Synthesis and crystal structure of Cu(II) and Co(II) complexes with the 1,3-dimethylpyrazole-5-carboxylic acid ligand J. Serb. Chem. Soc. 80 (7) 867–875 (2015) UDC 546.562+546.732:548.7+ JSCS–4765 547.772+547.857.8 Original scientific paper 867 Synthesis and crystal structure of Cu(II) and Co(II) complexes with the 1,3-dimethylpyrazole-5-carboxylic acid ligand ŽELJKO K. JAĆIMOVIĆ1, MILICA KOSOVIĆ1, SLAĐANA B. NOVAKOVIĆ2*, GERALD GIESTER3 and ANA RADOVIĆ4 1Faculty of Metallurgy and Technology, University of Montenegro, Podgorica, Montenegro, 2Vinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia, 3Institut für Mineralogie und Kristallographie, Fakultät für Geowissenschaften, Geographie und Astronomie, University of Vienna, Althanstraße 14, A-1090 Vienna,, Austria and 4Accreditation Body of Montenegro, Jovana Tomaševića 1, 81000 Podgorica, Montenegro (Received 22 July, revised 30 December 2014, accepted 30 January 2015) Abstract: In the reaction of 1,3-dimethylpyrazole-5-carboxylic acid (HL) with M(OAc)2·4H2O, (M = Cu or Co), two novel complexes were prepared, the square-planar [CuL2(H2O)2] and the octahedral [CoL2(MeOH)4]. The crystal structures were determined by single-crystal X-ray diffraction. In both com- plexes, the deprotonated acid displays monodentate coordination to the metal ions. According to the results of a CSD survey, this is the first structural report on the metal complexes with an N1-substituted pyrazole-5-carboxylic ligand. Keywords: pyrazole-based ligand; transition metal complex; crystal structure. INTRODUCTION Pyrazole-based compounds and their transition metal complexes have attracted considerable research interest because of their potentially beneficial biological properties. The wide biological activity of this class of compounds (anticancer, antimicrobial, antiviral, anti-inflammatory and others) is described in several reviews.1 Apart from the investigation of the biological activity of pyrazole deri- vatives, they have been extensively used as ligands or synthons in coordination chemistry2 and crystal engineering including the metal organic frameworks.3 The most of these valuable functions of pyrazole ligands originate in their various bonding modes to metal ions that can be further influenced and rationally designed by the attachment of substituents with additional coordination sites.3–5 Another important property of pyrazole derivatives is the presence of hydrogen bonding sites, either on the pyrazole ring (pyrrolic N–H donor and pyridinic N * Corresponding author. E-mail: snovak@vin.bg.ac.rs doi: 10.2298/JSC140722009J _________________________________________________________________________________________________________________________ (CC) 2015 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ 868 JAĆIMOVIĆ et al. acceptor) or its substituents, which facilitates molecular association into the hydrogen-bonded supramolecular structures. Ligands derived from pyrazole-5-carboxylic acid also display various bond- ing modes as they can coordinate in mono- or dianionic form through the pairs of N- and O-donors from the heterocyclic ring and carboxyl groups. Despite this coordination variety, the Cambridge Structural Databank (CSD)6 does not con- tain information about metal complexes with N1-substituted derivatives of pyra- zole-5-carboxylic acid. Herein, the syntheses, IR characterization and crystal struc- tures of Cu(II) and Co(II) complexes with 1,3-dimethylpyrazole-5-carboxylate (Scheme 1) are presented, whereby the X-ray experiments revealed the not very common monodentate coordination of this pyrazole-5-carboxylic acid based ligand. Scheme 1. 1,3-Dimethylpyrazole-5-carboxylic acid (HL) with atom numbering. EXPERIMENTAL Preparation of the complexes The [CuL2(H2O)2] complex was synthesized in the reaction of a warm methanolic solution (10 cm3 CH3OH) of 0.25 mmol (0.049 g) Cu(OAc)2·4H2O with a warm methanolic solution (5 cm3 CH3OH) of 0.5 mmol (0.070 g) 1,3-dimethylpyrazole-5-carboxylic acid (HL) mixed in a 1:2 mole ratio. After two days, the blue single crystal product was filtered off and washed with methanol. The yield was 84.29 % (0.080 g). The [CoL2(MeOH)4] complex was synthesized in the reaction of a warm methanolic solution (3 cm3 CH3OH) of 0.125 mmol (0.031 g) Co(OAc)2·4H2O with a warm methanolic solution (3 cm3 CH3OH) of 0.25 mmol (0.035 g) 1,3-dimethylpyrazole-5-carboxylic acid (HL) mixed in a 1:2 mole ratio. After two days, the single crystal product was filtered off and washed with methanol. Yield was 32.75 % (0.019 g). The synthesis resulted in the mixture of reactants, HL and Co(OAc)2·4H2O, and a very small amount of the [CoL2(MeOH)4] complex. After filtering off, the purple crystals of the complex were mechanically separated for IR and X-ray analysis. For both syntheses, the 1,3-dimethylpyrazole-5-carboxylic acid was used as purchased from Sigma–Aldrich. Infrared spectra The infrared spectra (IR) of the synthesized complexes and corresponding uncoordinated ligand were recorded as KBr pellet on a Thermo Nicolet Nexus 670 FT-IR instrument in the wavenumber range of 4000–400 cm-1. As expected, the IR spectra of complexes show rather similar features, especially concerning the position of the relevant absorption band ν(COO-). The spectrum of the uncoordinated ligand displayed ν(COOH) at 1712.27 cm-1, while in spectra of the complexes, the band was replaced with νas(COO-) at ca. 1600 cm-1 and νs(COO-) _________________________________________________________________________________________________________________________ (CC) 2015 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ Cu(II) AND Co(II) COMPLEXES WITH 1,3-DIMETHYLPYRAZOLE-5-CARBOXYLIC ACID 869 at ca. 1350 cm-1. The approximate Δν of 250 cm-1 is in accordance with monodentate coordination of the carboxyl ligand.7 IR (cm-1): 2926.26, 2578.64, 2481.96, 1712.27, 1542.66, 1471.80, 1245.67; [CuL2(H2O)2]: 3434.32, 2926.48, 1600.12, 1538.44, 1460.62, 1354.18, 1293.23; [CoL2(MeOH)4]: 3380.68, 2927.31, 1605.24, 1536.72, 1459.10, 1350.08, 1287.29. X-ray crystal structure determination The diffraction data from selected single crystals of [CuL2(H2O)2] and [CoL2(MeOH)4] were collected at 200 and 150 K, respectively on a Nonius Kappa CCD diffractometer equip- ped with a monocapillary optics collimator, MoKα radiation (λ = 0.71073 Å). The data were corrected for absorption by evaluation of multi-scans. The crystal structure was solved by direct methods, using SHELXS and refined with SHELXL.8 The H atoms attached to C atoms were placed at geometrically calculated positions with the C–H distances fixed to 0.93 and 0.96 Å from aromatic and methyl C atoms, respectively. The corresponding isotropic dis- placement parameters of the hydrogen atoms were equal to 1.2Ueq and 1.5Ueq of the parent C atoms. The H atoms attached to O atoms were located in the final electron density maps and refined isotropically. The geometrical calculations were performed with PARST9 and PLA- TON.10 The programs ORTEP11 and Mercury12 were used for molecular graphics. The details of the X-ray structural analysis are given in Table S-I of the Supplementary material to this paper. RESULTS AND DISCUSSION Coordination modes of pyrazole-5-carboxylic acid ligands in metal complexes extracted from CSD The CSD analysis6 focused only on the donor abilities of the pyrazole-5- -carboxylic acid ligands (with four potential coordination sites in total) and hence, the crystal structures of complexes with derivatives comprising additional donor sites were not considered. In the complex compounds extracted from CSD, the pyrazole-5-carboxylic ligands displayed seven different ways of coordination. In over 70 % of the structures (40 of 56 extracted), the ligands derived from pyra- zole-5-carboxylic acid coordinate only as N1, O bidentates forming the five mem- bered chelate rings. The coordination of the remaining donors leads to the form- ation of bi- or polynuclear metal complexes, while the formation of a chelate ring is still preferential. There are only two examples of monodentate coordination of pyrazole-5-carboxylic ligands.13,14 In both of these complexes, the monodentate coordination can be related to the possible steric hindrance between the ligands in the coordination spheres of the corresponding metal ions. Up to now, the crystal structures of complexes with N1-substituted derivatives of pyrazole-5-carboxylic acid have not been reported. In the case of the ligand present in the title complexes (Scheme 1), the methyl substituent on the N1-pyrazole prevents the most frequently occurring chelating form and confines the coordination to the carboxyl oxygen donor. Moreover, the steric hindrance that this substituent produces on the third donor site, N2-pyrazole, significantly reduces the coordination ability of this donor, consequently monodentate coordination could be expected. It should be men- _________________________________________________________________________________________________________________________ (CC) 2015 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ 870 JAĆIMOVIĆ et al. tioned that the crystal structures of complexes comprising N2-substituted pyra- zole-5-carboxylic ligands are also scarce in the literature. In several reported cases with phenyl substituents on pyrazole N2, the corresponding ligands coor- dinate in the N1O-chelating mode.15 Description of crystal structures The [CuL2(H2O)2] complex crystallizes in the space group P21/c. The Cu atom is placed in a nearly ideal square planar environment formed by pairs of oxygen donors from the deprotonated carboxylic acid and H2O molecules, Fig. 1a. The lengths of the two types of Cu−O bonds coincide within the s.u. values, while the angle O2−Cu1−O1w of 91.09(6)° actually shows the largest deviation from the ideal square-planar geometry (Table S-II of the Supplementary mater- ial). The Cu(II) ion lies on an inversion center. The Cu−O1w and Cu−O1 bond lengths are within the ranges of previously reported square-planar Cu(II) com- plexes comprising monodentately-coordinated carboxyl and H2O ligands.16 In comparison to the crystal structure of the uncoordinated 1,3-dimethylpyrazole-5- -carboxylic acid (HL),17 the geometry of the coordinated ligand is slightly altered (Table S-II). Apart from the expected changes in the carboxyl fragment due to the acid deprotonation, the dihedral angle between COO− and pyrazole planes increases upon the ligand coordination form 4.0 to 8.7(2)°. Concerning the coor- dination plane of the four oxygen donors, the pyrazole ring is rotated by 69.2(1)°. Fig. 1. Molecular structures of: a) [CuL2(H2O)2] with indicated posi- tions of pseudo-coordinated O1w atoms (dashed lines) and b) [CoL2(MeOH)4], independent mol- ecule A. The displacement ellip- soids are drawn at the 40 % pro- bability level. _________________________________________________________________________________________________________________________ (CC) 2015 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ Cu(II) AND Co(II) COMPLEXES WITH 1,3-DIMETHYLPYRAZOLE-5-CARBOXYLIC ACID 871 Two types of rather strong hydrogen bonds having H…A distances shorter than 2.0 Å stabilize the crystal structure of the [CuL2(H2O)2] complex (Table I). The O1w−H1w…O1 interaction between the H2O molecule and the uncoor- dinated carboxyl oxygen atom links the complex units into a chain extending along the a axis (Fig. 2a). It should be noticed that within this chain, each H2O oxygen atom is closely adjacent to the Cu(II) ions of the neighboring complex unit. The Cu1…O1wi (i = x–1, y, z) distance is 2.802(1) Å, which is significantly shorter than the sum of the van der Waals radii of these two atoms (3.84 Å).18 Taking into account these short Cu…O1wi contacts, the environment of each Cu(II) ion could be described as pseudo-octahedral. The positions of pseudo- coordinated O1wi atoms are shown in Fig. 1a. The angles formed between the atom O1wi and the O2 and O1w donor atoms from the Cu(II) coordination sphere are 87.9 and 105.8°, respectively. The separation distance between two Cu(II) in the chain is 3.826(1) Å and coincides with the length of the shortest a axis. Both H2O molecules coordinated to Cu(II) further engage as hydrogen bonding donors to the non-substituted pyrazole N atoms of the neighboring chain (O1w−H2w…N2), leading to cross-linkage and the formation of a three-dimen- sional network. A fragment of this three-dimensional crystal packing is shown in Fig. 2a. TABLE I. The geometry of hydrogen bonding (Å, °) for the Cu(II) and Co(II) complexes; symmetry codes for [CuL2(H2O)2]: i) x+1, y, z; ii) –x+1, y–1/2,–z+1/2; symmetry codes for [CoL2(MeOH)4]: i) x, y, z; ii) x, y–1, z Structure D–H…A D–H D…A H…A D–H…A [CuL2(H2O)2] O1w−H1w …O3i 0.81(3) 2.611(2) 1.82(3) 165(3) O1w−H2w…N2ii 0.83(3) 2.716(2) 1.89(3) 170(4) [CoL2(MeOH)4] O4a−H4a …O2ai 0.79(3) 2.587(2) 1.83(3) 160(3) O4b−H4b…O1bi 0.82(3) 2.582(2) 1.78(3) 167(3) O3a−H3a…N2aii 0.73(3) 2.707(3) 1.98(3) 175(3) O3b−H3b…N2bii 0.79(3) 2.765(2) 1.97(3) 177(3) The second complex [CoL2(MeOH)4] crystallizes in space group P-1, with the asymmetric unit containing two halves of the corresponding crystallo- graphically independent complex molecules (A and B). The two Co(II) ions, which are placed in the inversion centers (0,0,0 and 0.5,0.5,0.5), adopt deformed octahedral coordination geometry (Table S-II) built by two monodentately coor- dinated L ligands and four molecules of methanol, Fig. 1b. The Co−O1 coordi- nation bonds in the two independent molecules are of similar lengths, while the dihedral angles between the carboxyl and pyrazole planes are 8.6(2) and 3.5(2)° for molecules A and B, respectively. The bonds within the L ligand show only small variations with respect to the uncoordinated molecule17 and the same lig- and in the Cu(II) complex. Comparison of the monodentate coordination of the L _________________________________________________________________________________________________________________________ (CC) 2015 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ 872 JAĆIMOVIĆ et al. ligand to the Co(II) and Cu(II) ions in the two complexes revealed a pronounced difference between the Cu1−O1−C1 and each of the two Co1−O1−C1 angles (9.3° on average) (Table S-II). In both molecules of [CoL2(MeOH)2], the car- boxyl group of L is placed in the level of vicinal MeOH ligand and engages in strong intramolecular (O4−H4…O2) hydrogen bonding (Table I). This is in con- trast to the Cu(II) complex in which a carboxyl group points away from the vic- inal ligand to engage in intermolecular O−H…O interaction. Fig. 2. Crystal packing of: (a) [CuL2(H2O)2] and (b) [CoL2(MeOH)4]. Intermolecular interactions are indicated by dashed lines. _________________________________________________________________________________________________________________________ (CC) 2015 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ Cu(II) AND Co(II) COMPLEXES WITH 1,3-DIMETHYLPYRAZOLE-5-CARBOXYLIC ACID 873 The MeOH ligands mostly contribute to the dissimilarity of the two inde- pendent [CoL2(MeOH)4] molecules. Thus, the Co−O coordination bonds invol- ving MeOH ligands (Table S-II) are both longer in molecule B by 0.04Å on average. A closer comparison of the coordinated MeOH also showed marked dif- ferences in the orientation of their methyl groups. Considering the MeOH ligands that form strong intramolecular hydrogen bonds, it could be observed that their C8 methyl atoms deviate from corresponding O1/O1′/O4/O4′ planes by 0.18(1) and 0.96(1) Å in A and B, respectively. In both type of molecules another pair of MeOH serves as donor in the O3−H3…N2 intermolecular hydrogen bond to the pyrazole acceptor from the neighboring molecule (Table I). These interactions lead to the formation of two distinct chains composed of the same type of mole- cules, A or B. Both chains run in the direction of the b axis; the mutual inclin- ation between the pyrazole rings belonging to different chains is 47.4(1)°. The chains composed of A and B molecules mutually interact by van der Waals interactions (Fig. 2b). CONCLUSION The report describes the synthesis, IR characterization and crystal structures of Cu(II) and Co(II) complexes with 1,3-dimethylpyrazole-5-carboxyle ligand (HL), the square-planar [CuL2(H2O)2] and the octahedral [CoL2(MeOH)4]. The presence of a methyl substituent on the N1 atom of HL prevents bidentate coor- dination common for pyrazole-5-carboxylic acid-based ligands; therefore, in both complexes the ligand is monodentately coordinated to the metal ion. The crystal structures of the complexes are stabilized by extensive O−H…O and O−H…N hydrogen bonds, in which H2O and methanol ligands play a significant role as hydrogen bonding donors. SUPPLEMENTARY DATA Crystallographic data of the structural analysis have been deposited with the Cambridge Crystallographic Data Centre CCDC No. 1015253 and 1015254. The data are available free of charge via www.ccdc.cam.ac.uk/data_request/cif (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk). The crystallographic data, and selected bond lengths and angles for the Cu and Co complexes are given in Tables S-I and S-II, respectively, of the Supplementary material to this paper, which is available electronically from http://www.shd.org.rs/JSCS/ or from the corresponding author on request. Acknowledgement. S. B. N. thanks the Ministry of Education and Science of the Republic of Serbia (Project No. 172014 and 172035) for financial support. Ž. J. and M. K. thank to the Ministry of Science of the Republic of Montenegro/Natonal project for the financial support. _________________________________________________________________________________________________________________________ (CC) 2015 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ 874 JAĆIMOVIĆ et al. И З В О Д СИНТЕЗА И КРИСТАЛНА СТРУКТУРА КОМПЛЕКСА Cu(II) И Co(II) СА 1,3-ДИМЕТИЛ-ПИРАЗОЛ-5-КАРБОКСИЛНОМ КИСЕЛИНОМ ЖЕЉКО К. ЈАЋИМОВИЋ 1 , МИЛИЦА КОСОВИЋ 1 , СЛАЂАНА НОВАКОВИЋ 2 , GERALD GIESTER 3 и АНА РАДОВИЋ 4 1Металуршко–технолошки факултет Универзитета у Црној Гори, Подгорица , Црна Гора, 2Институт за нуклеарне науке „Винча“, Лабораторија за физику кондензоване материје,Универзитет у Београду, п. пр. 522, 11001 Београд, 3Institut für Mineralogie und Kristallographie, Fakultät für Geowissenschaften, Geographie und Astronomie, University of Vienna Althanstraße 14, A-1090 Vienna, Austria и 4Aкредитационо тело Црне Горе, Јована Томашевића 1, 81000 Подгорица, Црна Гора У реакцији 1,3-диметилпиразол-5-карбоксилне киселине (HL) и M(OAc)2·4H2O (M = Cu или Co) синтетисана су два нова комплекса, квадратно-планарни [CuL2(H2O)2] и октаедарски [CoL2(MeOH)4]. Некоординовани лиганд и синтетисани комплекси су ока- рактерисани инфрацрвеним спектрима. Кристалне стуктуре комплекса су одређене рендгенском стуктурном анализом. У оба комплекса депротонована киселина се коорди- нује за јон метала као монодентатни лиганд. Према резултатима претраге Кембричке банке података ово је први стуктурни опис комплекса метала са N1-супституисаним дериватом пиразол-5-карбоксилне киселине. (Примљено 22. јула, ревидирано 30. децембра 2014, прихваћено 30. јануара 2015) REFERENCES 1. a) J. M. Alex, R. Kumar, J. Enzyme Inhib. Med. Chem. 29 (2014) 427; b) V. Kumar, K. Kaur, G. K. Gupta, A. K. Sharma, Eur. J. Med. Chem. 69 (2013) 735; c) F. Chimenti, A. Bolasco, F. Manna, D. Secci, P. Chimenti, A. Granese, O. Befani, P. Turini, R. Cirilli, F. La Torre, S. Alcaro, F. Ortuso, T. Langer, Curr. Med. Chem. 13 (2006) 1411 2. Ž. K. Jaćimović, G. A. Bogdanović, B. Holló, V. M. Leovac, K. Mészáros Szécsényi, J. Serb. Chem. Soc. 74 (2009) 1259, and references therein 3. a) S. Bhattacharya, A. Goswami, B. Gole, S. Ganguly, S. Bala, S. Sengupta, S. Khanra, R. Mondal, Cryst. Growth Des. 14 (2014) 2853; b) T.-J. Won, J. K. Clegg, L. F. Lindoy, J. C. McMurtrie, Cryst. Growth Des. 7 (2007) 972 4. A. M. Halcrow, Dalton Trans. (2009) 2059 5. R. Mukherjee, Coord. Chem. Rev. 203 (2000) 151 6. F. H. Allen, Acta Crystallogr., B 58 (2002) 380. CSD version 5.35 updates (May 2014) 7. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Wiley–Interscience, New York, 2009, p 271 8. G. M. Sheldrick, Acta Crystallogr., A 64 (2008) 112 9. M. Nardelli, Comput. Chem. (Oxford, UK) 7 (1983) 95 10. A. L. J. Spek, J. Appl. Crystallogr. 36 (2003) 7 11. L. J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565 12. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, J. Appl. Crystallogr. 39 (2006) 453 13. V. Chandrasekhar, R. Thirumoorthi, R. K. Metre, B. Mahanti J. Organomet. Chem. 696 (2011) 600 14. Z.-P. Li, Y.-H. Xing, C.-G. Wang, J. Li, Y.-Z. Cao, X.-Q. Zeng, M.-F. Ge, S.-Y. Niu, Z. Anorg. Allg. Chem. 635 (2009) 2601 _________________________________________________________________________________________________________________________ (CC) 2015 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ Cu(II) AND Co(II) COMPLEXES WITH 1,3-DIMETHYLPYRAZOLE-5-CARBOXYLIC ACID 875 15. a) Y. Chen, C.-B. Liu, Y.-N. Gong, J.-M. Zhong, H.-L. Wen, Polyhedron 36 (2012) 6; b) H. Liu, C.-B. Liu, Y.-N. Gong, Y.-H. Wang, H.-L. Wen, Chin. J. Chem. 31 (2013) 407 16. a) R. Lamann, M. Hulsen, M. Dolg, U. Ruschewitz, Z. Anorg. Allg. Chem. 638 (2012) 1424; b) Y. Kani, M. Tsuchimoto, S. Ohba, Acta Crystallogr., C 56 (2000) e79 17. E. Foresti Serantoni, R. Mongiorgi, L. Riva di Sanseverino, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat, Rend. 54 (1973) 787 18. A. Bondi, J. Phys. Chem. 68 (1964) 441. _________________________________________________________________________________________________________________________ (CC) 2015 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice