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The paper presents an application of the so-called implicit-explicit finite element
method to the solution of geometrically and materially non-linear dynamic problems.
The method has been implemented in IBM PC and its main features are shown through
three simple examples.

1. Introduction

Dynamic loads can be caused due to high velocity metalworking (e.g. forging) in in-
dustrial circumstences or to impact, explosions and earthquakes which are of considering
importance in the safety studies of nuclear reactors in hypothetical accidents, automotive
and air-craft phenomena, and many-other areas.

In the former case because of the finite strains occured the correct mechanical analysis
is rather difficult, while in the latter case numerous methods have been presented, which
assume small strains, but allow large displacements as well as material nonlinearity.

In most of the numerical solutions of dynamic problems the equations of motion are
first discretised in space. The discretisation using finite eléments yields a set of ordinary
differential equations in time. There are two basic types of methods for integrating the
equations of motion: direct integration methods and modal superposition techniques.
The modal superposition technique is normally used for linear problems only. The direct
integration methods can be further subdivided into explicit and implicit methods. In expli-
cit methods difference equations are used that permit the displacements at the next time
step to be found in terms of the accelerations and displacements at the previous time step,
so that the-procedure does not involve the solution of any equations. In implicit methods
the difference equations for the displacements at the next time step involve the accelera-
tions at the next time step, so the determination of the displacements involves the solution
of a system of equations. ;

For this reasons implicit algorithms usually require considerably more computational
effort per time step as compared with explicit methods. On the other hand, explicit algo-
rithms require very small time steps to ensure numerical stability, while in implicit methods
the time step is only restricted by accuracy requirements.



396 A KovAcs

To circumvent these difficulties, methods have been developped in which it is attempted
to simultaneously achieve the attributes of both algorithms. For linear systems Hughes
and Liu [l, 2] introduced the implicit-explicit concept. In their method the elements are
partitioned into implicit and explicit sets. This concept was extended to non-linear prob-
lems by Hughes et al. [3]. Based on this method a finite element program has been publis-
hed in [4]. This program dealt with plane stress, plane strain and axisymmetric applica-
tions.

Geometrically and materially non-linear behaviour was taken into account using
a total Lagrangian formulation and a linear elastic-plastic isotropic hardening model.
Isotropic hardening model does not include Bauschinger-effect which was experimen-
tally observed during cycling loadings. The alternation of loadings and unloadings
in the dynamic problems is similar to cycling loading, so that a kinematic hardening rule
probably give a more accurate solution. Szab6é and Kovéacs [5] publicate a subroutine
which is based upon the exact integration of Prager’s kinematic hardening rule pre-
sented by Xucheng and Liangming [6].

In the following the application of the modified version of the program mentioned,
adapted to IBM PC will be shown.

2. Finite element formulation

After the spatial discretisation the resulting system of equations of motion for the
dynamic problem becomes at time step #,+A¢:
M-d,,,+Pps(d) = Fun (1), M
in which d is the nodal displacement vector, M is the structural mass matrix, F,,,(?)
are the applied or activating forces, dots denote differentiation in time. The term P, ,
is the internal set of forces.
In non-linear cases P,,; can be estimated as:

P.,=P,+K, 44, 2
Ad = dyq —d,,
Where K, is the tangential stiffness matrix evaluated from conditions at time ¢,. K, can
be divided into two parts:
K, = K.+ Ky,. 3)

The linear stiffness matrix can be calculated as:
K, = [ BTD*?BaV, 0
14

where B is the strain-displacement matrix, D¢? is the constitutive matrix.
The non-linear stiffness matrix is given as ([4]):
Ki, = [ GT-H-GdV, )
v

in which H is astress matrix formed from the components of the a,. Piola-Kirchhoff
stresses, and G is a matrix, which includes the derivatives of the shape functions.
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3. Material nonlinearity

Prager’s kinematic hardening rule can be written as:

S =2G-"— _&Z_a.aT.é'
- c3(3G+ H') ’ (6)
a=S—a,

where § is the vector of the stress deviatoric tensor, a is the vector of the translation tensor
of the coordinates of the center of the yield surface, &’ is the vector of the strain deviatoric
tensor, G is the shear modulus of the material, o is the yield stress. The following rela-
tion can be written for « and for the plastic strain rate:

. ] 2GH’ -a"- ¢ :

= — 18P = ——
a=g i RABG+H) @
where R, = ]/2~ o denotes the radius of the yield surface in the stress deviatoric space

3
(Fig. 1.).

Fig. 1. Yield surfaces in the stress deviatoric space
From eqs. (6) and (7) after some transformation and integration detailed in [5] and [6]
finally we obtain:
oy =0+ [(1-p) ay+2-b-G- A8, €))]
4. =p-a+2-q-G-A¢, ®

where b, I, p, and g are constants depending on §;, R,, and A¢, G is the shear modulus,
and d¢' = & - At. :

Using eqs. (8) and (9), from the known 6, o, quantities at time ¢, with the strain increment
Ae, we can obtain the unknown g,,, @;,; quantities as follows:

Siv1 =@+, (10)
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1
0'[+1=Sl+1+K'(iT'AB,)'i'i"S‘-(iT'cl)'i, (]l)

where:
K=E/3B0—-2)] and i"=[110 1],

E is the Young-modulus, » is the Poisson ratio.

4. Implicit-explicit algorithm

In the implicit-explicit method the finite element mesh contains two groups of elements:
the implicit group and the explicit group. The superscripts I and E will henceforth tefer
to the implicit and explicit groups, respectively.

In the implicit-explicit algorithm we iterate within each time step in order to satisfy
the equation of motion:

M dn+1P +(dn+l)+PE(dn+l) = u+1a o (12)
in which M = M!+ME F,, = F'  +FE,  and d,,, = ard,.
We assume that MFE is diagonal.
The algorithm is as follows ([4]):
1. step — Set iteration counter: i = 0.
2. step — Begin predictor phase in which we set:

dyjl = Jn+1 =d+A4t- d.n 25)"2!)

diy = d,+At- (1-y) - d,
drE?l =
3. step — Evaluate residual forces using the equation:
Pl = F,,,— M- d5), — P'(dY.) — PE(d,. ).
4. step — If required, form the effective stiffness matrix:
; |
% I
K =42 g B M+ K]
- Otherwise use a previously calculated K*.
5. step — Solve the following system of linear equations:

K* . /Jd,f';]l = q’r[-i-»]-l'
6. step — Enter corrector phase in which we set:

d[‘+1] — d[l]1+Ad,E+l)

1 i+1 i
diH = o RN - R,

Atlﬁ

l.lptui++1[] = d,EE.'1+At Y dﬂl
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7. step — Check convergence:
HAﬂ&A|ZZEP“:_«»&swp
Ieharell no :i=i+1---»3. step,
8. step — Set:
: doiy = dFN,
‘}nﬂ = d.rEi++11],

— i+l
dn+l - drE+l ]7

for use in the next time step. Set # = n+1, form P and begin the next time step.

5. Stability analysis

The implicit-explicit algorithm include three free parameters: p, f, and A¢ Their
values govern the accuracy and stability of the algorithm. Hughes and Liu [1] and Key [7]
have discussed the stability limits for this scheme.

Unconditional stability of the iinplicit group is achieved with:

l 2
> L and g= (y+7) (13)
vZg R S
The time step is then restricted by the explicit element group. The maximum stable time
step is determined from:

IR LA (14)

max

where @y, is the maximum frequency of the explicit group. We can estimate wy,,, as:
6Oma)-‘ S max(wflfgx > (15)

(e)
where w$), is the maximum frequency of the e-th element of the explicit group. If only

implicit elements are used and the (13) conditions are satisfied, then for reasonable accu-
racy the time step should be limited to ([8]): ‘

At < 0.01T,,,,, (16)

where T,,,, is the largest period. We can obtain T,,, and w,,, from the solution of the
generalised eigenvalue-eigenvector problem:

K-®=0?Mod, (17

and the inverse problem:

Mod=— K& | (18)
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respectively. Using the Stodola-iteration (Rayleigh-quotient) method wé can’find the lar-
gest period from eq. (17) with:

27
Tmnx - Outn s \ (19)
and w,,, from eq. (34) with:
1
wmax - (;)min' (20)

6. Implementation

6.1. Elastic large displacements of a camtilever [9,10,12]. The cantilever in Fig. 2. was
analysed for a uniformly distributed load using five 8-node plane stress isoparametric
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1=254 mm p A
a=25.4 mm T
b = 25.4 mm |_Pg=499.11 [N/m]
g =10.69 kg/m? ;
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v=0.2 t
Fig. 2. Uniformly loaded cantilever
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Fig. 3. Linear and non-linear transient response of the cantilever
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elements. The materials of the cantilever was assumed to be isotropic and linear elastic.
According to beam theory, the static small deflection is w = 90.5 [mm)]. To calculate the
large deflection we used the analytical solution given by Holden [11]. It was w = 82.8 [mm].
The linear transient response was determined by using the Laplace-transformation. Fig. 3.
shows the comparison between linear and non-linear responses. The non-linear analy-
sis was carried out using a time step A¢ X T,,./21 = 2.7 104 [s).
The stiffening of the cantilever in the non-linear case markedly damps out the amplitude
and shortens the period of oscillations.

6.2. Elasto-plastic dynamic response of a half-ring [14]. The half-ring shown in Fig. 4. was
analysed with ten axisymmetric elements. Fig. 5. shows the vertical displacement at the

F
F=45[kN]

t=03[ms} "t

R=3040 mm E=2.04x10"Pa
v =139.13mm  H'=2.28x10¥Pg
h=18.643mm 6.=2.36 108 Pa

Fig. 4. Dynamically loaded half-ring =0.3 Q=7857.8 kg/m?3
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Fig. 5. Transient responses of the half-ring
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midpoint given by isotropic and kinematic hardening model. The relatively good fit to
the reference solutions in the isotropic case shows that isotropic. hardenlng was. probably
used in [14]. . The augmentation of the mean value of the oscillations is due to. the‘p_las_tlc
strams '

_ 6.3, Elastic-plastic analysis of a sphencal shell cap [4 13, 15, 16] Ten ax1symmetr1c elements
are used to make the finite element model of the spherxcal shell cap shown in Fig. 6. Fig. 7

Po
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v =10 mm

o =26.67°
E=72.4 GPa _
E;=1.45 GPa
V=03

6 =165.5 MPG
Q= 2619 kg/m

pP,=4.14[MPa]

Fig. 6. Spherical shell cap submitted to step pressure loading
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Fig. 7. Comparison of elastic transient responses of the spherical shell cap

and Fig. 8. shows the vertical displacement at mid point using materially linear and non-
linear model. It is seen from the Figures that material and geometric non-linear effects
are very significant. The amplitude decay and period elongation is due to the plastic de-
formation. In the reference solutions- isotropic "hardening was used. In linear analysis
kinematic hardening does not modify the response as in the non-linear case.
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Fig. 9. Deformed shapes of the spherical shell cap with plastic zones

1403]



404

A. Kovics

Assuming large displacements, with the use of kinematic hardening the deformed shapes

with the instantaneous plastic zones in some moments are shown in Fig. 9.

An effective finite element method have been presented for calculating transient res-

ponse of dynamically loaded structures. The so-called implicit-explicit algorithm is suitable

to

10.

11.

12.

13.

14,

15.

16.

analyse geometrically and materially non-linear problems.
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Peswome

HCCJIEHOBAHUE OUHAMHWYECKH HATPY)XEHHBIX KOHCTPYKUMIA
METOIOM KOHEYHbBIX 2JIEMEHTOB

B paGote mpumeHsieM ,,ABHO-HEABHYIO'® BEPCHIO METOAA KOHEUHBIX 3JIEMEHTOB K PEIIEHHIO reo-

METpHYeCKH H (H3HUECKH HEJMHEHHBbIX AMHAMHYECKHX 3a7ay.

Brruncrnenns cnenano Ha ,,JBM PC’’ a riaBHble yepThl METOAA GbUIY MOKA32HBI HA TPEX HECIIOMK-

HBIX NpUMEpax.
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Streszczenie
BADANIE DYNAMICZNIE OBCIAZONYCH KONSTRUKCIJI METODA ELEMENTOW
SKONCZONYCH

W pracy przedstawiono zastosowanie tak zwanej jawno-uwiklanej wersji metody elmentéw skonczo-
nych do rozwigzania geometrycznie i fizycznie nieliniowych zagadnien dynamicznych.
Obliczenia wykonano na IBM PC, a gléwne cechy metody pokazano na trzech prostych przykiadach.

Praca wplynela do Redakcji dnia 10 grudnia 1987 roku.



