Ghostscript wrapper for D:\Digitalizacja\MTS84_t22z1_4_PDF_artyku³y\mts84_t22z1_2.pdf
M ECH AN IKA
TEORETYCZNA
I STOSOWANA
1/ 2, 22 (1984)
A TRAN SVERSELY I SO T R O P I C LAYER P R E SSE D ON TO A RIG ID BASE WI TH
A P R O T R U SI O N O R P I T
BOG D AN R O G O W S K C
Ł ódź , T echnical University
Institute of Construction Engineering
The au t h or solves problem poin ted out in th e title, in which the effects of transverse
an isotropy an d body forces are taken in to account, by means of H ankels transforms
an d the displacement poten tials. Th e three- part mixed boun dary value contact problem
is reduced to th e solution of triple integral equations an d some conditions. These equations
are solved by expansion of th e function describing the displacement and stress states
in to a F ourier cosine series, which leads t o two infinite sets of linear simultaneous al-
gebraic equation s. T h e p art of th e lower surface of th e plate which does n ot contact with
th e base, is an an n ulus, th e in n er or outer radii of which are n ot known a priori and are
determ ined.
N um erical results are shown for the relation am ong th e pressure and weight of th e
layer, its thickness, th e an n u lar region an d th e magnitudes of the protrusion or pit of
t h e base in cadm ium an d m agnesium single crystals an d fiber- reinforced composite ma-
terials. They are com pared with these of th e isotropic layer to show the effect of anisotropy.
T h e variation of t h e stress con cen tration factors at th e adges of the contact are plotted
versus th e ratio of t h e radii of th e con tact regions for dissimilar materials and layer thickness.
1. Introduction
The in den tation problem s of an elastic, isotropic half- space by a rigid cone [1], sphere
[2] or trun cated con e [3], in th e case of circular con tact region, contact problems of
a isotropic half- space or layer pressed on to a rigid base with a protrusion or a pit [4, 5],
pressed by a concave rigid pun ch (a transversely isotropic case) [6], problem of two iso-
tropic half- space pressed against each other with a rigid paraboloidal inclusion between
th em [7] problem s involving an n ular contact or un con tact region, an d a two- dimensional
cases [8, 9], have been analyzed.
I n t h e presen t paper, th e axisymmetric con tact problem s of a transversely- isotropic
layer pressed on to a rigid base with a cylindrical protrusion (P roblem I ) or a pit (Problem I I )
are considered.
280 B. ROGOWSKI
2. Basic equations and displacement functions
We denote as usual the cylindrical polar coordinates of a point by (r, 0, z) where
the zaxis is chosen as the axis of geometric and elastic symmetry. In the case of the tor
sionless axisymmetric problems the stressstrain relations for a transversely isotropic
solid are as follows:
a„ =
(2.1)
where
8u
fir '
<*re =
eee
aez
u
r '
= 0,
czz
8w
£ + TT. (2-2)
u, O, w are radial, circumferential and axial components of the displacement vector and
Cij are elastic constants.
Let y = gi g be the body force density acting vertically, where gi is the mass density
and g the gravitational constant.
The displacement equations of equilibrium are:
8 \l 8 , A , . 82w 82u n
Cu 5— 5— \ni) + (Ct3 + c44) ^—5—He4 4.rT= 0,
8r [ /" 3r . J ' 3rSz 9z2
, „ / o \ o f i d 1 01 ( 2 - 3 )
1 3 3»\ o i l 3 1 82w
c**~~^\r~^r) +(ci3 + c4*)31 — ~(™) +^33 53 = y
The particular part of the displacement components corresponding to y and the clamp
ing uniform pressurep0 in the z direction may be obtained separately as:
(2.4)
ZC33 ZC
where A is a geometric and c material parameter
C — (cll+c12)c33~2Ci3. (2.5)
This gives the stress state
(f„(z) = erse(z) = =11 y ( 2 z A ) ,
_ ( / j _ l (
2-6>
tf„ = 0,
A TRANSVERSELY ISOTROPIC LAYER 2 8 1
which satisfies the con dition s
*xz(h) ~ - Po, o'«(0) = ~p
o
- yh = ~p
e
,
h
f o„{z)dz - 0 ( 2 > 7 )
0
an d in addition
w(r. 0) = 0, w(r, h) = - C~~ Ł h(2p
0
+ yh). (2.8)
To solve th e h om ogen eous equilibrium equation s (2.3) we introduce the displacement
poten tials q>
x
(r, z) an d
z
)
m a y o e taken in the following forms,
n otin g some sym m etries of t h e stress state, th e con dition at infinity and the conditions
282 B. ROGOWSKI
-0)1
= 1,2 (2.13)
where g = r\h, £ = z/A and J0(*e) is Bessel function of the first kind of order zero, p(x)
and «) (x) are unknown functions which are to be determined by the boundary conditions
and the functions gj(x) and g2(x) axe defined as follows
sh/Sxe"*, i = l
xj2shi'2x), / = 2. ^
2"14^
The displacement w and stresses Problem Tl
284 B. ROGOWSKI
The layer is pressed by uniform pressure and the effect of gravity is also taken into account.
We assume, that the magnitude of depth e0 is small.
In the second problem, if the pressure is small (without the body force) and the lower
surface of the plate does not make contact with the bottom of the pit, the stress state of
the plate is equivalent to that of the plate with a pennyshaped crack, which is analyzed
by COLLINS [11] and author [12] for isotropic and transversely isotropic cases, respectively.
In the present paper we analyze, in the second problem, a threepart mixed boundary
value problem where the applied pressure and the weight of the layer are so large, that
a part of the lower surface of the layer 0 < Q < g;, makes contact with the bottom of
the pit.
The uncontact region is annular and it inner Qi or outer Q0 radius is not known a priori
in second or first problem, respectively.
The radii gf and Q0 depend on />0, y, e0, h and QQ or Q(, respectively, and on the material
properties of the layer.
The boundary conditions are:
* (3.1)
, 0) = 0, Q, < Q ̂ Q0 o r Qt ^ Q < Q0, (3.2)
^ e = , o or 9^Qtt (3.3)
0„(g, 0) = azr(g, 1) = 0, Q > 0, (3.4)
"„<£, 1) -Pa, Q> 0, (3.5)
where the upper and the lower of the double sings denote the cases of the first and second
problems, respectively. With the help of Eqs. (2.18) for the shearing stresses the boundary
conditions (3.4) are satisfied automatically.
4. Hie triple integral equations
Get a new unknown function t(x) and set as follows:
a>(x) = -gz(x) t(x),
P(x) [l-gs(x))t(x),
C )
the boundary values of the displacement and stresses which correspond to Eqs. (2.18) are
then given by
^) = C-1 J t(x)J0(XQ)dx,
0
QO
**(Q,0) = h ~ 2 J xt(x)[l-
, 0 = c-
A TRANSVERSELY ISOTROPIC LAYER 2 8 5
with the aid of the relation (2.20) in the first Eq. (2.18). The condition (3.5) is satified
automatically.
The remaining boundary conditions (3.1) (3.3) lead to the triple integral equations with
the unknown function t(x):
00
w(e, 0) = (G, Ch)1 / t(x) J0(XQ)dx = j
± 6 ° ' ° ^ Q * Q" (4.3)
o 10 g0 < Q,
CO
cxz(e,0) = / r
2 j xt{x)[ig3(x)]J0(xQ)dxpe = 0, Qi < Q < 6o or Ci ̂ Q < Q0,
d
(4.4)
under condition
dw(e,0)
dQ
1 J xt(x)J1(xQ)dx = 0, Q = g0 or g = g,. (4.5)
We use here the series expansion method to solve the above integral equations. This
technique reduces the mixed boundary value problem to the solution of an infinite set
of simultaneous linear algebraic equations [4], which are easier to solve than complicated
integral equations.
5. Analysis
We employ a nondimensional geometric parameters
*-f. * - ~ . (5-1)
ro ro
These parameters describe the contact regions and are generally unknown quantities,
because rt or r0 are unknown in the second and first problems, respectively.
Then, Eqs. (4.3) and (4.4), and condition (4.5) can be rewritten to the form
w(e, 0) = (G, Oo)1 f *e*)J,fo)dc = j ^ e ° ' °* Q * Xt (5.2)
oo
r o 1 j x t ( x ) [ \ g 3 ( x 7 f ) ] h ( x g ) d x ~ p e = 0 , A < p < l o r A = S e < l ,
o
(5.3)
dw(Q,
^ L = _ ( G , Cro)1 / ^ ( ^ J ! ^ ) ^ = 0, Q = 1 or = A. (5.4)
The function g3(xrj) tends exponentially to zero as xr\ tends to infinity, is continuous
for any x e (0, oo), because a 6 R+ and its limit is equal unity for xr\ > 0.
286 B. ROG OWSKI
When t\ tends to infinity i.e. in the case of the half- space, then th e function gz{xrj) identi-
cally equals zero. F or th e isotropic solid, i.e. when s
2
- > s t - > 1 an d k - + 1, th e function
g
3
(x) assumes th e form :
x+x
2
+e~
x
shx
and does n ot depend on the m aterial properties of t h e solid. F o r our solid th e boun dary
functions g
3
(x), gi(x) an d g
2
(x) depend on th e m aterial properties an d t h e solution of
the integral equations depends on th e an isotropic properties of t h e m aterial.
N ow, interchanging the variable Q in X ^ Q < l t o < P i n O ^ 0 < n
Q = - — [1 + P - (1 - A 2 ) c o s0 ] i (5.6)
the variables Q an d CP correspond each oth er an d Q = X is 0 = 0 an d Q = 1 t o 0 — n.
We put th e function t(x) in the form of integral as follows:
1 -i
F(
f
)h(xR)df, R = - L r [1 + P- (1 - A2) c o sV]^ , (5.7)
o \ 2
where F ^ ) is an arbitrary con tin uous function in the interval 0 < f < n.
Substituting Eq. (5.7) in to W (Q, 0) of Eq. (5.2) an d dw{q, 0)/ CIQ of Eq. (5.4), we o bt ain :
F ( y) i f( i ? e ) r fv , (5.8)
HZ
- i J 1 F( y)ó( i?~ e)^. (5.9)
o
Since the argument of th e delta function is i ? - g ?Ł 0 in the intervals 0 < Q < X an d 1 < Q
because of X < R < 1, the radial gradient of the displacement w(g, 0) is always equal
to zero on th e contact surface < 0, A) u ( l, oo) in depen den t of t h e function F(f). On th e
other hand, using
1, O^ Q^ X, (0 < X< H « 1),
0^ w<(f>, (R < p),
• «*<». »*t (510)
o, K g , (X < i? < i < e ) ,
we see that the displacement w(g, 0) is equal con stan t in the interval 0 ^ Q < X, is a
function of g in th e interval X ^ Q <. 1 an d equals zero in th e rem ain in g one 1 < q,
independent of th e function F(f).
I n tegratin g in Eq. (5.9), we obtain
an d zero in the contact region.
i A TRANSVERSELY 1S0TR0PIC LAYER 2 8 7
Because th e layer contacts smoothly at the edges Q = 1 or Q = A with the rigid base in
the first and second problems, respectively, the gradient of W (Q, 0) must be finite at Q - *• 1
or Q - » A, respectively. Th at is equivalent to the conditions (5.4), which lead to
F(n) = 0 or F(d) - 0 (5.12)
in the first an d second problems, respectively.
The integral representation of the function t(x) by Eq. (5.7) satisfies the displacement
conditions, if the function F(ip) satisfies first or second Eq. (5.12), respectively. I t should
be noted that, rigorously speaking, we have two unknown functions F
+
(ip) and F_(y))
for first and second problems, respectively. We assume also, that these unknown functions
take a finite and non- zero possitive or negative values in the intervals 0 < y < ^ o r O ^
< ip < n in the first an d second problems, respectively. Then the displacement W (Q , 0)
is continuous in the interval A < Q Ą I, it gradient takes definite and non- zero values
negative or positive in A < Q < 1, tends to minus infinity at contact edge Q - * A+ or
infinity at Q - > 1", an d equals to zero for Q = 1 or Q = A in the first and second problem
respectively, and consequently, the slope of w(g, 0) at contact edges Q = A and Q = 1
coincides with th at of the contact face.
The function F (y) can be expressed by a F ourier cosine series
00
F(w) = —p
e
roR / , a
n
cosnf. 0 < y> < n, (5.13)
71 X—J
where an are unknown coefficients, which are to be determined by the boundary conditions
(5.3), and for which from the conditions (5.12), we obtain
l ) X = 0 or £a„ = Q. (5.14)
Substituting Eq. (5.13) in to Eq. (5.8) and integrating, we obtain the displacement:
an d the relation
Eq. (5.16) gives th e relation between p
c
, e 0 , /"0 or r( and c 0 where a0 depends on the
parameters of the contact regions A and rj and on the properties of the material.
Substituting Eq. (5.13) in to E q. (5.7) and the result into Eqs. (5.3), and using some re-
lations for Bessel functions, we obtain :
288 B. ROG OWSKI
CO CO
n= 0 O
00 00
E I ( e, 0) = pe y an I [l~gi(xrj)]—~~- xS0(xQ)dx- pe, (5.18)
n= 0 0
OH I [ ' ~~Sz( X7j)\ ̂ xJ0(XQ)dx = 1 , k < Q Ś : I OT A < g < 1,.1 OX
n- =() 0
(5.19)
where
Z „ (*) = J «I "f- 0 + A)J J, | y (1 ~ • *)]• (5.20)
M ultiplying the both sides of Eq. (5.19) by Q, using t h e form ula XQJ
0
(XQ) «= d[Qj
i
(xQ)]ldQ,
integrating with respect t o Q an d using t h e formula 8[S
0
(XQ)]18X = - QJ^ XQ), we o bt ain :
o r A < g < 1, (5.21)
where c, (i = 1, 2) are un kn own integral con stan ts.
U sing the N eum an n 's form ula [13]
CO
}
0
(XQ) = Z
0
(x)+2 £z
m
(x)cosm ] — c , , 0 < 0 ^ n , i—\ ,2. ( 5. 23)
As s u m i n g t h e c o e ffic ie n t s a
K
a s
o, « a'
f
- c
t
d„', ( = 1,2 (5.24)
and equatin g the coefficients of cos m y in both sides of E q. (5.23), we o bt ain two infinite
systems of simultaneous equation s for t h e determ in ation of t h e coefficients a'
n
an d a'n)
1 2
2
= 0 1 2
where ^4WB denote the symmetrical m atrix given by
CO
Am = J [l- gs( s»?)] , r * " g oo. In addition, in the first problem O) equals zero, whereas in the second
ozz{ri, 0) equals zero. Using Eq. (6.6) we can easily evaluate the stress concentration
factors.
7. The stress concentration factors
In analogy with the stress intensity factors in the annular crack problem, we define the
stress concentration factors at the edges of the contact regions by the expressions:
N, = lim
qtk"
or in terms of the coefficients a„:
JV, =
^ y {alz{e,
(7.D
(7.2)
A TRANSVERSELY ISOTROPIC LAYER 291
for the inner contact edge and the outer one in the first and second problems, respectively.
In the first problem azz(r0, 0) equals zero, whereas in the second 0 and y\ > oo (the halfspace problem), Eq. (5.19)
can be rewritten as follows
" ~ y v
Using the formula
Ot* A i o in Y \
— I XJ0(XQ)J[ ) = — 1, 0 < o < l , (8.3)
it J ax \ x / s
o '
we have
Making use of the formulae [13]
j J0(xsm@)$m®d& =
S
00
J0(xsin6>) = J5 l y l + 2 } 5l \~) cos2n6>,
we see that
B/2
X
(8.5)
19*
292 B. ROGOWSK!
It is apparent from Eq. (8.6) that
* ! • ^ = ^ 4 ^ 1 ' I.2.3.... (87)
are the solution of Eq. (8.2).
The solution (8.7) satisfies the second condition (5.14). Substituting the value a0 = 2/n
into Eq. (8.1), we get for larger values of hjr0
: r = y < ? , C ^ . , (8.8)
Especially, if
2 r0
or
for the pressure p0 without the body force and for the tension p0 and the weight y h,
respectively a part of the lower surface of the thick plate is in contact with the bottom
of the pit. When r\ h/r0 decreases, then the critical load also decreases. In the limiting
case of r\ > 0 the function g3(xr]) tends to unity and the solution a0 tends to infinity,
and consequently the critical value of the load tends to zero.
If pe < 7tCGt e o/2r0 the elastic body does not make contact with the bottom of the
pit and the solutions are as follows:
sinx \
71
The formulas (8.11) agree with the results for the solid with a pennyshaped crack if we
replace^ by p 0 , which are given by Collins [11] and author [12] for isotropic, i.e. C =
— lIQ—v), and transversely isotropic case, respectively. In the special case for a half
space problem and r{ = 0, the contact stress and the stress concentration factor NQ do
not depend on anisotropy of the material, whereas the displacement depends. In the layer
contact problem, the stress and displacement fields, and the stress concentration factor
depend on the material properties of the solid. By means of results present in the paper,
the effect of transverse isotropy may be examined.
A TRANSVERSELY ISOTROPIC LAYER 2 9 3
9. N umerical calculations
At present, we m ust determine the values A = rijr
o
for given p
e
, e 0 , h, r; or r0 an d
m aterial con stan ts. H owever, it is considerably difficult to determine the un kn own ratio A
by the above procedure. Therefore, we determine the relationship am ong p
e
, e 0 and h
from E q. (5.16) un der th e con dition th at the ratios of the inner to outer radius 1 = ri/ r
0
an d t] — h/ r
0
= hk/ ri are given an d solving th e simultaneous equations (5.25).
To solve these equation s we evaluate the infinite integrals A
mn
involving the product
of four Bessel functions by th e following m ethod. The element A
mn
of m- th row an d
n- th column can be rewritten as
- j gs(joj) - A. [Zm(x)} J L [Zn(x)]dx, (9.1)
0
where
o
- (9.2,
an d A*! , is taken t o be a very large value, and x
0
a large value.
The second term A'
mn
is obtained by using the asymptotic approximation of Bessel
function, in tegratin g E q. (9.2) by parts and using sine an d cosine integral functions si(x)
an d ci(x). The first an d th ird term s on th e righ t h an d side of Eq. (9.1) are integrated n u-
merically with sufficient convergence by m ean s of Simpson's rule taking Xj = 500 an d
JC0 = 20/ ary. The algebraic equation s are solved by trun cation , i.e. we calculate only th e
first n roots of th em . We can get numerically good results, taking n = 15 or n = 10 for
k < 0,2 or A > 0,2 an d r\ > 1, respectively, an d n = 20 or n = 15 in the case I 4 0,2
o r A > 0,2 an d • >] < 1. With a decreasing degree of anisotropy (EIE
X
, GjGi) the conver-
gence in the num erical calculation becomes slower. F or E/ E
t
- 4 1 an d GIG
1
<ś lwe m ust
t ake m ore equation s, respectively for E\ Ei, G\ G^ > 1 we can take less.
10. N umerical results
N um erical results show th e relations bet ween p
e
, e 0 , h, /- ,-, an d rQ (in P roblems I and I I )
in cadm ium an d m agnesium single crystals and fiber- reinforced composite materials
such as E glass- epoxy an d graphite- epoxy with fiber direction along z- axis, an d they are
O 0,5 X= r;/r0 1,0
Fig. 2. Relations of pe> ea, li, rt and r0 for dissimilar materials in Problem I
0 0,5 A=ry/r0 1,0
Fig. 3. Relations of pe, e 0 , A, n and r0 for dissimilar materials in Problem II
[294]
A TRANSVERSELY ISOTROPIC LAYER 295
12
4,Ci >4,5,1
>6GE
^C,rj—1
^EGE.rf1
XGE,q1
ii,ni
3
0
0 0,5 A = n/r 0 1,0
Fig. 4. The variation of Nt with A for dissimilar materials and r\ h/r0 in Problem I
0 0,5 Afi/r0 1,0
Fig. 5. The variation of No with X for dissimilar materials and r\ = h/r0 in Problem II
compared with those of the isotropic material [4] to show the effect of anisotropy. The
stress concentration factors are also shown graphically.
The elastic constant cl} given by HUNTINGTON [15] and CHEN [16] arc used. The values
of st, s2, k are
1,58; 0,98; 1,85 1,41; 0,70; 2,78
1,67; 0,34; 12,7 1,36; 0,23; 21,4
for cadmum, magnesium , E glassepoxy, graphiteepoxy, respectively and for isotropic
material 1; 1; 1; G ; = 10
10 N/m 2 , v = 0,30.
As shown in Figs. 2 and 3 in each case, {l—v)perojGi e0 increases with an increasing
A ~ ri/ro and tends to the case of an elastic halfspace, with corresponding material, with
an increaing r\ — h/r0. In each figure, the resultsindicated by the chain line, show those
296
for isotropic material. These results agree with the ones of Refs. [4.5], where th e weight
is omitted (p
e
- + p
0
). F igs 4 an d 5 show the variation of th e stress con cen tration factors
with X- nlr
0
an d t] = h/ r
0
for dissimilar m aterials. N
t
(for th e protrusion ) is always
greater th an N
o
(for th e pit) an d becomes very large when I - * 0. With th e increasing of
X, N t decreases an d N
o
decreases slowly. The stress con cen tration factors are different
for presented material an d become small (N
o
) or larger (N
t
) as the layer becomes thick
under the same protrusion or pit dimension, converging to the sam e values for an infinite
body.
References
1. A. E. LOVE, Quart. J. M ath. Oxford, 10- 39 pp. 161 - 175, 1939.
2. B. AN N , Trans. JSME 24 - 147 pp. 757 - 766, 1958.
3. T. SHIBUYA, An elastic contact problem of a half- space indented by a truncated conical stamp, Bull
ISM E 22, 163 pp. 16 - 20, 1979.
4. T. SHIBUYA, T. KOIZ U M I, I . N AKAHARA, T. H ARA, Elastic contact problem of a half- space pressed onto
a rigid base with a cylindrical protrusion or pit, Int. J. Engng Sci. 17, 4, pp. 349 - 356, 1979.
5. T. SHIBUYA, T. KOIZ U M I, K. IID A, T. H ARA, Contact stresses of an elastic plate pressed onto a rigid
base with a cylindrical protrusion or pit, Bull. JSM E 24,198, pp. 2067 - 2073,1981.
6. B. ROG OWSKI, Indentation of an elastic transversely isotropic body by a concave rigid punch, Zeszyty
N aukowe PŁ Budownictwo z. 31 s., 81- 99, 1984.
7. G . M. J. D AMEN , On the three- dimensional contact problem of a rigid inclusion pressed between two
elastic half- space, Rozprawy Inż ynierskie, 25, 3 pp. 483 - 493, 1977.
8. J. TWEED , T lte stress intensity factor of a Griffith crack which is opened by a thin symmetric wedge,
J. of Elasticity 1, pp. 29 - 35, 1971.
9. M . M AI TI and S. S. P ALIT, Stress distribution due to a Griffith crack opened by a thin symmetric wedge.
Bull. Acad. Polon. Sci., Vol. XXV, N s 8 pp. 273- 280, 1977.
10. B. ROG OWSKI, Funkcje przemieszczeń dla oś rodka poprzecznie izotropowego, Mech. Teoret. i Stos. 1,
13 69- 83, 1975.
11. W. D . COLLIN S, Some axially symmetric stress distribution in elastic solids containing penny- shaped,
cracks I. Cracks in an infinite solid and a thick plate. P roc. Roy. Soc. ser. A, Vol. 266, N» 1326, pp.
359- 386, 1962.
12. B. ROG OWSKI, Zagadnienie szczeliny w ciele poprzecznie izotropowym, Zeszyty N aukowe P Ł Budow-
nictwo z. 25 s. 7- 20, 1979.
13. G . N . WATSON, A treatise on the theory of Bessel functions, Cambridge, 1944.
14. B. ROG OWSKI, Mixed boundary value problems of a transversely isotropic layer under torsion and various
boundary conditions, Rozprawy Inż ynierskie 31, 3 pp. 293- 315, 1983.
15. H . B. H U N TIN G TON , Solid state physics, (Eds. F , Seitz and D . Turnbull), Vol. 7 pp. 213 - 351, N ew
York, Academic Press 1957.
16. C. H . CH EN and S. CH EN G , Mechanical properties of anisotropic fiber- reinforced composites, J, Appl.
Mech. Trans. ASME ser. E 37, 1 pp. 186 - 189, 1970.
P e 3 K) M e
TP AH C BE P TAJI Ł H O- H 3OTP On H BIH CJIOK ITPH >KH M AEM blft K > KECTKOM y
OCH OBAH H K) C BŁ I C TYriOM H JI H BITAJIH H Oft
AB T O P pem n ji cypbe c H eo n p e# eJ ieH H biM H n o K a KoscjxpH U H eH TaMH S T H yp a Biien H H n p H BO fla ic H K p e u ie H H io flByx
6e c K O H e iH h ix c a c r e M H H H eiiH Bix ajire6paH V.ecKH X y p a B n e r n u i OTHOCHTejibiio K03({xJ)Hn,HeHTOB pH fla
ypi>e.
B Ka>Kfloii H 3 yii KeH H H H a K p a a x B t i c r y n a wm Bn aAH H t i B 3 a -
BHCHMOCTH OT COOTHOUieHHH paflH yCOB KOHTaKTHOH o6jiaC TH flJIH P83H LIX MaTepH aJIOB H TOJTIUHH n ^ a C -
TH H KH .
S t r e s z c z e n i e
WARSTWA P OP RZ ECZ N IE IZOTROPOWA D OCISKAN A D O SZTYWN EG O POD ŁOŻA
Z WZN IESIEN IEM ALBO ZAG ŁĘ BIEN IEM
Autor rozwią zał sformuł owane w tytule zagadnienia, w których uwzglę dnił efekty poprzecznej ani-
zotropii i sił y masowej, za pomocą transformacji H ankela i potencjał ów przemieszczenia. Mieszane za-
gadnienie brzegowe sprowadzono do rozwią zania potrójnych równań cał kowych i pewnych warunków.
Te z kolei sprowadzono do dwóch ukł adów nieskoń czonych równań algebraicznych liniowych za pomocą
rozkł adu funkcji okreś lają cej stany naprę ż enia i przemieszczenia w kosinusowy szereg F ouriera. Czę ść
dolnej powierzchni pł yty, która nie kontaktuje się z podł oż em, jest pierś cieniem, którego promienie we-
wnę trzny albo zewnę trzny nie są znane a priori i został y wyznaczone.
Wyniki liczbowe przedstawiają zależ noś ci mię dzy ciś nieniem i cię ż arem pł yty, jej gruboś cią, pierś cie-
niowym obszarem i wielkoś ciami wzniesienia albo zagł ę bienia podł oża w materiał ach z kadmu, magnezu
i kompozytów zbrojonych wł óknami. Porównywano je z wynikami dla ciał a izotropowego w celu wyjaś-
nienia efektu anizotropii. G raficznie pokazano także jak zmieniają się współ czynniki koncentracji naprę -
ż enia n a brzegach wzniesienia lub zagł ę bienia w zależ noś ci od stosunku promieni okreś lają cych obszary
kontaktu dla róż nych materiał ów i gruboś ci warstwy.
Praca został a zł oż ona w Redakcji dnia 1 lipca 1982 roku