Jtam-A4.dvi JOURNAL OF THEORETICAL AND APPLIED MECHANICS 56, 1, pp. 107-122, Warsaw 2018 DOI: 10.15632/jtam-pl.56.1.107 AN ANALYTICAL INVESTIGATION OF A 2D-PPMS HOLLOW INFINITE CYLINDER UNDER THERMO-ELECTRO-MECHANICAL (TEM) LOADINGS Mohsen Meshkini School of Science and Engineering, Sharif University of Technology, International Campus, Kish Island, Iran e-mail: meshkini@kish.sharif.edu Keikhosrow Firoozbakhsh Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran e-mail: firoozbakhsh@sharif.edu Mohsen Jabbari Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Iran e-mail: m jabbari@azad.ac.ir Ali SelkGhafari School of Science and Engineering, Sharif University of Technology, International Campus, Kish Island, Iran e-mail: a selkgafari@sharif.edu The analytical solution of steady-state asymmetric thermo-electro-mechanical loads of a hollow thick infinite cylinder made of porous piezoelectric materials (2D-PPMs) based on two-dimensional equationsof thermoelasticity is considered.Thegeneral formof thermal and mechanical boundary conditions is considered on the inside and outside surfaces. A direct method is used to solve the heat conduction equation and the non-homogenous system of partial differential Navier equations using the complex Fourier series and the power- exponential law functions method. The material properties are assumed to depend on the radial and circumferential variable and are expressed as power-exponential law functions along the radial and circumferential direction. Keywords: piezoelectric, porothermoelastisity, 2D-PPMs, hollow cylinder, TEM 1. Introduction Porouspiezoelectricmaterials (PPMs)have lower acoustic impedanceandcanbe incorporated in medical ultrasonic imaging devices. They are widely used for applications such as low frequency hydrophones, accelerometers, vibratory sensors and contact microphones. The classical method of analysis is to combine equilibrium equations with stress-strain and strain-displacement rela- tions to arrive at governing equations in terms of displacement components, namely the Navier equations (Hetnarski and Eslami, 2009). Li et al. (2003) presented fabrication and evaluation of porous piezoelectric ceramics and poroussity-graded piezoelectric actuators. Zielinski (2010) discussed the fundamentals of multi physics modeling of piezo-poro-elastic structures. The pro- cessing and properties of porous piezoelectric materials with high hydrostatic figures of merit was given by Bowen et al. (2004).The porous piezoelectric composites with extremely high re- ception was discussed by Topolov and Turik (2001). Ciarletta and Scarpetta (1996) gave some results on thermoelasticity for porous piezoelectric materials. Batifol et al. (2007) presented a finite-element study of a piezoelectric/poroelastic sound package concept. Zeng et al. (2007) have discussed the processing and piezoelectric properties of porous PZT ceramics. Ivanov et al. (2002) used the porous piezoelectric ceramicsmaterials for ultrasonic flawdetection andmedical 108 M.Meshkini et al. diagnostics. Ding et al. (2004) presented an analytical solution of a special non-homogeneous pyroelectric hollow cylinder for piezothermoelastic axisymmetric plane strain dynamicproblems. Akbari Alashti et al. (2013) presented thermo-elastic analysis of a functionally graded spheri- cal shell with piezoelectric layers by differential quadrature method. Jabbari et al. (2012, 2016) studied mechanical and thermal stresses in FGPPM hollow cylinders. Meshkini et al. (2017) studied a asymmetric mechanical and thermal stresses in 2D-FGPPMs hollow cylinder. The applied separation of variables and the complex Fourier series to solve the heat conduction and Navier equations. In this study, an analytical method is presented for mechanical and thermal stress analysis for a hollow infinite cylindermade of fluid saturated porous piezoelectric materials (2D-PPMs). In present study, the material properties are assumed to be expressed by power functions in the radial and circumferential direction. The effects of compressibility, pore volume fraction (porosity), and electric potential coefficient on displacements, electric potential and stresses are studied. Temperature distribution is considered in the steady state asymmetric case and mechanical and thermal boundaryconditions by satisfying the stress anddisplacementboundary condition. 2. Governing equations 2.1. Stress analysis The strain-displacement relations and electric intensity are (Ding et al., 2004) εrr = ∂u ∂r εθθ = 1 r ∂v ∂θ + u r εrθ = 1 2 (1 r ∂u ∂θ + ∂v ∂r − v r ) Er = ∂ψ ∂r Eθ = 1 r ∂ψ ∂θ (2.1) Stress-strain relations of a 2D-PPM cylinder for the asymmtric condition are (Meshkini et al., 2017) σrr = C11εrr+C12εθθ +e21Er−γp−C T 1 T(r,θ) σθθ = C12εrr +C22εθθ +e22Er−γp−C T 2 T(r,θ) σzz = C12(εrr+εθθ)+e23Er−γp−C T 3 T(r,θ) σrθ =2C44εrθ+e24Eθ Drr = e21εrr+e22εθθ−ε22Er +g21T(r,θ) Dθθ =2e24εrθ −ε21Eθ+g22T(r,θ) (2.2) where p is related to Biot’s modulus, volumetric strain and the variation of the fluid content. Considering the undrained conditions (ξ =0) as (Jabbari et al., 2012) p = M(ξ −γ(εrr +εθθ)=−Mγ(εrr +εθθ) (2.3) Using relations (2.2) and (2.3), the stress-strain relations of the 2D-PPM for the asymmtric condition are (Meshkini et al., 2017) σrr = Ĉ11εrr+ Ĉ12εθθ +e21Er−C T 1 T(r,θ) σθθ = Ĉ12εrr + Ĉ22εθθ +e22Er−C T 2 T(r,θ) σzz = Ĉ12(εrr+εθθ)+e23Er−C T 3 T(r,θ) σrθ =2Ĉ44εrθ+e24Eθ Drr = e21εrr+e22εθθ−ε22Er +g21T(r,θ) Dθθ =2e24εrθ −ε21Eθ+g22T(r,θ) (2.4) An analytical investigation of a 2D-PPMs hollow infinite cylinder... 109 and Ĉ11 = C11+CM Ĉ12 = C12+CM Ĉ22 = C22+CM Ĉ44 = C44 (2.5) where CM = Mγ 2 and CTi are thermal moduli which can be expressed by elastic constants and linear thermal expansion coefficients αi (Ding et al., 2004) CT1 = C11αr+2C12αθ C T 2 =2C12αr +C22αθ (2.6) under consideration αr =αθ = α (Hetnarski and Eslami, 2009). Therefore, CT1 =(C11+2C12)α C T 2 =(2C12+C22)α C T 3 = C T 1 (2.7) The equilibrium equations in the radial and circumferential direction, disregarding the body force and the inertia terms, are (Ding et al., 2004) ∂σrr ∂r + 1 r ∂σrθ ∂θ + 1 r (σrr −σθθ)= 0 ∂σrθ ∂r + 1 r ∂σθθ ∂θ + 2 r σrθ =0 ∂Drr ∂r + 1 r ∂Dθθ ∂θ + 1 r Drr =0 (2.8) To obtain the equilibrium equations in terms of displacement components for the 2D-PPM cylinder, the functional relationship of the material properties must be known. Because the cylinder material is assumed to be graded along the radial and circumferential direction, the coefficient of thermal expansion and electric constants are assumed to be described with the power-exponential laws as α = α0r̃ m1en1θ Cij = Cijr̃ m2en2θ K = k0r̃ m3en3θ e2i = e2ir̃ m4en4θ ε2i = ε2ir̃ m5en5θ g2i = g2ir̃ m6en6θ (2.9) where r̃ = r/a and a is the inner radius. Fig. 1. Geometric model of a 2D-PPMhollow cylinder under two dimensional inner and outer Thermo-Electro-Mechanical (TEM) loads Using relations (2.4) and (2.9) into (2.8), the Navier equations in terms of the displacement components are 110 M.Meshkini et al. u,rr+ ( m2+1+(m2−1) Ĉ12 Ĉ11 ) 1 r u,r+ m2Ĉ12− Ĉ22 Ĉ11 1 r2 u+ n2C44 Ĉ11 1 r v,r− n2C44 Ĉ11 1 r2 v + C44 Ĉ11 1 r2 u,θθ+ n2C44 Ĉ11 1 r2 u,θ+ C12+C44 Ĉ11 1 r v,rθ+ m2C12−C22−C44 Ĉ11 1 r2 v,θ + ( e21 Ĉ11 ψ,rr+ (m4+1)e21−e22 Ĉ11 1 r ψ,r+ e24 Ĉ11 1 r2 ψ,θθ+ n4e24 Ĉ11 1 r2 ψ,θ ) r̃m4−m2e(n4−n2)θ = ( (m1+m2+1)C11+2(m1+m2)C12−C22 Ĉ11 1 r T + C11+2C12 Ĉ11 T,r ) α0r̃ m1en1θ v,rr+(m2+1) 1 r v,r− (m2+1) 1 r2 v+n2 Ĉ22 C44 1 r2 v,θ+ Ĉ22 C44 1 r2 v,θθ + ( m2+1+ Ĉ22 C44 ) 1 r2 u,θ+n2 Ĉ12 C44 1 r u,r+ ( 1+ Ĉ12 C44 ) 1 r u,rθ+n2 Ĉ22 C44 1 r2 u + ( n4 e22 C44 1 r ψ,r+ e22+e24 C44 1 r ψ,rθ+(m4+2) e24 C44 1 r2 ψ,θ ) r̃m4−m2e(n4−n2)θ = ( (n1+n2) 2C12+C22 C44 1 r T + 2C12+C22 C44 1 r T,θ ) α0r̃ m1en1θ (2.10) ψ,rr+(m5+1) 1 r ψ,r+n5 ε21 ε22 1 r2 ψ,θ+ ε21 ε22 1 r2 ψ,θθ− ( e21 ε22 u,rr+ (m4+1)e21+e22 ε22 1 r u,r + m4e22 ε22 1 r2 u+ n4e24 ε22 1 r v,r− n4e24 ε22 1 r2 v+ (m4+1)e22−e24 ε22 ) 1 r2 v,θ + e24 ε22 1 r v,rθ ) r̃m4−m5e(n4−n5)θ = ( (m6+1)g21+n6g22 ε22 1 r T + g22 ε22 ∂T ∂r + g22 ε22 1 r ∂T ∂θ ) r̃m6−m5e(n6−n5)θ Navier equations (2.10) are a non-homogeneous system of partial differential equations with non-constant coefficients. 2.2. Heat conduction problem The first law of thermodynamics for energy equation in the steady-state condition for the 2D-PPM two dimensional cylinder is 1 r (krT,r),r + 1 r2 (kT,θ),θ =0 a ¬ r ¬ b −π ¬ θ ¬+π (2.11) where T(r,θ) is temperature distribution, k(r,θ) is the thermal conduction coefficient and a comma denotes partial differentiation with respect to the space variable. The thermal boundary conditions are assumed as S11T(a,θ)+S12T,r(a,θ)= f1(θ) S21T(b,θ)+S22T,r(b,θ)= f2(θ) (2.12) we assume that the non-homogeneous thermal conduction coefficient k(r,θ) is a power function of the radial and circumferential coordinates (r,θ) as k(r,θ)= k0r̃ m3en3θ. Using the definition for the material properties, the temperature equation becomes T,rr+(m3+1) 1 r T,r+ 1 r2 (n3T,θ+T,θθ)= 0 (2.13) An analytical investigation of a 2D-PPMs hollow infinite cylinder... 111 The solution to Eq. (2.13) is written in the form of complex Fourier series, as T(r,θ)= ∞∑ q=−∞ Tq(r)e iqθ (2.14) Substituting Eq. (2.14) into Eq. (2.13), the following equation is obtained T ′′q (r)+(m3+1) 1 r T ′q(r)+ 1 r2 (iqn3−q 2)Tq(r)= 0 (2.15) Equation (2.15) is the Euler equation and has solutions in the form of Tq(r)= Aqr β (2.16) Substituting Eq. (2.16) into Eq. (2.15), the following characteristic equation is obtained β2+m3β +(iqn3−q 2)= 0 (2.17) the roots of Eq. (2.17) are βq1,2 = −m3 2 ∓ √ m23 4 +q2− iqn3 (2.18) Thus Tq(r)= Aq1r βq1 +Aq2r βq2 (2.19) Substituting Eq. (2.19) into Eq. (2.14) gives T(r,θ)= ∞∑ q=−∞ (Aq1r βq1 +Aq2r βq2)eiqθ (2.20) The constants Aq1 and Aq2 are presented in Appendix. 3. Solution of the Navier equation u(r,θ) = ∞∑ q=−∞ uq(r)e (iq+n1)θ v(r,θ) = ∞∑ q=−∞ vq(r)e (iq+n1)θ ψ(r,θ) = ∞∑ q=−∞ ψq(r)e (iq+n1)θ (3.1) Substituting Eqs. (2.20) and (3.1) into Eqs. (2.10) yields u′′q + ζ1 1 r u′q+(τ2+iτ3) 1 r2 uq+(τ4+iτ5) 1 r v′q+(τ6+iτ7) 1 r2 vq+ τ8ψ ′′ q + τ9 1 r ψ′q +(τ10+iτ11) 1 r2 ψq = 1 am1 [ (τ12+βq1τ13)Aq1r m1+βq1−1+(τ12+βq2τ13)Aq2r m1+βq2−1 ] v′′q + τ14 1 r v′q − (τ15− iτ16) 1 r2 vq +(τ17+iτ18) 1 r u′q+(τ19+iτ20) 1 r2 uq+(τ21+iτ22) 1 r ψ′q +(τ23+iτ24) 1 r2 ψq = 1 am1 (τ25+iτ26) ( Aq1r βq1+m1−1+Aq2r βq2+m1−1 ) ψ′′q + τ27 1 r ψ′q +(τ28+iτ29) 1 r2 ψq− τ30u ′′ q − τ31 1 r u′q− τ32 1 r2 uq +(τ33+iτ34) 1 r v′q +(τ35+iτ36) 1 r2 vq = 1 am1 [ (τ37+iτ38+βq1τ39)Aq1r βq1+m1−1 +(τ37+iτ38+βq2τ39)Aq2r βq2+m1−1 ] (3.2) 112 M.Meshkini et al. Equations (3.2) are a system of ordinary differential equations having general and particular solutions. The general solutions are assumed as ugq(r)= Dr η vgq(r)= Er η ψgq(r)= Fr η (3.3) Substituting Eqs. (3.3) into Eqs. (3.2) yields [η(η −1)+ τ1η+ τ2+iτ3]D+[τ4η+τ5+i(τ6η+ τ7) ] E +[η(η −1)τ8+ τ9η+τ10+iτ11]F =0 [τ19+ τ17η+i(τ18η+ τ20)]D+[η(η−1)+ τ14η− τ15+iτ16]E +[τ21η+ τ23+i(τ22η+ τ24)]F =0 η(η −1)τ30− τ31η− τ32]D+[τ33η+ τ35+i(τ34η+ τ36)]E +[η(η −1)+ τ27η+ τ28+iτ29]F =0 (3.4) The constants τi are presented in Appendix. A nontrivial solution is obtained by setting the determinant of the coefficients of Eqs. (3.4) equal to zero, where a six-order polynomial characteristic equation is obtained. It gives six eigenvalues ηq1 to ηq6. Thus, the general solutions are ugq(r)= 6∑ j=1 Dqjr ηqj ⇒ ugq(r)= 6∑ j=1 Dqjr ηqj vgq(r)= 6∑ j=1 Eqjr ηqj ⇒ vgq(r)= 6∑ j=1 XqjDqjr ηqj ψgq(r)= 6∑ j=1 Fqjr ηqj ⇒ ψgq(r)= 6∑ j=1 YqjDqjr ηqj (3.5) whereXqj is the relationbetween constantsDqj andEqj andYqj is the relationbetween constants Dqj and Fqj. It is obtained from Eqs. (3.4). The constants are presented in Appendix. The particular solutions upq(r) and v p q(r) are assumed as upq(r)= Iq1r βq1+m1+1+ Iq2r βq2+m1+1 vpq(r)= Iq3r βq1+m1+1+ Iq4r βq2+m1+1 ψpq(r)= Iq5r βq1+m1+1+ Iq6r βq2+m1+1 (3.6) Substituting Eqs. (3.6) into the non-homogeneous form of Eqs. (3.2) gives Iq1 to Iq6, as they are presented in Appendix. The complete solutions for uq(r), vq(r) and ψq(r) are the sum of the general and particular solutions uq(r)= 6∑ j=1 Dqjr ηqj + Iq1r βq1+m1+1+ Iq2r βq2+m1+1 vq(r)= 6∑ j=1 XqjDqjr ηqj + Iq3r βq1+m1+1+ Iq4r βq2+m1+1 ψq(r)= 6∑ j=1 YqjDqjr ηqj + Iq5r βq1+m1+1+ Iq6r βq2+m1+1 (3.7) An analytical investigation of a 2D-PPMs hollow infinite cylinder... 113 Substituting Eqs. (3.7) into Eqs. (3.1) gives u(r,θ) = ∞∑ q=−∞ q 6=0 ( 6∑ j=1 Dqjr ηqj +Iq1r βq1+m1+1+ Iq2r βq2+m1+1 ) e(iq+n1)θ v(r,θ) = ∞∑ q=−∞ q 6=0 ( 6∑ j=1 XqjDqjr ηqj +Iq3r βq1+m1+1+ Iq4r βq2+m1+1 ) e(iq+n1)θ ψ(r,θ) = ∞∑ q=−∞ q 6=0 ( 6∑ j=1 YqjDqjr ηqj + Iq5r βq1+m1+1+ Iq6r βq2+m1+1 ) e(iq+n1)θ (3.8) Substituting Eqs. (3.8) into Eqs. (2.1), the strains and electric intensity are obtained as εrr = ∞∑ q=−∞ q 6=0 ( 6∑ j=1 ηqjDqjr ηqj−1+(βq1 +m1+1)Iq1r βq1+m1 +(βq2 +m1+1)Iq2r βq2+m1 ) e(iq+n1)θ εθθ = ∞∑ q=−∞ q 6=0 ( 6∑ j=1 (iq +n1)(Xqj +1)Dqjr ηqj−1+[(iq +n1)Iq3 + Iq1]r βq1+m1 +[(iq +n1)Iq4 + Iq2]r βq2+m1 ) e(iq+n1)θ εrθ = 1 2 ∞∑ q=−∞ q 6=0 ( 6∑ j=1 [iq+n1+(ηqj −1)Xqj]Dqjr ηqj−1+[(iq +n1)Iq1 +(βq1 +m1)Iq3]r βq1+m1 +[(iq +n1)Iq2 +(βq2 +m1)Iq4]r βq2+m1 ) e(iq+n1)θ Er = ∞∑ q=−∞ q 6=0 ( 6∑ j=1 ηqjYqjDqjr ηqj−1+(βq1 +m1+1)Iq5r βq1+m1 +(βq2 +m1+1)Iq6r βq2+m1 ) e(iq+n1)θ Eθ = ∞∑ q=−∞ q 6=0 ( 6∑ j=1 (iq +n1)YqjDqjr ηqj−1+(iq +n1)Iq5r βq1+m1 +(iq +n1)Iq6r βq2+m1 ) e(iq+n1)θ (3.9) Substituting Eqs. (3.9) into Eqs. (2.4), the stresses and electric displacement are obtained as σrr = 1 am2 ∞∑ q=−∞ q 6=0 { 6∑ j=1 ( Ĉ11[ηqjDqjr ηqj+m2−1+(βq1 +m1+1)Iq1r βq1+m1+m2 +(βq2 +m1+1)Iq2r βq2+m1+m2]− α0 am1 C11(Aq1r βq1+m1+m2 +Aq2r βq2+m1+m2) + Ĉ12[(iq +n1)(Xqj +1)Dqjr ηqj+m2−1+ ( (iq +n1)Iq3 +Iq1 ) rβq1+m1+m2 + ( (iq +n1)Iq4 +Iq2 ) rβq2+m1+m2]− 2α0 am1 C12(Aq1r βq1+m1+m2 +Aq2r βq2+m1+m2) ) en2θ 114 M.Meshkini et al. +e21[ηqjYqjDqjr ηqj+m2−1+(βq1 +m1+1)Iq5r βq1+m1+m2 +(βq2 +m1+1)Iq6r βq2+m1+m2]en2θ } e(iq+n1)θ σθθ = 1 am2 ∞∑ q=−∞ q 6=0 { 6∑ j=1 ( Ĉ12[ηqjDqjr ηqj+m2−1+(βq1 +m1+1)Iq1r βq1+m1+m2 +(βq2 +m1+1)Iq2r βq2+m1+m2]− α0 am1 C12(Aq1r βq1+m1+m2 +Aq2r βq2+m1+m2) + Ĉ22[(iq +n1)(Xqj +1)Dqjr ηqj+m2−1+ ( (iq +n1)Iq3 +Iq1 ) rβq1+m1+m2 + ( (iq +n1)Iq4 +Iq2 ) rβq2+m1+m2]− 2α0 am1 C22(Aq1r βq1+m1+m2 +Aq2r βq2+m1+m2) ) en2θ +e22[ηqjYqjDqjr ηqj+m2−1+(βq1 +m1+1)Iq5r βq1+m1+m2 +(βq2 +m1+1)Iq6r βq2+m1+m2]en2θ } e(iq+n1)θ σrθ = 1 am2 ∞∑ q=−∞ q 6=0 { 6∑ j=1 C44 ( [(iq +n1)+(ηqj −1)Xqj]Dqjr ηqj+m2−1+[(iq +n1)Iq1 +(βq1 +m1)Iq3]r βq1+m1+m2 +[(iq +n1)Iq2 +(βq2 +m1)Iq4]r βq2+m1+m2 ) en2θ −e24[(iq +n1)YqjDqjr ηqj+m2−1+(iq +n1)Iq5r βq1+m1+m2 +(iq +n1)Iq6r βq2+m1+m2]en2θ } e(iq+n1)θ (3.10) σzz = 1 am2 ∞∑ q=−∞ q 6=0 { 6∑ j=1 ( Ĉ12[ηqjDqjr ηqj+m2−1+(βq1 +m1+1)Iq1r βq1+m1+m2 +(βq2 +m1+1)Iq2r βq2+m1+m2 + ( (iq +n1)Iq3 + Iq1 ) rβq1+m1+m2 + ( (iq +n1)Iq4 +Iq2 ) rβq2+m1+m2 − 3α0 am1 C12(Aq1r βq1+m1+m2 +Aq2r βq2+m1+m2)] ) en2θ +e23[ηqjYqjDqjr ηqj+m2−1+(βq1 +m1+1)Iq5r βq1+m1+m2 +(βq2 +m1+1)Iq6r βq2+m1+m2]en2θ } e(iq+n1)θ Drr = 1 am2 ∞∑ q=−∞ q 6=0 { 6∑ j=1 ( e21[ηqjDqjr ηqj+m2−1+(βq1 +m1+1)Iq1r βq1+m1+m2 +(βq2 +m1+1)Iq2r βq2+m1+m2]+e22[(iq +n1)(Xqj +1)Dqjr ηqj+m2−1 + ( (iq +n1)Iq3 +Iq1 ) rβq1+m1+m2 + ( (iq +n1)Iq4 + Iq2 ) rβq2+m1+m2] ) en2θ −ε22[ηqjYqjDqjr ηqj+m2−1+(βq1 +m1+1)Iq5r βq1+m1+m2 +(βq2 +m1+1)Iq6r βq2+m1+m2]en2θ + g21 am1 (Aq1r βq1+m1+m2 +Aq2r βq2+m1+m2)e(n1+n2)θ } e(iq+n1)θ An analytical investigation of a 2D-PPMs hollow infinite cylinder... 115 Dθθ = 1 am2 ∞∑ q=−∞ q 6=0 { 6∑ j=1 e24 ( [iq +n1+(ηqj −1)Xqj]Dqjr ηqj+m4−1+[(iq +n1)Iq1 +(βq1 +m1)Iq3]r βq1+m1+m4 +[(iq +n1)Iq2 +(βq2 +m1)Iq4]r βq2+m1+m4 ) en4θ −ε21 ( (iq +n1)YqjDqjr ηqj+m5−1+(iq+n1)Iq5r βq1+m1+m5 +(iq +n1)Iq6r βq2+m1+m5 ) en5θ+ g22 am1 (Aq1r βq1+m1+m6 +Aq2r βq2+m1+m6)en6θ } e(iq+n1)θ To determine the constants Dqj, any general from of boundary conditions for displacements, stresses and potential electric is considered as u(a,θ)= w1(θ) u(b,θ)= w2(θ) v(a,θ)= w3(θ) v(b,θ)= w4(θ) σrr(a,θ)=w7(θ) σrr(b,θ)= w8(θ) σrθ(a,θ)= w9(θ) σrθ(b,θ)= w10(θ) ψ(a,θ)= w5(θ) ψ(b,θ)= w6(θ) Drr(a,θ)= w11(θ) Drr(b,θ)=w12(θ) (3.11) It is recalled that Eqs. (3.9) and (3.10) contain six unknowns, Dq1,Dq2, . . . ,Dq6. Assume that the six boundary conditions are specified from list of Eqs. (3.11). The boundary conditionsmay be either the given displacements and electric potential or stresses, or combinations. Expanding the given boundary conditions in complex Fourier series gives wj(θ)= ∞∑ n=−∞ Wj(q)e (iq+n1)θ j =1, . . . ,6 (3.12) where Wj(q)= 1 2π π∫ −π wj(q)e −(iq+n1)θ dθ j =1, . . . ,6 (3.13) Using the selected six boundary conditions of Eqs. (3.11) with the help of Eqs. (3.12) and (3.13), the six unknown coefficients Dq1 to Dq6 are calculated. 4. Results and discussion Consider a thick hollow cylinder of inner radius a = 1m and outer radius b = 1.2m of Ba2NaNb5O15 material with properties given in Table 1. The thermal boundary conditions are substituted into Eq. (2.12) to obtain the temperature distribution, where the constants of integration are obtained from the equations given in Ap- pendix. The stress and displacement and electric potential boundary conditions are assumed to be selected such that the mathematical strength of the proposed method can be examined. These type of boundary conditions may not be handled with the potential function method. The constant coefficients of the series expansions are obtained from Eq. (3.13). Here, B is the compressibility coefficient, sometimes named the skemptonporepressure coefficient, andφ is the pore volume fraction and is pore per total volume, respectively, which are given in Appendix. Using Eqs. (3.11) and (3.12), the boundary conditions given in terms of the radial and shear stresses as well as electric potential appear in Table 2. These boundary conditions are expanded by the integral series and the unknown coefficients Dqj are determined. 116 M.Meshkini et al. Table 1.Material constants of Ba2NaNb5O15 for 2D-PPM (Akbari Alashti et al., 2013; Jabbari et al., 2012) Parameter Value Parameter Value Parameter Value α0 [1/ ◦C] 1.2 ·10−6 C11 [GPa] 239 e22 [C/m 2] −0.3 γ 0.75 C12 [GPa] 104 e24 [C/m 2] 3.4 ν 0.25 C22 [GPa] 247 ε21 [C 2/Nm2] 1.96 ·10−9 νu 0.3 C44 [GPa] 76 ε22 [C 2/Nm2] 2.01 ·10−9 k0 [W/mK] 13.9 e21 [C/m 2] −0.4 g21 [C/m 2K] 5.4 ·10−5 m1,m2, . . . ,m6 m n1,n2, . . . ,n6 n g22 [C/m 2K] 5.4 ·10−5 Table 2.Boundary condition for 2D-PPM (Jabbari et al., 2012) T(a,θ) T(b,θ) σrr(a,θ) σrθ(a,θ) u(b,θ) v(b,θ) ψ(a,θ) [◦C] [MPa] [MPa] [W/A] 60sin(2|θ|) 0 400sin ( θ2 4 −|θ| ) 50θ2cosθ 0 0 ψ0θ 2cos(2θ) Fig. 2. Temperature distribution in the (a) radial at θ = π/3 and (b) circumferential direction at r = r Fig. 3. (a) Circumferential distribution of radial thermo-electro-mechanicalal stresses σrr at r = r. (b) Radial distribution of shear thermo-electro-mechanicalal stresses σrθ at θ = π/3 An analytical investigation of a 2D-PPMs hollow infinite cylinder... 117 Figure 2a and 2b shows the effect of the power-exponential law index on the temperature distribution in thewall thickness along the radial andcircumferential directions.The effect of the power-exponential law index on the distribution of the radial thermo-electro-mechanical stresses is shown in Fig. 3a. It is shown that as m,n increases, the radial, hoop, shear and axial thermal stresses are increased.Thisfigure is aplot of stresses versusθ at r = r =1.1,where r is theavrege inner radius a and the outer radius b. Figure 3b shows the shear thermo-electro-mechanical stresses in the cross section of the cylinder, where the pore compressibility coefficient B is changed and the other parameters are fixed. Figure 4a shows the radial displacement in the cross section of the cylinder, where the based on the pore volume fraction φ is changing. Also the electric potential constant in Figs. 1 to 4a is ψ0 =60V. Figure 4b shows the circumferential displacements in the cross section of the cylinder,where thebasedon theversus electric potential coefficient ψ0 is changing. Fig. 4. (a) Radial distribution of u with diffrent porosity cofficient at θ = π/3. (b) Circumferential distribution of v with electric potential coefficient at r = r 5. Conclusions In the present work, an attempt is made to study the problem of analitical solution for the Thermo-Electro-Mechanical (TEM) in a thick 2D-PPM hollow infinite cylinder where the two- dimensional asymmetric steady-state loads are implied. The method of solution is based on the direct method and uses the power series, rather than the potential function method. The advantage of thismethod is itsmathematical power to handle both simple and complicatedma- thematical functions for the thermal andmechanical stresses boundary conditions.Thepotential function method is capable of handling complicated mathematical functions as the boundary conditions. The proposed method does not have mathematical limitations to deal with general types of boundary conditions, which usually occur in the potential function method. Appendix d1 =(βq1 +m1+1)(βq1 +m1)+ ( (m2+1)+(m2−1) Ĉ12 Ĉ11 ) (βq1 +m1+1) + m2Ĉ12− Ĉ22 Ĉ11 +[(n1+n2)n1+iq(2n1+n2)− q 2] C44 Ĉ11 118 M.Meshkini et al. d2 =(βq2 +m1+1)(βq2 +m1)+ ( (m2+1)+(m2−1) Ĉ12 Ĉ11 ) (βq2 +m1+1) + m2Ĉ12− Ĉ22 Ĉ11 +[(n1+n2)n1+iq(2n1+n2)− q 2] C44 Ĉ11 d3 = ( (iq +n1) Ĉ12 Ĉ11 +(iq +n1+n2) C44 Ĉ11 ) (βq1 +m1+1) +(iq +n1) m2Ĉ12− Ĉ22 Ĉ11 − (iq +n1+n2) C44 Ĉ11 d4 = ( (iq +n1) Ĉ12 Ĉ11 +(iq +n1+n2) C44 Ĉ11 ) (βq2 +m1+1) +(iq +n1) m2Ĉ12− Ĉ22 Ĉ11 − (iq +n1+n2) C44 Ĉ11 d5 = e21 Ĉ11 (βq1 +m1+1)(βq1 +m1)+ (m4+1)e21−e22 Ĉ11 (βq1 +m1+1) +[(n1+n4)n1+iq(2n1+n4)−q 2] e24 Ĉ11 d6 = e21 Ĉ11 (βq2 +m1+1)(βq2 +m1)+ (m4+1)e21−e22 Ĉ11 (βq2 +m1+1) +[(n1+n4)n1+iq(2n1+n4)−q 2] e24 Ĉ11 d7 = ((m1+m2+1)C11+2(m1+m2)C12−C22 Ĉ11 + C11+2C12 Ĉ11 βq1 ) α0 am1 Aq1 d8 = ((m1+m2+1)C11+2(m1+m2)C12−C22 Ĉ11 + C11+2C12 Ĉ11 βq2 ) α0 am1 Aq2 d9 =(βq1 +m1+1)(βq1 +m1)+(m2+1)(βq1 +m1+1) − (m2+1)+[(n1+n2)+ iq(n2+2)−q 2] Ĉ22 C44 ) d10 =(βq2 +m1+1)(βq2 +m1)+(m2+1)(βq2 +m1+1) − (m2+1)+[(n1+n2)+ iq(n2+2)−q 2] Ĉ22 C44 d11 = ( (iq +n1)+(iq +n1+n2) Ĉ12 C44 ) (βq1 +m1+1) +(iq +n1)(m2+1)+(iq+n1+n2) Ĉ22 C44 d12 = ( (iq +n1)+(iq +n1+n2) Ĉ12 C44 ) (βq2 +m1+1) +(iq +n1)(m2+1)+(iq+n1+n2) Ĉ22 C44 d13 = ( (iq +n1) e24 C44 +(iq +n1+n4) e22 C44 ) (βq1 +m1+1)+(iq+n1)(m4+2) e24 C44 An analytical investigation of a 2D-PPMs hollow infinite cylinder... 119 d14 = ( (iq +n1) e24 C44 +(iq +n1+n4) e22 C44 ) (βq2 +m1+1)+(iq+n1)(m4+2) e24 C44 d15 =(n1+n2+iq) 2C12+C22 C44 α0 am1 Aq1 d16 =(n1+n2+iq) 2C12+C22 C44 α0 am1 Aq2 d17 =(βq1 +m1+1)(βq1 +m1)+(βq1 +m1+1)(m5+1) +[(n1+n5)n1+iq(n5+2n1)−q 2] ε21 ε22 d18 =(βq2 +m1+1)(βq2 +m1)+(βq2 +m1+1)(m5+1) +[(n1+n5)n1+iq(n5+2n1)−q 2] ε21 ε22 d19 =− e21 ε22 (βq1 +m1+1)(βq1 +m1)− (m4+1)e21+e22 ε22 (βq1 +m1+1)− m4e22 ε22 d20 =− e21 ε22 (βq2 +m1+1)(βq2 +m1)− ( (m4+1)e21+e22 ε22 (βq2 +m1+1)− m4e22 ε22 d21 =(iq+n1+n4) e24 ε22 (βq1 +m1+1)+(iq +n1)(m4+1) e22 ε22 − (iq+n1+n4) e24 ε22 d22 =(iq+n1+n4) e24 ε22 (βq2 +m1+1)+(iq +n1)(m4+1) e22 ε22 − (iq+n1+n4) e24 ε22 d23 = ( (m6+1) g21 ε22 +(iq +n6+βq1) g22 ε22 ) 1 am1 Aq1 d24 = ( (m6+1) g21 ε22 +(iq +n6+βq2) g22 ε22 ) 1 am1 Aq2 N̂lqj = ηqj(ηqj −1)+ τ1η+τ2+ τ3+iτ4 N̂2qj = τ5ηqj + τ7+i(τ6+ τ8ηqj) N̂3qj = ηqj(ηqj −1)τ9+τ10ηqj + τ11+iτ12 N̂4qj = τ16+ τ18ηqj +i(τ19ηqj + τ21) N̂5qj = ηqj(ηqj −1)+ τ15ηqj − τ16+iτ17 N̂6qj = τ26ηqj + τ28+i(τ27ηqj + τ29) N̂7qj = ηqj(ηqj −1)τ35− τ36ηqj − τ37 N̂8qj = τ38ηqj + τ40+i(τ39ηqj + τ41) N̂9qj = ηqj(ηqj −1)− τ32ηqj + τ33+iτ34   N̂1qj N̂2qj N̂3qj N̂4qj N̂5qj N̂6qj N̂7qj N̂8qj N̂9qj       Dqj Eqj Fqj   =    0 0 0    ⇒ ∣∣∣∣∣∣∣ N̂1qj N̂2qj N̂3qj N̂4qj N̂5qj N̂6qj N̂7qj N̂8qj N̂9qj ∣∣∣∣∣∣∣ =0 Xqj = Eqj Dqj = N̂1qjN̂6qj − N̂3qjN̂4qj N̂3qjN̂5qj − N̂2qjN̂6qj Yqj = Fqj Dqj = N̂4qjN̂8qj − N̂5qjN̂7qj N̂5qjN̂9qj − N̂6qjN̂8qj j =1, . . . ,6 Iq1 = d7d9d17−d3d15d17−d5d9d23−d7d13d19+d3d13d23+d5d15d19 d1d9d17−d3d11d17−d1d13d19−d5d9d21+d5d11d19+d3d13d21 Iq2 = d8d10d18−d4d16d18−d6d10d24−d8d14d20+d4d14d24+d6d16d20 d2d10d18−d4d12d18−d2d14d20−d6d10d22+d6d12d20+d4d14d22 Iq3 = d1d15d17−d7d11d17−d1d13d23−d5d15d21+d5d11d23+d7d13d21 d1d9d17−d3d11d17−d1d13d19−d5d9d21+d5d11d19+d3d13d21 Iq4 = d2d16d18−d8d12d18−d2d14d24−d6d16d22+d6d12d24+d8d14d22 d2d10d18−d4d12d18−d2d14d20−d6d10d22+d6d12d20+d4d14d22 Iq5 = d1d9d23−d1d15d19−d3d11d23−d7d9d21+d7d11d19+d3d15d21 d1d9d17−d3d11d17−d1d13d19−d5d9d21+d5d11d19+d3d13d21 Iq6 = d2d10d24−d2d16d20−d4d12d24−d8d10d22+d8d12d20+d4d16d22 d2d10d18−d4d12d18−d2d14d20−d6d10d22+d6d12d20+d4d14d22 120 M.Meshkini et al. τ1 =(m2+1)+(m2−1) Ĉ12 Ĉ11 τ2 = m2Ĉ12− Ĉ22+[(n 2 1+n1n2)−q 2]C44 Ĉ11 τ3 = (2n1+n2)C44 Ĉ11 q τ4 = n1Ĉ12+(n1+n2)C44 Ĉ11 τ5 = Ĉ12+C44 Ĉ11 q τ6 = (m2Ĉ12− Ĉ22)n1− (n1+n2)C44 Ĉ11 τ7 = m2Ĉ12− Ĉ22−C44 Ĉ11 q τ8 = e21 Ĉ11 τ9 = (m4+1)e21−e22 Ĉ11 τ10 = [(n 2 1+n1n4)−q 2] e24 Ĉ11 τ11 =(2n1+n4) e24 Ĉ11 q τ12 = α0[(m1+m2+1)C11+2(m1+m2)C12−C22] Ĉ11 τ13 = α0 C11+2C12 Ĉ11 τ14 = m2+1 τ15 =(m2+1)− [(n1+n2)− q 2] Ĉ22 C44 τ16 =(n2+2) Ĉ22 C44 q τ17 = n1+(n1+n2) Ĉ12 C44 τ18 = ( 1+ Ĉ12 C44 ) q τ19 =(m2+1)n1+(n1+n2) Ĉ22 C44 τ20 = ( (m2+1)+ Ĉ22 C44 ) q τ21 = (n1+n4)e22+n1e24 C44 τ22 = e22+e24 C44 q τ23 =(m4+2)n1 e24 C44 τ24 =(m4+2)q e24 C44 τ25 = α0(n1+n2) 2C12+C22 C44 τ26 = α0 2C12+C22 C44 q τ27 = m5+1 τ28 = [(n 2 1+n1n5)−q 2] ε21 ε22 τ29 =(2n1+n5)q ε21 ε22 ζ30 =− e21 ε22 τ31 = (m4+1)e21+e22 ε22 τ32 = m4e22 ε22 τ33 =(n1+n4) e24 ε22 τ34 = e24 ε22 q τ35 = (m4+1)n1e22− (n1+n4)e24 ε22 τ36 = (m4+1)e22−e24 ε22 q τ37 = (m6+1)g21+n6g22 ε22 τ38 = g22 ε22 q τ39 = g22 ε22 Also B = 3(νu−ν) (1−2ν)(1+νu) 0¬ B ¬ 1 φ = γ(B −kf) B[(1−α)+k] wherekf andk are thebulkmodulusof thefluidphase and thebulkmodulusof theporouselastic medium under the drained condition, respectively M = 2G(νu−ν) γ2(1−2ν)(1−2νu) where M and γ are Biot’s modulus, Biot’s coefficient of the porouselastic medium, respectively. An analytical investigation of a 2D-PPMs hollow infinite cylinder... 121 Using the boundary conditions (2.12) to determine the constants Aq1, Aq2 ∞∑ q=−∞ [ (S11a βq1 +S12βq1a βq1 −1)Aq1 +(S11a βq2 +S12βq2a βq2 −1)Aq2 ] eiqθ = f1(θ) ∞∑ q=−∞ [ (S21b βq1 +S22βq1b βq1 −1)Aq1 +(S21b βq2 +S22βq2b βq2 −1)Aq2 ] eiqθ = f2(θ) (S11a βq1 +S12βq1a βq1 −1)Aq1 +(S11a βq2 +S12βq2a βq2 −1)Aq2 = 1 2π π∫ −π f1(θ)e −iqθ dθ (S21b βq1 +S22βq1b βq1 −1)Aq1 +(S21b βq2 +S22βq2b βq2 −1)Aq2 = 1 2π π∫ −π f1(θ)e −iqθ dθ Aq1 = 1 2π π∫ −π 1 Ŝ1− Ŝ2 [ (S21b βq2 +S22βq1b βq2−1)f1(θ) − (S11a βq2 +S12βq2a βq2−1)f2(θ) ] e−iqθ dθ Aq2 = 1 2π π∫ −π 1 Ŝ1− Ŝ2 [ (S11a βq1 +S12βq1a βq1−1)f2(θ) − (S21b βq1 +S22βq1a βq1−1)f1(θ) ] e−iqθ dθ Ŝ1 =(S11a βq1 +S12βq1a βq1 −1)(S21b βq2 +S22βq2b βq2 −1) Ŝ2 =(S11a βq2 +S12βq2a βq2 −1)(S21b βq1 +S22βq1b βq1 −1) References 1. Akbari Alashti R., Khorsand M., Tarahhomi M.H., 2013, Thermo-elastic analysis of a functionally graded spherical shell with piezoelectric layers by differential quadrature method, Scientia Iranica B, 20, 1, 109-119 2. Batifol C., Zielinski T.G., Ichchou M.N., GallandM.-A., 2007, A finite-element study of a piezoelectric/poroelastic sound package concept, Smart Materials and Structures, 16, 168-177 3. Bowen C.R., Perry A., Lewis A.C.F., Kara H., 2004, Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit, Journal of the European Ceramic Society, 24, 541-545 4. Ciarletta M., Scarpetta E., 1996, Some result on thermoelasticity for porous piezoelectric materials,Mechanics Research Communications, 23, 1, 1-10 5. Ding H.J., Wang H.M., Chen W.Q., 2004, Analytical solution of a special non-homogeneous pyroelectric hollow cylinder for piezothermoelastic axisymmetric plane strain dynamic problems, Applied Mathematics and Computation 151, 423-441 6. Hetnarski R.B., Eslami M.R., 2009, Thermal Stresses – Advanced Theory and Applications, Library of Congress Control No. 936149 7. IvanovP.V., EremkinV.V., SmotrakovV.G., Tsikhotskii E.S., 2002, Porous piezoelectric ceramics: materials for ultrasonic flaw detection andmedical diagnostics, Inorganic Materials, 38, 4, 408-410 8. JabbariM.,MeshkiniM., EslamiM.R., 2012,Nonaxisymmetricmechanical and thermal stres- ses in FGPPMhollow cylinder, Journal of Pressure Vessel Technology, 134, 061212-1 122 M.Meshkini et al. 9. JabbariM.,MeshkiniM.,EslamiM.R., 2016,Mechanical and thermal stresses inFGPPMhol- low cylinder due to radially symmetric loads,Journal of PressureVessel Technology, 138, 011207-1 10. Li J.-F., Takagi K., Ono M., Pan W., Watanabe R., 2003, Fabrication and evaluation of porous piezoelectric ceramics and porosity-gradedpiezoelectric actuators, Journal of the European Ceramic Society, 86, 1094-1098 11. MeshkiniM.,FiroozbakhshK., JabbariM., SelkGhafariA., 2017,Asymmetricmechanical and thermal stresses in 2D-FGPPMs hollow cylinder, Journal of Thermal Stresses, 40, 4, 448-469 12. TopolovV.Y.,TurikA.V., 2001,Porouspiezoelectric compositeswithextremelyhighreception, Technical Physics, 46, 9, 1093-1100 13. Zeng T., Dong X.L., Chen S.T., Yang H., 2007, Processing and piezoelectric properties of porous PZT ceramics,Ceramics International, 33, 395-399 14. Zielinski T.G., 2010, Fundamentals of multi physics modeling of piezoporous-elastic structures, Archives of Mechanics, 62, 5, 343-378 Manuscript received January 4, 2017; accepted for print July 25, 2017