Spin state relaxation of iron complexes: The case for OPBE and S12g


  
J. Serb. Chem. Soc. 80 (11) 1399–1410 (2015) UDC 546.722/.723+533.6.013.7: 
JSCS–4806 532.14:537.872 
 Original scientific paper 

1399 

Spin state relaxation of iron complexes: 
The case for OPBE and S12g 

MAJA GRUDEN1, STEPAN STEPANOVIĆ2# and MARCEL SWART3,4* 
1Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11001 Belgrade, Serbia, 
2Center for Chemistry, ICTM, University of Belgrade, Njegoševa 12, 11001 Belgrade, Serbia, 

3Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, 
Universitat de Girona, Campus Montilivi, Facultat de Ciències, 17071 Girona, Spain and 

4Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 
08010 Barcelona, Spain 

(Received 11 June, revised 14 July, accepted 15 July 2015) 

Abstract: The structures of nine iron complexes that show a diversity of 
experimentally observed spin ground states were optimized and analyzed using 
the Density Functional Theory (DFT). An extensive validation study of the 
new S12g functional was performed, with a discussion concerning the inf-
luence of the environment, geometry and its overall performance based on a 
comparison with the well-proven OPBE functional. The OPBE and S12g func-
tionals gave the correct spin ground state for all investigated iron complexes. 
Since S12g performs remarkably well, it could be considered a reliable tool for 
studying the energetics of the spin state in complicated transition metal sys-
tems.  

Keywords: density functional theory; Fe(II) and Fe(III) coordination com-
pounds; validation study; spin states. 

INTRODUCTION 
Spin is an intrinsic and inherent property of atoms and molecules.1 Most 

transition metal ions with partially filled d-shells can exhibit different kinds of 
spin multiplicity in the ground state, i.e., can lead to different spin states. 
Depending on the oxidation number, iron complexes usually have either 5 or 6 d-
electrons that can be distributed in an octahedral environment in at least two dif-
ferent ways: with a maximum number of unpaired electrons, leading to the high 
spin (HS) state, or with maximally paired electrons – giving the low spin (LS) 
state. Other possibilities of the distribution of electrons represent an intermediate 
(IS) spin state. Since HS, IS and LS complexes usually display quite different 
                                                                                                                    

* Corresponding author. E-mail: marcel.swart@icrea.cat 
# Serbian Chemical Society member. 
doi: 10.2298/JSC150611068G 



1400 GRUDEN, STEPANOVIĆ and SWART 

structural, spectral and magnetic properties, and often reactivity, it is of the 
utmost importance to have both experimental and theoretical methods to deter-
mine correctly the spin ground state of a system. However, both experiment and 
theory have difficulties and problems, and many studies have been devoted to 
this issue in the last decade.2–5 

From a broad palette of quantum mechanical methods, the density functional 
theory (DFT)6–8 has emerged into the mainstream, mainly because it gives a 
good compromise between accuracy of the results and computational effici-
ency.9–11 However, although the DFT, in principle, gives an exact energy, a 
universal functional is still unknown, leading to density functional approxim-
ations (DFAs). These DFAs are parameterized for different properties and, note-
worthy, spin-state energies were not included in the development for most of 
nowadays available DFAs.12 It has been shown that the accuracy of the results 
not only strongly depends on the choice of the DFAs, but also on the basis set 
that is used.1,3,13,14 Early pure functionals, such as LDA,15–17 BP86,18,19 
BLYP,19,20 and PW91,21,22 have a tendency to favor LS states,14 while hybrid 
functionals, such as B3LYP,23,24 PBE025 and M06,26,27 systematically favor HS 
states.14 For the reliable prediction of the correct spin ground state from a num-
ber of close lying states, OPBE14 has emerged to be one of the best functionals 
for the task.28 Recently, Swart constructed a new density functional that com-
bines the best of OPBE (spin states, reaction barriers) with the best of PBE (weak 
interactions) into the S12g5 DFA. 

Previously, the relative spin state energies of seven iron complexes (1–7, 
Fig. 1) on OLYP20,29 optimized geometries (1–3) and on crystal structures (4–7) 
with a variety of DFAs were reported, which already showed the good perform-
ance of OPBE for vertical spin state splittings.14  

Herein, a detailed DFT study on OPBE optimized geometries of iron 
complexes (1–7) with experimentally established spin ground states, ranging 
from singlet to sextet, is reported together with an extension to include two iron 
porphyrinato complexes (8 and 9, Fig. 1) that were reported to have different 
electronic ground states in spite of their similarity.30–32  

Furthermore, a comprehensive validation study of the S12g DFA,5 together 
with an examination of the influence of the chemical environment, was per-
formed on all the investigated complexes.  

METHODOLOGY 
All DFT calculations were performed with the Amsterdam Density Functional (ADF) 

suite of program.33,34 MOs were expanded in an uncontracted set of Slater type orbitals 
(STOs) of triple-ζ quality containing diffuse functions (TZP)35 and one set of polarization 
functions. Core electrons (1s for 2nd period and 1s2s2p for 3rd–4th period) were not treated 
explicitly during the geometry optimizations (frozen core approximation), as the core was 
shown to have a negligible effect on the obtained geometries.36 An auxiliary set of s, p, d, f, 



 SPIN STATE ENERGETICS OF IRON COMPLEXES 1401 

and g STOs was used to fit the molecular density and to represent the Coulomb and exchange 
potentials accurately for each self-consistent field (SCF) cycle. 

 
Fig. 1. Fe(PyPepS)2 1 (PyPepSH2 = N-(2-mercaptophenyl)-2′-pyridinecarboxamide); 

Fe(tsalen)Cl 2 (tsalen = 2,2′-[1,2-ethanediylbis(nitrilomethylidyne)]bis[benzenethiolato]; 
Fe(N(CH2-o-C6H4S)3)(1-Me-imidazole) 3; (Fe(NH)S4)L 4 (L=CO), 5 (PMe3), 6 (NH3), 7 

(N2H4)((NH)S4 = bis(2-((2-mercaptophenyl)thio)ethyl)amine); iron porphyrin chloride 
(8, FePCl) and iron porphyrazine chloride (9, FePzCl). 

Energies and gradients were calculated using the OPBE and S12g functionals in the gas 
phase and with COSMO (methanol as a solvent)37-39 in the dielectric continuum model for a 
solvent environment. The geometries were optimized with the QUILD program40 using 
adapted delocalized coordinates41 until the maximum gradient component was less than 10-4 
a.u. Subsequent single point calculations that utilize all electron basis set were performed on 
all optimized geometries, with OPBE and S12g. 

RESULTS AND DISCUSSION 

The total set of molecules consists of both Fe(III) (1–3, 8 and 9) and Fe(II) 
(4–7) complexes, and show a diversity of experimentally observed spin ground 
states. A thorough examination with the OPBE and S12g functionals in the gas 
phase and the COSMO solvent environment was performed. The discussion is 



1402 GRUDEN, STEPANOVIĆ and SWART 

commenced by focusing on the influence of structure relaxation on the spin states 
of Fe(III)-complexes 1–3.42 Experimentally, Fe-(PyPepS)2 (1, PyPepSH2 = N-(2- 
-mercaptophenyl)-2-pyridinecarboxamide) has a LS doublet ground state,43 
Fe(tsalen)Cl (2, tsalen = 2,2′-[1,2-ethanediylbis(nitrilomethylidyne)]bis[ben-
zenethiolato] 2,2′-[1,2-ethanediylbis(nitrilomethylidyne)]bis[benzenethiolato]) an 
intermediate spin (IS), quartet ground state44 and Fe(N(CH2-o-C6H4S)3)(1-Me-
imidazole, 3) a HS sextet ground state.45 Then, the Fe(II)-complexes 
((Fe(NH)S4)L, (NH)S4 = bis(2-((2-mercaptophenyl)thio)ethyl)amine, L = CO (4), 
PMe3 (5), NH3 (6) and N2H4 (7)) are discussed. Compounds 4 and 5 have a LS 
(singlet) state and compounds 6 and 7, reportedly, a HS (quintet) ground state.46–48 
Furthermore, focus is placed on FeIII(porphyrinato)Cl, FePCl (8) and, FeIII(por-
phyrazinato)Cl, FePzCl (9), which have a sextet and a quartet ground state, 
respectively.  

Structure relaxation and spin state energies of Fe(III) compounds 1–3 
The optimization of the three Fe(III) molecules (1–3) led in all cases to the 

expected structural changes for the different spin states (Tables S-I–S-III of the 
Supplementary material to this paper). Comparison of the optimized structures of 
1–3 indicated the existence of an expansion of the ligand sphere. Going from the 
doublet to the quartet state, first the equatorial ligands moved away from iron 
while the axial ligands stayed almost at the same position. In the sextet state, the 
equatorial ligands remained virtually at the same position, but the axial ligands 
(had to) moved out. 

Comparing the vertical spin state energies, calculated on the experimental 
structure,14 with results from the optimized (“relaxed”) geometries, Table I, it is 
evident that the energy gap between different spin states decreased. In the case of 
compound 1, the doublet state remained the spin ground state with the quartet 
state (from 22.5 kcal*·mol–1 “vertical” to 17.5 kcal·mol–1 “relaxed”) and the 
sextet state (from 33.9 kcal·mol–1 “vertical” to 10.2 kcal·mol–1 “relaxed”) in 
closer energetic proximity after geometry optimization. Molecule 2 has the quar-
tet ground state, and here, the relative energies of the doublet and sextet states 
were reduced after structure relaxation. The same trends apply for the sextet 
ground state of complex 3. For all complexes, after spin state relaxation, both 
OPBE and its recently developed successor S12g gave the correct spin ground 
state. Spin contamination was small for these complexes, and therefore, will not 
be discussed further.  

The choice of exchange-correlation functional had an obvious influence on 
the geometry, with a tendency of S12g to give somewhat longer bond lengths 
than OPBE (Tables S-I–S-III). It should be noted that S12g gave structural 
parameters that were in excellent agreement with experimental values. Unlike the 
                                                                                                                    

* 1 kcal = 4184 J 



 SPIN STATE ENERGETICS OF IRON COMPLEXES 1403 

choice of functional, the influence of solvation on the geometrical parameters 
during the structural relaxation was not very significant, and it depended slightly 
on the system under consideration. In most cases, optimizations with COSMO 
gave slightly longer bonds, but without significant consequences for the spin-
state splittings, Table I. 

TABLE I. Spin state energies (kcal mol-1) for Fe(III) molecules 1–3 using TZP basis set, with 
OPBE and S12g functionals, in vacuum and COSMO 

Geo.a SPb 
Fe-(PyPepS)2 1 Fe(tsalen)Cl 2 Fe(N(CH2-o-C6H4S)3)(1MImb) 3 

Doublet Quartet Sextet Doublet Quartet Sextet Doublet Quartet Sextet 

OPBE OPBE 0 17.1 10.2 6.5 0 3.9 6.6 7.9 0 
OPBE
cosmo

0 19.4 13.0 9.3 0 6.9 7.9 7.4 0 

S12g 0 15.8 8.7 7.6 0 3.8 6.8 7.2 0 
S12g 

cosmo
0 18.2 11.6 10.2 0 6.4 8.2 6.8 0 

OPBE 
cosmo 

OPBE 0 18.8 13.1 5.2 0 2.9 6.2 7.5 0 
OPBE
cosmo

0 17.4 10.2 9.7 0 7.7 8.0 7.2 0 

S12g 0 18.4 13.3 6.0 0 3.0 6.5 6.8 0 
S12g 

cosmo
0 17.1 10.6 10.2 0 7.4 8.3 6.5 0 

S12g OPBE 0 18.3 10.5 7.4 0 6.2 7.6 8.1 0 
OPBE
cosmo

0 22.7 14.7 10 0 9.2 8.6 7.1 0 

S12g 0 15.4 8.7 7.5 0 6.6 6.5 7.0 0 
S12g 

cosmo
0 19.9 13.1 9.9 0 9.3 7.7 6.1 0 

S12g 
cosmo 

OPBE 0 17.5 10.6 7.0 0 4.7 7.5 8.4 0 
OPBE
cosmo

0 20.5 14.9 11.2 0 6.7 8.8 7.2 0 

S12g 0 15.7 9.2 6.6 0 4.7 6.1 6.8 0 
S12g 

cosmo
0 18.8 13.7 10.4 0 6.5 7.6 5.9 0 

aGeometry optimization with frozen core electrons; bsubsequent single point calculations with all-electron basis sets 

Structure relaxation and spin state energies of compounds 4–7 
The spin state dependent structure relaxation for the Fe(II) compounds 

results in similar differences in Fe–ligand distances as for the Fe(III) compounds 
(Tables S-IV–S-VII). In the case of compounds 4–7, the Fe–N, Fe–S and Fe–C 
distances were slightly elongated in comparison to the distances in the Fe(III) 
complexes due to the additional d-electron in the Fe(II) systems.  

The spin ground states of the Fe(II) complexes 4 and 5 were correctly 
predicted using both the OPBE and S12g levels of theory (see Table II): the 
singlet state was the lowest in energy for both molecules, in agreement with expe- 



1404 GRUDEN, STEPANOVIĆ and SWART 

TABLE II. Spin state energies (kcal mol-1) for labile (trans) complexes 4 and 5 using TZP 
basis, with OPBE and S12g functionals, in vacuum and COSMO 

Geo.a SPb 
trans-(Fe(NH)S4)CO 4 trans-(Fe(NH)S4)PMe3 5 

Singlet Triplet Quintet Singlet Triplet Quintet 
OPBE OPBE 0 23.4 34.8 0 16.3 20.1 

OPBE cosmo 0 24.5 36.6 0 17.3 18.6 
S12g 0 19.1 28.0 0 14.5 17.7 

S12g cosmo 0 20.2 29.7 0 15.4 16.3 
OPBE 
cosmo 

OPBE 0 23.5 35.3 0 16.4 20.4 
OPBE cosmo 0 24.5 36.5 0 17.3 18.3 

S12g 0 19.4 29.1 0 15.1 19.1 
S12g cosmo 0 20.3 30.3 0 15.9 17.1 

S12g OPBE 0 23.4 34.2 0 19.6 19.4 
OPBE cosmo 0 24.3 36.4 0 20.3 19.2 

S12g 0 18.7 29.3 0 15.6 16.8 
S12g cosmo 0 19.6 31.4 0 16.3 16.6 

S12g 
cosmo 

OPBE 0 24.6 35.0 0 19.9 19.2 
OPBE cosmo 0 24.8 36.5 0 20.6 18.2 

S12g 0 20.4 30.8 0 15.8 17.1 
S12g cosmo 0 20.5 32.2 0 16.4 16.2 

aGeometry optimization with frozen core electrons; bsubsequent single point calculations with all-electron basis sets 

rimental data. For compound 4, the triplet and quintet states were significantly 
higher in energy. The energy differences between the different states were 
smaller for compound 5. Similar to the Fe(III) complexes, spin contamination 
was small and will not be discussed any further. Similar to compounds 4 and 5, 
after spin state structure relaxation, an LS ground state for iron complexes 6 and 
7 was found, with IS and HS higher in energy. Unfortunately, the experimental 
determination of the spin states of compounds 6 and 7 were inconclusive, since 
anomalous high μeff values of 10–13 μB were measured that may indicate impur-
ities, e.g., by metallic iron, or oligomer formation. For compound 7 in solution, 
an HS state was observed,48 but a compound similar to 7 showed a diamagnetic 
LS Fe center.49 Moreover, indications of dimer formation of the ligand-free 
[(Fe(NH)S4)] complex were observed.47,48 Since different forms of the 
(Fe(NH)S4)L complex in these studies were obtained, both forms for compounds 
4–7, i.e., with the “trans” and “meso” form (see Fig. 2) had to be checked. For 
both forms of each of compounds 4–7, an LS ground state was found, albeit with 
smaller spin-state splitting for compounds 6 and 7. These findings could be 
traced back to the strength of the iron–ligand bond, which seems to be much 
weaker for compounds 6/7 than for compounds 4/5. The weakly bound NH3 and 
N2H4 ligands are easily exchanged with CH3OH, solvent (THF) or CO.48 These 
experimental data corroborate the present computed ligand-binding energies, 
which indicate strong and favorable binding of CO and P(Me)3 to form the 
singlet ground state, but less favorable binding of the other ligands or spin states 



 SPIN STATE ENERGETICS OF IRON COMPLEXES 1405 

(see Table S-VIII of the Supplementary material). Interestingly, the monomeric 
Fe(NH)S4 complex without a ligand was predicted to have a triplet spin ground 
state in the trans form, with the other spin states or the meso form lying higher in 
energy by at least 7 kcal·mol–1. The ligand-free complex may dimerize to give 
the experimentally observed HS state through ferromagnetic coupling. The latter 
process was not studied due to the complexity involved with ferromagnetic ver-
sus anti-ferromagnetic coupling of the many spin states that need to be con-
sidered. This was confirmed by a recent study using high-level ab initio methods 
that indeed found a singlet ground-state for these molecules.50 In another recent 
study, “accurate” spin ground states for molecules 6 and 7 were found with the 
double hybrid B2PLYP functional, where an HS ground-state was obtained for 
molecule 6 with OPBE.51 Since the last result is in disagreement with the results 
of the present study, molecules 6 and 7 were re-optimized using the OPBE func-
tional with the geometries from their paper51 as the starting point. The re-opti-
mized structures resulted in spin state splittings that were in accordance with the 
previous study,51 however, the structures were highly distorted representing only 
a local minimum on the potential energy surface (and ca. 5–20 kcal·mol–1 above 
the structures obtained here in Table III). 

 
Fig. 2. Different forms of compounds 4–7. 

TABLE III. Spin state energies (kcal mol-1) for labile (meso) complexes 6 and 7 using TZP 
basis, with OPBE and S12g functionals, in vacuum and COSMO 

Geo.a SPb 
meso-(Fe(NH)S4)NH3 (6) meso-(Fe(NH)S4)N2H4 (7) 

Singlet Triplet Quintet Singlet Triplet Quintet 
OPBE OPBE 0 10.3 6.6 0 11.3 6.6 

OPBE cosmo 0 10.1 3.9 0 10.7 4.4 
S12g 0 7.7 2.6 0 8.5 2.5 

S12g cosmo 0 7.4 –0.1 0 7.9 0.3 
OPBE 
cosmo 

OPBE 0 10.6 7.2 0 11.5 7.1 
OPBE cosmo 0 9.9 3.5 0 10.1 3.8 

S12g 0 7.9 3.5 0 9.7 3.6 
S12g cosmo 0 7.0 –0.2 0 8.2 0.5 



1406 GRUDEN, STEPANOVIĆ and SWART 

TABLE III. Continued 

Geo.a SPb 
meso-(Fe(NH)S4)NH3 (6) meso-(Fe(NH)S4)N2H4 (7) 

Singlet Triplet Quintet Singlet Triplet Quintet 
S12g OPBE 0 10.1 7.5 0 11.1 7.6 

OPBE cosmo 0 10.7 5.7 0 11.0 6.8 
S12g 0 8.4 5.3 0 9.3 5.3 

S12g cosmo 0 8.7 3.4 0 9.2 4.6 
S12g  
cosmo 

OPBE 0 10.1 6.8 0 10.8 6.6 
OPBE cosmo 0 10.5 4.4 0 10.4 5.2 

S12g 0 8.7 4.9 0 9.4 4.6 
S12g cosmo 0 8.8 2.4 0 8.9 3.2 

aGeometry optimization with frozen core electrons; bsubsequent single point calculations with all-electron basis sets 

As in the case of the previous investigated molecules 1–3, after optimization 
with S12g, somewhat longer bond lengths were obtained in comparison with the 
OPBE geometries. Nevertheless, both of them are again in good agreement with 
the experimental data (Tables S-IV–S-VII). In contrast to the Fe(II) complexes 
1–3, the Fe(III) P450 model systems 4–7 are prone to the influence of solvent 
(COSMO calculations) on the spin state ordering, Tables II and III. Calculations 
with the COSMO solvation model revealed a tendency to favor the HS state for 
complexes 5–7, and the LS state for complex 4.  

Iron porphyrin chloride and the porphyrazine analogue  
The structures of FePCl (8) and FePzCl (9) were separately optimized in C4v 

symmetry for each spin state. Similarly to previous results,30,52,53 it was found 
that the porphyrin core size increased when going from the LS to the HS state, 
while the Fe–Cl distance increased from the LS to the IS state, and then was 
slightly decreased in the HS state (Tables S-IX and S-X of the Supplementary 
material).  

OPBE and S12g predicted the correct sextet spin ground state for both, 
FePCl and FePzCl (see Table IV). In the case of FePCl, a sextet ground state was 
predicted with the quartet higher in energy and vice versa for FePzCl, the quartet 
state was lower in energy. In both cases, the LS state was considerably higher in 
energy.  

COSMO calculations revealed a clear and unambiguous solvent effect on the 
electronic structure, Table IV. Introduction of the solvent favored the LS state, 
and as such had small effects on the spin ground state of molecule 9 that has a 
quartet ground state and a sextet quartet state that is similar in energy. In contrast, 
for molecule 8, that is in an HS state experimentally and has a low-lying quartet 
state, the quartet state is stabilized to the extent that it becomes the ground state 
within all COSMO calculations. Of course, it should be added that the spin-state 
splittings were investigated here through looking at the electronic energy and 



 SPIN STATE ENERGETICS OF IRON COMPLEXES 1407 

hence, enthalpy and entropy effects were ignored. Both of these favor the high- 
-spin states. Finally, S12g once again showed excellent agreement with the spin 
state energetics obtained at the OPBE level of theory.  

TABLE IV. Spin state energy differences (kcal mol-1, TZP basis) for FePCl (8) and FePzCl 
(9), with OPBE and S12g functionals, in vacuum and COSMO 

Geo.a SPb 
FePCl FePzCl 

Doublet Quartet Sextet Doublet Quartet Sextet 

OPBE OPBE 18.4 3.9 0 12.5 0 3.7 
OPBE cosmo 16.3 –1.0 0 15.6 0 7.6 

S12g 15.7 1.5 0 12.8 0 4.9 
S12g cosmo 13.8 –2.9 0 15.8 0 8.6 

OPBE 
cosmo 

OPBE 18.0 4.8 0 11.6 0 2.9 
OPBE cosmo 16.9 –1.7 0 16.6 0 8.2 

S12g 15.0 2.3 0 11.8 0 4.2 
S12g cosmo 14.1 –3.6 0 16.5 0 9.2 

S12g OPBE 18.6 4.0 0 12.7 0 3.7 
OPBE cosmo 16.3 –0.7 0 15.7 0 7.5 

S12g 15.4 1.5 0 12.6 0 5.0 
S12g cosmo 13.4 –2.8 0 15.4 0 8.6 

S12g 
cosmo 

OPBE 18.3 4.5 0 12.0 0 3.2 
OPBE cosmo 17.1 –1.6 0 16.8 0 8.1 

S12g 15.0 2.0 0 11.8 0 4.6 
S12g cosmo 14.0 –3.5 0 16.3 0 9.2 

aGeometry optimization with frozen core electrons; bsubsequent single point calculations with all-electron basis sets 

CONCLUSIONS 

Within this paper, an extension of previous validation14 of DFAs for a 
correct description of the spin states of Fe(II) and Fe(III) complexes is presented. 
In the present contribution, structure relaxation of the LS, IS and HS states of the 
iron compounds was allowed separately at the OPBE and S12g levels of theory 
and thereby, a more stringent test on the reliability of functionals for providing 
spin ground states of iron complexes was performed.  

A detailed comparison with the already proven OPBE DFA for spin state 
energetics, and experimental findings, revealed that S12g performed remarkably 
well and thus, represents a very promising tool for studying spin states in com-
plicated transition metal systems. Moreover, for all iron complexes under inves-
tigation, S12g gave a good match with experimental geometries and thus, could 
be considered as a good starting point for the investigation of transition metal 
compounds. 

SUPPLEMENTARY MATERIAL 
Selected bond lengths, OPBE/TZP ligand binding energies, as well as coordinates of 

optimized structures (as additional supplementary file), are available electronically from 
http://www.shd.org.rs/JSCS/ or from the corresponding author on request. 



1408 GRUDEN, STEPANOVIĆ and SWART 

Acknowledgments. The following organizations are thanked for financial support: the 
Ministerio de Ciencia e Innovación (MICINN, project CTQ2011-25086/BQU), the Ministerio 
de Economia y Competitividad (MINECO, project CTQ2014-59212/BQU) and the DIUE of 
the Generalitat de Catalunya (project 2014SGR1202, and Xarxa de Referència en Química 
Teòrica i Computacional). Financial support was provided by MICINN and the FEDER fund 
(European Fund for Regional Development) under grant UNGI10-4E-801, and the Serbian 
Ministry of Education, Science and Technological Development (Grant No. 172035). This 
work was performed within the framework of the COST action CM1305 ‘‘Explicit Control 
Over Spin-states in Technology and Biochemistry (ECOSTBio)’’ (STSM reference: ECOST- 
-STSM-CM1305-27360). We would like to thank Dr. A. W. Ehlers and Prof. K. Lammertsma 
(VU Amsterdam, Netherlands) for help and fruitful discussions in the initial stages of this 
study. 

И З В О Д  
РЕЛАКСАЦИЈА СПИНСКИХ СТАЊА КОД КОМПЛЕКСА ГВОЖЂА: 

СЛУЧАЈ ЗА OPBE И S12g ФУНКЦИОНАЛЕ 

МАЈА ГРУДЕН1, СТЕПАН СТЕПАНОВИЋ2 и MARCEL SWART3,4 
1Хемијски факултет, Универзитет у Београду, Студентски трг 16, 11001 Београд, 2Центар за 

хемију, ИХТМ, Универзитет у Београду, Његошева 12, 11001 Београд, 3Institut de Química 
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 
Facultat de Ciències, 17071 Girona, Spain и 4Institució Catalana de Recerca i Estudis Avançats (ICREA), 

Pg. Lluís Companys 23, 08010 Barcelona, Spain 

Структуре девет комплекса гвожђа који показују разноврсност експериментално 
одређених основних спинских стања оптимизоване су теоријом функционала густине 
(DFT), а затим анализиране коришћењем различитих функционала. Извршена је обимна 
валидациона студија новог S12g функционала, са дискусијом о утицају окружења, гео-
метрије, као и његових перформанси у односу на OPBE функционал који се већ показао 
као добар. OPBE и S12g тачно предвиђају основно спинско стање код свих испитиваних 
комплекса гвожђа. Како се S12g показао изузетно добро, он се може сматрати поузда-
ним за проучавање енергетике спинских стања у компликованим системима прелазних 
метала. 

(Примљено 11. јуна, ревидирано 14. јула, прихваћено 15. јула 2015) 

REFERENCES 
1. C. R. Jacob, M. Reiher, Int. J. Quantum Chem. 112 (2012) 3661 
2. M. Swart, M. Güell, M. Solà, Accurate Description of Spin States and its Implications for 

Catalysis, in Quantum Biochemistry, C. F. Mattak, Ed., Wiley-VCH, Weinheim, 2010, p. 
551 

3. M. Swart, Int. J. Quantum Chem. 113 (2013) 2 
4. M. Swart, J. Chem. Theory Comput. 4 (2008) 2057 
5. M. Swart, Chem. Phys. Lett. 580 (2013) 166 
6. R. Dreizler, E. Gross, Density Functional Theory, Plenum Press, New York, 1995 
7. W. Koch, M. C. Holthausen, A Chemist's Guide to Density Functional Theory, Wiley- 

-VCH, Weinheim, 2000 
8. R. G. Parr, W. Yang, Density functional theory of atoms and molecules, Oxford Univer-

sity Press, New York, 1989 
9. S. Matar, P. Guionneau, G. Chastanet, Int. J. Mol. Sci. 16 (2015) 4007 



 SPIN STATE ENERGETICS OF IRON COMPLEXES 1409 

10. B. Pandey, A. Ansari, N. Vyas, G. Rajaraman, J. Chem. Sci. 127 (2015) 343 
11. M. E. Pascualini, N. V. Di Russo, A. E. Thuijs, A. Ozarowski, S. A. Stoian, K. A. 

Abboud, G. Christou, A. S. Veige, Chem. Sci. 6 (2015) 608 
12. M. Costas, J. N. Harvey, Nature Chem. 5 (2013) 7 
13. M. Güell, J. M. Luis, M. Solà, M. Swart, J. Phys. Chem., A 112 (2008) 6384 
14. M. Swart, A. R. Groenhof, A. W. Ehlers, K. Lammertsma, J. Phys. Chem., A 108 (2004) 

5479 
15. P. A. M. Dirac, Proc. R. Soc. London, A 123 (1931) 714 
16. J. C. Slater, Phys. Rev. 81 (1951) 385 
17. S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58 (1980) 1200 
18. J. P. Perdew, Phys. Rev., B 33 (1986) 8822 
19. A. D. Becke, Phys. Rev., A 38 (1988) 3098 
20. C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785 
21. J. P. Perdew, PW91, in Electronic structure of Solids, P. Ziesche, H. Eschrig, Eds., 

Akademie, Berlin, 1991, p. 11 
22. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. 

Fiolhais, Phys. Rev., B 46 (1992) 6671 
23. A. D. Becke, J. Chem. Phys. 98 (1993) 5648 
24. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 45 (1994) 

11623 
25. C. Adamo, V. Barone, J. Chem. Phys. 110 (1999) 6158 
26. Y. Zhao, D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101 
27. Y. Zhao, D. Truhlar, Theor. Chem. Acc. 120 (2008) 215 
28. W. C. Isley III, S. Zarra, R. K. Carlson, R. A. Bilbeisi, T. K. Ronson, J. R. Nitschke, L. 

Gagliardi, C. J. Cramer, Phys. Chem. Chem. Phys. 16 (2014) 10620 
29. N. C. Handy, A. J. Cohen, Mol. Phys. 99 (2001) 403 
30. A. Ghosh, T. Vangberg, E. Gonzalez, P. Taylor, J. Porphyrins Phthalocyanines 5 (2001) 

345 
31. M. M. Conradie, J. Conradie, A. Ghosh, J. Inorg. Biochem. 105 (2011) 84 
32. A. Ghosh, P. R. Taylor, Curr. Opin. Chem. Biol. 7 (2003) 113 
33. ADF 2003.01, SCM, Amsterdam, 2003 
34. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisber-

gen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 22 (2001) 931 
35. E. van Lenthe, E. J. Baerends, J. Comput. Chem. 24 (2003) 1142 
36. M. Swart, J. G. Snijders, Theor. Chem. Acc. 110 (2003) 34 
37. A. Klamt, V. Jonas, J. Chem. Phys. 105 (1996) 9972 
38. A. Klamt, J. Chem. Phys. 99 (1995) 2224 
39. A. Klamt, G. Schuurmann, J. Chem. Soc., Perkin Trans. 2 (1993) 799 
40. M. Swart, F. M. Bickelhaupt, J. Comput. Chem. 29 (2008) 724 
41. M. Swart, F. M. Bickelhaupt, Int. J. Quantum Chem. 106 (2006) 2536 
42. A. J. Boone, C. H. Chang, S. N. Greene, T. Herz, N. G. J. Richards, Coord. Chem. Rev. 

238–239 (2003) 291 
43. J. C. Noveron, M. M. Olmstead, P. K. Mascharak, Inorg. Chem. 37 (1998) 1138 
44. G. D. Fallon, B. M. Gatehouse, P. J. Minari, K. S. Murray, B. O. West, J. Chem. Soc., 

Dalton Trans. (1984) 2733 
45. N. Govindaswamy, D. A. Quarless, S. A. Koch, J. Am. Chem. Soc. 117 (1995) 8468 
46. D. Sellmann, T. Hofmann, F. Knoch, Inorg. Chim. Acta 224 (1994) 61 
47. D. Sellmann, H. Kunstmann, F. Knoch, M. Moll, Inorg. Chem. 27 (1988) 4183 



1410 GRUDEN, STEPANOVIĆ and SWART 

48. D. Sellmann, W. Soglowek, F. Knoch, G. Ritter, J. Dengler, Inorg. Chem. 31 (1992) 3711 
49. D. Sellmann, J. Utz, N. Blum, F. W. Heinemann, Coord. Chem. Rev. 192 (1999) 607 
50. M. Radoń, E. Broclawik, J. Chem. Theory Comput. 3 (2007) 728 
51. S. Ye, F. Neese, Inorg. Chem. 49 (2010) 772 
52. A. Ghosh, T. Vangberg, E. Gonzalez, P. Taylor, J. Porphyr. Phthalocya. 5 (2001) 345 
53. A. Ghosh, B. J. Persson, P. R. Taylor, J. Biol. Inorg. Chem. 8 (2003) 507 
54. M.-S. Liao, S. Scheiner, J. Comput. Chem. 23 (2002) 1391. 



















<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice