (2011). [35] M. Davison & C. Essex, “Fractional differential equations and 279 Awonusika et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 265–280 280 initial value problems”, The Mathematical Scientist 23 (1998) 108. [36] S. E. Fadugba, “Solution of fractional order equations in the do- main of the Mellin transform”, Journal of the Nigerian Society of Physical Sciences 1 (2019) 138. [37] R. Herrmann, Fractional calculus, an introduction for Phycists, World Scientific, (2011). [38] J. Jumarie, “Modified Riemann-Liouville derivative and frac- tional Taylor series of nondifferentiable functions further results”, Computers and Mathematics with Applications 51 (2006) 1367. [39] J. Jumarie, “Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non- differentiable functions”, Applied Mathematics Letters 22 (2009) 378. [40] E. C. de Oliveira & J. A. T. Machado, “A review of definitions for fractional derivatives and integral”, Mathematical Problems in Engineering 2014 (2014) 1. [41] F. Mainardi, Fractional calculus and waves in linear viscoelas- ticity, Imperial College Press (2010). [42] H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover, New York, (1962). 280