Effects of solid poly (ethylene glycols) addition to the solutions of aniline or N,N-dimethylaniline with water: Experimental measurements and modelling J. Serb. Chem. Soc. 81 (7) 789–798 (2016) UDC 547.422+66.091.7+547.552.2:536.247+ JSCS–4886 54–145.2 Original scientific paper 789 Effects of solid poly (ethylene glycols) addition to the solutions of aniline or N,N-dimethylaniline with water: Experimental measurements and modelling DANIJELA SOLDATOVIĆ1, NIKOLA GROZDANIĆ2#, ZORAN VIŠAK3, IVONA RADOVIĆ2# and MIRJANA KIJEVČANIN2*# 1Public Company Nuclear Facilities of Serbia, 12–14 Mike Petrovića Alasa, Vinča, 11351 Belgrade, Serbia, 2Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia and 3Engineering and Applied Sciences, Aston University, Birmingham, B4 7ET, United Kingdom (Received 17 March, accepted 18 April 2016) Abstract: In this work, the liquid–liquid and solid–liquid phase behaviour of ten aqueous pseudo-binary and three binary systems containing polyethylene glycol (PEG) 2050, polyethylene glycol 35000, aniline, N,N-dimethylaniline and water, in the temperature range 298.15–350.15 K and at ambient pressure of 0.1 MPa, was studied. The obtained temperature-composition phase dia- grams showed that the only functional co-solvent was PEG2050 for aniline in water, while PEG35000 even showed a clear anti-solvent effect in the N,N- -dimethylaniline aqueous system. The experimental solid–liquid equilibria (SLE) data have been correlated by the non-random two-liquid (NRTL) model, and the correlation results are in accordance with the experimental results. Keywords: solid–liquid equilibria; liquid–liquid equilibria; NRTL model; poly- ethylene glycol; aniline; N,N-dimethylaniline. INTRODUCTION Polyethylene glycols (PEGs) are non-toxic, biodegradable polymers1 which form strong inter- and intra-molecular hydrogen bonds,2,3 since they are both good proton donors and acceptors.4 PEGs, particularly in their liquid form, have wide spectrum of applications as solvents and co-solvents in organic synthesis,5 catalysis,2 food industry6 and biotechnology.7 In the previous study,8 liquid PEGs as co-solvents for aniline and N,N-dimethylaniline in water were investigated, assessing possible impacts on the application of these aromatic compounds in dye industry. As a continuation, this study is investigating the possibility to use * Corresponding author. E-mail: mirjana@tmf.bg.ac.rs # Serbian Chemical Society member. doi: 10.2298/JSC160317058S _________________________________________________________________________________________________________________________ (CC) 2016 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ 790 SOLDATOVIĆ et al. solid PEGs – average molecular mass 2050 (PEG2050) and 35000 (PEG35000) – in the same respect. Thus, the related temperature–composition phase diagrams of the pseudo-binary systems aniline/or N,N-dimethylaniline+(PEG2050 + water) and aniline/or N,N-dimethylaniline+(PEG35000+ water) were constructed. Dia- grams showed that only the addition of PEG2050 to aqueous solution of aniline provoked a considerable co-solvent effect for aniline in water, while PEG35000 even appeared to be an anti-solvent, decreasing the solubility of water in N,N- -dimethylaniline. The results were discussed in terms of the hydrogen bonds existing between PEGs and aniline or N,N-dimethylaniline but, as well, taking into account distinct solubility of PEG2050 and PEG35000 in both studied organic solvents. Binary solid–liquid equilibria (SLE) data were correlated using the non-random-two-liquid (NRTL) activity coefficient models. EXPERIMENTAL Materials Studied pure compounds, their suppliers and the related stated purities are listed in Table I – all the compounds were used without further purification. Water used for preparation of the solutions was redistilled and deionized (Milipore Co. equipment, Bedford, MA). All the solutions were prepared gravimetrically using a Mettler AG 204 analytical semi-microbalance having a precision of ±1×10-4 g. TABLE I. Table of the samples (pure components) used in this study Chemical name Source CAS number Melting point range, K Mass fraction purity Purification method Aniline Sigma–Aldrich (Switzerland) 62-53-3 – ≥ 0.995 None N,N-dimethyl- aniline Merck (Germany) 121-69-7 – ≥ 0.99 None Polyethylene glycol 2050 Sigma–Aldrich (Germany) 25322-68-3 325.15–327.15 ≥ 0.995 None Polyethylene glycol 35000 Sigma–Aldrich (Germany) 25322-68-3 337.15–339.15 ≥ 0.995 None Apparatus and procedure Solid–liquid equilibria (SLE) experiments were performed in stirring-equipped, septum- -closed conical Pyrex vials, in the temperature range 298.15–339.15 K and at 0.1 MPa. A visual dynamic method was applied – after slow, continuous heating, accompanied by cons- tant stirring, the temperature at which the last solid traces disappeared was taken as that of the solid–liquid equilibrium, following the procedure applied earlier.9-11 Liquid–liquid equilibria (LLE) experiments were performed in the same temperature range as the SLE, using a visual method of cloud point determination, explained thoroughly in previous research.9,12,13 The experiments were carried out in a self-made stirrer-equipped Pyrex glass cell introduced by Domanska,14 which design and use was described in our earlier contribution.13 _________________________________________________________________________________________________________________________ (CC) 2016 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ EFFECTS OF SOLID PEG ADDITION TO WATER SOLUTIONS 791 In all the experiments, a glass beaker of 2 L was used as a thermostat bath, filled with ethanol (273.15–293.15 K), water (293.15–333.15 K), or silicon oil (333.15–373.15 K) as a thermostatic liquid. Temperature was controlled using a Pt100 temperature probe, which had an accuracy of ±0.03 K. The uncertainties in temperature determination, estimated from the repeated measure- ments, were never higher than ±0.5 K, except in the SLE experiments where the errors were above the aforesaid, but never exceeded ±1.0 K. Solutions were prepared gravimetrically using a Mettler Toledo AG204 analytical semi- microbalance with the precision of ±1×10-4 g. RESULTS AND DISCUSSION PEG 2050 and PEG 35000 are solid and the first part of our study was to determine the solid–liquid phase behavior of the binary solutions (PEG 2050 + N,N-dimethylaniline) and (PEG35000 + aniline or N,N-dimethylaniline), since the system PEG2050 + aniline was studied in the previous work.9 Thus, the experimental solid–liquid equilibrium (SLE) data of the three binary systems are listed in Table S-I of the Supplementary material to this paper. However, the temperature-composition phase diagrams at 0.1 MPa are pre- sented only for the system PEG2050 + N,N-dimethylaniline (Fig. 1) since the solubility of PEG35000 in the studied aromatic molecules is very low and unsuit- able for graphical presentation. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 295 300 305 310 315 320 325 330 T / K x 1 Fig. 1. Solid–liquid equilibria for the binary system (PEG 2050 + N,N-dimethylaniline): hollow circles – experimental data; line ( )− − − presents the correlations of these data using the NRTL model (Eqs. (1)–(4) later on). Filled circles refer to the experimental data for the binary system (PEG 2050 + aniline),9 given for comparison; line ( )⋅ ⋅ ⋅ depicts the correlations of these data using the same NRTL model; x1 represents mole fractions of PEG2050 in solution. _________________________________________________________________________________________________________________________ (CC) 2016 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ 792 SOLDATOVIĆ et al. N,N-dimethylaniline is a dialkylamine, a derivative of aniline with two methyl groups bonded to the nitrogen in the amine group – thus, the hydrogen bond acidity is reduced to zero, while the same parameter for aniline is as high as 0.26.15 Thus, being a better proton donor, aniline builds stronger hydrogen bonds with the oxygen atoms in the PEG2050 chain which are proton acceptors. This could be the reason for a better solubility of PEG 2050 in aniline than in N,N-dimethylaniline as it can be seen from the comparison given in Fig. 1. The impact of the polymer chain length in the studied solid–liquid phase behaviour is that the longer chain led to lower solubility in the studied organic solvents (see Table S-I). This was expected since the longer chain in polymer PEG 35000 obstructs intermolecular hydrogen bonding and dipole-dipole interactions with aniline or N,N-dimethylaniline. Liquid–liquid phase demixing temperatures (cloud points) were determined for the systems aniline/or N,N-dimethylaniline + (water + PEG 2050) and for aniline or N,N-dimethylaniline + (water + PEG 35000), for different compo- sitions of (water + PEG) mixed solvent. The experimental cloud points are listed in Tables S-II–S-V of the Supplementary material and the related temperature– –composition phase diagrams of the pseudo-binary systems are shown in Figs. 2– –5. These diagrams show that the only useful co-solvent effect is that for aniline in water, provoked by the addition of PEG 2050 to the aqueous aniline solution – Fig. 2. On the other hand, PEG 35000 even provoked a clear anti-solvent effect 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 310 315 320 325 330 335 340 345 T / K x 1 Fig. 2. Temperature–composition liquid–liquid phase diagrams at 0.1 MPa of: i) binary system aniline (1) + water (2),8 hollow circles; ii) pseudobinary system aniline (1) + (water + PEG2050) (2), for the different mole fractions (xPEG) of PEG in the com- bined (PEG2050 + water) solvent, filled circles, xPEG = 0.0022, hollow triangles, xPEG = = 0.0058, filled squares, xPEG = 0.0087. x1 represents mole fractions of aniline in solutions. _________________________________________________________________________________________________________________________ (CC) 2016 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ EFFECTS OF SOLID PEG ADDITION TO WATER SOLUTIONS 793 in the aqueous N,N-dimethylaniline, decreasing the solubility of water – Fig. 5. The aforementioned low solubility of solid PEG 35000 in the studied aromatic molecules (see Table S-I) is probably the main reason for this behaviour. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 310 315 320 325 330 335 340 345 T / K x 1 Fig. 3. Temperature–composition liquid–liquid phase diagrams at 0.1 MPa of: i) binary system aniline (1) + water (2),8 hollow circles; ii) pseudobinary system aniline (1) + (water + PEG35000) (2) for the different mole fractions (xPEG) of PEG in the combined (PEG35000 + water) solvent: filled circles, xPEG = 2.720×10 -4; filled triangles, xPEG = 1.285×10 -4. x1 represents mole fractions of aniline in solutions. 0.0 0.2 0.4 0.6 0.8 1.0 310 320 330 340 350 T / K x 1 Fig. 4. Temperature–composition liquid–liquid phase diagram at 0.1 MPa of: i) binary system N, N-dimethylaniline (1) + water (2),8 hollow circles; ii) pseudobinary system N,N-dimeth- ylaniline (1) + (water + PEG2050) (2), for the different mole fractions (xPEG) of PEG in the combined (PEG2050 + water) solvent: hollow triangles, xPEG–= 0.0058; filled circles, xPEG = 0.0022; filled squares, xPEG = 0.0087. x1 represents mole fractions of N,N-dimethylaniline in solutions. _________________________________________________________________________________________________________________________ (CC) 2016 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ 794 SOLDATOVIĆ et al. 0.0 0.2 0.4 0.6 0.8 1.0 310 320 330 340 350 T / K x 1 Fig. 5. Temperature–composition liquid–liquid phase diagrams at 0.1 MPa of: i) binary system N,N-dimethylaniline (1) + water (2),8 hollow circles; ii) pseudobinary system N,N-dimethylaniline (1) + (water + PEG35000) (2), for the different mole fractions (xPEG) of PEG in the combined (PEG2050 + water) solvent: filled triangles, xPEG = 2.720×10 -5; filled circles, xPEG = 1.285×10 -4. x1 represents mole fractions of N,N-dimethylaniline in solutions. MODELING OF THE BINARY SOLID–LIQUID EQUILIBRIA (SLE) DATA The binary SLE data for the studied systems were modelled using the non- random two-liquid (NRTL) excess free energy model16 described with the fol- lowing equations: ( ) 2 2 12 12 21 1 2 212 1 21 22 12 1 ln G G x x G xx G x τ γ τ    = +    ++    (1) ( ) 2 2 21 21 12 2 1 122 2 12 11 21 2 ln G G x x G xx G x τ γ τ    = +    ++    (2) ( )12 12 12expG α τ= − , ( )12 21 21expG α τ= − (3) 1212 g RT τ Δ = , 2121 g RT τ = (4) Parameter α in Eq. (3) is the NRTL excess free energy non-randomness parameter, taken herein as a constant (α12 = α21 = 0.3), which is a reasonable assumption suggested in literature16 but as well gave the lowest deviations in the correlations. Parameters Δg12 and Δg21 are the binary interaction parameters of the NRTL model, obtained by the optimization of the objective function: _________________________________________________________________________________________________________________________ (CC) 2016 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ EFFECTS OF SOLID PEG ADDITION TO WATER SOLUTIONS 795 ( )2exp calc 1 n jj j OF T T = = − (5) where n is the number of experimental points, Tjexp and Tjcalc are experimental and calculated equilibrium temperatures corresponding to the experimental mole fraction xj. Tjcalc are expressed using the equation:17 fus m, m, ln 1 lnii i i H T x RT T γ  Δ = − −     (6) In Eq. (6), γi is the activity coefficient of component i in the mixture at the corresponding temperature T, xi is the mole faction and R is the gas constant. Tm,i is the melting temperature of the solid solute (PEG) and fus m,iHΔ is its molar enthalpy of fusion at the same temperature. The respective values for PEG 2050 and PEG 35000 are taken from literature – PEG 2050:9 fus m,iHΔ = 370.37 kJ mol –1, Tm = 330.14 K; PEG 35000:18 fus m,iHΔ = 6650 kJ mol –1, Tm = 343.15 K. Equation (6) considers reasonable assumptions, already applied in litera- ture10,11 that: i) the difference in the normal melting temperature and the triple point temperature is small – thus, the divergence of the enthalpies of fusion at these two temperatures can be neglected and ii) the impact of the difference of the heat capacities of solid and liquid solute can be neglected. A deviation of the calculated temperature values from the experimental values is expressed as absolute average deviations ΔT, and absolute average percent deviations PD(T), for each binary system: exp calc 1 1 n jj j T T T n = Δ = − (7) exp calc exp 1 100 PD( ), % n jj j j T T T n T= − =  (8) The results for the binary interaction parameters and the corresponding values of ΔT and PD(T) are presented in Table II. For all four systems satis- factory results were obtained. Graphical representation of the NRTL model is given in Fig. 1 for the sys- tems PEG 2050 + aniline and PEG 2050 + N,N-dimethylaniline. The modelling of the systems involving PEG 35000 could not be graphically presented due to small solubility of PEG 35000 in the studied aromatic compounds. Total absolute average percent deviation PD(T) for all the systems was less than 0.97 %. _________________________________________________________________________________________________________________________ (CC) 2016 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ 796 SOLDATOVIĆ et al. TABLE II. Values of the NRTL model parameters Δg12 and Δg21, absolute average deviations ΔT and absolute average percent deviations PD(T) between experimental and calculated data for four binary systems –Δg12 / kJ kmol -1 Δg21 / kJ kmol -1 ΔT / K PD(T) / % PEG 2050 + aniline 12596 9317.2 1.70 0.55 PEG 2050 + N,N-dimethylaniline 9671.6 8725.2 1.10 0.36 PEG 35000 + aniline 20339 19896 5.29 1.58 PEG 35000 + N,N-dimethylaniline 26009 22103 4.88 1.49 CONCLUSION In this study, solid–liquid equilibria data for the binary solutions of solid polyethylene glycols (average molecular mass 2050 and 35000) in aniline and N,N-dimethylaniline, organic aromatic solvents of common interest, were experi- mentally determined. Also, experimental liquid-liquid phase demixing tempera- tures (cloud points) in the pseudobinary systems (aniline or N,N-dimethylaniline + ( PEG 2050 or PEG 35000 + water)) were obtained. PEG 2050 exhibited slightly higher solubility in aniline compared to that in N,N-dimethylaniline, most probably due to higher hydrogen bond acidity of aniline which provided stronger hydrogen bonding with the polymer chain. On the other hand, longer polymer chain provoked dramatically lower solubility in both studied organic solvents. The obtained liquid–liquid phase diagrams showed that only the addition of PEG 2050 to the aqueous solution of aniline provoked a considerable co-solvent effect for aniline in water. Moreover, PEG 35000 even appeared to be an anti- -solvent, decreasing the solubility of water in N,N-dimethylaniline. Solid–liquid equilibria data for four binary systems were correlated by NRTL model with two different temperature dependant parameters, Δg12 and Δg21, and correlation results agree well with the experimental results. SUPPLEMENTARY MATERIAL Additional experimental data are available electronically from http://www.shd.org.rs/ /JSCS/, or from the corresponding author on request. Acknowledgements. The authors gratefully acknowledge the financial support received from the Research Fund of Ministry of Science and Environmental Protection, Serbia and the Faculty of Technology and Metallurgy, University of Belgrade (Project No. 172063). _________________________________________________________________________________________________________________________ (CC) 2016 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ EFFECTS OF SOLID PEG ADDITION TO WATER SOLUTIONS 797 И З В О Д ЕФЕКТИ ДОДАВАЊА ЧВРСТИХ ПОЛИ ЕТИЛЕНГЛИКОЛА У ВОДЕНЕ РАСТВОРЕ АНИЛИНА ИЛИ Н,Н-ДИМЕТИЛАНИЛИНА: ЕКСПЕРИМЕНТАЛНА МЕРЕЊА И МОДЕЛОВАЊЕ ДАНИЈЕЛА СОЛДАТОВИЋ1, НИКОЛА ГРОЗДАНИЋ2, ЗОРАН ВИШАК2, ИВОНА РАДОВИЋ2 и МИРЈАНА КИЈЕВЧАНИН2 1Јавно предузеће Нуклеарни објекти Србије, Мике Петровића Аласа 12-14, Винча, 11351 Београд, 2Технолошко-металуршки факултет, Универзитет у Београду, Карнегијева 4, 11120 Београд и 3 Engineering and Applied Sciences, Aston University, Birmingham, B4 7ET, United Kingdom Испитивана је фазна равнотежа течност–течност и чврстo–течност за десет псеудо- бинарних и три бинарна система који садрже поли етиленгликол (PEG) 2050, PEG 35000, анилин, N,N-диметиланилин и воду, у температурном опсегу 298,15–350,15 K и при атмосферском притиску. Добијени фазни дијаграми температура–састав показали су да је PEG 2050 једини функционални ко-растварач за анилин у води, док је PEG 35000 показао јасне анти-растварачке ефекте у воденом раствору N,N-диметиланилина. Екс- периментални подаци равнотеже чврсто–течност корелисани су помоћу NRTL модела, а добијени резултати су у складу са експерименталним резултатима. (Примљено 17. марта, прихваћено 18. априла 2016) REFERENCES 1. D. J. Heldebrant, H. N. Witt, S. M. Walsh, T. Ellis, J. Rauscher, P. G. Jessop, Green Chem. 9 (2006) 807 2. O. E. Philippova, S. I. Kuchanov, I. N. Topchieva, V. A. Kabanov, Macromolecules 18 (1985) 1628 3. Z. Višak, L. M. Ilharco, R. M. Garcia, V. Najdanović-Višak, J. M. N. A. Farleira, F. J. P. Caetano, M. Lj. Kijevčanin, S. P. Šerbanović, J. Phys. Chem., B 115 (2011) 8481 4. I.-W. Kim, M. D. Jang, Y. K. Ryu, E. H. Cho, Y. K. Lee, J. H. Park, Anal. Sci. 18 (2002) 1357 5. J. Liang, L. Jing, J. Fan, Z. Shang, Synth. Commun. 39 (2009) 2822 6. Toxicological Evaluation of Certain Food Additives, World Health Organization, Food Additives Series 14, Geneva, 1979 7. B. Y. Zaslavsky, Aqueous Two-Phase Partitioning: Physical Chemistry and Bio-analyt- ical Application, Marcel Dekker, New York, 1995 8. N. D. Grozdanić, D. A. Soldatović, S. P. Šerbanović, I. R. Radović, M. Lj. Kijevčanin, J. Chem. Eng. Data 60 (2015) 493 9. G. Ivanis, J. Vuksanovic, M. Calado, M. Kijevcanin, S. Serbanovic, Z. Visak, Fluid Phase Equilib. 316 (2012) 74 10. M. S. Calado, A. S. H. Branco, V. Najdanovic-Visak, Z. Visak, J. Chem. Thermodyn. 70 (2014) 154 11. M. S. Manic, V. Najdanovic-Visak, J. Chem. Thermodyn. 44 (2012) 102 12. C. Trindade, Z. Visak, R. Bogel-Lukasik, E. Bogel-Lukasik, M. Nunes da Ponte, Ind. Eng. Chem. Res. 49 (2010) 4850 13. N. D. Grozdanic, V. Najdanovic-Visak, M. Lj. Kijevcanin, S. P. Serbanovic, M. Nunes da Ponte, Z. P. Visak, Fluid Phase Equilib. 310 (2011) 198 14. U. Domanska, Fluid Phase Equilib. 26 (1986) 201 15. M. H. Abraham, P. L. Grellier, D. V. Prior, P. P. Duce, J. J. Morris, P. J. Taylor, J. Chem. Soc. Perkin Trans. II 2 (1989) 699 _________________________________________________________________________________________________________________________ (CC) 2016 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ 798 SOLDATOVIĆ et al. 16. H. Renon, J. M. Prausnitz, Ind. Eng. Chem. Process Design Develop. 8 (1969) 413 17. J. M. Prausnitz, Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall PTR, Upper Saddle River, NJ, 1969, pp. 390–391 18. K. Pielichowski, K. Flejtuch, Polym. Adv. Technol. 13 (2002) 690. _________________________________________________________________________________________________________________________ (CC) 2016 SCS. All rights reserved. Available on line at www.shd.org.rs/JSCS/ << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice