Ghostscript wrapper for D:\Digitalizacja\MTS86_t24z1_4_PDF_artyku³y\mts86_t24z4.pdf M E C H A N I K A T E O R E T YC Z N A i STOSOWAN A 4, 24, (1986) F ILTRATION R ESI STAN C E OF A SYSTEM O F PARALLEL CYLIN D ERS AT A TRAN SVERSE C R EEP I N G F LOW J AN A. K O Ł O D Z I E J Politechnika Poznań ska Abstract The subject m atter of th e presen t considerations is the problem of resistance of a system of cylindrical bars un der perpendiculal creeping flow. This system, which has the form of a bun dle of parallel bars, is treated as an an tisotropic porous medium, the flow through is described by th e D arcy equation of filtration . The resistance of filtration is represented as a dimensionless perm eability function F x {q>), where
= 0
F ig. 1. The formulation of the boundary value problems in recurrent cells for the square and triangular
array in the paper [13] where A B C D is the reccurrent cell for the square array, A B C D EF
is the recurrent cell for the traingular array, ca is the vorticity, y> is the stream function, V2 is the
two- dimensional Laplace operator
the narrow gap can be described using the hydrodynamic lubrication theory. His assump-
tion and the results have been tested by H uston [15] numerically. F rom [14] results th3lf
the pressure difference Ap at the perpendicular flow through the gap is
Ap =
8|/ 2
where Q is the total volume flux per unit lenght of the gap. Substituting Ap = b gradx P
and Q = qb to (4) Keller obtained the filter velocity q for the square array in the form
8 |/ 2 ( i / 2 - a )5 / 2
1.77428264 = 0.3 an d deteriorates
rapidly thereafter. The most rigorous formula (17) for the train gular array agrees with
Sangani and Acrivos calculations within 0.1% when cp = 0.3, 1.3% when cp = 0.4, 10%
when cp = 0.5 and deteriorates rapidly thereafter.
The experimental investigations for small values of cp have been carried out by Sullivan
and H ertel [27], Boumstart [28] and Billing [29]. Sullivan and H ertel applied Kozeny- Car-
man hydraulic radius theory [30] from which one could obtain
F
. J L z ^
1
4np ; 1 —
Kuwabara cell model [17] {eq. (7)}, 2 — H appel cell model [16] {eq. (8)}, 3 — Sulivan and H ertel
[27] {eq. (18)}, 4 — the square array obtained by: G olovin and Lopatin [12] {eq. (12)}, H asimoto
{[20] eq. (11)}, Sangani and Acrivos [23] {eq. (14)}, D rummond and Tahir [24] {eq. (16)}, 5 —
the triangular array obtained by G olovin and Lopatin [21] {eq. (13)}, Sangani and Acrivos [23]
{eq. (15)}, D rummond and Tahir [24] {eq. (17)}, 6 — H appel cell model improved by Yu and Soong
[8], 7 — Kuwabara cell model improved by Yu and Soong [8], 8 — Spielman and G oren [7] {eq.
(9)}, 9 —t h e empirical formula of D owson {eq. (19)}, O —t h e experiments of Billing [29],
x —t h e experiments of Baumstart [28]
filtration m odel consisting of th e ran dom distribution of the parallel circular cylinders.
The average pressure d ro p th rough th e filtration region was determined by the random
cell m odel of h ydrodyn am ics. Assuming th e particular probability distribution they obtained
good agrrem en t of their th eoretical results with th e exp erim en t alises [28 - 29].
5. Functions ]')(< }> ) at values of Knudsen numbers in a transition region
The classical th eory of th e filtration is built upon the hydrodynamics of the crreeping
flow (Stokes equation s) an d upon th e boun dary con dition s of the velocity field. The boun-
dary con dition s refer t o bot h th e radial and tan gen tial velocity components. These compo-
nents are equal zero on the surface of pores. F ibres in some of the types of the air f litres
are m ade t o a size which is n o t far from the mean free pat h of gas molecules. Then Knudsen
num ber K n = 2 A/a (where A is th e mean free path of gas molecules), may reach relatively
high values, particularly when filtration takes place at th e reduced pressures. F o r 10"3 <
< K n < 0.25, i. e. in th e tran sition region, th e calculation of the pressure drop requires
the use of th e slip bo u n d ary con dition for the tan gen tial c om pon en t of the velocity. With
the use of this bou n dary con dition an d Kuwabara cell model, Pich [35] found out th at
the n on dim en sion al perm eability at cpĄ 1 gives th e form
In — - l.5- 0.5(p2 + 1.998Kn
F±
Sn(\ + 1.996 K n ) n
(20)
5 Mech. Teoret. i Stos. 4/ 86
546 J. A. KOŁOD ZIEJ
Other, more complicated considerations for the flow at Knudsen numbers in transition
region have been done by Spielman and G oren [7] as well as by Yu and Soong [8]. The
experimental investigations concerning the transition region have been carried out by
Robinson and F ranklin [36]. Their results referring to nondimensional permeability of
a system of the cylinders at the reduced pressure are shown in F ig. 4.
0 . 0 5 -
Fig. 4. The theoretical and empirical nondimensional permeability function F
x
versus Knudsen numbers;
1 — Pich cell model [35] {eq. (20)}, 2 — Yu and Soong [8], 3 — Spielman and G oren [7], x — the
experiments of Robinson and F ranklin [36]
6. Conclusions
The analysis of the presented results leads to the following general conclusions:
a) The theoretical nondimensional permeability for the transverse flow through a system
for the regular and ran dom arrays of the cylinders at very small values of valume fraction
weekly depends on the arrangment of the cylinders. This approximately the following
formula is valid:
~ 1.77428264c)2+
+ 4.07770444?)3- 4.84227402c)4 , for 0 < 2- 0.739137296(^4 +
" 2 . 5 3 « 4 5 0 1 V 1 . ' . . .
( 2 5 >
e) A "d ist u rban c e" of t h e uniform ity of th e volum e fraction of a system has a large;
influence on t h e filtration resistan ce. This is observed in the experiments, where t h e
filtration resistan ce is approxim ately smaller by a half th an obtained from the theore-
tical con sideration s. Th is may be due to th e difficulties of preserving the uniformity
of porosity in t h e experim en ts. Therefore the em pirical relations are of great im portan ce.
References
*
1. W. J. P ROSN AK, Mechanika pł ynów, t. I, PWN , Warszawa 1970.
2. C. W. OSEEN , Vber die Stokes'sche Formel und iiber eine verwandte Aufgabe in der Hydrodynamik, Ark.
M at. Astronom. P hys. 6, (1910), p. 20.
3. H . YAN O, A. KI E D A, An approximate method for solving two- dimensional low- Reynolds- number fow past
arbitrary cylindrical bodies, J. F luid Mech. 97, part 1, (1980), p. 157.
4. J. A. KOŁOD ZIEJ, Filtration Resistance of a System of Cylindrical Bars under Conditions of L ongitudinal
L aminar Flow, Archiwum Budowy Maszyn, 27, zeszyt 4, (1980), str. 487, (in Polish).
5. A. SZAN IAWSKI, A. ZACH ARA, Hydrodynamic Problem of Multifilament Spinning, Chemickie Vlakna,
26, n o. 1 - 2,1976, p . 96.
6. A. SZAN IAWSKI, Equations of steady flow through slightly curved multifilament bundles, Archiwum Me-
chaniki Stosowanej, 29, n o . 4, (1977), p . 519.
7. L. SPIELMAN , S. L. G OREN , Model for Pressure Drop and Filtration Efficiency in Fibrous Media. Environ.
Sci. and Technology, 2, n o. 4, (1968), p. 279.
8. C. P. Yu, T. T. SOON G , A Random Cell Model for Pressure Drop Prediction in Fibrous Filtres, J. Appl.
Mech., 42, n o . 7, (1975), p . 301.
9. J. H AP P EL, H . BREN N ER, L OW Reynolds number hydrodynamics, N oordhof Inter. Pub., Leyden, 1973.
10. J. F ERRAN D ON : L es lois de I'iioutement de filtration, G enie Civil, n p. 2, (1948), p. 125.
11. M. POREH , C. ELATA, An analytical derivation ofDarcy's law, Israel Journal of Technology, 4, (1966),
p . 214.
12. S. P. N EU M AN , T heoretical Derivation ofDarcy's L aw, Acta Mechanics, 25, (1977), p. 153.
13. A. S. SAN G AN I, A. ACRIVOS, Slow flow past periodic arrays of cylinders with application to heat transfer,
I n t. J. M ultiphase F low, 8, n o. 3, (1983), p. 193.
14. J. B. KELLER, Viscous flow through a grating or lattice of cylinders., J. Fluid Mech., 18, (1964), p. 94.
15. V. H U STON , T he Stokes flow past infinite row of equal, parallel, circular cylinders, J. Phys. Soc. Japan ,
27, (1969), p . 1693.
16. J. H AP P E L, Viscous Flow Relative to Arrays of Cylinders, AIChE Journal, 5, n o. 2, (1959), p. 174.
17. S. KU WABARA, T he forces experienced by randomly distributed parallel circular cylinders or spheres in
a viscous flow at small Reynolds number, J. Phys. Soc. Japan, 14, n o. 4, (1959), p . 527.
18. A. A. K H P I I I J H . A. O Y K C , T enenueoicudKocmu « cucntejue napaA/ ieAbHuxumuHdpoe, pacnoAooicemmx
nepneHduKyAHpHo nomoKU, npu MOAUX HUMOX PeiMnbdca. > K . I I . M . H T . < t > o H p. 6, (1966), c r p . 101.
5»
548 J. A. KOŁ OD Z IEJ
19. H . C. BRIN KM AN , A calculation of the viscous force exerted by flowing fluid or a dense swarm ofparticles
r
Appi. Sci. Res., Al, (1947), p . 27.
20. H . H ASIM OTO, On the periodic fundamental solutions of Stokes equations and their application to viscous
flow past a cubic array of spheres, J. F luid M ech., 5, P art 2, (1959), p . 317.
2 1 . A. M . F OJI OBH H J B. A. JI OH ATH H , T euemie SHSKOU oicudicoanu nepes deoHKonepnodimecKuu pad iju-
jiuubpoe. n . M . T . < £ > . 3 H p. 2, (1968), CTp. 99.
2 2 . T. M I YAG I , Viscous flow at low Reynolds numbers past an infinite row of equal circular cylinders, J. P hys.
Soc., Japan , 13, n o . 5, (1958), p . 493.
23. A. S. SAN G AN I, A. AC M VOS, Slow flow through a periodic array of spheres, I n t . J. M ultiphase F low, 8, n o .
4, (1982), p. 343.
.24. J. E . D RU M M ON D , M. I . TAH I R , L aminar viscous flow through regular arrays of parallel solid cylinders,
I n t. J. M ultiphase F low, 10, n o . 5, 1984, p. 515.
25. J. E. D RU M M ON D , Heat flow in a region interlaced with cylinders and conductivity of wool, N ew Zealand
J. Sci., 14, (1971), p . 621.
26. W. T. PERRIS, D . R . M C K E N Z I E , R. C. M e PH ED RAN , T ransport properties of regular array of cylinders,
P roc. Roy. Soc. London, A369, (1979), p. 207.
27. R. R. SU LLIVAN , K . L. H E R TE L, T he Flow of Air T hrough Porous Media, 3. Appl. P hys., 11, (1940), p . 761.
28. J. BAUMSTART, Upper Atmospheric Monitoring Program, Atom ic Energy C om m ision, R eport AE C U -
4280,1959.
29. C . A. BI LLI N G , Effect of Particle Accumulation in Aerosol Filtration, P h . D is. Thesis, California I n stitute
of Technology, 1966.
30. P . C. CARMAN , Fluid flow through granular bends, T ran s. I n st. C hem. E n g., 15, (1937), p. 150.
31. R. R. SU LLIVAN , Further Study of the Flow of Air T hrough Porous Media, 3. Appl. P hys., 12, (1941)
p . 503.
32. R. G . SU LLIVAN , Specific Surface Measurements of Compact Bundles of Parallel Fibers, 3. Appl. Phys.,
13, 1942, p . 725.
33. C. N . D AVIES, Air Filtration, Academic P ress, Lon don & N ew York, 1973.
34. S. V. D AWSON , T heory of Collection in Airborne Particles by Fibrous Filtres, P h . D is. Thesis, H arvard
U niversity, 1969.
35. J. P I C H , T heory of Aerosol Filtration, Aerosol Science, ed. C . N . D avies, 1976.
36. M . ROBIN SON , H . F R AN KLI N , T he Pressure Drop of Fibrous Filter of Reduced Ambient Pressure, 3. Aero-
sol Science, 3, (1972), p. 413.
P e 3 IO M e
*H J I t T P AL T H O H H O E C O n P O T H B J I E H H E C H C T E M L I n AP AJI JI E JI LH BI X I XM JI H H flP OB
nonEPE^H OM n on sym - iM OBTE KAH H H
paSoTW H BH CTCH npoS/ ieiwa conpoTU BJieH M UbiJiHimpHMecKHX CTepwHeft n pH n o n ep eq -
HOM noji3yjH M o6ieKaH irn. CiicTeiwa B BH# e napajiJiejiŁ H oro rtyMKa cTep^Keini, cqmaeTCH amraoTpoiraoH
nopHCTOH cpefloii, B KOTopoH Te^eim e onHCbiBaeTCH ypaBnetmeiH 4)EMbTpau;Hn JCapcu. ynoM H H yroe
conpoTHBjieHHe npefl,CTaBJieHO n p a noMomw 6e3pa3MepHOH cbynrajHH npoHHuaeMocTH F± ((p), rfle ę —
oTHomeHHe o6Eeiwa ciepH Ojeft K o6meMy o6&eMy n yn a .
B paSoTe npH BeaeH o63op TeopewraecKH X H 3KcnepnMeH TajibH tix paSoT, Kacaiom n xcn conpoTH B-
JieHHH CHCTeMbI CTep>KIKft ynOMHHyTOJi oSTeKaHHII.
S t r e s z c z e n i e
OP ÓR F I LTR AC YJN Y U K Ł ADU R Ó WN O LE G Ł YCH C YLI N D R Ó W P R Z Y P O P R Z E C Z N YM
OPŁ YWIE P EŁ Z AJĄ C YM
P rzedmiotem pracy jest zagadnienie oporu ukł adu prę tów cylindrycznych przy poprzecznym opł ywie
peł zają cym. U kł ad w postaci równoległ ej wią zki prftów potraktowan o jako anizotropowy oś rodek poro-
J. A. KOŁOD ZIEJ 549
waty, w którym przepł yw opisany jest równaniem filtracji D arcy. Wspomniany opór przedstawia się przy-
pomocy bezwymiarowej funkcji przepuszczalnoś ci F
x
(93), gdzie