Jtam-A4.dvi JOURNAL OF THEORETICAL AND APPLIED MECHANICS 54, 1, pp. 53-61, Warsaw 2016 DOI: 10.15632/jtam-pl.54.1.53 AN INVERSE KINEMATIC ALGORITHM FOR THE HUMAN LEG Sebastian Głowiński, Tomasz Krzyżyński Koszalin University of Technology, Faculty of Technology and Education, Koszalin, Poland e-mail: sebastian.glowinski@tu.koszalin.pl; tomasz.krzyzynski@tu.koszalin.pl In this article, a 3-link kinematicmodel of a human leg is defined andanalyzedwith focus on optimizing themanipulability. The forward kinematics for the leg is used to define quantita- tivemeasures of themanipulability andworkspace in a sagittal plane. Analytical results for different manipulability indices are derived. Using numerical optimization inMatlab packa- ge, themanipulabilitymeasure is optimizedunder different constraints.The range ofmotion and joint comfort zones of every joint is defined. The algorithm for redundant chain, based on analytical equations, is proposed in inverse kinematics. Keywords: inverse kinematics, human leg, optimization 1. Introduction The inverse kinematics of a human leg is themapping that, given a goal position, calculates a set of joint positions so as to place the human leg effector (e.g. toe) in the specified goal. It is very important in the rehabilitation process. In this work, we present the main concerns on finding an inverse kinematics algorithm for a 3 link kinematic leg in plane. The work is divided into two parts: the first one, describing the analytical method for solving inverse kinematics, and the second one about the numericalmethodbyusingMatlab package. Inverse kinematics algorithms have been an issue to focus on since the first robots vave been built. Themost popularmethods have been the analytical ones (Parker et al., 1989), but an exact solution does not always exist. Therefore, sometimes alternativemethods are used as intervalmethods (Rao et al., 1998), based on distances (Porta et al., 2006), genetic algorithms (Parker et al., 1989), or based on neural networks (Tejomurtula and Kak, 1999). This paper presents a numerical approach to solve the problem of multiple inverse kinematic solutions of a 3-link redundant manipulators (like the model of a human leg) to find a single optimum solution. A simulation model of this approach has been developed and computer simulations have been conducted by using Matlab package. Themovement of the hip joint has not been implemented in the proposed algorithm, whereas it can be significant and should be included in the future studies. For people with injured spinal cord, the most important is verticalization. The authors treated the hip as stationary. Future work can be done in this direction by extending this approach to the 3 dimensional model with an increased number of links and joints.Thedescribedapproach is simple andvery fast in nature while solving inverse kinematics in comparison with genetic algorithms. 2. Kinematic model of the leg The human structure is constituted by a skeleton and a number of muscles, which are col- lectively called the human musculoskeletal system. The human skeleton is a framework that consists of more than 200 bones (Gu, 2013). The movements of parts of the human body are presented in Fig. 1. Circumduction is a circular movement that combines flexion/extension, abduction/adduction. 54 S. Głowiński, T. Krzyżyński Fig. 1. Human joint movement. Reproduced from [9] 2.1. Model of the human leg The proposed kinematic human leg model, in a sagittal plane, which passes from anterior to posterior, dividing the body into right and left halves, is presented in Fig. 2. The system of articulated links connected by rotatory joints are adopted to illustrate the human leg in this study. The leg is described as a system consisting of three segments, thigh, shank and foot as the length between ankle and metatarsal. The leg can be represented topologically using a kinematic chain structure in which links represent leg segments. The proposedmodel is kinematically redundant, because it possesses more degrees of freedom than those required to place the effector in a specified goal. To obtain the kinematic parameters, wemake the following assumptions: • The leg base is located at the origin C(xC,yC) (hip joint), the knee joint G(xG,yG), the ankle jointK(xK,yK) and end effector (metatarsal) O(xO,yO), respectively; • Lengths of links are calculated as a function of human height H [m], thigh bone lt =0.2450H, shank ll =0.2460H, length from ankle to metatarsal lf =0.0577H; • Joints are revolute and the limitations θh, θk, θa are known; • The initial joint angles θh, θk, θa are known; • The coordinates of the goal are given. 2.2. The range of motion and comfort zone Therangeofmotion (ROM)of every joint is determinednotonlybythemechanical structure, but also bymany human factors, such as the use, body build, gender, health condition, age and An inverse kinematic algorithm for the human leg 55 Fig. 2. Model of the human leg in a sagittal plane many other factors (Chaffin and Andersson, 1991). The comfort zone (CZ) of each joint of the human leg, should be a subset of the corresponding joint ROM.Table 1 lists those average joint ROM’s and the comfort zones just as a reference. The appropriate value of the upper-lower limit of each comfort zone is calculated by 0.35× the upper or lower limit of the correspondinghuman leg joint ROM.All theROMdata in the table are referred to the literature of biomechanics and kinesiology as average ranges (Tejomurtula and Kak, 1999). The comfort zone of each joint is determined by 35% of the ROMvalues, and the comfort center θCi for each joint angle θi can be obtained as θCi = 1 2 (θuiCZ −θ l iCZ)+θ h i (2.1) where θuiCZ and θ l iCZ are the first and second angles of the comfort zone, respectively, for the corresponding joint i, and θhi is the i-th joint home position. For example, θa is the joint angle of ankle plantarflexion/dorsiflexion with its home position θha =0 ◦ (knee neural 0◦). According to Table 1, θuaCZ =13.30 ◦ and θlaCZ =−12,25 ◦. The ankle comfort zone plantarflexion/dorsiflexion joint can be calculated as θCa =(13.30 ◦+12.25◦)/2−0◦ =12.78◦. This calculation can be useful to set up the joint comfort optimization criterion in trajectory generation. Table 1.The average joint ROM’s and joint comfort zones Joint ROM Comfort zone Conditions mobility [deg] [deg] when Hip 113/−45 39.55/−15.75 knee neutral 0◦ flexion/extension 90/−30 31.50/−10.5 knee flex 90◦ Knee flexion 113 (stand) 39.55 125 (prone) 43.75 hip neutral 0◦ 159 (knee) 55.65 80 (stand) 28.00 hip flex 90◦ Ankle plantarflexion 38/−35 13.30/−12.25 knee neutral 0◦ dorsiflexion 36/−33 12.60/−11.55 knee flex 90◦ 2.3. The trajectory planning Seeking the joint trajectories of the human leg is a wide research problem. In this article, the proposed method is based on the fifth degree polynomial. One of the advantages of this 56 S. Głowiński, T. Krzyżyński polynomial is that the velocity and acceleration at the beginning and at the end of motion is zero. To start, it is necessary to determine the function for each natural coordinate in the initial position for themoment in time t0 and end at the time tk. By using the fifth degree polynomial, it is essential to plan the velocity andacceleration at thebeginningand the endof themovement. The fifth degree polynomial takes the form θ(t)= s0+s1t+s2t 2+s3t 3+s4t 4+s5t 5 (2.2) with restrictions θ(0)= θp θ(tk)= θk θ̇(0)= θ̇p θ̇(tk)= θ̇k θ̈(0)= θ̈p θ̈(tk)= θ̈k then we receive θp = s0 θk = s0+s1tk+s2t 2 k+s3t 3 k+s4t 4 k+s5t 5 k θ̇p = s1 θ̇k = s1+2s2tk+3s3t 2 k+4s4t 3 k+5s5t 4 k θ̈p =2s2 θ̈k =2s2+6s3tk+12s4t 2 k+20s5t 3 k (2.3) where the final formula takes form of          s0 s1 s2 s3 s4 s5          =          1 t0 t 2 0 t 3 0 t 4 0 t 5 0 0 1 2t0 3t 2 0 4t 3 0 5t 4 0 0 0 2 6t0 12t 2 0 20t 3 0 1 tk t 2 k t 3 k t 4 k t 5 k 0 1 2tk 3t 2 k 4t 3 k 5t 4 k 0 0 2 6tk 12t 2 k 20t 3 k          −1           θ0 θ̇0 θ̈0 θk θ̇k θ̈k           (2.4) 2.4. Forward kinematics and the workspace Byusing the forwardkinematics, it is possible todetermine thepositionandorientation of the end effector. There are several methods to resolve this problem from geometrical to analytical by using homogeneous transformation matrices method and Denavit-Hartenberg’s systematic representation of reference systems (Głowiński et al., 2015). Our kinematic model of the leg is in the sagittal plane, then one can easily extract its direct kinematics parameters xO = ltcosθh+ llcos(θh−θk)− lf sin(θh−θk−θa) yO = lt sinθh+ ll sin(θh−θk)+ lf cos(θh−θk−θa) r= √ x2O+y 2 O r1 = √ l2t + l 2 l +2ltllcosθk r2 = √ l2 l + l2 f +2lllf sinθa θk =αl−βl θa = γl−βl− π 2 θf =π−γl (2.5) The workspace is an important performance index of a human leg in the rehabilitation process. This workspace can be divided into two categories: the position workspace and the orientation angle workspace. The position workspace indicates the region reached by the refe- rence point on the end-effector. The orientation angle workspace indicates a set of angle ranges by which the end-effector can reach with certain orientation for any point within the reachable position workspace. The workspace coordinates of the human leg including n-joints constraints can be obtained by using formulas x= n ∑ i=1 licos ( i ∑ p=1 θp ) y= n ∑ i=1 li sin ( i ∑ p=1 θp ) (2.6) An inverse kinematic algorithm for the human leg 57 Figure 3 shows the leg workspace in the sagittal plane of a 1.75m height person, with joint constraints. This workspace is characterized in a half cross-section by singular curves. The workspace topology is defined by the number of cusps and nodes that appear on these singular curves. Fig. 3. The human leg workspace for the constrained optimization problem 3. Algorithm approach to solving the inverse kinematics and obtaining the trajectory of the human leg In inverse kinematics we want to find the set of joint angles that produce a specific end-effector position. Ifwehave a configuration of ourmodel, andwewant tomove it to a newposition, then, we want to compute the change in the joint angles needed to produce the change in endpoint position. In Fig. 2a it is assumed that it is not straightforward to obtain the inverse kinematics of a simple 3-joint leg model. If we know the orientation (e.g. the foot angle θf) and the final position, it is possible to obtain analytical solutions by using formulas θk =arccos (xO − lf sinθf) 2+(yO− lf cosθf) 2 − l2t − l 2 l 2ltll θh =arctan yO− lf cosθf xO− lf sinθf +arccos l2t − l 2 l +(xO− lf sinθf) 2+(yO− lf cosθf) 2 2lt √ (xO − lf sinθf) 2+(yO− lf cosθf) 2 θa = θh−θk−θf + π 2 (3.1) Ifwedonotknowtheorientation, there is an infinitenumberof solutions.Thus, thenumerical methods appears to be acceptable. 3.1. Formulation of the optimization problem When dealing with a redundant manipulator, as the proposed leg model has more degrees of freedom than necessary to perform a certain task, the remaining degrees of freedom give a set of feasible solutions of the inverse kinematics. Among these solutions, it is recommended to choose thst satisfying a certain criterion. The main goal is to find the compromising solutions between several criteria. The criteria can be formulated as ROM and the distance between the goal and end the effector. One of the criteria used in inverse kinematics algorithms is to restrict joint limits. This can be done by optimizing a potential function with very high values in the neighbourhood of a limit. This function can be expressed as w(θ)= 1 2n n ∑ i=1 (θi,max−θi,min) 2 (θi,max−θi)(θi−θi,min) (3.2) 58 S. Głowiński, T. Krzyżyński wheren is the number of joints. This function gives, aswe can see inFig. 4, a very high potential when approaching the knee joint limit, and theminimum value at the midpoint. Fig. 4. The rise of the potential function when approaching knee joint limits The next criterion can be formulated as a distance, whereO(xO,yO) represents the goal xO− [ltcosθh+ llcos(θh−θk)− lf sin(θh−θk−θa)]< 0.0001 yO− [lt sinθh+ ll sin(θh−θk)+ lf cos(θh−θk−θa)]< 0.0001 (3.3) A general formulation of the optimization problemwould be min θ f(θ) such that c(θ)< 0 and ceq(θ)= 0 (3.4) In formulation (4.4) θ is the vector of optimization variables, c and ceq are vectorial functions involved in the inequality and equality constraints, respectively. The optimum angles of joints are defined as θh,opt,θk,opt, θa,opt. They can be personalized for each person. Problems without any constraint c and ceq are called unconstrainedwhile the others are constrained.The objective function f(θ) should be minimized and it is based on the comfort zone of every joint, and can be expressed as f(θ)= ( θh−θh,opt θh,min−θh,max )2 + ( θk−θk,opt θk,min−θk,max )2 + ( θa−θa,opt θa,min−θa,max )2 (3.5) By using Matlab package, it is possible to use different solvers depending on the objective function and constrains. In his problem, the constrains are nonlinear and the objective function is quadratic, then the best fit solver is fmincon. 3.2. Inverse kinematics algorithm In Fig. 5, the inverse kinematics algorithm is illustrated. The algorithm is divided into four steps. The first step begins by initialization. It is necessary to determine the height H of a subject and calculate length of thigh lt, shank ll and foot lf as the height function. The next part of this step is the determination of the initial hip, knee and ankle angles, respectively, θh, θk, θa, and calculation of the initial effector position by using forward kinematics (3.1). Next, with joints constraints and formulas (3.2) the workspace and the comfort zone of each joint should be designated. In the second step, the end position coordinates should be given. The program checks whether the final coordinates are in theworkspace. If not, it is necessary to find new coordinates. The third steps of the optimization begins by using Matlab package fmincon solver. The solution is a matrix with three angles in the final position. The angles are the most comfortable with taking into account the comfort zone of each joint. If the result is not satisfied, An inverse kinematic algorithm for the human leg 59 the next optimization should be done, or the comfort zone calculated properly. In the fourth step, the maximum velocity, acceleration and the minimum time of movement is determined. After that step, the trajectory by using fifth degree polynomial (2.4) can be obtained. Fig. 5. The inverse kinematics algorithm 4. Results For a 1.75m person height, the initial angles are obtained as θhi = 86 ◦, θki = 17 ◦, θai = −6 ◦. From forward kinematics (3.1), the end-effector coordinates are calculated as A(xO = 0.089, yO = 0.856). If we know the final point as C(xf = 0.4,yf = −0.4), based on the provided algorithm and the determined optimal angles, the final angles are calculated as θhf = 17 ◦, θkf = 108 ◦, θaf = −6 ◦. Then by using fifth degree polynomial (2.2), the trajectory can be determined. Figure 6 shows the visualization and the angles, angular velocity and acceleration of each joint. The time ofmotion is 2s.Themaximumangular knee joint velocity is about 80◦/s, whereas acceleration 140◦/s2. It is acceptable from the biomechanical point of view (Głowiński 60 S. Głowiński, T. Krzyżyński et al., 2015). The generated result shows high similarity between themodelmotion and the real human leg motion. Fig. 6. Graph presenting displacement, angular velocity and acceleration for the fifth degree polynomial describing motion of the human leg between the two positions, human leg model displacement (a), hip (b), knee (c), foot (d) From Fig. 6, it is observed that the final leg position is close to the target points C(xf = 0.4,yf = −0.4). The proposed methodology has been validated for different starting points and the results satisfied the criteria. Repeatability is a significant issue in our algorithm. It is very important for the user that theMatlab solver behaves consistently and is not sensitive to changes in the starting point. 5. Conclusion In this paper, an approach for modelling and simulation of the human leg inverse kinematics is presented. When planning the trajectory of the human leg, which will be used for rehabi- litation, individual patient capabilities need to be taken into consideration. This can be done by a preliminary study. Subsequently, the physician selects exercises depending on disease. It is particularly important after stroke with spasticity. As mentioned earlier, it should be noted that this study is limited to analysis of movements in the sagittal plane. Further investigations are thus needed in order to generalize our findings to other planes. When planning the trajectory, significant simplifications are being made by assuming the maximum acceleration values for each degree of freedom. If the maximum acceleration values are improperly selected, this can lead to the possibility of exceeding human joint limits. From the presented simulation results, the bestmethod for path planning is a fifth degree polynomial. According to the simulation results, it is decided to improve themechanical construction. In real situations, for particular real exercises, there aremuchmore parameters needed to be considered in the modelling, for example, the inserted force or the stability criterion. Further experiments are to be carried out in order to verify the modelling results in experiments. An inverse kinematic algorithm for the human leg 61 References 1. Chaffin D., Andersson G., 1991,Occupational Biomechanics, 2nd edn., JohnWiley & Sons 2. Głowiński S., Krzyżyński T., Pecolt S., Maciejewski I., 2015, Kinematics and dynamics of an exoskeleton arm,Archives of Applied Mechanics, 85, 75-87, DOI 10.1007/s00419-014-0900-8 3. Gu E.Y.L., 2013, A Journey from Robot to Digital Human, Mathematical Principles and Appli- cations with MATLAB Programming, Springer 4. Nocedal J., Wright S.J., 1999,Numerical Optimization, Springer 5. Parker J.A., Khoogar A.R., Goldberg D.E., 1989, Inverse kinematics of redundant robots using genetic algorithms,Proceedings, IEEE International Conference onRobotics andAutomation, 1, 271-276 6. Porta J.M., Ros L., Thomas F., 2005, Inverse kinematic solution of robot manipulators using interval analysis, 4th International Workshop on Computational Kinematics 7. Rao R.S., Asaithambi A., Agrawal S.K., 1998, Inverse kinematic solution of robotmanipula- tors using interval analysis, Journal of Mechanical Design, 120, 1, 147-150 8. TejomurtulaS.,KakS., 1999, Inversekinematics in roboticsusingneuralnetworks, Information Sciences, 116, 2/4, 147-164 9. http://philschatz.com/anatomy-book/contents/m46398.html, http://creativecommons.org/licenses/by/4.0/ Anatomy and Physiology Textbook (access 10.02.2015) Manuscript received April 8, 2015; accepted for print June 26, 2015