{Preventing decomposition of 2-mercaptobenzothiazole during gas chromatography analysis using programmable temperature vaporization injection} J. Serb. Chem. Soc. 82 (10) 1147–1153 (2017) UDC 547.427.6’789.6:544.421.032.4+ JSCS–5030 543.544.3 Short communication 1147 SHORT COMMUNICATION Preventing decomposition of 2-mercaptobenzothiazole during gas chromatography analysis using programmable temperature vaporization injection STEFAN ĐORĐIEVSKI*#, ZORICA SOVRLIĆ, TAMARA UROŠEVIĆ, JELENA PETROVIĆ and VESNA KRSTIĆ Mining and Metallurgy Institute Bor, Zeleni Bulvar 35, 19210 Bor, Serbia (Received 14 November 2016, revised 31 March, accepted 4 April 2017) Abstract: 2-mercaptobenzothiazole (MBT) is a chemical compound which is widely used in various processes in chemical industry, and it was also detected in environmental samples. Most of the researchers employed liquid chromato- graphy (LC) or gas chromatography (GC) for determination of MBT. When GC was used, derivatization was necessary in order to prevent decomposition of MBT inside of the hot GC inlet. In this study, a new approach for preventing decomposition of MBT using programmable temperature vaporization (PTV) was presented. The sample was injected in a cold inlet (40 °C) and the tempe- rature was raised gradually until the analyte was evaporated. Contrary to hot splitless injection, no decomposition of MBT was observed using PTV. Com- pared to derivatization, PTV requires no chemicals and the duration of analysis is reduced. Keywords: solvent vent mode; inlet; GC; MBT; PTV. INTRODUCTION 2-Mercaptobenzothiazole (MBT) is an aromatic heterocyclic chemical com- pound consisted of 1,3-thiazole ring fused to benzene ring and substituted with mercapto functional group at methine position in thiazole ring.1 MBT may exist as thione and thiol tautomers (Fig. 1),2 and crystallographic analysis showed that thione form is predominant.3 pK and Kow of MBT are 7.2, and 2.41, respectively.4,5 Some applications of MBT are as copper corrosion inhibitor,6 vulcanization accelerator in rubber production,7 in organic synthesis including deoxygenation of epoxides and in the preparation of alkynes.8 Some derivatives of MBT have antimicrobial and antifungal activities.9 MBT has been extensively employed in * Corresponding author. E-mail: stefan.djordjievski@irmbor.co.rs # Serbian Chemical Society member. https://doi.org/10.2298/JSC161114041D ___________________________________________________________________________________________________________________________Available on line at www.shd.org.rs/JSCS/ (CC) 2017 SCS. 1148 ĐORĐIEVSKI et al. chemical industry before it was tried as a flotation collector;10 it has been used for flotation of copper, lead and zinc minerals.11–14 Fig. 1. Thione and thiol tautomer of MBT.2 MBT and related benzothiaziole derivates have been found in many envi- ronmental matrices. These compounds are released with treated municipal waste- water and have a considerable lifetime in surface waters.15 Benzothiazoles enter the environment from a number of sources such as the leaching of rubber pro- ducts, fine particles of automobile tires, and antifreeze.16 Sorption and desorption processes of benzothiazoles onto sandy aquifer material is very important for the understanding of behaviour of these compounds in the environment.17 Table I lists chromatographic methods applied for analysis of MBT, inc- luding matrix types, extraction techniques and limits of detection (LOD). Gas chromatography (GC) and liquid chromatography (LC) are both widely used for determination of MBT. Sample preparation methods include solid phase ext- raction (SPE), solid phase microextraction (SPME), liquid–liquid extraction (LLE), dispersive liquid–liquid microextraction (DLLME) and direct injection. Prior to LC determination, no derivatization of MBT is necessary. Some researchers derivatized MBT to thioethers prior to GC analysis,18–20 while others carried out analysis without derivatization.21,22 Main reason for derivatization of MBT, prior to GC analysis, is the reactivity of the thiol group inside of a gas chromatograph.19 Other methods have also been reported for analys of MBT, including voltammetry and spectrophotometry.23,24 Most of the researchers deter- mined MBT simultaneously with other related chemical compounds. In our study, instead of derivatization, the programmed temperature vapor- ization (PTV) was used for the prevention of decomposition of MBT during GC determination. PTV was initially presented in 1979 by Vogt et al.31,32 The three most important modes of PTV operation are cold split injection, cold splitless injection, and solvent elimination injection (also called solvent split injection or solvent vent mode).33–35 Among these, the solvent elimination injection has been the most widely used PTV technique and it was also used in our study. In this mode, sample is introduced at temperature below the solvent boiling point and the solvent is eliminated via split exit while the higher-boiling analytes are retained in the liner. After the solvent elimination, PTV is rapidly heated and the retained analytes are transferred to the analytical column. When splitless transfer is completed, the split exit is reopened to remove the residual solvent vapour and low-volatile matrix compounds from the inlet.34 The advantages of PTV injection ___________________________________________________________________________________________________________________________Available on line at www.shd.org.rs/JSCS/ (CC) 2017 SCS. PREVENTING DECOMPOSITION OF 2-MERCAPTOBENZOTHIAZOLE 1149 over other techniques consist in decreased analyte discrimination during the injection step, better recoveries of thermodegradable compounds, less pro- nounced adverse effects of non-volatiles present in the sample on the injection process and the possibility to introduce large volumes of samples (up to hundreds µL) into GC system.36 TABLE I. Analytical techniques used for determination of MBT Matrix Extraction technique Analytical technique LOD for MBT Reference Tap water, surface water, urban effluent SPME; polyacrylate GC–MS/MS 0.7–1.2 µg l-1 22 River water, urban and industrial wastewater SPE LC–MS/MS 6 ng ml-1 25 Wastewater SPE GC–MS – 21 Tap, river and indus- trial waters, waste- waters DLLME LC–Flu–UV 0.3 µg l-1 26 Municipal wastewater SPE LC–MS 50–120 ng l-1 27 Tannery wastewater Direct injection LC–MS/MS 20 ng l-1 28 Ozonized water LLE-derivatization GC–MS – 20 Urine LLE-derivatization GC–MS 0.12 µmol 1-1 19 Industrial wastewater LLE LC–UV, GC-FID 5 µg l-1 29 River water Direct injection LC-ED 0.82 µg l-1 30 Water and sediment LLE-derivatization GC-FPD 0.04 ppb 18 This article provides useful information about the operating conditions of GC inlet that may be applied for the determination of MBT without the decom- position of this compound. It also provides information about conditions of GC inlets for determination of MBT developed by other authors, and a comparison of these conditions with those described in this study. EXPERIMENTAL Agilent GC/MSD 7890B/5977A was employed for the qualitative determination of MBT. GC unit included G4513A autoinjector, multimode inlet and HP-5MS capillary column ((5 %-phenyl)-methylpolysiloxane packing, 30 m length, 0.25 mm ID, 0.25 µm film). Helium was used as a carrier gas. MSD unit was consisted of a single quadrupole mass analyzer and ion source with electron ionization. Technical flotation reagent SKIK (Metoha Technology) containing 50 % water solution of sodium-2-mercaptobenzothiazole was used for experiments in this study. 1 ml of the reagent was dissolved in 100 ml of deionized water. Diluted hydrochloric acid was added to the solution to form the white precipitate composed of MBT. Suspension was transferred to separatory funnel and the extraction was carried out using dichloromethane. After vigorous shaking of separatory funnel, the suspended particles from water layer were dissolved in dichloromethane. Organic layer was separated, extract was dried using anhydrous sodium sulfate and diluted 100 times with hexane. In order to compare performances of PTV and hot splitless injection for the determin- ation of MBT, two runs were performed using same injection volume of extract, temperature ___________________________________________________________________________________________________________________________Available on line at www.shd.org.rs/JSCS/ (CC) 2017 SCS. 1150 ĐORĐIEVSKI et al. program of oven and mass spectrometer parameters, but with different temperature programs of inlet. In both runs, injected volume of diluted extract was 1 µL, temperature program of oven was: 40 °C for 2 min, then 15 °C/min to 190 °C for 0 min, then 5 °C/min to 280 °C for 15 min; acquisition mode of mass spectrometer was scan; total run time was 45 min. In the first run, inlet mode was splitless, temperature was 280 °C and purge flow to split vent was set at 2 min. Second run was carried out using solvent vent mode. Temperature pro- gram of inlet was: 50 °C for 0.1 min, then 130 °C/min to 280 °C until the end of run. Purge flow to split vent was set at 2 min, same as in the first run. RESULTS AND DISCUSSION In the first run, when the hot splitless injection was used, two chemical com- pounds emerged on the chromatogram: benzothiazole (BT) and MBT. When the second run was performed, using the solvent vent mode, only MBT was iden- tified on chromatogram. It was concluded that BT was the product of partial decomposition of MBT due to high inlet temperature during the first run. Both compounds identified in first run exhibit the sharp peak shape, indicating that the degradation observed took place completely within the injector.37 Retention times of BT and MBT were 9.024 and 16.559 min respectively. Chromatograms acquired using the hot splitless and solvent vent mode are shown in Fig. 2. Fig. 2. Chromatogram acquired by injecting sample solution using: a) hot splitless (280 °C) and b) solvent vent mode (40 °C). The mass spectrum of MBT, acquired by measurement of sample aliquot (Fig. 3), matched the mass spectrum of MBT from database by 96.8 %. This indicates that the chemical compound was identified with high reliability. Some researchers derivatized MBT prior to GC analysis in order to prevent decomposition, while the others used different analytical technique. Prior to the GC-MS determination of MBT in ozonized samples, Fiehn et al.20 carried out methylation using diazomethane in order to protect thiol group from decompo- sition. As a result, MBT was identified as S-methylated product. Shinohara et al.18 methylated MBT prior to GC-FPD analysis using dimethyl formamide diacetal as methylation reagent, and Manninen et al.19 derivatized samples with ___________________________________________________________________________________________________________________________Available on line at www.shd.org.rs/JSCS/ (CC) 2017 SCS. PREVENTING DECOMPOSITION OF 2-MERCAPTOBENZOTHIAZOLE 1151 pentafluorobenzyl bromide. Rennie30 used HPLC for determination of MBT instead of gas chromatography because of degradation problems. Fig. 3. Mass spectrum acquired by GC–MS analysis of MBT in hexane solution. Some researchers preferred to determine MBT using GC without derivatiz- ation. Domínguez et al.21 carried out GC–MS determination of benzothiazoles using six different ionic liquid stationary phases. In their study, samples were injected in splitless mode at injector temperature of 270 °C. Six different col- umns were tested for MBT and related compounds. MBT have eluted from only one column, but with very poor response of mass spectrometric detector. Among that, the response for BT was much higher than the responses of other com- pounds of the same concentration in standard mix solution. This may indicate that MBT was possibly partially degraded to BT using these GC conditions. Nac- carato et al.22 also performed analysis of MBT in splitless mode and by setting the injector temperature at 290 °C. The result of the present work suggests that hot splitless injection should be avoided for the determination of MBT. This suggestion is consistent with the results of researchers mentioned above who derivatized MBT prior to GC ana- lysis. However, in some recent papers MBT was determined together with many other compounds in splitless mode and with high injector temperature. According to results obtained in our study and studies in which derivatization was per- formed, the response of MBT acquired using hot splitless injection might be lower than actual response due to decomposition. CONCLUSION A new approach for preventing the decomposition of MBT was presented in this study. Instead of derivatization, PTV injection was proven to be efficient in preventing the decomposition of MBT during GC determination. This approach requires no chemical reagents for derivatization and shortens the time of analysis. Finally, it may be stated that the derivatization or the application of PTV inject- ion is highly recommended when the analysis of MBT is performed using GC. Hot splitless injection may cause partial decomposition of MBT and it may lead to biased results. ___________________________________________________________________________________________________________________________Available on line at www.shd.org.rs/JSCS/ (CC) 2017 SCS. 1152 ĐORĐIEVSKI et al. Acknowledgment. The authors thank Dr. Kofi Adomako-Ansah, Specially-appointed Assistant Professor at Akita University, Japan, for providing language assistance. И З В О Д СПРЕЧАВАЊЕ РАЗГРАДЊЕ 2-МЕРКАПТОБЕНЗОТИАЗОЛА ТОКОМ ГАСНО ХРОМАТОГРАФСКЕ АНАЛИЗЕ ПРИМЕНОМ ИНЈЕКТОРА СА МОГУЋНОШЋУ ПОДЕШАВАЊА ТЕМПЕРАТУРЕ ИСПАРАВАЊА СТЕФАН ЂОРЂИЕВСКИ, ЗОРИЦА СОВРЛИЋ, ТАМАРА УРОШЕВИЋ, ЈЕЛЕНА ПЕТРОВИЋ и ВЕСНА КРСТИЋ Институт за рударство и металургију Бор, Зелени Булевар 35, 19210 Бор 2-меркаптобензотиазол (MBT) је хемијско једињење које се широко користи у мно- гим гранама индустрије, а такође је детектовано и у узорцима из животне средине. Нај- већи део истраживача користило је течну (LC) или гасну (GC) хроматографију за одре- ђивање MBT. Када је коришћена GC, дериватизација је била неопходна како би се спре- чила разградња MBT унутар загрејаног GC инлета. У овом раду представљен је нови при- ступ за спречавање разградње MBT коришћењем инјектора са могућношћу подешавања температуре испаравања (PTV инјектор). Узорак је инјектован у охлађен инлет (40 °C) и температура је повишавана постепено док аналит није испарио. За разлику од splitless инјектовања, применом PTV инјектора није примећена разградња MBT. У поређењу са дериватизацијом, за PTV нису потребне хемикалије и време анализе је краће. (Примљено 14. новембра 2016, ревидирано 31. марта, прихваћено 4. априла 2017) REFERENCES 1. P. Herrero, F. Borrull, E. Pocurull, R.M. Marcé, Trends Anal. Chem. 62 (2014) 46 2. H. Yekeler, M. Yekeler, J. Mol. Model. 12 (2006) 763 3. J.P. Chesick, J. Donohue, Acta Cryst., B 27 (1971) 1441 4. G. Sartori, A. Liberti, J. Electrochem. Soc. 97 (1950) 20 5. B. G. Brownlee, J. H. Carey, G. A. MacInnis, I. T. Pellizzari, Environ. Toxicol. Chem. 11 (1992) 1153 6. M. Finšgar, D. Kek Merl, Corros. Sci. 83 (2014) 164 7. M. H. S. Gradwell, W. J. McGill, J. Appl. Polym. Sci. 58 (1995) 2185 8. F. L. Wu, W. M. Hussein, B. P. Ross, R. P. McGeary, Curr. Org. Chem. 16 (2012) 1555 9. M. A. Azam, B. Suresh, Sci. Pharm. 80 (2012) 789 10. S. M. Bulatovic, Handbook of Flotation Reagents, Elsevier, Amsterdam, 2007 11. L. Valderrama, Z. Petkovic, J. Ossandon, Mining Eng. 3 (2012) 195 12. N. Magdalinovic, M. Trumic, Z. Petkovic, V. Rajic, Eur. J. Miner. Process. Environ. Prot. 4 (2004) 30 13. A. G. Ikotun, E. Muzenda, F. Ntuli, Int. J. Biol. Ecol. Environ. Sci. 1 (2012) 148 14. W. Qin, F. Jiao, W. Sun, M. He, H. Huang, Ind. Eng. Chem. Res. 51 (2012) 11538 15. A. Kloepfer, M. Jekel, and T. Reemtsma, Environ. Sci. Technol. 39 (2005) 3792 16. C. M. Reddy and J. G. Quinn, Environ. Sci. Technol. 31 (1997) 2847 17. M. M. Kragulj, J. S. Tričković, B. D. Dalmacija, I. I. Ivančev-Tumbas, A. S. Leovac, J. J. Molnar, D. M. Krčmar, J. Serb. Chem. Soc. 79 (2014) 89 18. J. Shinohara, R. Shinohara, S. Eto, T. Hori, Bunseki Kagaku 27 (1978) 716 19. A. Manninen, S. Auriola, M. Vartiainen, J. Liesivuori, T. Turunen, M. Pasanen, Arch. Toxicol. 70 (1996) 579 20. O. Fiehn, G. Wegener, J. Jochimsen, M. Jekel, Wat. Res. 32 (1998) 1075 21. C. Domínguez, C. Reyes-Contreras, J. M. Bayona, J. Chromatogr., A 1230 (2012) 117 ___________________________________________________________________________________________________________________________Available on line at www.shd.org.rs/JSCS/ (CC) 2017 SCS. PREVENTING DECOMPOSITION OF 2-MERCAPTOBENZOTHIAZOLE 1153 22. A. Naccarato, E. Gionfriddo, G. Sindona, A. Tagarelli, J. Chromatogr., A 1338 (2014) 164 23. H. Parham, B. Aibaghi, J. Ghasemi, J. Hazard. Mater. 151 (2008) 636 24. M. H. Jones, J. T. Woodcock, Anal. Chem. 47 (1975) 11 25. I. Carpinteiro, B. Abuin, M. Ramil, I. Rodríguez, R. Cela, Anal. Bioanal. Chem. 402 (2012) 2471 26. M. T. Pena, X. Vecino-Bello, M. C. Casais, M. C. Mejuto, R. Cela, Anal. Bioanal. Chem. 402 (2012) 1679 27. A. Kloepfer, M. Jekel, T. Reemtsma, J. Chromatogr., A 1058 (2004) 81 28. T. Reemtsma, Rapid Commun. Mass Spectrom., 14 (2000) 1612 29. O. Fiehn, T. Reemtsma, M. Jekel, Anal. Chim. Acta 295 (1994) 297 30. P. J. Rennie, Chromatographia 26 (1988) 297 31. W. Vogt, K. Jacob, H. W. Obwexer, J. Chromatogr. 174 (1979) 437 32. W. Vogt, K. Jacob, A.B. Ohnesorge, H. W. Obwexer, J. Chromatogr. 186 (1979) 197 33. GC Inlets, An Introduction, 2nd ed., Agilent Technologies, Wilmington, NC, 2005, https:// //www.agilent.com/cs/library/usermanuals/public/5958-9468_041007.pdf (2016/09/30) 34. E. Hoh, K. Mastovska, J. Chromatogr., A 1186 (2008) 2 35. J. Á. Gómez-Ruiz, F. Cordeiro, P. López, T. Wenzl, Talanta 80 (2009) 643 36. M. Godula, J. Hajšová, K. Maštouska, J. Křivánková, J. Sep. Sci. 24 (2001) 355 37. H. S. Müller, H. J. Stan, J. High Resolut. Chromatogr. 13 (1990) 759. ___________________________________________________________________________________________________________________________Available on line at www.shd.org.rs/JSCS/ (CC) 2017 SCS. << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice