{Ab initio study of mechanism of forming a spiro-Sn-heterocyclic ring compound by cycloaddition reaction of H2C=Sn: and ethylene} J. Serb. Chem. Soc. 84 (3) 293–301 (2019) UDC 546.812:66.095.252.091.7:537.872 JSCS–5184 Original scientific paper 293 Ab initio study of the mechanism of formation of a spiro-Sn-heterocyclic ring compound by the cycloaddition reaction of H2C=Sn: and ethylene XIAOJUN TAN1* and XIUHUI LU2** 1School of Biological Science and Technology, University of Jinan, Jinan 250022, P. R. China and 2School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China (Received 3 June, revised 2 September, accepted 10 September 2018) Abstract: X2C=Sn: (X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chem- istry. The cycloaddition reactions of X2C=Sn: is a new study field of stan- nylene chemistry. The mechanism of cycloaddition reaction of singlet H2C=Sn: with ethylene is studied for the first time using the MP2/GENECP (C, H in 6-311++G; Sn in LanL2dz) method in this paper. From the potential energy profile, it could be predicted that the reaction has one dominant reaction chan- nel. The reaction rule presented is that the 5p unoccupied orbital of tin in H2C=Sn: sidewise overlaps with the bonding π orbital of ethylene resulting in the formation of an intermediate. The instability of the intermediate makes it isomerise to a four-membered ring stannylene. As the 5p unoccupied orbital of the Sn atom in the four-membered ring stannylene and the π orbital of ethylene form a π→p donor–acceptor bond, the four-membered ring stannylene further combines with ethylene to form another intermediate, and this intermediate further isomerises to a spiro-Sn-heterocyclic ring compound. The Sn in the spiro-Sn-heterocyclic ring compound is combined with adjacent atoms by sp3 hybridization. The results of this study reveal the mechanism of cycloaddition reaction of X2C=Sn: with symmetric π-bond compounds. Keywords: H2C=Sn:; four-membered ring stannylene; spiro-Sn-heterocyclic ring compound; potential energy profile. INTRODUCTION The unsaturated olefins of the group IV elements (C, Si, Ge) are all active intermediates,1–6 Their cycloaddition reaction have been studied7–13 and with progress of these studies, the study on cycloaddition reactions of unsaturated stannylene should also be put on the agenda. However, there have hitherto been no published reports concerning cycloaddition reactions of unsaturated stan- *,** Corresponding authors. E-mail: (*)jndxswxy@163.com; (**)lxh@ujn.edu.cn https://doi.org/10.2298/JSC180603072T 294 TAN and LU nylene. Unsaturated stannylenes (i.e., X2C=Sn:) are a new chemical species and new study field of stannylene chemistry. In particular, the mechanism of their cycloaddition reaction and the rules of cycloaddition reactions between X2C=Sn: and symmetric π-bonded compounds should be studied. In this paper H2C=Sn: and ethylene were selected as model molecules, and the cycloaddition reaction mechanism (considering H transfer simultaneously) was investigated and ana- lyzed theoretically. The research result indicates the laws of cycloaddition react- ion between X2C=Sn: and symmetric π-bonded compounds, which are signific- ant for the synthesis of a small-ring containing Sn and spiro-Sn-heterocyclic compounds. The study extended the research area and enriched the research con- tent of stannylene chemistry. CALCULATION METHOD The method of the second-order perturbation theory (MP2)14 and Gaussian 09 package were used to optimize the structure of H2C=Sn: and its cycloaddition reaction with ethylene, its transition state form at the MP2/GENECP (C, H in 6-311++G**; Sn in LanL2dz level) of theory. In order to further confirm the correctness of the relevant species and obtain the ther- modynamic function for the species, vibration analysis was included. Finally, the intrinsic reaction coordinate (IRC)15,16 was also calculated for all the transition states to determine the reaction paths and directions. RESULTS AND DISCUSSION As theoretical research shows that the ground state of H2C=Sn: (R1) is a singlet state, its cycloaddition reaction with ethylene (R2) has the following three possible routes: + + + (1) (2) (3) R1 R2 P1 R1 R2 P2 P2.1 P2 R2 P3 The geometrical parameters of the intermediates (INT1 and INT3), transition states (TS1, TS2, TS2.1 and TS3) and products (P1, P2, P2.1 and P3) that appear in the above three reactions are given in Fig. 1, the energies are listed in Table I and the entropy, enthalpy and Gibbs energy values are listed in Table II. The potential energy profile of the above three reactions are shown in Fig. 2. FORMING A SPIRO-Sn-HETEROCYCLIC RING COMPOUND 295 R1 R2 INT1 TS1 P1 Sn C(1) C(2) C(3) C(1) C(1) C(1) C(2)C(2)C(2) C(3)C(3) C(3) Sn SnSn 2.866 2.866 1.353 81.5 2.151 2.199 1.504 118.8 2.1112.111 1.568 146.4 C(1)SnC(2)C(3)=88.0∠ 2.011 1.985 1.339 TS2 P2 TS2.1 P2.1 C(1) C(1) Sn Sn C(2)C(2) C(3) 2.076 2.388 1.418 79.5 C(1)SnC(2)C(3)=50.0 C(3) ∠ C(1)SnC(2)C(3)=24.6∠ 2.217 2.217 1.546 65.6 2.157 2.335 1.541 1.986 2.170 1.559 58.5 72.3 Sn Sn C(1) C(1) C(2)C(2) C(3) C(3) INT3 TS3 P3 C(1) C(1) C(1) C(2)C(2) C(2) C(3) C(3) C(3) Sn Sn Sn C(4) C(5) C(4) C(4) C(5) C(5)1.349 3.030 2.922 85.8 1.4852.241 2.168 113.2 1.554 2.126 2.126 138.2 Fig. 1. Optimized MP2/GENECP (C, H in 6-311++G**; Sn in LanL2dz) geometrical parameters and the atomic numbering for the species in cycloaddition reaction between H2C=Sn: and ethylene. Bond lengths and bond angles are in angstrom and degree, respectively. TABLE I. The electronic structure energy (Eese) and relative energies (ER) for the species from the MP2/GENECP (C, H in 6-311++G**; Sn in LanL2dz) method at 298 K and 101325 Pa Reaction Species MP2/GENECP Eese / Ha ER / kJ mol-1 (1)a R1+R2 –120.76486 0.0 INT1 –120.78058 –41.3 TS1 (INT1-P1) –120.72718 98.9 P1 –120.73150 87.6 (2)a R1+R2 –120.76486 0.0 INT1 –120.78058 –41.3 TS2(INT1-P2) –120.76248 6.2 P2 –120.82512 –158.2 TS2.1(P2-P2.1) –120.71765 123.9 P2.1 –120.75656 21.8 (3)b P2+R2 –199.17164 0.0 INT3 –199.18360 –31.4 TS3(INT3-P3) –199.16216 24.9 P3 –199.16806 9.4 aER = Eese–Eese(R1+R2), bER = Eese– Eese(P2+R2) 296 TAN and LU TABLE II. Entropy, enthalpy and Gibbs free energy for the species from MP2/GENECP (C, H in 6-311++G**; Sn in LanL2dz) methods at the 298 K and 101325 Pa Reaction Species H / Ha S×104 / Ha G / Ha (1) R1+R2 –120.68436 1.83010 –120.73895 INT1 –120.69667 1.31074 –120.73577 TS1 (INT1-P1) –120.64511 1.19512 –120.68076 P1 –120.64842 1.23904 –120.68538 (2) TS2(INT1-P2) –120.67918 1.18527 –120.71454 P2 –120.73864 1.17524 –120.77369 TS2.1(P2-P2.1) –120.63781 1.17213 –120.67277 P2.1 –120.67517 1.20096 –120.71099 (3) P2+R2 –199.03032 2.01150 –199.09031 INT3 –199.03946 1.52138 –199.08484 TS3(INT3-P3) –199.01940 1.35050 –199.05968 P3 –199.02440 1.40081 –199.06618 R1+R2 INT1 P2+R2 0.0 -41.3 0.0 Reaction(1) E R (K J/ m ol ) 50 0 -50 -100 -150 100 150 TS1 98.9 P1 87.6 TS2 6.2 P2 -158.2 INT3 -31.4 TS3 24.9 P3 9.4 Reaction(2) Reaction(3) TS2.1 123.9 P2.1 21.8 Fig. 2. The potential energy surface for the cycloaddition reactions between H2C=Sn: and ethylene as calculated with MP2/GENECP (C, H in 6-311++G** ; Sn in LanL2dz). The unique imaginary frequency of the transition states TS1, TS2, TS2.1, and TS3 obtained through vibrational analysis are 220.7i, 419.7i, 784.5i and 120.8i, respectively, and therefore, these transition states could be affirmed as the FORMING A SPIRO-Sn-HETEROCYCLIC RING COMPOUND 297 genuine ones. IRC (with a step-size of 0.1 amu–1/2 Bohr) analysis confirmed that TS1 connects INT1 and P1, TS2 connects INT1 and P2, TS2.1 connects P2 and P2.1, and TS3 connects INT3 and P3. According to Fig. 2, it could be seen that reaction (1) consists of two steps: the first one is that the two reactants (R1 and R2) form an intermediate (INT1). According to Fig. 2 and Table II, the reaction is a barrier-free exothermic react- ion, and the changes of molar constant volume heat of reaction (ΔrUm) and molar heat of reaction (ΔrHm) at normal temperature and pressure are –41.3 and –32.3 kJ mol–1, respectively, and the change of molar Gibbs energy of the reaction (ΔrGm) is –8.3 kJ mol–1. The second is that INT1 isomerises to a three-mem- bered Sn-heterocyclic ring product P1 via transition state TS1 with an energy barrier of 140.2 kJ mol–1. According to Fig. 2 and Table II, the reaction is endothermic, and the ΔrUm and ΔrHm values at normal temperature and pressure are 128.9 and 126.7 kJ mol–1, respectively, and the ΔrGm value is 140.6 kJ mol–1. Hence, INT1→P1 is thermodynamically forbidden at normal temperature and pressure, and reaction (1) will end in INT1. According to Fig. 2, it could be seen that reaction (2) consists of three steps: the first one is that the two reactants (R1 and R2) form an intermediate (INT1) (the situation is the same as reaction (1)). The second is that the INT1 isomerizes to a four-membered ring stannylene (P2) via transition state TS2 with an energy barrier of 47.5 kJ mol–1. According to Fig. 2 and Table II, the reaction is exo- thermic, and ΔrUm and ΔrHm the values at normal temperature and pressure are –116.9 and –110.2 kJ mol–1, respectively, and the ΔrGm value is –91.2 kJ mol–1. The third is that the P2 undergoes H transfer via transition state TS2.1 with an energy barrier of 282.1 kJ mol–1, resulting in the formation of product P2.1. According to Fig. 2 and Table II, the reaction is an endothermic reaction, and the ΔrUm and ΔrHm values at normal temperature and pressure are 180.0 and 166.6 kJ mol–1, respectively, and the ΔrGm value is 164.6 kJ mol–1. Thus, P2→P2.1 is thermodynamically forbidden at normal temperature and pressure, and reaction (2) will end in P2. Comparing reaction (2) with reaction (1), INT1→P1 is thermodynamically forbidden, and thus, reaction (2) will be the dominant react- ion channel. In reaction (3), the four-membered ring stannylene (P2) further reacts with ethylene (R2) to form a spiro-Sn-heterocyclic ring, compound (P3). According to Fig. 2, it could be seen that the process of reaction (3) is based on the P2 formed in reaction (2) reacting further with ethylene (R2) to form an intermediate (INT3). According to Fig. 2 and Table II, the reaction is a barrierless exothermic reaction, and the ΔrUm and ΔrHm values at normal temperature and pressure are –31.4 and –24.0 kJ mol–1, respectively, and the ΔrGm value is –14.4 kJ mol–1. Then intermediate (INT3) isomerizes to a spiro-Sn-heterocyclic ring compound (P3) via a transition state (TS3) with an energy barrier of 56.3 kJ mol–1. Accord- 298 TAN and LU ing to Fig. 2 and Table II, the reaction is an endothermic reaction, and the ΔrUm and ΔrHm values at normal temperature and pressure are 40.8 and 39.5 kJ mol–1, respectively, and the ΔrGm value is 63.4 kJ mol–1. According to Fig. 2, reaction (3) and P2→P2.1 in reaction (2) are competitive reactions. As P2→P2.1 is ther- modynamically forbidden, reaction (3) will be the dominant reaction channel. In reaction (3), since ΔrGm value of P2+R2→P3 is 49.0 kJ mol–1, it is a thermodynamically forbidden reaction at normal temperature and normal pres- sure. In order to realize the reaction, according to the following thermodynamic formula: 2 1 2 1( ) ( ) dΔ − Δ = Δ p p G p G p V p At a temperature of 298 K, P2+R2→P3 is allowed to proceed, and the pressure of the reaction system must be greater than 150325 Pa (1.5 atm). According to all the analyses, reaction (3) should be the dominant reaction channel of the cycloaddition reaction between singlet H2C=Sn: and ethylene, namely: TS2 R2 TS3R1 R2 INT1 P2 INT3 P3++ → ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ In this reaction, the frontier molecular orbitals of R1, R2 and P2 are shown in Fig. 3. According to Fig. 3, the mechanism of reaction (3) could be explained with the frontier molecular orbital diagrams (see Figs. 4 and 5). According to Figs. 1 and 4, when H2C=Sn: (R1) initially interacts with ethylene, the 5p unoc- cupied orbital of tin sidewise overlaps with the bonding π-orbital of ethylene, leading to the formation of an intermediate (INT1). As the reaction proceeds, the Sn–C(2) bond (INT1: 2.886 Å, TS2: 2.388 Å, P2: 2.217 Å), ∠C(1)SnC(2)C(3) (INT1: 88.0°,TS2: 50.0°, P2: 24.6°) and ∠C(1)SnC(2) (INT1: 81.5°, TS2: 79.5°, P2: 65.6°) gradually decrease, and the C(1)–Sn and C(2)–C(3) bond (INT1: 2.011 and 1.353 Å; TS2: 2.076 and 1.418 Å; P2: 2.217 and 1.546 Å) gradually lengthen. Before the transition state TS2, Sn and C(2) form a covalent bond. After the transition state TS2, C(1) and C(3) form a covalent bond. Thus, INT1 isomerizes to a four-membered ring stannylene (P2) via transition state TS2. As 5pπ π 5p sp HOMO of R1 LUMO of R1 HOMO of R2 HOMO of P2 LUMO of P2 Fig. 3. The frontier molecular orbitals of R1, R2, P2. FORMING A SPIRO-Sn-HETEROCYCLIC RING COMPOUND 299 P2 is still an active molecular species, P2 may further react with ethylene to form a spiro-Sn-heterocyclic ring compound (P3). The mechanism of this reaction could be explained with Figs. 1 and 5. According to the rule of molecular orbital symmetry adaptation, when P2 interacts with ethylene (R2), the 5p unoccupied orbital of the Sn atom in P2 insert the p orbital of ethylene forming a π→p donor–acceptor bond, leading to the formation of an intermediate (INT3). As the reaction proceeds, the Sn–C(4) and Sn–C(5) bond lengths gradually decrease (INT3: 3.030 and 2.922 Å; TS3: 2.241 and 2.168 Å; P3: 2.126 and 2.126 Å), the ∠C(2)SnC(4) angle (INT3: 85.8°, TS3: 113.2°, P3: 138.2°) gradually increases, the C(4)–C(5) bond gradually lengthens (INT3: 1.349 Å, TS3: 1.485 Å, P3: 1.554 Å). Before the transition state TS3, a covalent bond is formed between Sn and C(4) and between Sn and C(5). After the transition state TS3, INT3 further isomerizes to a spiro-Sn-heterocyclic ring compound (P3) via transition state TS3. Sn in the spiro-Sn-heterocyclic ring compound is combined with adjacent atoms by sp3 hybridization. 5p + - R1 Sn π R2 + - Fig. 4. A schematic interaction diagram for the frontier orbitals of H2C=Sn: (R1) and C2H4 (R2). sp + - 5p P2 Sn + - π R2 Fig. 5. A schematic diagram for the frontier orbitals of P2 and C2H4 (R2). 300 TAN and LU CONCLUSIONS According to the potential energy profile, the cycloaddition reaction between singlet H2C=Sn: and ethylene obtained with the MP2/GENECP (C, H in 6-311++G**; Sn in LanL2dz) method can be predicted. This reaction has one dominant channel. It consists of four steps: 1) the two reactants first form an intermediate (INT1) through a barrier-free exothermic reaction of 41.3 kJ mol–1; 2) the intermediate (INT1) isomerizes to a four-membered ring stannylene (P2) via transition state TS2 with an energy barrier of 47.5 kJ mol–1; 3) the four- -membered ring stannylene (P2) further reacts with ethylene (R2) to form another intermediate INT3 through a barrier-free exothermic reaction of 31.4 kJ mol–1; 4) intermediate (INT3) isomerizes to a spiro-Sn-heterocyclic ring compound (P3) via transition state TS3 with an energy barrier of 56.3 kJ mol–1. At a temperature of 298 K, the reaction is carried out, and the pressure of the reaction system needs to be greater than 150325 Pa (1.5 atm). The 5p unoccupied orbital of Sn in X2C=Sn: is involved in cycloaddition reaction of X2C=Sn: and the symmetric π-bonded compounds. The 5p unoc- cupied orbital of tin in H2C=Sn: sidewise overlaps with bonding π-orbital of ethylene resulting in the formation of an intermediate. The instability of the inter- mediate makes it isomerise to a four-membered ring stannylene. As the 5p unoc- cupied orbital of the Sn atom in the four-membered ring stannylene and the π-orbital of symmetric π-bonded compounds forms a π→p donor–acceptor bond, the four-membered ring stannylene further combines with symmetric π-bonded compounds to form another intermediate, and this intermediate further isomerises to a spiro-Sn-heterocyclic ring compound. Sn in the spiro-Sn-heterocyclic ring compound is combined with adjacent sp3 hybridized atoms. И З В О Д Ab initio ПРОУЧАВАЊЕ МЕХАНИЗМА НАСТАЈАЊА СПИРО-Sn-ХЕТЕРОЦИКЛИЧНИХ ЈЕДИЊЕЊА ЦИКЛОАДИЦИОНОМ РЕАКЦИЈОМ H2C=Sn: И ЕТИЛЕНА XIAOJUN TAN1 и XIUHUI LU2 1 School of Biological Science and Technology, University of Jinan, Jinan 250022, P. R. China и 2 School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China X2C=Sn: (X = H, Me, F, Cl, Br, Ph, Ar…) су нове хемијске врсте. Циклоадиционе рекције врста X2C=Sn: су ново поље у хемији станилена. Механизам циклоадиционе реакције синглетног H2C=Sn: са етиленом је у овом чланку по први пут проучаван коришћењем MP2/GENECP (C, H са 6-311++G; Sn са LanL2dz) метода. Из профила потенцијалне енергије може се предсказати да реакција има један доминантан реак- циони пут. Представљено је реакционо правило да се 5p незаузета орбитала калаја у H2C=Sn: бочно преклапа са везивном π-орбиталом етилена формирајући одговарајући интермедијер. Нестабилност интермедијера чини да се он изомеризује у четворочлани прстен станилена. Пошто 5p незаузета орбитала Sn атома у четворочланом прстену станилена и π-орбитала етилена формирају π→p донорско–акцепторску везу, четворо- члани прстен станилена се даље комбинује са етиленом дајући нови интермедијер, а тај се даље изомеризује у СПИРО-Sn-хетероциклично једињење. Sn у СПИРО-Sn-хетеро- FORMING A SPIRO-Sn-HETEROCYCLIC RING COMPOUND 301 цикличном једињењу се комбинује са суседним sp3 хибридизованим атомима. Резултат ове студије открива механизам циклоадиционе реакције X2C=Sn: са симетричним π везивним једињењима. (Примљено 3. јуна, ревидирано 2. септембра, прихваћено 10. септембра 2018) REFERENCES 1. P. J. Stang, Chem. Rev. 78 (1978) 383 2. P. J. Stang, Acc. Chem. Res. 15 (1982) 348 3. H. Leclercq, I. Dubois, J. Mol. Spectrosc. 76 (1979) 39 4. R. Srinivas, D. Sulzle, H. Schwarz, J. Am. Chem. Soc. 113 (1991) 52 5. W. H. Harper, E. A. Ferrall, R. K. Hilliard, S. M. Stogner, R. S. Grev, D. J. Clouthier, J. Am. Chem. Soc. 119 (1997) 8361 6. D. A. Hostutler, T. C. Smith, H. Y. Li, D. J. Clouthier, J. Chem. Phys. 111 (1999) 950 7. X. H. Lu, Y. H. Xu, H. B. Yu, W. R. Wu, J. Phys. Chem., A 109 (2005) 6970 8. X. H. Lu, Z. X. Lian, Y. Q. Li, J. Serb. Chem. Soc. 76 (2011) 743 9. X. H. Lu, J. H. Han, Z. X. Lian, Y. Q. Li, J. Serb. Chem. Soc. 76 (2011) 1395 10. X. H. Lu, L. Y. Shi, Y. Q. Li, Z. N. Wang, J. Serb. Chem. Soc. 77 (2012) 75 11. X. H. Lu, J. J. Ming, J. Serb. Chem. Soc. 81 (2016) 633 12. X. H. Lu, Y. H. Xu, L. Y. Shi, J. F. Han, Z. X. Lian, J. Organomet. Chem. 694 (2009) 4062 13. X. H. Lu, L. Y. Shi, J. J. Ming, Arabian J. Chem. 9 (2016) 163 14. L. A. Curtis, K. Raghavachari, J. A. Pople, J. Chem. Phys. 98 (1993) 1293 15. K. Fukui, J. Phys. Chem. 74 (1970) 4161 16. K. Ishida, K. Morokuma, A. Komornicki, J. Chem. Phys. 66 (1977) 2153. << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice