Jtam.dvi JOURNAL OF THEORETICAL AND APPLIED MECHANICS 48, 4, pp. 1043-1056, Warsaw 2010 TWO-WAY ROTARY SHAPE MEMORY ALLOY THIN STRIP ACTUATOR Hisaaki Tobushi Department of Mechanical Engineering, Aichi Institute of Technology, Yachigusa, Yakusa-cho, Toyota, Japan; e-mail: tobushi@aitech.ac.jp Elżbieta A. Pieczyska, Wojciech K. Nowacki Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland e-mail: epiecz@ippt.gov.pl Kousuke Date, Kouji Miyamoto Department of Mechanical Engineering, Aichi Institute of Technology, Yachigusa, Yakusa-cho, Toyota, Japan In order to develop a two-way rotary shape memory alloy thin strip actuator, the torsionaldeformationand fatigueproperties of aTiNiSMA thin strip were investigated. The results obtained are summarized as follows. (1) In the SMA thin strip subjected to torsion, theMT appears along the edge of the strip due to elongation of the edge of the strip and grows to the central part. (2) The number of cycles to failure decreases with an increase in the maximum angle of twist in torsion fatigue. The fatigue life in pulsating torsion is longer than that in alternating torsion byfive times.The fatigue limit exists in a certainvalue ofdissipatedwork of the strip in each cycle. (3) Based on the two-way motion of a lifting actuator model driven by two kinds of SMA thin strip, it is confirmed that the two-way rotary actuator with a small and simple mechanism can be developed by using the SMA thin strips. Key words: shape memory alloy, thin strip, torsion, cyclic deformation, fatigue, rotary actuator, two-waymotion 1. Introduction The intelligent or smart materials having the functions of sensing, judging and working have attracted worldwide attention. One of the main materials which have activated the research on the intelligent materials is the shape 1044 H. Tobushi et al. memory alloy (SMA) (Chu and Zhao, 2002; Duerig et al., 1990; Funakubo, 1987; Otsuka and Wayman, 1998; Saburi, 2000). The main characteristics of SMA are the shape memory effect (SME) and superelasticity (SE). Thanks to these characteristics, SMAs are used in driving elements of actuators, heat engines and robots. In theSMAsused inpractical applications,TiNi SMAsare themost widely employed, since their grain size is small and there is little risk of inducing fatigue damage; in other words, they have a high fatigue strength and a long fatigue life (Holtz et al., 1999;Matsui et al., 2006, 2004). The SME and SE appear as a result of the martensitic transformation (MT). The deformation properties of the SME and SE strongly depend on tem- perature and stress. Because of the adaptable thermal response of SMA ele- ments, thin wires and thin tapes are widely used in practical applications. These materials are in the market and can be obtained easily. The main lo- adingconditions in these applications tend tobetension, compression, bending and torsion. In a recent study using the torsional deformation of a TiNi SMA tube, the twist in blades of rotor aircraft was investigated in order to improve the flight performance (Mabe et al., 2004, 2007). In practical applications making use of SMA thin strips, torsional defor- mation can be simply obtained by gripping both endswithout anymechanical process. If the characteristics of SE are exploited, a high performance of ener- gy storage can be achieved similar to that of a torsion bar. A large recovery torque can also be obtained under the twisted state by heating. In this way of using torsional characteristics of SMA thin strips, simple and small rota- ry actuators can be developed. In the case of an SMA thin strip twisted by fixing both ends, which may be employed in practical applications, not only torsional but also tensile stress can be induced along both edges of the strip. As the shearing deformation properties of thematerial and the thermomecha- nical properties under multiaxial stress states are not clear, the deformation properties of the SMA thin strip in torsion cannot be precisely estimated by the deformation properties of SMAwires and tubeswhich have been obtained till now. The authors investigated therefore the basic deformation properties of an SMA thin strip in torsion (Tobushi et al., 2008, 2009). In the present study, in order to develop a two-way rotary SMA thin strip actuator, the tensile deformation properties along the edge of aTiNi SMAthin strip are investigated in torsion. The cyclic torsional deformation properties, which are important in the rotary actuator, are also investigated. The fatigue properties are investigated in pulsating torsion and alternating torsion. The two-way actuator for lifting and lowering a basket driven by SMA thin strips is demonstrated. Two-way rotary shape memory alloy... 1045 2. Experimental method for torsional deformation 2.1. Materials and specimen Thematerials used in the experiment were Ti-50.18at%Ni SMA thin strip with thickness of t = 0.25mm and width of w = 5mm. The specimen was a uniform flat tape of length L = 60mm. The gauge length of the specimen was l=40mm.The transformation temperatures obtained from theDSC test were Ms =304K, Mf =266K, As =319K and Af =359K. 2.2. Experimental procedure In the torsion test, the specimen was first held by the grips and the grips were fixed on the twisting shaft. The specimen was twisted at the prescribed angle of twist per unit length θ (total angle of twist φ). In the cyclic torsional test, the specimen was subjected to pulsating and alternating torsion. The maximum angle of twist per unit length θmax was 78.5rad·m −1 (maximum total angle of twist φmax = π). In the torsion fatigue test, the specimen was twisted cyclically at roomtemperature inair at theamplitudeof theprescribed angle of twist, and the number of cycles to failure was measured. The fatigue test was carried out for pulsating and alternating torsion. The frequency was 600cpm (10Hz). The experimental apparatus used for the torsion test and the torsion fati- gue test was presented in the previous paper (Tobushi et al., 2009). 3. Experimental results and discussion for torsional deformation 3.1. Basic deformation property of the material The stress-strain curve obtained from the tension test for the SMA thin stripat roomtemperature is shown inFig.1.Thestrain ratewas 1.67·10−5 s−1. Although the clear yielding phenomenon due to the MT starts at strain of 0.3%, the slopeof the stress-strain curve starts tobegentle at strain of 0.2%. A residual strain of 4.8%appears after unloading.The residual strain disappe- arswhenheating occurs underno load, showing the SME.The elasticmodulus determined from the slope of the initial stress-strain curve is 28GPa. 1046 H. Tobushi et al. Fig. 1. Relationship between the stress and strain in tension 3.2. Torsional deformation properties 3.2.1. Twisted state Thephotographs of the twisted SMAthin strip are shown inFig.2 for each angle of twist. The left side shows the fixed end and the right side the twisted end. The crossover point of the upper and lower surfaces of the SMA thin strip propagates from the twisting end at the angle of twist per unit length θ =39.3rad·m−1 (total angle of twist φ= π/2) and reaches the central part of the specimen at θ=78.5rad·m−1 (φ=π).We note that both edges of the thin stripare elongatedby twisting sinceboth endsare axially fixed.Therefore, tensile stress is inducedalongbothedges, andthe stress statebecomesdifferent from the simple shear andmuchmore complex. Fig. 2. Photographs of the twisted SMA thin strip at each angle of twist Two-way rotary shape memory alloy... 1047 3.2.2. Temperature characteristics The thermomechanical characteristics of SMA appear due to theMT and the reverse transformation. The exothermic reaction and endothermic reac- tion occur based on theMTand the reverse transformation, respectively. The initiation andgrowthprocesses of theMTcanbe therefore analyzed bymeasu- ring temperature on the surface of the material. The infrared thermography to measure the temperature distribution on the whole surface of the material can be applied to this objective. The temperature distribution on the surface of the SMA thin strip at each angle of twist during the torsional deformation obtained by the infrared thermography is shown inFig.3. Themaximum tem- perature on the surface of the specimen appears along the edge of the thin strip, and the exothermicMToccurs in this part and grows toward the central part of the specimen with an increase in the angle of twist. The temperature rise along the edge of the strip starts at the angle of twist per unit length θ = 13.1rad·m−1. The temperature increases markedly at θ = 26.2rad·m−1. Therefore, theMTgrows preferentially based on the elongation along the edge of the strip. Fig. 3. Thermograms showing temperature distribution on the surface of the SMA thin strip appeared due to phase transformation during torsion 3.2.3. Elongation of the edge in a thin strip Elongation of the edge in the SMA thin strip wasmeasured by a thickness gauge from the gap of two thin wires pasted on the edge of the thin strip. The relationship between the tesile strain of the edge ε and the angle of twist per unit length θ is shown in Fig.4. In contrast, the result calculated by as- suming that the deformed state of the edge in the thin strip with width w 1048 H. Tobushi et al. subjected to torsion is equal to helix on the surface of a column with dia- meter w is shown by the dashed line in Fig.4. As can be seen, the tensile strain of the edge in the strip appears from the initial stage of twisting. The angle of twist per unit length θ corresponds to the clear MT starting stra- in of 0.3% is 15 ∼ 30rad·m−1. The MT starting strain of 0.2% observed in Fig.1 corresponds to the angle of twist per unit length less than 15rad·m−1. Therefore, the temperature rise along the edge of the thin strip which starts at θ=13.1rad·m−1 (see in Fig.3) must appear due to theMT. Fig. 4. Strain of the edge in the thin strip under torsion 3.3. Cyclic torsional deformation 3.3.1. Deformation in pulsating torsion The relationships between the torque M and angle of twist per unit length θ obtained by the pulsating torsion test for the maximum angle θm = 52.4rad·m −1 and 78.5rad·m−1 are shown in Fig.5. In the first loading process, the curve between M and θ is expressed almost by a straight line. In the unloading process, the initial slope of the curve is steep and thereafter becomes to be the plateau stage. In the reloading process, the initial curve is almost parallel to the first loading curve and thereafter the slope of the curve becomes steep. The point at the end of the reloading curve coincides with the point at which the unloading started, showing the return-point memory (Pieczyska et al., 2007). 3.3.2. Deformation in alternating torsion The relationships between the torque M and angle of twist per unit length θ obtained by the alternating torsion test for the maximum angle θm = 52.4rad·m −1 and 78.5rad·m−1 are shown in Fig.6. Compared with Two-way rotary shape memory alloy... 1049 Fig. 5. Relationship between the torque M and angle of twist per unit length θ obtained by the pulsating torsion test Fig. 6. Relationship between the torque M and angle of twist per unit length θ obtained by the alternating torsion test the pulsating torsion shown in Fig.5, the twisting in the reverse direction to the first twisting directionwas carried out. The reverse loading and unloading curves are almost similar to the first loading and unloading curves except for the early stage. That is, the first and reloading curves are closely symmetric with respect to the origin. In the reloading process, the inital slope of the unloading curve is steep and the plateau stage appears thereafter. The point at the end of the reloading curve almost coincides with the point at which the first unloading started, showing the return-point memory, the same as in the pulsating torsion. 3.3.3. Torsional rigidity In the elastic deformation of torsion, the relationship between the incre- ments of torque ∆M and angle of twist per unit length ∆θ is given by the following equation ∆θ= ∆M k (3.1) 1050 H. Tobushi et al. where k denotes the torsional rigidity. In the case of a circular bar, k=GIp where G and Ip represent the modulus of rigidity and polar area moment of inertia, respectively. In the case of a bar of narrow rectangular cross section, k = wt3G/3, where w and t denote the width and thickness, respectively (Timoshenko and Goodier, 1982). We note that axial stress and strain are assumed to be zero in these cases. In the present study, considering practical application of the thin strip to a rotary driving element, both ends are axial- ly fixed, and therefore both edges of the strip are elongated by twisting as observed in Figs.3 and 4. That is, the axial stress and strain appear during twisting the thin strip, and the assumption of no axial stress and strain does not hold. The relationshipbetween the torque M andangle of twistperunit length θ in alternating twistingwith θm =52.4rad·m −1 is shown inFig.7. InFig.7, the slopes in the early stage of the loading and unloading curves are denoted by kl and ku, respectively. The average values of kl and ku obtained at various maximum angles θm are 3 ·10 −5N·m2 and 2.5 ·10−4N·m2. Fig. 7. Relationship between the torque and angle of twist per unit length in alternating twisting with θ=52.4rad·m−1 The calculated result of k = wt3G/3 for w = 5mm, t = 0.25mm and G=10GPa is 2.6 ·10−4N·m2. The calculated torsional rigidity k is close to the initial slope of the unloading curve ku. Therefore, we should note that Eq. (3.1) with k = wt3G/3 can not be applied to the evaluation of the loading curve but can be applied to the evaluation of the unloading curve in the early stage. 3.3.4. Dissipated work The area surrounded by the hysteris loop of the torque-angle curve of twist shown inFigs.5 and 6 expresses the dissipatedwork per unit length Wd. Two-way rotary shape memory alloy... 1051 The relationships between the dissipated work per unit length Wd and the maximum angle of twist per unit length θm obtained by the pulsating and alternating torsion tests are shown inFig.8. Thedissipatedwork Wd increases in proportion to the maximum angle of twist θm. The value of Wd in the alternating torsion is larger than that in the pulsating torsion by 3.5 times. Wd is very small if θm is smaller than a certain value in both alternating and pulsating torsion. Fig. 8. Relationship between the dissipated work andmaximum angle of twist per unit length 3.4. Torsion fatigue properties The relations between themaximumangle of twist per unit length θm and the number of cycles to failure Nf obtained from the torsion fatigue test are shown in Fig.9. As can be seen in Fig.9, the number of cycles to failure Nf decreases with an increase in the maximum angle of twist per unit length θm in the region of low-cycle fatigue. This relation is approximated by a straight line on the logarithmic graph. The fatigue life curve seems therefore to be expressible in an equation similar to that for TiNi SMAwires under bending. This can be seen in Eq. (3.2) θmN β f =α (3.2) { β=0.1, α=265rad ·m−1 : Pulsating torsion β=0.13, α=310rad ·m−1 : Alternating torsion where αand β represent θmwhere Nf =1andthe slopeof the logθm−logNf curve, respectively. The calculated results obtained from Eq. (3.2) are shown by the solid lines in Fig.9. As can be seen, the low-cycle fatigue life curves are well matched by the solid calculation lines. 1052 H. Tobushi et al. Fig. 9. Fatigue-life curves of the SMA thin strip for the alternating and pulsating torsion Comparing the fatigue life of alternating torsion and pulsating torsion, the number of cycles to failure Nf for alternating torsion is smaller than that for pulsating torsion by 1/5. As observed inFig.8, the dissipatedwork Wd in the alternating torsion is larger than that in thepulsating torsionby3.5 times.The fatigue damage due to the dissipatedwork is therefore larger in the alternating torsion, resulting in shorter fatigue life. The maximum angle of twist per unit length θm for the fatigue limit at which the fatigue life curve becomes horizontal is 44rad·m−1 for the alterna- ting torsion and 61rad·m−1 for the pulsating torsion, respectively. The dis- sipated work Wd in each cycle which corresponds to the fatigue limit of the maximumangle of twist per unit length θm is obtained fromFig.8. The dissi- patedwork Wd at θm =44rad·m −1 in the alternating torsion is 0.05J/mand that at θm =61rad·m −1 in the pulsating torsion is 0.04J/m. Therefore, the dissipatedwork corresponding to the fatigue limitmust exist at 0.04-0.05J/m. If the dissipated work in each cycle is smaller than 0.04-0.05J/m, the fatigue damage is slight, resulting in long fatigue life. 4. Two-way rotary actuator model If an SMA thin strip is heated by keeping the twist angle constant, the re- covery torque appears. Therefore, if the SMA thin strip is combined with a superelastic-SMA thin strip as a bias element, a two-way rotary actuator can be developed. In the previous paper (Tobushi et al., 2009), a rotary actuator model for opening and closing the door was demonstrated. The axes of two kinds of SMA thin strips showing the SME (SME-SMA strip) and the SE at Two-way rotary shape memory alloy... 1053 room temperature (SE-SMA strip) were arranged in the same line in the mo- del. In the present paper, a new rotary actuator model in which the axes of two kinds of SMA thin strips are arranged in parallel is demonstrated. Fig. 10. Structure of the actuator for lifting and lowering a basket with two kinds of SMA thin strips; 1 – SME-SMA thin strip, 2 – SE-SMA thin strip, 3 – arm, 4 – center bar, 5 – grip, 6 – side body, 7 – basket The structure of the two-way actuator for lifting and lowering a basket driven by the SMA-thin strips under heating and cooling is shown in Fig.10. Theprinciple andphotographs of two-waymotion of the actuator are shown in Figs.11 and 12, respectively. TheSME-SMAthin strip is the same as theTiNi SMA specimen used in the present study. The SE-SMA strip with thickness of t = 0.25mm and width of w = 2.5mm was a TiNi SMA thin strip. In the initial state, the SE-SMA strip was mounted to be in a flat plane and the SME-SMA strip was mounted at the total angle of twist φ=π/2. The SME-SMA strip was heated by the joule heat through an electric cur- rent. The basket was horizontal in the initial state. Since the recovery torque appeared in the SME-SMA strip by heating it, the basket moved upward. When the SME-SMA strip was cooled, the SE-SMA strip recovered the flat plane, which resulted in lowering the basket. Thus, if two kinds of SMA thin strips which show the SME and SE are used, the two-way rotary actuator with a small and simplemechanism can be developed. 1054 H. Tobushi et al. Fig. 11. Principle of the model of the actuator for lifting and lowering the basket driven by SMA-thin strips; Ts – temperature of SME-SMA strip, Af – reverse transformation finish temperature, RT – room temperature Fig. 12. Photographs of two-waymotion of the actuator for lifting and lowering the basket 5. Conclusions In order to develop the two-way rotary SMA thin strip actuator, the torsional deformation and fatigue properties of a TiNi SMA thin strip and the two- way rotary actuator model were investigated. The results obtained can be summarized as follows. • In the SMA thin strip subjected to torsion, the MT appears along the edge of the strip due to elongation of the edge of the strip and grows to the central part. • The number of cycles to failure decreases with an increase in the maxi- mumangle of twist in torsion fatigue.The fatigue life inpulsating torsion Two-way rotary shape memory alloy... 1055 is longer than that in alternating torsion by five times. The fatigue limit exists in a certain value of disspated work of the strip in each cycle. • Based on the two-way motion of the lifting actuator model driven by two kinds of SMA thin strips, it is confirmed that the two-way rotary actuator with a small and simplemechanism can be developed by using the SMA thin strips. Acknowledgements This study was performed as a part of the bilateral joint research project betwe- en Aichi Institute of Technology and Institute of Fundamental TechnologyResearch, PolishAcademy of Sciences supported by the Japan Society for Promotion of Science and Polish Academy of Sciences. The experimental work for this study was carried out with the assistance of students from Aichi Institute of Technology, to whom the authors wish to express their gratitude. The authors are also grateful to the admini- strators of Scientific Research (C) (General) in Grant-in-Aid for Scientific Research by the Japan Society for Promotion of Science for financial support. References 1. Chu Y.Y., Zhao L.C., eds., 2002, Shape memorymaterials and its applica- tions,Trans. Tech. Pub., 177-284 2. Duerig T.W., Melton K.N., Stockel D., Wayman C.M., eds., 1990, Engineering Aspects of Shape Memory Alloy, Butterworth-Heinemann, 1-35 3. Funakubo H., ed., 1987, Shape Memory Alloys, Gordon and Breach Science Pub., 1-60 4. Holtz R.L., Sadananda K., Imam M.A., 1999, Fatigue thresholds of TiNi alloy near the shape memory transition temperature, Int. J. Fatigue, 21, 137- 145 5. Mabe J.H., Calkins F.T., Ruggeri R.T., 2007, Full-scale flight tests of aircraft morphing structures using SMA actuators,Proccedings of SPIE, 6525- 65251C, 1-12 6. Mabe J.H., Ruggeri R.T., Rosenzweig E., Yu C.J., 2004, NiTinol per- formance characterization and rotary actuator design, Smart Struct. Mater., Proccedings of SPIE, 5388, 95-109 7. Matsui R., Makino Y., Tobushi H., Furuichi Y., Yoshida F., 2006, Influence of strain ratio on bending fatigue life and fatigue crack growth in TiNi shape-memory alloy thin wires,Mater. Trans., 47, 3, 759-765 1056 H. Tobushi et al. 8. Matsui R., Tobushi H., Furuichi Y., Horikawa H., 2004, Tensile de- formation and rotating-bending fatigue properties of a highelastic thin wire, a superelastic thin wire, and a superelastic thin tube of NiTi alloys, Trans. ASME, J. Eng. Mater. Tech., 126, 384-391 9. OtsukaK.,WaymanC.M., eds., 1998,ShapeMemoryMaterials, Cambridge University Press, 1-49 10. PieczyskaE.A.,TobushiH.,NowackiW.K.,Gadaj S.P., SakuragiT., 2007, Subloop deformation behavior of TiNi shape memory alloy subjected to stress-controlled loadings,Mater. Trans., 48, 10, 2679-2686 11. Saburi T., ed., 2000, Shape memorymaterials,Trans. Tech. Pub., 315-366 12. Timoshenko S.T., Goodier J.N., 1982, Theory of Elasticity, 3rd ed., McGraw-Hill, 307-313 13. Tobushi H., Pieczyska E.A., Nowacki W.K., Sakuragi T., Sugimoto Y., 2009,Torsional deformation and rotary driving characteristics of SMA thin strip,Arch. Mech., 61, 3-4, 241-257 14. Tobushi H., SakuragiT., SugimotoY., 2008,Deformation and rotarydri- ving characteristics of a shape-memory alloy thin strip element,Mater. Trans., 49, 1, 151-157 Skrętny siłownik taśmowy zaprojektowany na bazie dwukierunkowego efektu pamięci kształtu Streszczenie Wpracyzbadanotermomechanicznewłaściwości skręcania i zmęczenia stopuTiNi z pamięcią kształtu (SMA)w celu zbudowania skrętnego siłownika taśmowego zapro- jektowanego na bazie dwukierunkowego efektu pamięci kształtu. Otrzymane wyniki podsumowano w sposób następujący. (1) W cienkich taśmach SMA poddawanych skręcaniu, przemianamartenzytyczna (MT) inicjuje się na krawędzi taśmyw związku ze składową rozciągania, a następnie rozwija w kierunku jej środka. (2)Wbadaniach zmęczeniowych ilość cykli do zniszczeniamalejewraz zewzrostemmaksymalnegokąta skręcania. Wytrzymałość na zmęczenie w przypadku skręcania pulsującego jest pię- ciokrotnie dłuższa niż w przypadku obciążania symetrycznego. (3) Przeprowadzone badania dwukierunkowego ruchu na zaprojektowanymmodelu siłownika poruszanego przy pomocy dwóch rodzajów cienkiej taśmy SMApotwierdziłymożliwość zbudowa- nia skrętnego siłownika zmałym i prostymmechanizmem na bazie dwukierunkowego efektu pamięci kształtu. Manuscript received February 17, 2010; accepted for print March 18, 2010