{Green and efficient synthesis of new $\beta$-amido-aroyl carbonyl derivatives catalyzed by choline chloride/urea as a deep eutectic solvent} J. Serb. Chem. Soc. 86 (6) 547–553 (2021) Original scientific paper JSCS–5441 547 Green and efficient synthesis of new β-amido-aroyl carbonyl derivatives catalyzed by choline chloride/urea as a deep eutectic solvent ANITA BERJIS1, BEHROOZ MIRZA1* and HOSSEIN ANARAKI-ARDAKANI2 1Department of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran and 2Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran (Received 6 May 2020, revised 9 March, accepted 11 March 2021) Abstract: A green and highly efficient synthesis of some new β-amido-aroyl carbonyl derivatives has been achieved through a one-pot, three-component reaction of dimedone/barbituric acid derivatives, arylglyoxals, and amides in choline chloride/urea as a deep eutectic solvent (DES). The use of biodegrad- able materials, short reaction time and high yields of products introduced this protocol as an efficient environmentally friendly method. The DES could be easily recovered and reused about four times with satisfied catalytic activity. Keywords: deep eutectic solvents; green chemistry; multi-component reaction; β-amido-aroyl carbonyl compounds. INTRODUCTION Multicomponent reactions (MCRs) have been identified as one of the most efficient methods for the synthesis of heterocyclic compounds.1,2 MCRs provide a powerful synthetic method in which a wide range of raw materials could react through one-pot reactions to produce valuable compounds. In general, most of the atoms in the substrates are also found in the structure of the newly-formed products.3 Green chemistry, as an essential and evolving research field, has focused on designing processes that reduce the consumption and production of environmen- tally harmful substances.4 Recently, deep eutectic solvents (DES) have been utilized as a new green solvent in research. DESs have received more attention due to their exciting properties, such as high thermal stability, high purity, high solubility, no water- reactivity, low cost, and simple preparation methods. Therefore, many valuable review articles examine the types and features of DES.5 A deep eutectic solvent (DES) is defined as a mixture of two or more components with effective hydro- * Corresponding author. E-mail: b_mirza@azad.ac.ir https://doi.org/10.2298/JSC200506019B ________________________________________________________________________________________________________________________ (CC) 2021 SCS. Available on line at www.shd.org.rs/JSCS/ 548 BERJIS, MIRZA and ANARAKI-ARDAKANI gen-bond interactions that result in the observed melting point being much lower than either of the individual components.6–10 Choline chloride (ChCl) is one of the most common materials utilized in the synthesis of DESs. This quaternary ammonium salt has received more attention due to its special properties, such as low cost, biodegradability, environmental friendliness, and reusability. In addit- ion, choline chloride exhibits high thermal and chemical stability.11 ChCl as hyd- rogen bond acceptor (HBA) could produce DES in reaction with hydrogen bond donors (HBD), such as acids,12 alcohols,13 amines14 or amides.15 β-Acetamido carbonyl compounds have been identified as precursors of 1,3-amino alcohols and γ-lactams.16,17 They also exhibit biological and pharma- ceutical activities18 and are used to prepare of antibiotic drugs, such as nikko- mycin or neopolyoxins.19 The modified Dakin–West condensation of aromatic aldehyde, acetophenone and acetonitrile is highly recommended in the synthesis of β-acetamido carbonyl compounds.20,21 Moreover, several efficient methods have been reported for the synthesis of β-acetamido ketones through three-com- ponent reactions of acetophenone, an aryl aldehyde, and acetyl chloride in aceto- nitrile using CoCl2,17 montmorillonite K-10 clay22 and heteropoly acids23 as useful catalysts. Three-component reactions of 1,3-dicarbonyl compounds, aryl- glyoxals, and heteroaryl amines/2-aminobenzimidazoles were reported in order to synthesis of 6,7-dihydrobenzofuran-4(5H)-one24/12-aroylbenzimidazo[2,1-b]- quinazolin-1(2H)-one25 derivatives. Moreover, some reports have been found on the synthesis of β-amido-aryl carbonyl derivatives through three-component reaction of 1,3-dicarbonyl compounds, arylglyoxal, and benzamide.26–28 Follow- ing previous works, herein an efficient approach is reported for the one-pot syn- thesis of β-amido-aroyl carbonyl derivatives (4) using three-component reactions of dimedone, barbituric/thiobarbituric acid derivatives (1), arylglyoxals (2) and amides (3), in the presence of choline chloride/urea as a deep eutectic solvent (DES), Scheme 1. ᴼC Scheme 1. Synthesis of β-amido-aroyl carbonyl derivatives in DES as solvent and catalyst. Aryglyoxals 2 were synthesized by the reported reaction of the corres- ponding acetophenone and SeO229 (Scheme 2). ________________________________________________________________________________________________________________________ (CC) 2021 SCS. Available on line at www.shd.org.rs/JSCS/ SYNTHESIS OF NEW β-AMIDO-AROYL CARBONYL DERIVATIVES 549 Ar O O H Ar O Dioxane /H2O 2 Ar = 4-Nitrophenyl, 4-Chlorophenyl, 4-Bromophenyl,4-CH3-phenyl SeO2 Scheme 2. The synthesis of aryglyoxals. EXPERIMENTAL All used chemicals and solvents were purchased from Fluka (Buchs, Switzerland) and used without further purification. Melting points of the synthesized products were determined with an electrothermal 9100 apparatus. The IR spectra were recorded on a Shimadzu IR-470 spectrometer. 1H- and 13C-NMR spectra were recorded on Bruker DRX-250 Avance spectro- meter in DMSO-d6 or CDCl3 with TMS as the internal standard. In addition, elemental ana- lyses were performed using a Heraeus CHN-O-Rapid analyzer. General procedure for the synthesis of β-amido-aroyl carbonyl derivatives A mixture of dimedone/barbituric acid derivatives (1 mmol), arylglyoxals (1 mmol), and amides (1 mmol) were added to choline chloride/urea (1:2, 4 mL). The resulting mixture was stirred and heated 90 °C for 145–165 min (Scheme 1). After completion of the reaction (TLC, ethyl acetate/n-hexane, 2:1), the reaction mixture was washed with water (10 mL) and the solid residue recrystallized from ethanol to obtain the pure product. The spectral and analytical data for the new compounds are presented in the Supple- mentary material to this paper. RESULTS AND DISCUSSION First, the reaction of dimedone, 4-nitrophenylglyoxal, and benzamide was selected as a model reaction. Then the model reaction was performed in various DESs based on choline chloride (ChCl), and the results are listed in Table I. The mixture of choline chloride:urea (1:2) was identified as the best DES. Next, the reaction was tested at different temperatures to find the most suitable conditions, whereby the best reaction result was observed in the presence of choline chlo- ride:urea (1:2) at 90 °C. Performing the reaction at lower temperatures reduced the reaction yields (Table I, entries 9–11). Furthermore only 20 % yield of the product was detected in the absence of any DES (Table I, entry 8). In order to prove the efficiency of the method, several cyclic 1,3-diketones (1), various substituted arylglyoxal (2, including electron-donating and electron- withdrawing groups), and different amides (3) were employed in presence of choline chloride:urea (1:2) at 90 °C (Table II). Excellent yields of products and short reaction times were found as the advantages of the method. Novel synthesized products (4a–h) were characterized by IR, 1H-NMR and 13C-NMR spectral data, as well as elemental analyses. For example, the IR spectrum of 4a showed absorptions at 3417 and 3258 cm–1 for OH and NH groups and at 1710, 1610 cm–1 for carbonyl groups, indi- ________________________________________________________________________________________________________________________ (CC) 2021 SCS. Available on line at www.shd.org.rs/JSCS/ 550 BERJIS, MIRZA and ANARAKI-ARDAKANI cating the presence of these functional groups in the proposed structure. The 1H- -NMR spectrum of 4a exhibited two singlet signals at δ 0.63 and 0.99 ppm for methyl groups, and the methylene group was observed at δ 2.01 and 2.67 ppm. Additionally, a single signal was observed at δ 5.81 ppm for the methine group, and multiplet signals were observed at 7.50–8.27 ppm related to aromatic and NH hydrogens and finally a broad signals at δ 12.43 ppm related to the OH pro- ton. The decoupled 13C-NMR spectrum of 4a showed 19 resonances that are con- sistent with the proposed structure. The elemental analysis confirmed the amounts of C, H and N in the final product. TABLE I. Optimization of reaction in various choline chloride-based DESs; reaction condit- ions: dimedone (0.25 mmol), 4-nitrophenyl glyoxal (0.25 mmol) and benzamide (0.25 mmol) in DES (1 mL) Entry DES t / °C Time, min Yielda, % 1 Choline chloride 90 200 20 2 Choline chloride:ZnCl2 (1:2) 90 200 40 3 Choline chloride:PTSA (1:1) 90 200 45 4 Choline chloride:malonic acid (1:1) 90 200 55 5 Choline chloride:succinic acid (1:1) 90 200 55 6 Choline chloride:citric acid (1:1) 90 200 50 7 Choline chloride:oxalic acid (1:1) 90 200 55 8 – 100 220 20 9 Choline chloride:urea (1:2) 70 150 70 10 Choline chloride:urea (1:2) 80 150 82 11 Choline chloride:urea (1:2) 90 150 90 12 Choline chloride:urea (1:2) 100 150 90 aIsolated yield TABLE II. Three-component reaction of dimedone or barbituric acid derivatives, arylgly- oxals, and amides in a deep eutectic solvent (DES); MP – melting point Entry Substrate Ar R2 Time, min Yielda, % MP / °C 4a Dimedone 4-NO2-C6H4 Ph 150 90 200 4b Dimedone 4-Cl-C6H4 Ph 160 89 205 4c Dimedone 4-Br-C6H4 Ph 160 85 225 4d Dimedone 4-Br-C6H4 CH3 155 90 210 4e Dimedone 4-NO2-C6H4 CH3 145 88 215 4f Dimedone 4-Br-C6H4 C2H5 150 85 210 4g 1,3-Dimethylbarbituric acid 4-CH3-C6H4 CH3 165 80 200–203 4h Thiobarbituric acid 4-Cl-C6H4 C2H5 165 78 215–217 aIsolated yield A plausible mechanism for the synthesis of β-amido-aroyl carbonyl derivat- ives based on the previously reported30,31 is presented in Scheme 3. First, a Kno- evenagel condensation of enolic form of dimedone 1 with more electrophilic for- myl group of the arylglyoxal 2 (path a) in the presence of DES is proposed to ________________________________________________________________________________________________________________________ (CC) 2021 SCS. Available on line at www.shd.org.rs/JSCS/ SYNTHESIS OF NEW β-AMIDO-AROYL CARBONYL DERIVATIVES 551 give intermediate 5.28,29 Then Michael addition of amide 3 to intermediate 5 forms the β-amido-aroyl carbonyl derivatives products. DES activates all carbo- nyl groups via hydrogen bonding. (Scheme 3). O OH N + OHNH NH2 O NH2 NH O HH H O O R 1 Cl NH2 R 2 O N + OH Cl NH2 NH O H NH NH2 O H O O O R 1 O O O R 1 path a path b 4a-h + -H2O 1 2 3 55 Scheme 3. Suggested pathway for the formation of compounds 4a–h. Finally, the reusability of the catalyst for the synthesis of N-[1-(2-hydroxy- -4,4-dimethyl-6-oxo-cyclohex-1-enyl)-2-(4-nitro-phenyl)-2-oxo-ethyl]-benzamide (4a) was studied (Fig. 1). After completion of the reaction, the reaction mixture was washed with water and the solid residue recrystallized to obtain the pure product. The DES was recovered from the aqueous phase by evaporation at 80 °C under vacuum and prepared for the next run. It was applied for four runs without noticeable decrease in the catalyst activity (Fig. 1). Fig. 1. Reusability of the DES. CONCLUSIONS In conclusion, a simple and efficient methodology for the synthesis of β- -amido-aroyl carbonyl derivatives was successfully developed by the one-pot three-component reaction of dimedone/barbituric acid derivatives, arylglyoxals, and amides in the presence of choline chloride/urea as a green and eco-friendly ________________________________________________________________________________________________________________________ (CC) 2021 SCS. Available on line at www.shd.org.rs/JSCS/ 552 BERJIS, MIRZA and ANARAKI-ARDAKANI catalyst and solvent. Several noticeable advantages such as simplicity of oper- ation, safe method, high yields of products, and biodegradable, non-toxic, inex- pensive materials were found. Also, the deep eutectic solvent (DES) could be easily recycled and reused in at least four consecutive runs without significant loss of catalytic activity. SUPPLEMENTARY MATERIAL Additional data are available electronically at the pages of journal website: https:// //www.shd-pub.org.rs/index.php/JSCS/index, or from the corresponding author on request. Acknowledgement. We are thankful to the Islamic Azad University, Karaj branch, for the support of this work. И З В О Д ЗЕЛЕНА И ЕФИКАСНА СИНТЕЗА НОВИХ β-АМИДО-АРОИЛ КАРБОНИЛНИХ ДЕРИВАТА У ЕУТЕКТИЧНОЈ СМЕШИ ХОЛИН-ХЛОРИД/УРЕА ANITA BERJIS1, BEHROOZ MIRZA1 и HOSSEIN ANARAKI-ARDAKANI2 1Department of Chemistry, Faculty of Science, Islamic Azad University, Karaj Branch, Alborz, Iran и 2Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran Зелена и веома ефикасна синтеза нових β-амидо-ароил карбонилних деривата постиг- нута је у једном реакционом кораку у тро-компонентној реакционој смеши која садржи димедон/деривате барбитурне киселине, арил-глиоксале и амиде у смеши холин хлорида/ /урее као дубоком еутектичком растварачу (deep eutectic solvent, DES). Због употреба био- деградабилних материjала, кратког реакционог времена и високог приноса производа овај поступак припада ефикасним и еколошки прихватљивим методама синтезе. Еутектички рас- тварач се лако може рециклирати и поново користити четири пута без губитка каталитичке активности. (Примљено 6. маја 2020, ревидирано 9 марта, прихваћено 11. марта 2021) REFERENCES 1. B. M. Trost, Science 254 (1991) 1471 (https://doi.org/10.1126/science.1962206) 2. S. Pal, M. Nasim Khan, S. Karamthulla , L. H. Choudhury, Tetrahedron Lett. 56 (2015) 359 (https://doi.org/10.1016/j.tetlet.2014.11.095) 3. A. J. Von Wangelin, H. Neumann, D. Gördes, S. Klaus, D. Strübing , M. Beller, Chem. Eur. J. 9 (2003) 4286 (https://doi.10.1002/chem.200305048) 4. P. T. Anastas, Crit. Rev. Anal. Chem. 29 (1999) 167 (https://doi.org/10.1080/10408349891199356) 5. P. Liu, J. W. Hao, L. P. Mo, Z. H. Zhang. RSC Adv. 5 (2015) 48675 (https://doi.org/10.1039/c5ra05746a) 6. Y. Cui, C. Li, J. Yin, S. Li, Y. Jia, M. Bao. J. Mol. Liq. 236 (2017) 338 (https://doi.org/10.1016/i.gee.2019.03.002) 7. Q. Zhang, K. De.Oliveira Vigier, S. Royer, F. Jerome, Chem. Soc. Rev. 41 (2012) 7108 ( https://doi.org/10.1039/c2cs35178a) 8. N. Azizi, T. Soleymani Ahooi , M. Mahmoudi Hashemi, J. Mol. Liq. 246 (2017 ) 221 (https://doi.org/10.1016/j.molliq.2017.09.049) 9. P. Liu, J.-W. Hao, L.-P. Mo, Z.-H. Zhang. RSC Adv. 5 (2015) 48675 (https://doi.org/10.1039/c5ra05746a) ________________________________________________________________________________________________________________________ (CC) 2021 SCS. Available on line at www.shd.org.rs/JSCS/ SYNTHESIS OF NEW β-AMIDO-AROYL CARBONYL DERIVATIVES 553 10. E. Habibi, K. Ghanemi, M. Fallah-Mehrjardi, A. Dadolahi-Sohrab, Anal. Chim. Acta 762 (2013) 61 (https://doi.10.1016/j.aca.2012.11.054) 11. A. Shaabani, S. E. Hooshmand, A. Tavousi Tabatabaei, Tetrahedron Lett. 57 (2016) 351 (https://doi.org/10.1016/j.tetlet.2015.12.017) 12. A. K. Sanap, G. S. Shankarling, RSC Adv. 4 (2014) 34938 (https://doi.org/10.1039/C4RA05858E) 13. A. P. Abbott, R. C. Harris, K. S. Ryder, C. D’Agostino, L. F. Gladden, M. D. Mantle, Green Chem. 13 (2011 ) 82 (https://doi.org/10.1039/C0GC00395F) 14. S. Khandelwal, Y. K. Tailor, M. Kumar, J. Mol. Liq. 215 (2016) 345 (https://doi.org/10.1016/j.molliq.2015.12.015) 15. E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev. 114 (2014) 11060 (https://doi.org/10.1021/cr.300162p) 16. J. Barluenga, B. Olano, S. Fustero, J. Org. Chem. 50 (1985) 4052 (https://doi.org/10.1021/jo00221a018) 17. I. Nageshwar Rao, E. N. Prabhakaran, S. Kumar Das, J. Iqbal, J. Org. Chem. 68 (2003) 4079 (https://doi.org/10.1021/jo020559c) 18. R. P. Cheng, S. H. Gellman, W. F. De. Grado, Chem. Rev. 101 (2001) 3219. (https://doi.org/10.1021/cr000045i) 19. U. Dahn, H. Hagenmaier, H. Hohne, W. A. König, G. Wolf, H. Zahner. Arch. Microbiol. 107 (1997) 143 (https://doi.org/10.1007/bf00446834) 20. R. M. Kumbhare, M. Sridhar, J. Chem. Sci. 124 (2012) 495 (https://doi.org/10.1007/s12039-011-0183-3) 21. G. L. Buchanan, Chem. Soc. Rev. 17 (1988) 91 (https://doi.org/10.1039/CS9881700091) 22. D. Bahulayan, S. K. Das, J. Iqbal, J. Org. Chem. 68 (2003) 5735 (https://doi.org/10.1021/jo02734p) 23. A. Javid, M. M. Heravi , F. F. Bamoharram, Monatsh. Chem. 143 (2012) 831 (https://doi.org/10.1007/s00706-011-0669-1) 24. 24. R. Khoeiniha, A. Olyaei, M. Saraei, J. Heterocyclic Chem. 54 (2017) 1746 (https://doi.org/10.1002/jhet.2752) 25. O. N. Petrova1, L. L. Zamigajlo, K. S. Ostras, S. V. Shishkina, O. V. Shishkin, A. V. Borisov, V. I. Musatov1, M. G. Shirobokova, V. V. Lipson, Chem. Heterocycl. Comp. 51 (2015) 310 (https://doi.org/10.1007/s10593-015-1700-y) 26. F. Jafari, S. Kodabakhshi , S. Gharehzadeh Shirazi, RSC Adv. 4 (2014) 48095 (https://doi.org/10.1039/C4RA90049A) 27. S. Khodabakhshi, B. Karami, Tetrahedron Lett. 55 (2014) 7136 (https://doi.org/10.1016/j.tetlet.2014.11.016) 28. S. Khodabakhshi, M. Khaleghi Abbasabadi, M. Baghrnejad, F. Marahel, J. Chin. Chem. Soc. 62 (2015) 9 (https://doi.org/10.1002/jccs.201400266) 29. B. Khalili, P. Jajarmi, B. Eftekhari-Sis , M. M. Hashemi, J. Org. Chem. 73 (2008) 2090 (https:// doi.org/10.1021/jo702385n) 30. J. Khalafy, M. Ezzati, M. Rimaz, A.d Poursattar Marjani, H. Yaghoobnejad Asl, J. Iran. Chem. Soc. 11 (2014) 1067 (https://doi.org/10.1007/s13738-013-0378-2) 31. J. Khalafy, M. Rimaz, M. Ezzati, R. H. Prager, Bull. Korean Chem. Soc. 33 (2012) 9 (http://dx.doi.org/10.5012/bkcs.2012.33.9.2890) ________________________________________________________________________________________________________________________ (CC) 2021 SCS. Available on line at www.shd.org.rs/JSCS/ << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice