Ghostscript wrapper for D:\Digitalizacja\MTS83_t21z1_4_PDF_artyku³y\mts83_t21z2_3.pdf M E C H A N I K A T E O R E T Y C Z N A I S T O S O W A N A 2/3, 21 (1983) S T A B I L I T Y P R O B L E M O F A S H A L L O W C O N I C A L S H E L L U N D E R L A T E R A L P R E S S U R E S T E F A N J O N I А К Politechnika Poznań ska F E R D Y N A N D T W A R D O S Z Politechnika Poznań ska 1. Stability Equations Fig. 1 The set of stability equations for a conical shell under external pressure is o f the f o r m : ( 1 ) V2V2F-Eh Jctg/9 ( 2 ) D V 2 V 2 v v + ctg/5 J 82w x 8x2 I 82F f jl i—dw YT _ ^l l L * " \ \ [dx\x dcpJi 8 x 2 \ x 2 8<p\+ x 8x J\ x 8x2 82w ex2 + 2 Bx + - i d2F x2 Sep F\ 82Fl 1 11 ex2 \x dw x dx + • 1 82w x2 8<p I 1 8w 1 8гу / V / \ x 2 dq>i x SxScp^JX 1 (9F i d2F x2 8<Pt x 8xd<p + pl3tgP d2w 1 dw I 82w 2 8x2 x 8x + - 8(p Z) :) + + where: л' = т * 9г т ^ s i n / S (see F i g . 1), 206 S. J O N I A K , F . T W A R D O S Z shell deflection, force function, 8* _2 8_A__ 1_ J * * _ '2 83 2 _83_ <9x4 x2 8x28(p\ x 4 8q>\ x dx3 x3 dxdq>\ + 4 d2 _J_ 82 1 8 x 4 ; 8<p2 x 2 d x 2 x 3 dx ' Equations (I), and (2), given here i n a transformed form, were derived for the conical shell of an arbitrary shape, c.f. [1]. In equation (2) p l 4 c o s 4 a should be substituted instead o f the underlined term for the stability problem o f a shallow conical shell (for a shallow shell tga < 0.2). In this paper the solution of the shallow conical shell stability problem is presented, where the equation (2) in a " f u l l " (with under lined term included) and in a "simplified" form are used. It can be concluded from the analysis which of the equations o f (1) and (2) are better i n use. The analysis of the influence of shell dimensions on the critical load is also presented. iv — F — V 2 V 2 = 2 . Solution of the Equations. The strain compability equation (1) was solved by Papkowicz — type procedure. The deflection function was taken as (3) w = ( x 2 l ) 2 / + x 4 ( x 2 I ) 2 / , cosncp., w h e r e : / / ! — u n k n o w n parameters, The function (3) satisfies the conditions for clamped shell edge at x = 1, i.e.: (4) w = 0; ~ = 0. 8x • When the deflection function (3) is introduced into righthand side of equation (1), this can be written as follows: (5) V 2 V 2 F = Eh(A0 + A„cosnq>i + / l 2 / . c o s 2 n g 9 1 ) , where A0, A„, A2„ are the functions o f x. The parameters of deflection function and shell dimensions are also included in these functions. The equations arc o f the form given i n ref. [3]. The solution of equation (5) we accept i n the form o f power series (6) F(x tyQ= У FJx) cos m y , . m-i The coefficients in equation (6) can be determined when the set of four differential S T A B I L I T Y OF C O N I C A L S H E L L 207 equations, obtained by substituting the function (6) into equation (5) and comparing by identity the corresponding terms of the left — and righthand side, is solved. Thus the force function takes the form o f (7) ffaiC'i) =f F0 + F„cosfi<f, + F2ncos2mp,. F0, Fn, F2„ are functions of x and of deflection function parameters and they are o f a complex structure. When the force function is known, then we can approximately solve the equilibrium equation (2) assuming a deflection function w. Л BubnovGalerkintype procedure is used for solving the equation (2). The " f u l l " and also the "simplified" equations are solved. Orthogonalization of equation (2) requires 2л i ( 8 ) , J ' f K(x,<piix^-l)2dxdq>smP = 0, о 0 In 1 J J K(x,<p1)x 5(x2-l)2cos/ir/>i</.\<j<psin/3 = 0, о 0 where: K ( A \ if,) is left — hand side o f equation (2). When the conditions ( 8 ) are expanded we obtain a set of two algebraic equations in the vector of deflection functions parameters. F o r the " f u l l " equation (2) one obtains A,p4,+A2:,+A3i:\+A^\+A5:,ti+A6?;i = o , ( 9 ) B,p* + B2 + B3;,+B4!; 2+B5i; 2 2 = o , and for the "simplified" equation (2) there is A\p* + A2:,+A^ 2 + A^\ + As<:,'il + Ab: 2 = 0, ( 1 0 ) с2(в2 + в3:,+вЛ1; 2+в5с 2 2) = о . The next quantities are introduced i n equations (9) and (10): ™ h ' h ' E ' The coefficients A-, and Bt include shell dimensions and parameter n. Their structure is very complicated. When parameter Ј 2 is eliminated from equations (9) we obtain an expresion form which we calculate the pressure U l ) p - K 0 Ci+tfx The same operation made on equations (10) gives (12) p* = н , + н2!:, + н31: 2 + н л \. Since the directions of the pressure and the deflection (see F i g . 1) i n equation (11), and (12) are opposite one has to put t, ^ 0. 208 S . J O N I A K , F . T W A R D O S Z 3 . Analysis of the Solution The analysis has been performed for shells with ~ = 100, 200, 300 and with angle x varied (tga was from 0.1 trough 0.5 by step of 0.1). p N l O 6 h t Q « 0 . 1 0 -1- - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -10 -11 - 1 2 - 1 3 -14 -15 -16 g Fig. 2 F r o m equations (11) and (12) for each pair o f and t g a one obtains an infinite num ber of solutions, because they both include the parameter \Щ У T h e o n l y s i S n i " ficant solution is the solution which gives a minimum p* value. F i g . 2 is a plot o f curves obtained from the solutions o f equation (11). They refer to a shell for which — = 100 and t g a = 0.1. Each o f the solutions brings two extremal values h of the pressure. The lowest from maximum pressures is the upper critical load, signed />*, the lowest taken from minimum pressures is the lower critical load p*. The lowest pressures were obtained at к = 1. These are p* = 6.6489 • 10~ 6 and pf = = 1.437410~6. The line for f 2 = 0 is also presented. It represents a symmetrical form of buckling and it is o f a first approximation o f the solution. The minimum value is 2.859 1 0 6 . Change of dimensions and angle a do not influence the quality changes. The critical load is then obtained from the equation at к = 0. The solutions o f equation (12) are o f the same form. However the buckling critical loads are much higher (for к = 0) here then buckling loads obtained from equation (11). S T A B I L I T Y OF C O N I C A L S H E L L 209 " o f F i g . 3 F i g . 3 presents the lines o f lower critical load p* versus angle a for three different values ° f ^ • The lower of the two lines presented by the same type o f line is referred to equation (11), the upper line is referred to equation (12). It is worthenoting to show that by using the " f u l l " equilibrium equation (2) one obtains in each case, the lower critical load smaller than the critical load o f the "simplified" equation. The decrease is as much as 50% of the pressure obtained from "simplified" equation. The critical load increases rapidly with the increase of angle a but the increase is not so rapid when the — ratio is larger. T o evaluate theoretical results the use is made o f the experimental data given in ref. [4]. These data are pointed aut by crosses i n F i g . 3, and they refer to shells o f -jr** 200, t g a = 0.1 and o f ~ = 300 and a = 30°. h The experimental result for a shallow shell is contained within the solutions o f equa tions (11) and (12), but the result for a shell o f a = 30° differs very much from the theo retical predictions (when the latter are extrapolated for the angle o f 30°). Since the other experimental data are not a vailable the range o f v a l i d solutions is not resolvable correctly. One may say with cortainty that the accepted deflection, while using a Papkowicz 210 S. J O N I A K , F. T W A R D O S Z type procedure and " f u l l " equilibrium equation, makes the results valid for shells of small angle a; it is also to say that the regime of solutions can be enlarged up to tg ft! 0.3. especially when ~ > 200. References 1. H . M . M U Ś T A R I, К . Z . G A L I M O V , Nelinejnaja teorija uprugich oboloć ek, Tatknigizdat, K a z a ń , 1957. 2. Spravocnik Proć nost', ustojcivost', kolebanija, t. 3, „ M a s i n o s t r o e n i e " ' , Moskwa 1968. 3. F . T W A R D O S Z , Rozważ ania nad nieliniową statecznoś cią dynamiczną powłoki stoż kowej, Zeszyty Naukowe Politechniki G d a ń s k i e j, Mechanika VI, 43, 1963. 4. 1.1. T R A P E Z I N , Eksperimentalnoje opredelenije rielić in kritić esKicli davlem'j dlja konić eskich oboloć ek, R e s ć o ty na proenost' 6, MaSgiz, Moskwa 1960. Р е з ю ме З А Д А ЧА О Б У С Т О Й Ч И В О С ТИ П О Л О Г ОЙ К О Н И Ч Е С К ОЙ О Б О Л О Ч КИ С О В С Е С Т О Р О Н Н ИМ Г И Д Р А В Л И Ч Е С К ИМ Д А В Л Е Н И ЕМ Р а б о та с о д е р ж ит с р а в н е н ие р е ш е н ий п р о б л е мы у с т о й ч и в о с ти п о л о г ой к о н и ч е с к ой о б о л о ч ки с п р и м е н е н и ем у п р о щ е н н о го и н е у п р о й д е н н о го у р а в н е н ия р а в н о в е с и я. А н а л и з и р у е т ся в л и я н ие р а з м е р ов о б о л о ч ки на с т о и м о с ть к р и т и ч е с к их д а в л е н и й. С р а в н и в о ю т ся т а к же т е о р е т и ч е с к ие р е з у л ь т а ты с в з я т ы ми с л и т е р а т у ры э к с п е р и м е н т а л ь н ы ми р е з у л ь т а т а м и. « S t r e s z c z e n i e Z A G A D N I E N I E S T A T E C Z N O Ś CI M A Ł O W Y N I O S Ł E J P O W Ł O K I S T O Ż K O W EJ P O D D Z I A Ł A N I E M C I Ś N I E N IA W pracy dokonano p o r ó w n a n i a r o z w i ą z ań zagadnienia s t a t e c z n o ś ci p o w ł o k i s t o ż k o w ej o m a ł e j wy n i o s ł o ś ci przy zastosowaniu uproszczonego i nieuproszczonego r ó w n a n i a r ó w n o w a g i . Przeanalizowano w p ł y w w y m i a r ó w i k s z t a ł t u p o w ł o k i na w a r t o ś ć o b c i ą ż eń krytycznych. Oceniono r ó w n i e ż p r z y d a t n o ś ć otrzymanych w y n i k ó w na podstawie danych d o ś w i a d c z a l n y ch w z i ę t y ch z literatury. Praca została złoż ona w Redakcji dnia 1 lutego 1983 roku