Ghostscript wrapper for D:\Digitalizacja\MTS83_t21z1_4_PDF_artyku³y\mts83_t21z2_3.pdf
M E C H A N I K A
T E O R E T Y C Z N A
I S T O S O W A N A
2/3, 21 (1983)
S T A B I L I T Y P R O B L E M O F A S H A L L O W C O N I C A L S H E L L U N D E R L A T E R A L
P R E S S U R E
S T E F A N J O N I А К
Politechnika Poznań ska
F E R D Y N A N D T W A R D O S Z
Politechnika Poznań ska
1. Stability Equations
Fig. 1
The set of stability equations for a conical shell under external pressure is o f the f o r m :
( 1 ) V2V2F-Eh Jctg/9
( 2 ) D V 2 V 2 v v + ctg/5
J 82w
x 8x2
I 82F
f jl i—dw YT _ ^l l L * " \ \
[dx\x dcpJi 8 x 2 \ x 2 8
i x SxScp^JX
1 (9F i d2F
x2 8\ x dx3 x3 dxdq>\ +
4 d2 _J_ 82 1 8
x 4 ; 8i + / l 2 / .
c o s 2 n g 9 1 ) ,
where A0, A„, A2„ are the functions o f x.
The parameters of deflection function and shell dimensions are also included in these
functions. The equations arc o f the form given i n ref. [3]. The solution of equation (5)
we accept i n the form o f power series
(6) F(x tyQ= У FJx) cos m y , .
m-i
The coefficients in equation (6) can be determined when the set of four differential
S T A B I L I T Y OF C O N I C A L S H E L L 207
equations, obtained by substituting the function (6) into equation (5) and comparing
by identity the corresponding terms of the left — and righthand side, is solved.
Thus the force function takes the form o f
(7) ffaiC'i) =f F0 + F„cosfismP = 0,
о 0
In 1
J J K(x,i*, the lowest taken from minimum pressures is the lower critical load p*.
The lowest pressures were obtained at к = 1. These are p* = 6.6489 • 10~ 6 and pf =
= 1.437410~6. The line for f 2 = 0 is also presented.
It represents a symmetrical form of buckling and it is o f a first approximation o f the
solution. The minimum value is 2.859 1 0 6 .
Change of dimensions and angle a do not influence the quality changes. The critical
load is then obtained from the equation at к = 0.
The solutions o f equation (12) are o f the same form. However the buckling critical
loads are much higher (for к = 0) here then buckling loads obtained from equation (11).
S T A B I L I T Y OF C O N I C A L S H E L L 209
" o f
F i g . 3
F i g . 3 presents the lines o f lower critical load p* versus angle a for three different
values ° f ^ • The lower of the two lines presented by the same type o f line is referred to
equation (11), the upper line is referred to equation (12). It is worthenoting to show that
by using the " f u l l " equilibrium equation (2) one obtains in each case, the lower critical
load smaller than the critical load o f the "simplified" equation. The decrease is as much
as 50% of the pressure obtained from "simplified" equation. The critical load increases
rapidly with the increase of angle a but the increase is not so rapid when the — ratio
is larger.
T o evaluate theoretical results the use is made o f the experimental data given in ref. [4].
These data are pointed aut by crosses i n F i g . 3, and they refer to shells o f -jr** 200,
t g a = 0.1 and o f ~ = 300 and a = 30°.
h
The experimental result for a shallow shell is contained within the solutions o f equa
tions (11) and (12), but the result for a shell o f a = 30° differs very much from the theo
retical predictions (when the latter are extrapolated for the angle o f 30°). Since the other
experimental data are not a vailable the range o f v a l i d solutions is not resolvable correctly.
One may say with cortainty that the accepted deflection, while using a Papkowicz
210 S. J O N I A K , F. T W A R D O S Z
type procedure and " f u l l " equilibrium equation, makes the results valid for shells of small
angle a; it is also to say that the regime of solutions can be enlarged up to tg ft! 0.3.
especially when ~ > 200.
References
1. H . M . M U Ś T A R I, К . Z . G A L I M O V , Nelinejnaja teorija uprugich oboloć ek, Tatknigizdat, K a z a ń , 1957.
2. Spravocnik Proć nost', ustojcivost', kolebanija, t. 3, „ M a s i n o s t r o e n i e " ' , Moskwa 1968.
3. F . T W A R D O S Z , Rozważ ania nad nieliniową statecznoś cią dynamiczną powłoki stoż kowej,
Zeszyty Naukowe Politechniki G d a ń s k i e j, Mechanika VI, 43, 1963.
4. 1.1. T R A P E Z I N , Eksperimentalnoje opredelenije rielić in kritić esKicli davlem'j dlja konić eskich oboloć ek,
R e s ć o ty na proenost' 6, MaSgiz, Moskwa 1960.
Р е з ю ме
З А Д А ЧА О Б У С Т О Й Ч И В О С ТИ П О Л О Г ОЙ К О Н И Ч Е С К ОЙ О Б О Л О Ч КИ С О
В С Е С Т О Р О Н Н ИМ Г И Д Р А В Л И Ч Е С К ИМ Д А В Л Е Н И ЕМ
Р а б о та с о д е р ж ит с р а в н е н ие р е ш е н ий п р о б л е мы у с т о й ч и в о с ти п о л о г ой к о н и ч е с к ой о б о л о ч ки
с п р и м е н е н и ем у п р о щ е н н о го и н е у п р о й д е н н о го у р а в н е н ия р а в н о в е с и я.
А н а л и з и р у е т ся в л и я н ие р а з м е р ов о б о л о ч ки на с т о и м о с ть к р и т и ч е с к их д а в л е н и й. С р а в н и
в о ю т ся т а к же т е о р е т и ч е с к ие р е з у л ь т а ты с в з я т ы ми с л и т е р а т у ры э к с п е р и м е н т а л ь н ы ми р е з у л ь
т а т а м и.
« S t r e s z c z e n i e
Z A G A D N I E N I E S T A T E C Z N O Ś CI M A Ł O W Y N I O S Ł E J P O W Ł O K I S T O Ż K O W EJ P O D
D Z I A Ł A N I E M C I Ś N I E N IA
W pracy dokonano p o r ó w n a n i a r o z w i ą z ań zagadnienia s t a t e c z n o ś ci p o w ł o k i s t o ż k o w ej o m a ł e j wy
n i o s ł o ś ci przy zastosowaniu uproszczonego i nieuproszczonego r ó w n a n i a r ó w n o w a g i . Przeanalizowano
w p ł y w w y m i a r ó w i k s z t a ł t u p o w ł o k i na w a r t o ś ć o b c i ą ż eń krytycznych. Oceniono r ó w n i e ż p r z y d a t n o ś ć
otrzymanych w y n i k ó w na podstawie danych d o ś w i a d c z a l n y ch w z i ę t y ch z literatury.
Praca została złoż ona w Redakcji dnia 1 lutego 1983 roku