Ghostscript wrapper for D:\Digitalizacja\MTS83_t21z1_4_PDF_artyku³y\mts83_t21z2_3.pdf M E C H A N I K A  T E O R E T Y C Z N A  !  S T O S O W A N A  2/3,  21  (1983)  O N T H E O R Y O F L A T T I C E - R E I N F O R C E D S H E L L S K R Z Y S Z T O F  H .  Ż M I J Ё W S К I Politechnika Warszawska  1. Introduction In the present paper a continuum approach for analysing elastic shells with lattice-type reinforcement is proposed. The shell structures are widely used in engineering practice. In many cases (especially in the c i v i l engineering) these structures require to be reinforced. Thus, from the theoretical point of view material of the shell ought to be treated as nonhomogeneous mixture o f two components: reinforcement and matrix. Even i f additional, simplifing assumptions of homogenity and isotropy of both components are being utilised, the known composite and mixture theories lead to the complex mathematical models, which cannot be recom­ mended for engineering practice (analysis). That is why in the majority of papers, authors -do not apply the theories mentioned above and assume stronger simplifications: in' most cases material of the shell is supposed to be homogeneus and anisotropic (or even iso­ tropic); the crucial point is to determine effective moduli for the hipothetic material o f the shell. The purpose of this work is to generalize the energy functional for continuum shell by adding a term concerning elastic reinforcement energy and then deriving the equations of equilibrium as well as appropriate (in particular: natural) boundray conditions. In the course of the paper, materials of both components are supposed to be linear- -elastic, homogeneus and isotropic. Considerations are confined to the case o f small strains and displacements. The state of strain of the reinforcement is described according to Wozniak's lattice-type shell theory [1]. The state of strain of the matrix is assumed according to generalised Reissner's hypothesis. Thus, both models belong to the six- -parameter classes of surface structures theories and no additional constraints on the rein­ forcement are imposed. Considerations concern the lattice reinforcement constructed of two or three families of intersecting bars, lying on a surface parallel to the middle surface of the shell. C o m ­ patibility conditions o f matrix displacements and approximated displacements of lattice nodes are supposed to be satisfied. 256  К .  Н .  ŻMIJEWSKI 2. Geometry of  shell  The region o f the shell is parametrised by two convected normal coordinate systems {л- } and  {x'}. A t every point  x\ of the fundamental surface  л ,  x3 = 0 a natural reference triplet  (ga) is fixed. Similarly, at all points  x' i n the shell region marks (#,) can be determi­ ned. Particularly, the surface  л ,  x3  =  x3 = const, which includes the axes o f the rein­ forcement bars. The bases (#,) refere to the point o f this surface. Base vectors  qt can be expressed by means of qa vectors; the same can be stated about the reciprocal bases  q' and  q". The mentioned relations have the forms (2.1)  g,  =  Vfga,  g'  =  /tg".  Eqs (2.1) yield from Weingarten formulae and make it possible to shift an arbitrary tensor object from the point  x1' on  л , along the normal to the point  xa on the reference funda­ mental surface. The shifters  Vg,,Al (cf. eg [2] [3]) are defined as follows (2.2)  V? =  V  + dl'gbX3,  VfA{ -  6{,  VfAla=oba,  hence (2.3) Л* =  Л 6кь[{\­2Hx 3)уba  + x 3'gba  +  (x 3)2уh3,9aK],  where (2.4) .  Л  =  V~\  V'm det(K*) =  \­2x3H+(x3)2K,  and (2.5)  'gab=  ­g3.bg a  =  g3g%^  н  =  ± е г ( 'Щ A - = detftj?). It is easy to prove, that the relation (2.6)    =  A\v a.  Per analogiam one can obtain similar relation for any tensor o f  (p,  q) valency. The ap­ propriate formula takes the form (3.3)  t\\­± -  Ali  ...Ai>y4i...  v? . = 2 '  fw  ąA){tU  ą n Щ +nU<, *<• ,>+у3 ą  ,  (6.4) The vectors r ( i 1 ) and are referred to the plane  л and are tangent and normal to the axis of the bar (belonged to the A — family of bars), respectively. The quantities  R\A],  S{^,  T = 0 , 1 , 2 are stiffneses of reinforcement rods. A p p l y i n g the Gauss-Stokes theorem in the form (6.5) J V , a c 7 7 r = - J 2 Ш ; Ч л+  fv4ad(8n),  when stationary condition  dJ  = 0 is being examined, we arrive to the following set o f e q u i l i b r i u m equations ( 6 6 )  • ^ 3 ' d t + ( 2 ^ 3 _ 1 ) ' d 3  + ' Ј ^ Z ' i = ° - with boundary conditions д й „п л:  r**lB  =  0,  (6.7)  d°ud:  ­(tdp­°X d%  =  atd,  Underlined  terms  in  (6.6) and  (6.7)  appear,  when  variation  of  appropiate  terms  i n  (6.1)  is  considered.  The  vector  lp  is tangent  to  л  and is exteriorly  normal  to  the  boundary  line  8л .  Moreover  following  auxiliary  quantities  are  introduced  (6.8)  fb  _  r«b*_sab_pab_  and  tf*  =  А  У А *1'^>%Ф $йа А Ь,  r * »  =  0 ,  7.  Conclusions  In  the present  paper  the energy  functional  for the shells  with  lattice­type  reinforcement  l s  obtained.  In  the  variational  way equilibrium  equations  as  well  as  natural  boundary  f  260  К .  H .  ŻMIJEWSKI conditions are derived. The assumed mathematical model makes it possible to consider an influence of reinforcement stiffness on resultant shell response in more systematic way then in the hitherto used approaches in which homogenity of the structure is postula­ ted. In the proposed model a geometry, directions, and full set o f elastic features o f the fibrous is taken into account. In the case o f slender reinforcement rods a formal resemblance of the proposed theory to the anisotropic model o f Reissner's shell is worth mentioning. Equations obtained in the paper can be applied in several other special cases. Presented variational approach, in particular the energy functional (6.1) can be used for the finite element formulation of the problem considered. References  1.  C z .  W O Ż N I A K,  Siatkowe  dź wigary  powierzchniowe [Lattice­type  surface  structures,  in  Polish),  P W N  Warszawa  (1970)  2.  C z .  W O Ź N I A K,  Nieliniowa  teoria powłok  [Nonlinear  theory  of  shells,  in  Polish],  P W N , Warszawa (1966)  3.  P.  M .  N A G H D I ,  Foundations of elastic shell theory,  in  Progress  in Solid  Mechanics vol. 4,  North — Holland  P.  C ,  Amsterdam  (1963)  4.  W .  PIETRASZKIEWICZ,  Finite rotations  and  Lagrangean description  in the non­linear theory  of shells,  P W N ,  W a r s z a w a ­ P o z n a ń  (1979)  5.  И .  H .  ВЕ К У А,  Н е к о т о р ы е  о б щ и е  м е т о д ы  п о с т р о е н и я  р а д л и ч н ы х  в а р и а н т о в  т е о р и и  о б о л о ч е к .  [Some  general  m:thods  of  constructing  different  variants  of  shell  theories,  in  Russian),  Н а у к а,  Mockba  (1982)  P  e  3   ю  M  e  О  Т Е О Р ИИ  О Б О Л О Ч ЕК  А Р М И Р О В А Н Н Б 1Х  С Е Т К А МИ   В  р а б о те  и с п о л ь з уя  в а р и а ц и о н н ый  м е т о д,  п о с т р о е но  у р а в н е н ия  т е о р ии  у п р у г их  о б о л о ч ек  а р­ м и р о в а н н ых  с е т к а м и.  И з г иб  с п л о ш н ой  о б о л о ч ки  ( м а т р и ц ы)  о п и с а н о,  п р и н и м ая  о б щ ую  г и п о т е зу  Р е й с с н е р а.  Д е ф о р­ м а ц ия  с е т ч а т ой  а р м а т у ры  с о г л а с но  т е о р ии  с е т ч а т ых  о б о л о ч ек  В о з ь н я к а.  П р е д с т а в л ен  в  р а б о те  п р и ем  о п р е д е л е н ия  в л и я н ия  а р м а т у ры  н а  д е ф о р м а ц ию  о б о л о ч ки  п о   х а р а к т е ру  „ т е х н и ч е с к и й ".  Э то  с л е д у ет  и з  п р и н я т ой  и д е а л и з а ц ии  с т р у к т у ры  с е т ч а т ой  а р м а т у ры   к ак  и  е е  н е п р е р ы в н о го  о п и с а н и я.  S t r e s z c z e n i e  О  T E O R I I  P O W Ł O K  Z B R O J O N Y C H  S I A T K A M I  ч   W  pracy  na  drodze  wariacyjnej  uzyskano  r у w n a n i a  teorii  p o w ł o k  s p r ę ż y s t y ch  zbrojonych  siatkami.  Zginanie  kontynualnej  p o w ł o k i  (matrycy)  opisano  p r z y j m u j ą c  u o g у l n i o n ą  h i p o t e z ę  Reissnera, a  defor­ mację  zbrojenia  o k r e ś l o no  zgodnie  z  r у w n a n i a m i  teorii  p o w ł o k  siatkowych  W o ź n i a ka  [1].  Przedstawiona  w  pracy  p r у b a  u w z g l ę d n i e n ia  zbrojenia  na  stan  deformacji  d ź w i g a ra  ma  charakter  ..techniczny"  co  wynika  z a r у w n o  z  z a ł o ż eń  o d n o ś n ie  struktury  zbrojenia  jak  i  z  zastosowanego  konty­ nualnego  opisu  siatki.  Praca  została  złoż ona  w  Redakcji  dnia  14  kwietnia  1983  roku  i