J. Nig. Soc. Phys. Sci. 4 (2022) 961 Journal of the Nigerian Society of Physical Sciences On Lemniscate of Bernoulli of q-Janowski type Afis Saliua,b,∗, Semiu Oladipupo Oladejob aDepartment of Mathematics, University of the Gambia, MDI Road, Kanifing P.O. Box 3530, Serrekunda, The Gambia bDepartment of Mathematics, Gombe State University P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria Abstract In this article, we introduce the q-analogue of functions characterized by the lemniscate of Bernoulli in the right-half plane and define the class L∗q(A, B). Furthermore, we study the geometric properties of this class, which include coefficient inequalities, subordination factor sequence property, radii results and Fekete-Szegö problems. Some deductions of our results show relevant connections between this present work and the existing ones in many literature. It is worthy of note that some of our results are sharp. DOI:10.46481/jnsps.2022.961 Keywords: Univalent functions, Schwarz functions, lemniscate of Bernoulli, Subordination, Janowski functions. Article History : Received: 28 July 2022 Received in revised form: 12 September 2022 Accepted for publication: 13 September 2022 Published: 08 October 2022 c© 2022 The Author(s). Published by the Nigerian Society of Physical Sciences under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0). Further distribution of this work must maintain attribution to the author(s) and the published articleâs title, journal citation, and DOI. Communicated by: P. Thakur 1. Introduction and Preliminaries The theory of univalent functions had its history from the Riemann mapping theorem [1]. This theorem aroused the in- terest of many researchers to start working in this field. For example, Bieberbach [1] proved that for every univalent func- tion f (z) = z + ∞∑ n=2 anz n (z ∈ U := {z ∈ C : |z| < 1}) , (1) |a2| ≤ 2 and conjectured that, in general, |an| ≤ n , n ≥ 2. ∗Corresponding author tel. no: +2348066221155, +22941154 Email address: asaliu@utg.edu.gm, saliugsu@gmail.com (Afis Saliu ) This conjecture stood for more than fifty years until it was fi- nally settled by De Branges [2] in 1985. Geometric Function Theory (GFT) has witnessed many developements and intro- duction of new subfamilies of univalent functions within these intervening years. In particular, Ma and Minda [3] gave a com- prehensive classification of classes S ∗ and C of starlike and convex functions [1], respectively. For this purpose, they con- sidered the class A of normalized analytic functions (1) and a univalent function ϕ (which maps U onto domains symmetric with the real axis and starlike with respect to 1) normalized such that ϕ(0) = 1 and ϕ′(0) > 0. Thus, the classes are respectively defined as follows: S ∗(ϕ) = { f ∈ A : z f ′(z) f (z) ≺ ϕ } and C(ϕ) = { f ∈ A : z f ′ ∈ S ∗(ϕ) } . In particular, if we chose ϕ = (1 + z)/(1 − z), S ∗ and C respec- tively become the usual classes S ∗ and C of starlike and convex 1 Saliu & Oladejo / J. Nig. Soc. Phys. Sci. 4 (2022) 961 2 functions. Sokół and Stankiewicz [4] introduced the class L∗ by setting ϕ(z) = √ 1 + z. This class consists of those functions that map U onto the lemniscate of Bernoulli. They obtained radius of convexity, growth and distortion results for this class. Also, early coefficients of functions in L∗ were derived in [5]. Furthermore, Ali et al. [6] and Sokół [7] determined various radii results associated with this class. Moreover, Raza and Ma- lik [8] proved the third Hankel determinant associated with L∗. For other related works, see [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] for details. One of the most recent approaches in GFT is the concept of calculus without the notion of limits known as q-calculus, or quantum calculus [21, 22]. This idea was first discussed in the theory of univalent functions by Ismail et al. [23]. They introduced the class S ∗q of q-starlike functions, which have led to many new results and techniques in quantum calculus associ- ated with GFT. Recently, Khan et al. [24] gave a q-analogue of √ 1 + z and introduced the class L∗q. Moreover, they proved few coefficient bounds and obtained the third Hankel determinant for the class. Motivated by these works and in particular, [24, 8] we in- troduce a new class L∗q(A, B) and establish many coefficient inequalities, subordination factor sequence, radii results and Fekete-Szegö bounds for this class. 2. Definitions and Lemmas Let W be the class of analytic functions w(z) = ∞∑ n=1 wnz n, z ∈ U (2) such that w(0) = 0 and |w(z)| < 1. These functions are known as Schwarz functions. If f (z) and g(z) are analytic functions in U, then f (z) is subordinate to g(z) (written as f (z) ≺ g(z)) if there exists w(z) ∈ W such that f (z) = g(w(z)), z ∈ U. In addition, if g is univalent in U, then f (0) = g(0) and f (U) ⊂ g(U). An analytic function p(z) = 1 + ∞∑ n=1 cnz n (3) is a function with positive real part. The class of all such func- tions is denoted by P. More generally, for −1 ≤ B < A ≤ 1, the class P(A, B) consists of functions p(z) of the form (3) satisfy- ing the subordination condition p(z) ≺ 1 + Az 1 + Bz , z ∈ U. On the other hand, p ∈ P(A, B) is called a Janowski function [25] if and only if p(z) = (1 + A)h(z) + (1 − A) (1 + B)h(z) + (1 − B) , −1 ≤ B < A ≤ 1, where h ∈ P. Definition 2.1 (Subordinating Factor Sequence). [26] A se- quence {bn}∞n=1 of complex numbers is called a subordinating factor sequence if, whenever f (z) of the form (1) is analytic, univalent and convex in U, we have the subornation given by ∞∑ n=1 anbnz n ≺ f (z) (z ∈ U, a1 := 1). Definition 2.2. [27] Let q ∈ (0, 1). Then the q-number [n]q is given as [n]q =   1−qn 1−q , n ∈ C, n−1∑ ι=0 qι = 1 + q + q2 + · · · + qn−1, n ∈ N, n, as q → 1−. (4) and the q-derivative of a complex valued function f (z) in U is given by Dq f (z) =   f (qz)− f (z) (q−1)z , z , 0 f ′(0), z = 0, f ′(z), as q → 1−. (5) From the above explanation, it is easy to see that for f (z) given by (1), Dq f (z) = 1 + ∞∑ n=2 [n]qanz n−1. (6) Using the idea of q-calculus, Khan et al. [24] extended the work of Raza and Malik [8] by presenting the following class: Definition 2.3. [24] A function of the form (1) belongs to the class L∗q if and only if∣∣∣∣∣ ( zDq f (z) f (z) )2 − 1 1 − q ∣∣∣∣∣ < 11 − q, (7) or equivalently,( zDq f (z) f (z) )2 ≺ 2(1 + z) 2 + (1 − q)z , z ∈ U, q ∈ (0, 1). (8) Inspired by the work of Khan et al. [24] and Raza and Malik [8], and in view of the Janowski functions, we introduce the following class. Definition 2.4. A function of the form (1) belongs to the class L∗q(A, B) if and only if∣∣∣∣∣∣∣ (B − 1) ( zDq f (z) f (z) )2 − (A − 1) (B + 1) ( zDq f (z) f (z) )2 − (A + 1) − 1 1 − q ∣∣∣∣∣∣∣ < 1 1 − q , (9) or equivalently,( zDq f (z) f (z) )2 ≺ (AO1 + O3) z + 4 (BO1 + O3) z + 4 , zU, q ∈ (0, 1), (10) where O1 = 1 + q, O3 = 3 − q, −1 ≤ B < A ≤ 1. (11) 2 Saliu & Oladejo / J. Nig. Soc. Phys. Sci. 4 (2022) 961 3 Remark 2.5. For A = 1 and B = −1, we are back to the class in Definition 2.3. In addition to that, if q → 1−, Definition 2.4 reduces to the one given in [4, 7]. To prove our main findings, we need the following results Lemma 2.6. [28] If w ∈ W is of the form (2), then for a real number σ, |w2 −σw 2 1| ≤   −σ, for σ ≤−1, 1, for − 1 ≤ σ ≤ 1, σ for σ ≥ 1. When σ < −1 or σ > 1, equality holds if and only if w(z) = z or one of its rotations. If −1 < σ < 1, then equality holds if and only if w(z) = z2 or one of its rotations. Equality holds for σ = −1 if and only if w(z) = z(x+z)1+xz (0 ≤ x ≤ 1) or one of its rotations while for σ = 1, equality holds if and only if w(z) = −z(x+z)1+xz (0 ≤ x ≤ 1) or one of its rotations. Also, the sharp upper bound above can be improved as fol- lows when −1 < σ < 1: |w2 −σw 2 1| + (1 + σ)|w1| 2 ≤ 1 (−1 < σ ≤ 0) and |w2 −σw 2 1| + (1 −σ)|w1| 2 ≤ 1 (0 < σ < 1). Lemma 2.7. [26] The sequence {bn}∞n=1 is a subordinating fac- tor sequence if and only if Re ( 1 + 2 ∞∑ n=1 bnz n ) > 0, (zU). In the next section, we present our main findings. 3. Main Results Theorem 3.1. Let f ∈ A and suppose ∞∑ n=3 { n−1∑ j=1 [ 2 ( [ j]q[n − j]q − 1 ) (12) + ∣∣∣∣(B + 1)[ j]q[n − j]q − (A + 1) ∣∣∣∣]∣∣∣a jan− j∣∣∣ } < ∣∣∣B − A∣∣∣. (13) Then f ∈ L∗q(A, B) Proof. Suppose condition (12) is satisfied. Then it suffices to prove (9). Now, ∣∣∣∣∣∣∣ (B − 1) ( zDq f (z) f (z) )2 − (A − 1) (B + 1) ( zDq f (z) f (z) )2 − (A + 1) − 1 1 − q ∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣ (B − 1) ( zDq f (z) f (z) )2 − (A − 1) (B + 1) ( zDq f (z) f (z) )2 − (A + 1) − 1 ∣∣∣∣∣∣∣ + q 1 − q =2 ∣∣∣∣∣ ( zDq f (z) )2 − ( f (z))2 (B + 1) ( zDq f (z) )2 − (A + 1)( f (z))2 ∣∣∣∣∣ + q1 + q =2 ∣∣∣∣∣∣∣∣∣∣ ∞∑ n=2 ( n−1∑ j=1 a jan− j[ j]q[n − j]q ) zn − ∞∑ n=2 ( n−1∑ j=1 a jan− j ) zn (1 + B) ∞∑ n=2 ( n−1∑ j=1 a jan− j[ j]q[n − j]q ) zn − (A + 1) ∞∑ n=2 ( n−1∑ j=1 a jan− j ) zn ∣∣∣∣∣∣∣∣∣∣ + q 1 − q =2 ∣∣∣∣∣∣∣∣∣∣ ∞∑ n=3 [ n−1∑ j=1 a jan− j ( [ j]q[n − j]q − 1 )] zn (B − A)z2 + ∞∑ n=3 { n−1∑ j=1 a jan− j [ (B + 1)[ j]q[n − j]q − (A + 1) ]} zn ∣∣∣∣∣∣∣∣∣∣ ≤ 2 ∞∑ n=3 [ n−1∑ j=1 ∣∣a jan− j∣∣([ j]q[n − j]q − 1) ] |B − A| + ∞∑ n=3 [ n−1∑ j=1 ∣∣a jan− j∣∣ ∣∣∣∣(B + 1)[ j]q[n − j]q − (A + 1) ∣∣∣∣ ] + q 1 − q . 3 Saliu & Oladejo / J. Nig. Soc. Phys. Sci. 4 (2022) 961 4 This last expression is bounded by 11−q provided (12) is sat- isfied. Hence, we have the required result. We observe that Theorem 3.1 implies the following result. Corollary 3.2. Let f ∈ A. Then f ∈ L∗q(A, B) if ∞∑ n=2 [ 2q[n−1]q+ ∣∣(B + 1)[n]q − (A + 1)∣∣] |an| < |B − A| .(14) Proof. Let Φ j,n = [ 2 ( [ j]q[n − j]q − 1 ) + ∣∣∣∣(B + 1)[ j]q[n − j]q − (A + 1) ∣∣∣∣ ]∣∣∣a jan− j∣∣∣ < |B − A| in (12). Then ∞∑ n=3 ( Φ1,n + Φ2,n + Φ3,n + · · · + Φn−1,n ) < |B − A| , which implies that ∞∑ n=3 Φn−1,n < |B − A| . That is ∞∑ n=3 [ 2 ( [n−1]q−1 ) + ∣∣(B + 1)[n − 1]q − (A + 1)∣∣] |an−1| < |B − A| or ∞∑ n=2 [ 2q[n − 1]q + ∣∣(B + 1)[n]q − (A + 1)∣∣] |an| < |B − A| For A = 1, B = −1 in Corollary ??corollary1, we are led to the following assertion. Corollary 3.3. Let f ∈ A. Then f ∈ L∗q(1,−1) if ∞∑ n=2 [n]q |an| < 1. As q → 1− in Corollary ??corollary2, we have Corollary 3.4. Let f ∈ A. Then f ∈ L∗ if ∞∑ n=2 n |an| < 1. By Corollary 3.2, the class L∗q(A, B) is assumed to be a sub- class of L∗q(A, B) consisting of f (z) of the form (14) and satisfy- ing the condition (14). Therefore, by the coefficient inequality for the class L∗q(A, B), we have the following results. Theorem 3.5. Let −1 ≤ B1 ≤ B2 < A1 ≤ A2 ≤ 1. If f ∈ A, then L∗q(A2, B2) ⊂ L ∗ q(A1, B1). Proof. By the hypothesis of the theorem, we have that ∞∑ n=2 [ 2q[n − 1]q + ∣∣(B1 + 1)[n − 1]q − (A1 + 1)∣∣] |an| ≤ ∞∑ n=2 [ 2q[n − 1]q + ∣∣(B2 + 1)[n − 1]q − (A2 + 1)∣∣] |an| ≤ |B2 − A2| ≤ |B1 − A1| . Thus, f ∈ L∗q(A1, B1). Theorem 3.6. Let f j ∈ L∗q(A, B) and be of the form f j(z) = ∞∑ n=1 an, jz n, j = 1, 2, . . . m, a1, j = 1. Then G(z) ∈ L∗q(A, B), where G(z) = m∑ j=1 |c j| f j(z) with m∑ j=1 |c j| = 1. Proof. In view of (14), we have ∞∑ n=2 [ 2q[n − 1]q + ∣∣(B + 1)[n]q − (A + 1)∣∣ |B − A| ]∣∣an, j∣∣ < 1. Therefore, G(z) = m∑ j=1 |c j| f j(z) = m∑ j=1 |c j| ( z + ∞∑ n=2 an, jz n ) = m∑ j=1 ∞∑ n=1 |c j|an, jz n = ∞∑ n=1 ( m∑ j=1 |c j|an, j ) zn. But ∞∑ n=2 [ 2q[n − 1]q + ∣∣(B + 1)[n]q − (A + 1)∣∣ |B − A| ]∣∣∣∣ m∑ j=1 |c j|an, j ∣∣∣∣ ≤ m∑ j=1 { ∞∑ n=2 [ 2q[n − 1]q + ∣∣(B + 1)[n]q − (A + 1)∣∣ |B − A| ]∣∣an, j∣∣}|c j| < m∑ j=1 |c j| = 1. Hence, G(z) ∈ L∗q(A, B). 4 Saliu & Oladejo / J. Nig. Soc. Phys. Sci. 4 (2022) 961 5 Theorem 3.7. Let g(z) = z + ∞∑ n=2 bnzn. If f, g ∈ L∗q(A, B), then their weighted mean F j(z) = (1 − j) f (z) + (1 + j)g(z) 2 (15) also belongs to L∗q(A, B). Proof. From (15), we have F j(z) = z + ∞∑ n=2 [ (1 − j)an + (1 + j)bn 2 ] zn. To show that F j(z) ∈ L∗q(A, B), we need to show that ∞∑ n=2 [ 2q[n − 1]q + ∣∣∣(B + 1)[n]q − (A + 1) ∣∣∣]∣∣∣∣(1 − j)an + (1 + j)bn2 ∣∣∣∣ < |B − A| . For this, we have ∞∑ n=2 [ 2q[n − 1]q + ∣∣∣(B + 1)[n]q − (A + 1) ∣∣∣]∣∣∣∣(1 − j)an + (1 + j)bn2 ∣∣∣∣ ≤ ( 1 − j 2 ) ∞∑ n=2 [ 2q[n − 1]q + ∣∣(B + 1)[n]q − (A + 1)∣∣] |an| + ( 1 + j 2 ) ∞∑ n=2 [ 2q[n − 1]q + ∣∣(B + 1)[n]q − (A + 1)∣∣] |bn| < |B − A|. Theorem 3.8. Suppose f j(z) ∈ L∗q(A, B). Then the arithmetic mean F(z) of f j(z) given by F(z) = 1 n n∑ j=1 f j(z) is also in L∗q(A, B). Proof. We have F(z) = 1 n n∑ j=1 f j(z) = 1 n n∑ j=1 ( z + ∞∑ k=2 ak, jz k ) = z + ∞∑ k=2  1 n n∑ j=1 ak, j   zk. Since f j(z) ∈ L∗q(A, B), then ∞∑ k=2 [ 2q[k − 1]q + ∣∣(B + 1)[k]q − (A + 1)∣∣] ∣∣∣∣∣∣1n n∑ j=1 ak, j ∣∣∣∣∣∣ ≤ 1 n n∑ j=1 { ∞∑ k=2 [ 2q[k − 1]q + ∣∣(B + 1)[k]q − (A + 1)∣∣] }∣∣ak, j∣∣ < 1 n n∑ j=1 |B − A| = |B − A| . Thus, F ∈ L∗q(A, B). In the next theorem, we provide a sharp subordination result involving class L∗q(A, B). Theorem 3.9. Let f ∈ L∗q(A, B). Then for every convex function g(z) in U, we have 2q + |(1 + B)q + B − A| 2 [ 2q + |B − A| + |(1 + B)q + B − A| ] ( f ∗ g) (z) ≺ g(z)(16) and Re f (z) > − [ 2q + |B − A| + |(1 + B)q + B − A| ] 2q + |(1 + B)q + B − A| . (17) The constant 2q + |(1 + B)q + B − A| 2 [ 2q + |B − A| + |(1 + B)q + B − A| ] cannot be replaced by any larger one. Proof. Let f ∈ L∗q(A, B) and g(z) = z + ∞∑ n=2 cnzn be convex in U. Then 2q + |(1 + B)q + B − A| 2 [ 2q + |B − A| + |(1 + B)q + B − A| ] ( f ∗ g) (z) = 2q + |(1 + B)q + B − A| 2 [ 2q + |B − A| + |(1 + B)q + B − A| ] (z + ∞∑ n=2 anbnz n ) . Therefore, by Definition 2.1, the assertion of our theorem holds if the sequence{ 2q + |(1 + B)q + B − A| 2 [ 2q + |B − A| + |(1 + B)q + B − A| ]an}∞ n=1 is a subordinating factor sequence, with a1 = 1. In view of Lemma 2.7, this will hold true if and only if Re [ 1 + ∞∑ n=1 2q + |(1 + B)q + B − A|[ 2q + |B − A| + |(1 + B)q + B − A| ]anzn ] > 0 (z ∈ U). Since 2q[n − 1]q + ∣∣(B + 1)[n]q − (A + 1)∣∣ is an increasing function of n (n ≥ 2), we have 5 Saliu & Oladejo / J. Nig. Soc. Phys. Sci. 4 (2022) 961 6 Re [ 1 + 2 ∞∑ n=1 2q + |(1 + B)q + B − A| 2 [ 2q + |B − A| + |(1 + B)q + B − A| ]anzn ] = Re [ 1 + 2q + |(1 + B)q + B − A|[ 2q + |B − A| + |(1 + B)q + B − A| ]z + ∞∑ n=2 2q + |(1 + B)q + B − A|[ 2q + |B − A| + |(1 + B)q + B − A| ]anzn] ≥ 1 − 2q + |(1 + B)q + B − A|[ 2q + |B − A| + |(1 + B)q + B − A| ]r − ∞∑ n=2 2q + |(1 + B)q + B − A|[ 2q + |B − A| + |(1 + B)q + B − A| ] |an|rn > 1 − 2q + |(1 + B)q + B − A|[ 2q + |B − A| + |(1 + B)q + B − A| ] − ∞∑ n=2 2q + |(1 + B)q + B − A|[ 2q + |B − A| + |(1 + B)q + B − A| ] |an| ≥ 1 − 2q + |(1 + B)q + B − A|[ 2q + |B − A| + |(1 + B)q + B − A| ] − 1[ 2q + |B − A| + |(1 + B)q + B − A| ] ∞∑ n=2 [ 2q[n − 1]q + ∣∣(B + 1)[n]q − (A + 1)∣∣] |an| > 1 − 2q + |(1 + B)q + B − A|[ 2q + |B − A| + |(1 + B)q + B − A| ] − |B − A|[ 2q + |B − A| + |(1 + B)q + B − A| ] = 0, where we have used condition (12). This proves (16). Further- more, condition (17) is achieved by setting g0 (z) = z 1 − z = z + ∞∑ n=2 zn To prove the sharpness of the constant 2q+|B−A|4(q+|B−A|) , we consider the function given by f (z) = z − |B − A| 2q + |(1 + B)q + B − A| z2. Evidently, f ∈ L∗q(A, B) and from (16), we have 2q + |(1 + B)q + B − A| 2 [ 2q + |B − A| + |(1 + B)q + B − A| ] f (z) ≺ z 1 − z (zU). It is observed that min { Re ( 2q + |(1 + B)q + B − A| 2 [ 2q + |B − A| + |(1 + B)q + B − A| ] f (z))} = −1 2 . This completes the proof. For A = 1, B = −1 in Theorem 3.9, we have the following result. Corollary 3.10. Let f ∈ L∗q ⊂ L ∗ q. then for every convex func- tion g(z) in U, we have 1 + q 2(q + 2) ( f ∗ g)(z) ≺ g(z) and Re f (z) > − 2 + q 1 + q . Moreover, the constant 1+q2(2+q) cannot be a larger one. As q → 1− in Corollary 3.10, we obtain the following as- sertion. Corollary 3.11. Let f ∈ L∗ ⊂ L∗. then for every convex func- tion g(z) in U, we have 1 3 ( f ∗ g)(z) ≺ g(z) and Re f (z) > − 3 2 . The constant factor 13 cannot be replaced by a larger one. In the following theorems, we present some radii results as- sociated with the class L∗q(A, B). Theorem 3.12. L∗q(A, B) ⊂ L ∗ q in the disc |z| < Rq(A, B), −1 ≤ B < A ≤ 1, where Rq(A, B) = min { 4 2(A − B) + [ 2(1 + B) + (1 − q)(1 − A) ] , 1}.(18) Proof. To determine L∗q radius, we need to find R such that 0 < R < 1 and H(zR) := (AO1 + O3) z + 4 (BO1 + O3) z + 4 ≺ 2(1 + z) 2 + (1 − q)z := Q(z) (z ∈ U), where O1 and O3 are given by (11). This is equivalent to |Q−1(H(Rz))| ≤ 1. It is easy to see that |Q−1(H(Rz))| = ∣∣∣∣∣ 2(A − B)Rz4 + [(2B − (1 − q)A) + O3] Rz ∣∣∣∣∣ ≤ 2(A − B)R 4 − [ 2(1 + B) + (1 − q)(1 − A) ] R . The last expression is bounded by 1 if 2(A − B)R ≤ 4 − [ 2(1 + B) + (1 − q)(1 − A) ] R. This completes the proof. Theorem 3.13. Let f ∈ S ∗q. Then f ∈ L ∗ q in the disc |z| < Rq, where Rq = 1 3 + √ 11 − 2q + |2q − 1| . (19) 6 Saliu & Oladejo / J. Nig. Soc. Phys. Sci. 4 (2022) 961 7 Proof. Since f ∈ S ∗q, then zDq f (z) f (z) ≺ 1 + z 1 − qz (z ∈ U, see [29, 30, 31]) , and by subordination property, we have( zDq f (z) f (z) )2 ≺ ( 1 + z 1 − qz )2 := S (z) (z ∈ U). We need to determine the smallest positive radius R such that S (Rz) ≺ Q(z) (z ∈ U), which is equivalent to showing that∣∣Q−1(S (Rz))∣∣ ≤ 1 (z ∈ U). Now, we can obviously see that ∣∣Q−1(S (Rz))∣∣ = ∣∣∣∣∣ 2 ( 2R + (1 − q)R2z2 ) 1 − 2Rz − (2q − 1)R2z2 ∣∣∣∣∣ ≤ 2 ( 2(1 − q) + R2 ) 1 − 2R − |2q − 1|R2 . This expression is bounded by 1 if (2(1 − q) + |2q − 1|) R2 + 6R − 1 ≤ 0. Let T (R) = (2(1 − q) + |2q − 1|) R2 +6R−1. Then T (0)T (1) < 0. Therefore, there exists R ∈ (0, 1) such that T (R) = 0. Hence, we have the result. As q → 1− in Theorem 3.13, we get the following result. Corollary 3.14. Let f ∈ S ∗. Then f ∈ L∗ in the disc |z| < 1 3+ √ 10 . In the next theorem, using Lemma 2.6, we present the Fekete- Szegö inequality for the class L∗q(A, B). Theorem 3.15. Let f ∈ L∗q. Then for a real number µ, |a3−µa 2 2| ≤ ( A − B 8q )   − qV (q)+2µ(A−B)(1+q)2 16q , for µ ≤− q(16+V (q))2(A−B)(1+q)2 := ρ1, 1, for ρ1 ≤ µ ≤ q(16−V (q)) 2(A−B)(1+q)2 := ρ2, qV (q)+2µ(A−B)(1+q)2 16q , for µ ≥ ρ2, . It is asserted also that |a3 −µa 2 2| + [ µ + q(16 + V (q)) 2(A − B)(1 + q)2 ] |a2| 2 ≤ A − B 8q , − q(16 + V (q)) 2(A − B)(1 + q)2 < µ ≤− qV (q) 2(A − B)(1 + q)2 and |a3 −µa 2 2| − [ µ− q(16 − V (q)) 2(A − B)(1 + q)2 ] |a2| 2 ≤ A − B 8q , − qV (q) 2(A − B)(1 + q)2 < µ ≤ q(16 − V (q)) 2(A − B)(1 + q)2 where V (q) = (A + 3B − 4)q2 − (A − 5B − 12)q − 2(A − B).(20) These bounds are sharp. Proof. Let f ∈ L∗q(A, B). Then zDq f (z) f (z) = √ 1 + A1w(z) 1 + B1w(z) , where w(z) = ∞∑ n=1 wnz n ∈W, A1 = AO1 + O3 4 , and B1 = BO1 + O3 4 . Therefore, 1 + qa2z + q ( [2]qa3 − a 2 2 ) z2 + . . . = 1 + w1O1(A − B) 8 z − O1(A − B) 8 [ 1 16 ( AO1 + 4O3 + 3BO1 ) w21 − w2 ] z2 + . . . . On comparing coefficients, we have a2 = (A − B)O1w1 8q and a3 = A − B 8q ( w2 − V (q) 16 w21 ) , so that a3 −µa 2 2 = A − B 8q (w2 −σw 2 1), where σ = qV (q) + 2µ(A − B)O21 16q . Then we have the required result by applying Lemma 2.6. These inequalities are sharp for the functions  λ f1(zλ), for µ ∈ (−∞,ρ1) ∪ (ρ2,∞), λ f2(zλ), for ρ1 ≤ µ ≤ ρ2, λ f3(zλ), for µ = ρ1, λ f4(zλ), for µ = ρ2, where |λ| = 1 and zDq f1(z) f1(z) = √ 1 + A1z 1 + B1z zDq f2(z) f2(z) = √ 1 + A1z2 1 + B1z2 zDq f3(z) f3(z) = √ 1 + A1wx(z) 1 + B1wx(z) zDq f4(z) f4(z) = √ 1 − A1wx(z) 1 − B1wx(z) with wx(z) = z(x + z) 1 + xz , 0 ≤ x ≤ 1. 7 Saliu & Oladejo / J. Nig. Soc. Phys. Sci. 4 (2022) 961 8 Remark 3.16. For A = 1, B = −1, Theorem 3.15 reduces to the Fekete-Szegö inequalities presented by Khan [24]. Further, as q → 1− we are led to the result of Raza and Malik [8]. 4. Conclusion In this work, we introduced the class L∗q(A, B) and obtained Coefficient inequalities, subordination factor sequence property radii results and Fekete-Szegö inequality for it. Overall, we pre- sented many consequences of our investigation. These results are fascinated essentially by their particular cases and conse- quences. Also, to have more new hypotheses under present as- sessments, new extension and applications can be investigated with some positive and novel results in different fields of sci- ence, particularly, in GFT. For more details about the applica- tions, one may go through [32, 33]. Acknowledgments We thank the referees for the positive enlightening com- ments and suggestions, which have greatly helped us in making improvements to this paper. References [1] A. W. Goodman, Univalent Functions, vols. I-II, United States of Amer- ica, Mariner Publishing Company, Tempa. Florida (1983). [2] L. De Branges, “A proof of the Bieberbach conjecture”, Acta Math. 154 (1985) 137. [3] W. Ma & D. Minda, “A unified treatment of some special classes of univa- lent functions”: in Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [4] J. Sokół & J. Stankiewicz, “Radius of convexity of some subclasses of strongly starlike functions”, Folia Scient. Univ. Tech. Res. 19 (1996) 101. [5] J. Sokół, “Coeffcient estimates in a class of strongly starlike functions”, Kyungpook Math. J. 49 (2009) 349. [6] R. M. Ali, N. K. Jain & V. Ravichandran, “Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane”, Appl. Math. Comput. 218 (2012) 6557. [7] J. Sokół, “Radius problems in the class SL”, Appl. Math. Comput. 214 (2009) 569. [8] M. Raza & S. N. Malik, “Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli”, J. Inequal. Appl. 2013 (2013) 1. [9] A. Afis & K. I. Noor, “ On subclasses of functions with boundary and radius rotations associated with crescent domains”, Bull. Korean Math. Soc. 57 (2020) 1529. [10] B. Ahmad, M. Darus, N. Khan, R. Khan & M. G. Khan, “On a class of analytic multivalent analytic functions in q-analogue associated with leminiscate of Bernoulli”, Bull. Math. Anal. Appl. 13 (2021) 71. [11] S. Kanas, V. S. Masih, A. Ebadian, “Coefficients problems for families of holomorphic functions related to hyperbola”, Math. Slovaca 70 (2020) 605. [12] V. S. Masih & S. Kanas, “Subclasses of Starlike and Convex Functions Associated with the Limaçon Domain”, Symmetry, 12 (2020) 942. [13] P. Sharma, R. K. Raina & J. Sokół, “Certain Ma-Minda type classes of an- alytic functions associated with the crescent-shaped region”, Anal. Math. Phys. 9 (2019) 1887-1903. [14] A. Saliu, “On generalized k-uniformly close-to-convex functions of Janowski type”, Int. J. Appl. Anal. 17 (2019) 958. [15] A. Saliu & K. I. Noor, “On Janowski close-to-convex functions associated with conic regions”, Int. J. Appl. Anal. 18 (2020) 614. [16] A. Saliu, K. I. Noor, S. Hussain & M. Darus, “On quantum differential subordination related with certain family of analytic functions”, J. Math. 2020 (2020) 6675732. https://doi.org/10.1155/2020/6675732. [17] A. Saliu, K. I. Noor, S. Hussain & M. Darus, “Some results for the fam- ily of univalent functions related with limaçon domain”, AIMS Math. 6 (2021) 3410. [18] H. M. Srivastava, B. Tahir, B. Khan, Q. Z. Ahmad & N. Khan, “Some general classes of q-starlike functions associated with the Janowski func- tions”, Symmetry 11 (2019) 292. [19] H. E. Ö. Ucar, “Coefficient inequality for q-starlike functions”, Appl. Math. Comput. 276 (2016) 122. [20] M. Ul-Haq, M., Raza, M., Arif, Q. Khan & H. Tang, “q-Analogue of differential subordinations”, Mathematics 7 (2019) 724. [21] F. H. Jackson, “On q-functions and a certain difference operator”, Trans. Royal Soc. Edinburgh, 46 (1909) 253. [22] F. H. Jackson, “On q-definite integrals”, The Quarterly J. Pure Appl. Math. 41 (1910) 193. [23] M. E. H Ismail, E. Merkes & D. Styer, “ A generalization of starlike functions”, Complex Var. Elliptic Equ. 14 (1990) 77. [24] N. Khan, M. Shafiq, M., Darus, B. Khan & Q. Z. Ahmad, “Upper bound of the third Hankel determinant for a subclass of q-starlike functions as- sociated with Lemniscate of Bernoulli”, J. Math. Inequal. 14 (2020) 51. [25] W. Janowski, “Some extremal problems for certain families of analytic functions I”, Ann. Polon. Math. 28 (1973) 297. [26] H. S. Wilf, “Subordinating factor sequences for convex maps of the unit circle”, Proc. Am. Math. Soc. 12 (1961) 689. [27] A. Aral, V. Gupta & R. P. Agarwal, Applications of q-calculus in Operator Theory, Springer. New York (2013) 262. [28] R. M. Ali, V. Ravichandran & N. Seenivasagan, “Coefficient bounds for p-valent functions”, Appl. Math. Comput. 187 (2007) 35. [29] K. I. Noor, S. Riaz & M. A. Noor, “On q-Bernardi integral operator”, TWMS J. Pure Appl. Math. 8 (2017) 3. [30] K. I. Noor & S. Riaz, “ Generalized q-starlike functions”, Stud. Sci. Math. Hung. 54 (2017) 509. [31] K. I. Noor, “Some classes of q-alpha starlike and related analytic func- tions”, J. Math. Anal. 8 (2017) 24. [32] S. E. Fadugba, “Solution of fractional order equations in the domain of the Mellin transform”, J. Nig. Soc. Phys. Sci. 1 (2019) 138. [33] L. K. Alzaki, & H. K. Jassim, “Time-Fractional Differential Equations with an Approximate Solution”, J. Nig. Soc. Phys. Sci. 4 (2022) 818. https://doi.org/10.46481/jnsps.2022.818 8