Jtam.dvi JOURNAL OF THEORETICAL AND APPLIED MECHANICS 49, 3, pp. 665-683, Warsaw 2011 MODEL UPDATING IN STRUCTURAL DYNAMICS THROUGH A CONFLUENCE ALGORITHM Maria Chierichetti Massimo Ruzzene Georgia Institute of Technology, School of Aerospace Engineering, Atlanta, USA e-mail: mchierichetti@gatech.edu; massimo.ruzzene@aerospace.gatech.edu The identification of the dynamic response of a structure in the pre- sence of structural degradation has potential practical use on health monitoring systems and can contribute to improve the safety of ro- torcraft flight and wind-turbine operations and to decrease their han- dling costs. A combined numerical and experimental procedure, called Property Identification Algorithm, updates the numerical model based on a limited set of experimental measurements in order to accurately predict the dynamic response of a system in the presence of structural degradations. The algorithm is designed based onmodal decomposition and discrete experimental measurements, and is formulated in the case of periodic excitations. It is demonstrated that the updated dynamic response represents an accurate map of the experimental response in the domain. The paper describes the proposed algorithm and presents validation cases. Key word: displacement mapping, inverse problem, FEM, experimental update, modal expansion 1. Introduction The ability to assess the effects of changes in the physical properties of a structure from experimental measurements is crucial for understanding its re- al dynamic behavior because of the possible improvements in themaintenance of critical dynamic components connected to it.Modifications inmass and stif- fness affect the performance of the system and can result in an increase of the vibrations of the structure and in higher fatigue loads. Therefore, the accurate prediction of the vibration levels of a system could result in improvements of Condition Based Maintenance processes. 666 M. Chierichetti, M. Ruzzene Wind turbines and helicopter blades are particularly affected by this pro- blem. Icing (Fig.1a) and accumulation of dirt and bugs (Fig.1b) significantly affect the maintenance of wind turbines because of the additional mass intro- duced on the structure. Ice build-up is dangerous because it can reduce the generated power up to 25-50% of its design value, and the additionalmass (up to 7-10% of the total mass) affects the dynamic behavior, causing excessive vibrations, higher bendingmoments, imbalance of the rotor, andnoise (Corten andVeldkamp, 2001; Khalfallaha andKoliub, 2007; Bolton, 2007). Accumula- tion of dirt and bugs on the leading edge of the airfoil affects the aerodynamic efficiency of the airfoil by up to 20%of its design value, and is particularly cri- tical for offshore towers (and towers operating in sandy environments) somuch that the cleaning of the blades is recommended every few weeks (Ibsen and Liingaard, 2006; Andersen et al., 2008) and their operational life is reduced to half of their design length with respect to ground-based towers. The initial clean model of the wind turbine, therefore, does not satisfactorily represent the actual behavior of the system. Fig. 1. Examples of the effect of ice and bugs on wind-turbine and rotorcraft blades; (a) ice on wind turbine, (b) bugs on wind turbine, (c) ice on helicopter blade Rotorcraft operations are also greatly affected by icing accretion (Fig.1c). Unlike aircraft propellers, helicopter blades collect ice along the entire leading Model updating in structural dynamics... 667 edge of the airfoil at temperatures below 10◦C causing an increase in drag (Palacios et al., 2008;Coffman, 1987), flowseparation andhighvibration levels due both to uneven ice adhesion and progressive ice shedding from the blade due to centrifugal and aerodynamic forces (Gent et al., 2000). One of the consequences of this behavior is that the maximum available power of the engine can be reached before the generation of the required torque to sustain the required operation. Moreover, damage detection systems of the helicopter main rotor are still not generally available because of their high cost and complexity. Limited rotor system fault detection is provided as part of usage monitoring as well as automatic rotor track and balance systems. A comprehensive Health and Usage Monitoring System (HUMS) should provide post-flight diagnostic ca- pabilities through the processing of flight data at ground stations in order to improve the detection of structural degradations. The focus of this paper is on vibrationmonitoring during operations as ameans to achieve condition based maintenance (Stevens, 2001). In-flight or post-flight data processing requires simple and fast procedures for model updating so that changes in the system can be rapidly detected and analyzed. The goal of the proposed approach, called Property Identification Algo- rithm, is to update the properties of a numerical model to achieve accurate predictions of the dynamic response of the system. This result is achieved by “tuning” a numerical model so that it accurately predicts the actual behavior of the system in every part of its life based on a limited amount of isolated measurement points so that the response at non-measured locations can be accurately predicted. The use of experimental measurements to identify and update the dynamical properties of a finite element model is known as model updating, and it has been extensively applied to structural dynamic inFriswell and Mottershead (1995) and Mottershead and Friswell (1993). The Property Identification Algorithm, however, does not focus on the accurate extrapo- lation of the changes in physical properties but is based on the Confluence Approach presented in McColl et al. (2010), Chierichetti et al. (2010, 2011). The approach presented in these papers computes corrections to the external loads in order to improve the prediction of the dynamic response, and it as- sumes accurate knowledge of the physical properties of the system, based on very fewmeasurements of the response. Similar to the Confluence Algorithm, the proposed approach improves the dynamic response of a periodic system througha fast and simpleupdating technique. In contrast, theProperty Identi- fication Algorithm achieves this objective by updating the physical properties of the system and assuming accurate knowledge of the external loads. This 668 M. Chierichetti, M. Ruzzene assumption requires either having an a priori accurate model of the loads or achieving an accurate prediction of the loads through the Load Confluence Algorithm. The proposed approach is ideally suited to themonitoring of the response of periodic systems such as wind-turbines and helicopters. It requires only the measurement of the dynamic response of the system and therefore allows modal identification under operations and in situations where the structure is difficult to excite by externally applied forces, Brincker et al. (2003). The predicted response of an initial model of the system is combined to reference data for the definition of simple algebraic relations between the corrections of mass and stiffness distributions and the difference between the measured and numerical responses, as discussed in Section 2. In Section 3, the potentialities of the algorithm are demonstrated through numerical validation in the case of a simple lumped-parameters system for variations in mass, and/or stiffness. 2. Property Identification Algorithm The goal of the Property Identification Algorithm is the mapping of the re- sponse of a modified system through the identification of changes in dynamic properties (natural frequencies andmodes). The application to rotating envi- ronments admits the assumption that the applied loads, and as a consequence the dynamic response, vary periodically with time and can be expanded thro- ugh a Fourier series. 2.1. Concept TheProperty Identification Algorithm consists of an initial numerical mo- del of the structure, a set of experimental measurements at a limited number of locations, and a procedure that estimates the difference in dynamic pro- perties between the numerical model and the experimental measurements. A block-diagram representation of the component of the procedure is depicted in Fig.2. The applied loads are assumed to be known. The dynamic model of the structure is defined by a mass matrix M and a stiffness matrix K, the set of available experimental measurements is deno- ted as eE(x), where x is a vector defining the location of the sensors, and array eN(x) stores the numerical response. The following notation is used throughout the paper: bold, lower case defines vectors, bold, upper case defi- nes matrices. Model updating in structural dynamics... 669 Fig. 2. Schematic of the Property Identification Algorithm The procedure can be summarized as the following sequence of steps: • A numerical model of the system is built from an initial guess of the physical properties of the system. • The solution of the initial model estimates the dynamic response eN(x) at the sensors location x. • The numerical andmeasured responses are compared and the error vec- tor ∆e= eE −eN is calculated. • Corrections for the mass and/or stiffness matrices are calculated based on ∆e through a formulation of the problem in the modal domain, as described in Section 2.2. • A modified set of dynamic properties is found from the solution to the new eigenvalue problemwith the updatedmass and stiffness matrices. 2.2. Modal procedure for property estimation Structural degradation can occur in a system as a change in stiffness, or mass, ormass and stiffness distributions.Threedifferent procedures have been developed to analyze each of these problems separately. 2.2.1. Change in stiffness Consider a general undamped linear system Mü(t)+Ku(t)=F(t) (2.1) where array u(t) stores the N degrees of freedom of the solution, and F(t) is the array of the generalized applied loads. This system (defined as “initial” system) is characterized by natural frequencies ω andmodes P. 670 M. Chierichetti, M. Ruzzene The real model (defined as “reference”) of the system is M̂¨̂u+ K̂û=F(t) (2.2) It is assumed that the applied loads are accurately modeled and that the reference system undergoes the same loading condition as the initial system. The reference model is characterized by natural frequencies ω̂ andmodes P̂. Supposean inaccuracy exists in theestimation of the stiffnessmatrix, therefore M̂=M K̂=K−∆K (2.3) with ∆K unknown. The eigenvectors of the modified system P̂ are assumed to be a linear combination of the initial modes P through a matrix α of coefficients P̂=Pα (2.4) The difference between Eq.(2.1) and (2.2) leads to M(ü− ¨̂u)+K(u− û)−∆Kû=0 (2.5) with u = Pq and û = P̂q̂ = Pαq̂. The difference in generalized modal coordinates is defined as ∆z= q−αq̂ (2.6) Therefore the difference in the dynamic response is defined as u− û=P∆z. Pre-multipling Eq. (2.5) by P⊤, and defining the projection of the change in the stiffness matrix in the modal domain as K=P⊤∆KP, Eq. (2.5) results I∆z̈+ diag(ω2i )∆z+Kαq̂=0 (2.7) The response of the system and the generalized coordinates can be related through amatrix B and its pseudo-inverse as: — numerical response eN(x,t)=B(x)q(t) (2.8) — experimental measurement eE(x,t)= B̂(x)q̂(t) (2.9) The definition of B depends on the reference quantities. In the case of experimentalmeasurements, it depends on the type of sensors. For example, if ei represents a displacement measurement at the location (xi,yi), Bij repre- sents the contribute of the modal displacement j at the location i. If strain Model updating in structural dynamics... 671 gages are considered, Bij represents the contribute of modal strain j at loca- tion i. A reduced number ofmodes m can be used in the analysis, that has to be lower than the number of sensors used to identify the response. Moreover, only modes that can be identified by the choice of sensors can be included. Assume that the relation between matrices B and B̂ is the same as the relation between P and P̂, so that B̂ = Bα. This assumption is valid in a linear or linearized framework. Thedifference between the initial response and the reference signal is eN −eE =B(q−αq̂)=B∆z (2.10) and ∆z=B+∆e (2.11) Equation (2.7) thus becomes B + ∆ë+ diag(ω2i )B + ∆e+KB+ê=0 (2.12) Theexternally applied loadsare supposedtobeperiodicaswell as the response of the system, and can be expanded in a Fourier series of frequency Ω ∆e=∆e0+ M∑ j=1 [ecj cos(jΩt)+esj sin(jΩt)] (2.13) The harmonic balance of Eq. (2.12) leads to diag(ω2i )B + ∆e0+KB + ê0 =0 diag(−j2Ω2+ω2i )B + ∆ecj +KB + êcj =0 (2.14) diag(−j2Ω2+ω2i )B + ∆esj +KB + êsj =0 The unknown of the system is the change in the stiffnessmatrix in themodal domain K. Assume that it is possible to approximate ∆K with a rank-1 approximation (see Appendix A for details) such that K̂=K−∆K=K−hh⊤ (2.15) and K=P⊤∆KP=P⊤hh⊤P=ββ⊤ (2.16) Eq. (2.14) becomes diag(ω2i )B + ∆e0+ββ ⊤ B + ê0 =0 diag(−j2Ω2+ω2i )B + ∆ecj +ββ ⊤ B + êcj =0 (2.17) diag(−j2Ω2+ω2i )B +∆esj +ββ ⊤ B +êsj =0 These non-linear system of equations is solved with a Newton-Raphson itera- tive method. 672 M. Chierichetti, M. Ruzzene 2.2.2. Change in mass The change in dynamical properties due to a modification in the mass distribution of the system is analogous to the previously described procedure. The differences between the two cases are underlined in the following. The reference system is in this case characterized by an unknown change in the mass matrix such that M̂=M−∆M K̂=K (2.18) The aim is in this case to reconstruct the difference in mass ∆M from the observation of the response of the reference system at a limited number of points, and to improve the prediction of the initial system. The difference between Eq. (2.1) and (2.2), considering Eq. (2.18), leads to M(ü+ ¨̂u)+K(u− û)−∆M¨̂u=0 (2.19) The change in the mass matrix projected in the modal domain is defined as M=P⊤∆MP and it is approximated as a rank-1matrix (AppendixA) such that M̂=M−∆M=M−gg⊤ (2.20) and M=P⊤∆MP=P⊤gg⊤P=ηη⊤ (2.21) Amodal expansion of Eq. (2.19) leads to I∆z̈+ diag(ω2i )∆z+Mα ¨̂q=0 (2.22) that becomes IB +∆ë+ diag(ω2i )B +∆e+MB+¨̂e=0 (2.23) with the introductionof thepreviouslydefinedmatrix B.The samehypothesis on the periodic nature of the external load is assumed. A Fourier expansion of all quantities and harmonic balance of Eq. (2.23) lead to diag(ω2i )B +∆e0 =0 diag ( 1− ω2i j2Ω2 ) B + ∆ecj +MB + êcj =0 (2.24) diag ( 1− ω2i j2Ω2 ) B + ∆esj +MB + êsj =0 The first equation on the zeroth coefficient is generally verified in itself and only the other two equations will be brought forward. Introducing the rank-1 approximation of the modal mass matrix M, the solution to the non-linear problem can be found through the Newton-Raphson procedure. Model updating in structural dynamics... 673 2.2.3. Change in mass and stiffness The previous procedures can be combined and generalized in a unique algorithm in the case of a contemporaneous change in the mass and stiffness matrices. It is therefore assumed that the reference system is characterized by unknownmodifications in the mass and stiffness distribution so that M̂=M−∆M K̂=K−∆K (2.25) Following the same steps as previously described, the non-linear system of equations in the frequency domain is diag(ω2i )B + ∆e0−ββ ⊤ B + ê0 =0 diag(−j2Ω2+ω2i )B + ∆ecj −ββ ⊤ B + êcj + j 2 Ω 2 ηη ⊤ B + êcj =0 (2.26) diag(−j2Ω2+ω2i )B +∆esj −ββ ⊤ B +êsj + j 2Ω2ββ⊤B+êsj =0 and can be solved with the Newton-Raphson iterative method. 3. Numerical validation 3.1. Concept The approach used for the numerical validation of the algorithm is descri- bed in this section. The initial model of the system is known, and its dynamic response is calculated in a particular loading, and labeled as “initial”. Known structuralmodifications either in themass and stiffness distribution (or both) are then added to the initial model, and its dynamic response is computed in the same loading condition and stored as “reference”. Theuse of a numerically generated reference response is due to the lack of experimentalmeasurements. The corrections to the initialmass and stiffnessmatrices are then foundby comparison of the initial and reference response. The response of the updated system is called “final”. The characteristics of the algorithm are assessed by comparing thefinal and reference responses, and the identified changes inmass and stiffness with the real, known modifications introduced in the reference model. 3.2. Results The algorithm is validated by the analysis of a 14 degrees of freedom lumped-parameter system (Fig.3). A concentrated periodic load is applied 674 M. Chierichetti, M. Ruzzene at degree of freedom 10, with excitation frequencies of 4.5rad/s and 9rad/s. The natural frequencies of the initial system are enumerated in Table 1. Fig. 3. Schematic of a lumped-parameters mass-spring system. Table 1.Natural frequencies of the initial model mode ωi [rad/s] 1 3.56 2 10.01 3 16.45 4 23.39 5 28.82 6 32.68 The ability of the algorithm to capture structural modifications both in the mass and stiffness distribution is investigated, as specified in Table 2. Table 2.Description of the analyzed cases ID modes control points modification 1 1:14 1:14 k3 =108.5N/m 2 1:3 1,4,7,10,13 k3 =108.5N/m 3 1:6 1,3,5,7,9,11,13 k3 =108.5N/m 4 1:6 1,3,5,7,9,11,13 k3 =90N/m, k5 =15N/m, k9 =75N/m 5 1:3 1,4,7,10,13 m3 =0.15kg 6 1:6 1,3,5,7,9,11,13 m3 =0.05kg, k3 =90N/m 7 1:6 1,3,5,7,9,11,13 m3 =0.05kg, k3 =90N/m with noise Themain factors that influence the ability of the approach to converge to the exact solution are the number of modes in the modal expansion and the choice of control points (both total number and location). Their influence is investigated in this section as well as the influence of noise in the reference signals. Initially, a change in stiffness at degree of freedom 3 is introduced. A com- plete modal expansion and a complete set of control points are considered in Case 1 to ensure that the algorithm exactly captures the modifications of Model updating in structural dynamics... 675 the systemwhen a complete modal expansion is used. However, when a lower number of modes and control points is considered, as for example in Case 2 (threemodes and five control points), themodifications in natural frequencies (Table 3) andeigenvectors (Figs.4) are capturedwithanaccuracy of 1%onthe modes included in the modal expansion, while the change in stiffness cannot be captured. This behavior is due to the use of a truncated modal expansion that causes the stiffness matrix to lose its original structure: in fact, both the initial and reference systems are characterized by a tridiagonal, sparse stiffness matrix, while the final stiffness matrix loses its sparse characteristic. The deformed shape of the system at a specified time instant, Fig.5, reveals that even if the change in stiffness is not accurately captured, the dynamic response is greatly improved with only three modes to represent the dynamic response. Before the application of the Property Identification Algorithm, the mean error with respect to the reference system is about 30%, while after the application of the algorithm is reduced to 3%. Table 3.Case 2. Initial and final error between the reference (ωr), the initial and the identified (ωf) natural frequencies ID ωr [rad/s] ωf [rad/s] Ein [%] Efin [%] 1 3.86 3.86 −7.7 0.02 2 10.55 10.63 −5.1 0.8 3 16.46 16.49 −0.1 0.2 4 23.84 23.39 −1.9 −1.9 5 30.12 28.82 −4.3 −4.3 6 39.46 32.68 −17.2 −17.2 Fig. 4. Case 2. Comparison of the eigenvectors of the system 676 M. Chierichetti, M. Ruzzene Fig. 5. Case 2. Deformed shape of the system The inclusion of three higher modes and two control points (Case 3) hi- ghly improves the prediction of the modal properties, both of the natural frequencies and of the eigenvectors. The errors on higher frequencies, such as the 5th and 6th natural frequency, are reduced to about 1% as the lower fre- quencies. However, the algorithm still encounters difficulties in the physical representation of the change in stiffness. The dynamic response of the system is accurately represented with a mean error of about 4%, as shown in Fig.6. Fig. 6. Case 3. Deformed shape of the system The presence of multiple modifications in the system is analyzed in Ca- se 4 and represents a critical condition for the algorithm. As described in Section 2.2, in fact, the change in the characteristic matrices is modeled as a rank-1 matrix approximation, which corresponds to an elementary modifi- cation of the system. Also in this case, the algorithm is able to improve the natural frequencies of the system, but cannot accurately update the stiffness Model updating in structural dynamics... 677 distribution. However, the time history of the system at different degrees of freedom is identifiedwith an accuracy of about 5%(initial error of about50%), as illustrated by Figs.7 and 8. The dynamic response is effectively mapped, both at degrees of freedom used as control points (Fig.7a) and not used by the identification approach (Fig.7b). A broader view of the behavior of the whole system is given by the analysis of the deformed shape at a particular time instant (Fig.8), and it confirms the exceptional improvements achieved in the prediction of the final response of the whole system. Fig. 7. Case 4. Time history at different degrees of freedom; (a) DOF 2 – not control point, (b) DOF 11 – control point Fig. 8. Case 4. Deformed shape of the system A change in the mass distribution at degree of freedom 3 is introduced in Case5.This analysis represents aparallel problem forCase2, and thebehavior of the identification procedure is very similar. The natural frequencies and the lowest eigenvectors are identifiedwith an accuracy of about 3%.As previously 678 M. Chierichetti, M. Ruzzene underlined, the change in physical mass is not properly captured due to the incompleteness of the modal expansion. The dynamic response is accurately identified in the whole system, both at control points, Fig.9b, and at points not considered as the reference, Fig.9a. The analysis of the deformed shape of the system confirms this observation (Fig.10). Fig. 9. Case 5. Time history at different degrees of freedom; (a) DOF 2 – not control point, (b) DOF 11 – control point Fig. 10. Case 5. Deformed shape of the system Finally, simultaneous changes in the mass and stiffness distributions are considered. In Case 6, six modes and seven reference points are considered in the identification of the dynamic response. As noticed in the previous sections, the algorithm can capture major mo- difications inmodal properties with an incompletemodal expansionwithin an accuracy of 10% (Table 4), while themass and stiffness distributionsmaintain large inaccuracies: the algorithm cannot distinguish between changes in mass Model updating in structural dynamics... 679 and stiffness. Figures 11 and12 reveal that thedynamic responseof the system is accurately identified within an error of 5% at critical locations. Table 4.Case 6. Initial and final error between the reference (ωr), the initial and the identified (ωf) natural frequencies ID ωr [rad/s] ωf [rad/s] Ein [%] Efin [%] 1 3.77 3.77 −5.5 0.1 2 8.51 8.51 17.6 0.05 3 14.93 14.92 10.2 −0.1 4 22.84 22.44 2.4 −1.8 5 29.81 29.58 −3.3 −0.8 6 39.37 35.37 −17.0 −10.2 Fig. 11. Case 6. Time history at different degrees of freedom; (a) DOF 2 – not control point, (b) DOF 11 – control point Fig. 12. Case 6. Deformed shape of the system 680 M. Chierichetti, M. Ruzzene The noise contained in the reference signals is an important factor for the convergence of the algorithm. Random noise has been added to the reference response characterized by lower signal levels (DOF: 1,2,3,4). The noise level is about 5% the amplitude of the considered signal. The results of the identifica- tion procedure are shown in Figs.13 and 14. Themean error on the deformed shape is reduced from about 25% before the application of the Property Iden- tification Algorithm to less than 10% after the identification, and the error on the natural frequencies is reduced from amaximum of 17% to 1.5%. Fig. 13. Case 7. Time history at different degrees of freedom; (a) DOF 2 – not control point, (b) DOF 11 – control point Fig. 14. Case 7. Deformed shape of the system It is therefore demonstrated that the algorithm is effectively capable of extracting information on the complete map of the response from a minimal set of reference/experimental data, and to improve the predictions of both the Model updating in structural dynamics... 681 responseandmodal properties of the initialmodel in thepresence of structural degradations, even in the presence of noise in the signals. These results are promising for applications in more complex environments. 4. Conclusion An innovative approach for the mapping of the response in the presence of structural modifications has been formulated, which integrates minimal expe- rimental data into the initial and inaccuratemodel of a system. Simple valida- tion cases demonstrate that the algorithm is capable of mapping the response of the system in the complete domain, based on discrete reference data of the dynamic response. The procedure identifies the presence of changes in the mass and stiffness distribution andupdates themodal properties of the system to best represent the reference dynamic properties. A. Rank-1 tensor approximation A rank-1 tensor is the simplest possible tensor, and is defined as A1 =uw ⊤ (A.1) where u and w are columnvectors. In general, a tensor can always be expres- sed as a linear combination of r rank-1 tensors, where r is the rank of the tensor. In the case of a dynamic system, a rank-1 approximation of the upda- ted mass and stiffness matrices corresponds to an elementary modification of the system. For example, in the case of a three-degrees-of-freedom, lumped- parameter system K=    k1+k2 −k2 0 −k2 k2+k3 −k3 0 −k3 k3    (A.2) M= diag([m1,m2,m3]) If m2 and k2 are reduced by ∆m and ∆k respectively, the changes in the mass and stiffness matrices are in fact 682 M. Chierichetti, M. Ruzzene ∆K=    ∆k −∆k 0 −∆k ∆k 0 0 0 0   =∆k    1 −1 0    [ 1 −1 0 ] (A.3) ∆M= diag([0,∆m,0]) =∆m    0 1 0    [ 0 1 0 ] References 1. Andersen P., Brincker R., Ventura C., Cantieni R., 2008, Modal es- timation of civil structures subject to ambient and harmonic excitation, Proc. XXVI IMAC, Orlando, Florida, February 4-7 2. Bolton R., 2007, Assessment of the Sound Level Study for the Mars Hill Wind Farm, http://www.rapid-response-consulting.com/userfiles/file/ noiseassessment.pdf 3. Brincker R., Ventura C.,Andersen P., 2003, Why output-only modal testing is a desiderable toll for a wide range of practical applications, Proc. XXI IMAC, Orlando, Florida, February 3-6 4. Chierichetti M., McColl C., Palmer D., Bauchau O., Ruzzene M., 2010, Analytical and experimental approaches to rotor components stress pre- dictions, The 1st Joint International Conference on Multibody System Dyna- mics, Lappeenranta, Finland, May 25-27 5. Chierichetti M., Ruzzene M., Bauchau O., Palmer D., McColl C., 2011, Prediction of UH-60A blade loads: an insight on Confluence Algorithm to correct internally generated airloads,Proceedings of the 67th American He- licopter Society Forum, Virginia Beach,May 3-5 6. Coffman H.J. Jr., 1987, Helicopter rotor icing protection methods, Journal of the American Helicopter Society, 32 7. Corten G.P., Veldkamp H.F., 2001, Insects can halve wind-turbine power, NATURE, brief communications, 412, 42-43 8. Friswell M.I., Mottershead J.E., 1995, Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers 9. Gent R.W., Dart N.P., Cansdale J.T., 2000,Aircraft icing,Philosophical Transactions of the Royal Society. A. Mathematical, physical and engineering sciences, 358, 2873-2911 Model updating in structural dynamics... 683 10. IbsenL.B., LiingaardM., 2006,Prototypebucket foundation forwind turbi- nes natural frequency estimation,DCETechnicalReport, 9,AalborgUniversity 11. Khalfallaha M.G., Koliub M.A., 2007, Effect of dust on the performance of wind turbines,Desalination, 209, 209-220 12. McColl C., Palmer D., Chierichetti M., Bauchau O., Ruzzene M., 2010, Comprehensive UH - 60 loads model validation, Proceedings of the 66th American Helicopter Society Forum, Phoenix, Arizona,May 11-13 13. Mottershead J.E., Friswell M.I., 1993,Model updating in structural dy- namics: A survey, Journal of the Sound and Vibration, 167, 347-375 14. Palacios J.L, Smith E.C., Rose J.L., 2008, Investigation of an ultrasonic ice protection system for helicopter rotor blades, Proc. American Helicopter Society 64th Annual Forum, Montreal, Canada, April 29-May 1 15. Stevens P., 2001, Active interrogation of helicopter main rotor faults using trailing edge flap actuation, Phd. dissertation 16. Wallace J.Jr., Dawson M.,O&M for wind turbine blades, www.renewableenergyfocus.com/view/3243 Udoskonalanie modeli w dynamice konstrukcji za pomocą algorytmu konfluencji streszczenie Identyfikacja dynamicznej odpowiedzi konstrukcji wykazującej cechy degradacji strukturalnej ma praktyczne zastosowanie w układach monitorowania stanu i może przyczynić się do poprawy bezpieczeństwa lotu śmigłowców oraz zwiększenia efek- tywności pracy turbinwiatrowychprzy jednoczesnymobniżeniu kosztóweksploatacji. Wpracyprzedstawiono tzw.Algorytm IdentyfikacjiWłaściwości (Property Identifica- tionAlgorithm) będącykombinacjąnumerycznej i eksperymentalnej procedury, której celem jest udoskonaleniemodelu przy ograniczonymzbiorze danych doświadczalnych do precyzyjnego przewidywania dynamicznej odpowiedzi układu z degradacją struk- turalną.Algorytmopartonadekompozycjimodalnej i dyskretnychpomiarówekspery- mentalnych oraz sformułowano dla przypadkuwymuszeń harmonicznych.Wykazano, że odpowiedzi dynamiczne modelu udoskonalonego pozwala na uzyskanie dokładnej mapyrzeczywistychodpowiedziwzadanymobszarzeparametrów.Wartykuleopisano zaproponowany algorytm i przedstawiono kilka przykładów jego weryfikacji. Manuscript received March 1, 2011; accepted for print April 29, 2011