Ghostscript wrapper for D:\Digitalizacja\MTS85_t23z1_4_PDF_artyku³y\mts85_t23z2.pdf 176  A.  M uc for.  Similarly  as in  [1] we consider  deformation  of  an incomplete torus  as  the rotation ally- symmetric  problem  in  broader  sense,  since  circumferential  displacements  are  allowed for  (F ig.  1).  Thus,  geometric  assumptions  investigated  in  [1],  as  well  as  the  n otation  in- troduced  there,  have  been  retained.  Let  th e  param eter  of  change  of  principal  curvature K be  defined  as  an increment of  angle  in  the circumferential  direction K^ d&ldd- l  (1.1) The  Cauchy  strain rates  derived  in  [1] have  the following  form : where &>»,=   — - —^  - ,  dx v   =  - ^ - ,  (1.3) „   6u' r   c o s    3$ —  elongations  at the middle  surface, Xq,  =   XyH, x#  =   x v H  —  parameters  of  increments  of  the middle  surface  curvature  change of  unit  angle, A  A  A  A Ry — Ry{H, R  ~  R&)H— radii  of  undeformed  element, u r   =   u r (H,  u z   =   u z )H—  radial  and  axial  middle  surface  displacements. All  quantities are dimensionless, H is the half distance between sandwich sheets  ( Aden otes dimension  quantity). The  radii  of  curvature  in  current  configuration  r v ,  / #  are  related  to  R 9 ,  R$  by: According  t o  [2]  the  dimensionless,  generalized  stresses  have  th e  following  form : where N j  =  N j  / 2o 0 T ,  M 3   =  Mj/ 2o 0 HT ,  Oj  =   aj/ a 0 , OOA— tensile  yield  stress  of  sandwich  sheet  material,. T —initial  thickness  of  sandwich  sheets. Su perscript s+ o r- den o te quantities evaluated  in the exterior  or interior sandwich  sheets respectively. TOROIDAL  SHELL 177 Moreover,  the  system  of  equations  of  equilibrium  derived  in  [2, 3]  will  be  applied here  in  the  following  fashion: (RNy)'+R(psmst Hencky-IIyushin H-I e? - Ast Nadai-Davis N-D I Incremental theory of plasticity elastic strains neglected Set = Sy>st Levy-Mises L-M de? = dAsf Nadai-Davis N-DII allowed for Set — SystA 5*i 2G Prandtl-Reuss P-R I de? = dAs<;+ - ! - & ? 2G Prandtl-Reuss P-R II C — Cauchy stress tensor, H — Hencky strain measure, / =  dfr/ loo  and  dimensionless  Kirchhoff's  m odulus  G  =  GI i  (4.1) which  is  also  valid for  the derivatives  with  respect  to  tj)  variable  of F.  The above  relation (4.1)  must  be completed  by  th e condition at  % =   r 0  (the initiation  of the  process)  which takes,  generally,  the  form : r| T = r o  =  r o .  (4.2) F or  the problem  considered  the vector  of initial  condition has the form: 180 A.  Muc 0 0 0 0 0 0 (4.3) Other  forms  of  the  initial  vector  Fo  depend  on  the  assumed  material  of  the  shell  (for a rigid/perfectly-plastic material the seven or the eight component of Fo must be different from zero) or on the considered initial, geometrical imperfections of torus. Replacing all components of vector  F and its derivatives with respect to  (j> variable in the system of equations (3.1 - 3.5) by the relation (4.1) we obtain at each step of time ti(i $J 1) the system of ordinary differential equations with respect to (j> variable for the uknown increment  &T\tmtui, Finally, for each step T, we need eight boundary conditions. Generally, they takes the form: =  Vc =lj,o  =  VD (4.4) where  LC,LD are arbitrary operators and V c , VD — arbitrary vectors. In the case consi- dered in this paper, the meridional section remains closed and symmetric about  c = 0 and D  — n. Thus, the operators  Ic,  Lr> has following representation =  LD=  [d,  d, 0 , 0 , 0 ,  d,  S, 6] (4.5) and first six components of  Vc and  Vr> are equal to zero. Using the semi-inverse method (shooting method) the two-point boundary problem (4.4) ca be converted into Cauchy's problem. By employing Newton-Raphson's method one can determine, missing, initial components of vector  F at  = # c by assuring the boundary conditions at D. To improve the effectiveness of the iterative (Newton-Raphson's) procedure, the Lagrange quadratic extrapolation formula is used in searching of uknown, missing, initial compo- nents of vector  6F at ̂ = c . We start our calculation at  x = T 0 where the initial vector Fo is known (4.3) and the whole shell is elastic. Applying the numerical integration along the coordinate  cj> (for example Runge-Kutta IV) after extrapolation (4.1) and the usage of shooting method, we find the distribution of  dF\T^T along (j> variable. Then, we cal- culate J T | I = I I according to the scheme (4.1) and get the distribution  dr\raT for the new, initial values .f|'_Tj. The described procedure can be repeated along the trajectory (3.4) with increasing time-like parameter r — (3.5). We assume the distribution of elastic and plastic zones at the beginning of each time step  rt (it is identical to the distribution at T = Tf-i). The assumed zones are corrected by checking the condition (2.1) and scalar factor  of* at j such as to fulfill the mentioned conditions as well as the boundary con- ditions (4.4). The procedure is continued to the appearance of singularity of equations (3.1 - 3.3) which corresponds to the zero of the denominator of  dtp*, when 2o$-o% = 0 (4.6) T O R O I D AL  SH E LL 181 5.  N umerical  examples The  initial  geometry  of  a  torus  is  completely  defined  by  two  dimensionless  radii  which were  assumed  in  numerical  calculations  as  follows R ę   =  50,  i ? 0 =   1000.  (5.1) T o  illustrate  different  processes  of  plastic  deformations  of  the  shell  we  restrict  our  consi- derations  to  two  strictly  determined cases  of  the loading  trajectory  (3.4)  and  the time- like paraineter  (3.5).  I n  th e  first  case  we  assume  th e  loading  stations  and  the  independent param eter  T in  the  following  way: an d  in  the  second  case Pn -   * Pn = c'< K —  T (5.2) (5- 3) where  c  is  an  arbitrary,  real  con stan t.  On  each  step  r<,  the  boundary  conditions  (4.4) takes  the  following,  explicit  form : [Ó93,  6u z ,  6S,  6K,  dp„]  =   [0,  0,  0,  0,  ÓT ]  for  ^  =   OAJT  (5.4) in  the  case  of  the relations  (5.2)  and [dq>,  dtiz,  6S,  6K,  dp n ]  =   [0,  0 , 0 ,  dr,  C Ó T ]  fo r  ([>  =   OATC  (5.5) in  th e  second  case  (5.3). The  process  of  acting  of  internal pressure  is  the  elastic  one. The first  point  of  plasti- fication  of  the  shell  (at    =  rc/ 2) corresponds  to  termination  of  the  process  (the  limit 1.0 0.5 0.1 °iL —< 2 L5 ?~ Of" **• • —< —» L e\a R,=50 •   " ~ 1 P. Aic  zone — — Pr =0.02U 0 . 0 1 2 _ 0.005 30°  60*  90°  120° Fig.  2 150°  * 1.0 0.1 -0.1 n R — — - ^ »——.^ elastic zone \ \ I\ 0.0214 L.P i I R;io° 30°  60°  90°  120°  150° Fig.  3 elastic  zone plastic zone 30°  60°  90°  120°  150°  i> 0.1 -0.1 [182] TOROIDAL  SHELL 183 carrying  capacity — L.P.)  because  the  conditions  (2.1)  and  (4.6)  are  satisfied  simulta- neously. Redistributions of meridional and circumferential stresses are shown in Fig. 2 and 3. The influence of bending (the second analyzed case — (5.3) and (5.5)) causes antisy- mmetry of redistribution of meridional stresses as well as the great development of plastic 1.0 zone — elastic zone exists only in the neighbourhood of § =  n/2 (see Fig. 4,5). The limit point (4.6) — L.P. is also achieved at the edge of elastic zone at