JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

43, 1, pp. 119-133, Warsaw 2005

HYBRID METHOD OF EVALUATION OF SOUNDS

RADIATED BY VIBRATING SURFACE ELEMENTS

Marek S. Kozień

miejsce pracy w j. angielskim, Instytut lub Wydzial, Uczelnia

e-mail: kozien@mech.pk.edu.pl

The paper provides the theoretical backgroundof a hybridmethod to be
applied in engineering evaluation of sound radiation by vibrating surface
elements. The intensity vector is obtained at a selected point in the
acoustic medium surrounding the vibrating element. For convenience,
certain assumptions aremade for the purpose of far-field analysis, which
makes themethodallow for estimationof radiatedacousticpressure.The
method is the verified experimentally. Vibrations of structural elements
can be predicted theoretically using a finite element approach or from
the measurement of vibrations of real structures.

Key words: hybrid method, structural vibrations, sound radiation

1. Introduction

The finite element method (FEM) is one of the most powerful and useful
tools in engineering studies ondynamics ofmechanical systemsandcanbewell
applied to the analysis of structural vibrations. Recently, the FEM concept
was combined with spectral methods. It gives a new powerful technique to
dynamical analysis of structures, especially for computational fluid dynamics
(Karniadakis and Sherwin, 1999).
From the standpoint of acoustics, transverse vibrations of surface panels

are the source of sound radiation. That it is really well confirmed by theore-
tical studies (Elliott andNelson, 1997) and experimental programmes (Nizioł
et al., 1989). The analysis of coupled sound-structure interactions is now po-
ssible with the use of a finite element approach (e.g. the computer package
Ansys (Łaczek, 1999)). However, engineering applications of FEM are not so
widespread simply becausemost computers are not fast enough and they lack



120 M.S.Kozień

adequate computing power, particularly in the case of 3D problems and in the
selection and identification of the type of required acoustic analysis (steady-
state transition, near far-field). The concept of the acoustic intensity vector
has been widely used in the analysis of acoustic fields for a very long tine,
sometimes replacing the acoustic pressure.When the intensity vector is consi-
dered, we get information on both the amplitude of an expansion-compression
wave and the direction of wave propagation.
This paper provides the theoretical background of a new, original hybrid

method combining the advantages of these two approaches. The procedure of
themethodverification is outlined.Themethod is amodification of the earlier
concepts by Mann et al. (1987) and Nakagawa et al. (1993a,b) which allow
full engineering analysis of an acoustic field generated by vibrating surface
elements.Themajor advantage of themethod involves: lower computingpower
demands and available option for the selection of the type of acoustic field
analysis (near or far field). Besides, the method is useful in the estimation of
radiated acoustic pressure, assuming that velocity distributions for vibrating
structural elements are found experimentally.

2. Fundamentals of the hybrid method

2.1. FEM in structural analysis

The finite element method (FEM) is an approximate method for solving
the boundaryproblem formulated to describe behaviour of structural systems.
A finite element (rod, panel, shell, elastic body) is defined on the basis of cer-
tain simplifying assumptions (hypotheses), simplified functionals are derived
respectively and their minima are to be sought. This is a theoretical princi-
ple of the method stemming from variational mechanics. At that stage, the
material type is taken into account through application of relevant constitu-
tive equations and introduction of an adequate number of material constants.
Within linear dynamics, formulas stem from the Hamilton principle (Kleiber,
1995)

t1∫

t0

δ(L−Ek) dt=

t1∫

t0

W(δui) dt (2.1)

where i,j =1,2,3 and



Hybrid method of evaluation of sounds radiated... 121

δ(·) – symbol of variation
t0, t1 – time instants between whichmotion of a body is determined
δL – virtual work produced by strain

δL=
∫

V

∑

i,j

σijδεij dV

δEk – variation of kinetic energy

δEk =
∫

V

∑

i

ρ
∂ui
∂t
δ
∂ui
∂t
dV

W(δui) – virtual work of external loads

W(δui)=
∫

V

∑

i

biδui dV +
∫

S

∑

i

piδui dS

ui – component of displacement vector
σij – component of stress tensor
εij – component of strain tensor
bi – external (volumetric) load forces
pi – external (surface) load forces
ρ – material density.

When external loads acting upon a body are such that their virtual work
W(δui) can be expressed as a variation of a function Ep, called potential
energy of the strain W(δui) = −δEp, formula (2.1) can be rewritten into
(2.2). The function B=L−Ek+Ep is known as the Lagrange function

δ

t1∫

t0

(L−Ek+Ep) dt=0 (2.2)

The problem is solved byminimisation of a relevant functional and an ap-
proximate solution is sought as a combination of baseline functions, known as
shape functions, whose values are determined at specified points (i.e. nodes).
At that stage, boundary conditions are formulated to represent the structu-
re support. Node positions are associated with the selection of the type and
manner of the division into finite elements such that the structure geometry
be captured precisely enough. In dynamic problems, spatial discretisation of
a structure has to be considered as well as time dependencies of nodal displa-
cements. That can be achieved with the use of several methods, depending on
the type of performed analysis (for instance the integration with a prescribed
differentiation scheme for the analysis of transients). Theoretical backgrounds
of FEM were provided by Zienkiewicz in his fundamental book (Zienkiewicz,



122 M.S.Kozień

1972). FEM methods were first developed in Poland by a research group led
by Szmelter from Warsaw (Szmelter et al., 1979), who created an original fi-
nite element system WAT (Szmelter et al., 1973). In the years to come, new
applications of the FEM approach were investigated in other research cen-
tres, too: in Gdańsk (Kruszewski’s group, see Kruszewski (1975), Kruszewski
et al. (1984)) and in Kraków (Waszczyszyn and Cichoń, see Cichoń (1994),
Waszczyszyn et al. (1990)).
It can be noted that the boundary element method is an alternative ap-

proach to solve differential equations inmechanics of deformable (elastic) bo-
dies. Its theoretical background stems from Green-Gauss-Ostrogradsky’s the-
oremwhereby the theoretically formulated boundary condition is shifted from
the whole domain to its boundary (Ciskowski and Brebbia, 1996; Burczyński,
1995). Themethod is particularly useful in acoustical studies.

2.2. Acoustic intensity vector

Thenotionof acoustic intensity is associatedwith thedefinitionof intensity
of any vector field understood as a prescribed domain in which each point
at any time instant has an ascribed vector K(r, t) defined by a function
of position and time, which is continuous and differentiable over the whole
domain. The displacement field and the velocity of a deformable body are
both vector fields. Another concept is introduced as well. It is the stream rate
or the stream of the vector Q – a scalar quantity associated with the specified
surface area S, (often referred to as a vector streamby the surface).Whenwe
select an elementary surface dS, whose position and orientation is given by a
vector n normal to it, the intensity of the vector field in the direction Kn is
expressed as (2.3)1, and the derivative obtained accordingly is understood in
boundary terms as in (2.3)2 (Bukowski, 1959)

dQ=KdSn =KndS
dQ

dS
=Kn = lim

∆S→0

∆Q

∆S
(2.3)

The intensity of a vector field at a point of the domain Kn is equal to
the projection of the vector K onto a line normal to the relevant surface
element dS. Using the quantities applied to describe motion of deformable
bodies within the linear range (stress tensor σ, particle velocity v) we intro-
duce the vector of structural intensity I, given by (2.4)1, for any point within
the acoustic space whose position is determined by the vector r. It is readily
apparent that in dynamic analysis all quantities present in (2.4)1 are func-
tions of time, which is explicitly implied by the definition. Hence, we obtain
the instantaneous intensity vector I(r, t).



Hybrid method of evaluation of sounds radiated... 123

Thephysical interpretation of the intensity vector is based on its definition
in acoustics, which was generalised to elastic media. Hence, the instantaneous
intensity is interpretedas instantaneouspowerof awavepassing throughaunit
surface. In other words, the stream of the intensity vector over a prescribed
surface expresses the power of a wave passing through this surface (2.4)2

I(r, t)=−σ(r, t)v(r, t) W(S,t)=
∫∫

S

I(t)n dS (2.4)

In practical applications, we often resort to the acoustic intensity vector I
averaged over the time of its realisation T (2.5). This vector is often referred
to as the intensity vector. In the case of monochromatic waves, the time T is
equal to the wave period

I = 〈I(t)〉T =
1
T

T∫

0

I(t) dt (2.5)

Assuming the acoustic medium to be an ideal fluid (a Newtonian one),
constitutive equations for such media imply that the stress tensor has the
form of (2.6)1, where p is acoustic pressure. Awidely applied definition of the
acoustic intensity vector (2.6)2 in based on (2.4)1 and (2.6)1

σ=






−p 0 0
0 −p 0
0 0 −p




 I(r, t)=−p(r, t)v(r, t) (2.6)

Dynamic behaviour of mechanical systems is frequently analysed in the
complex space. In such a case, the acoustic intensity vector might also be a
complex quantity. Our considerations are restricted to monochromatic waves
of the angular frequency ω and period T . Accordingly, the complex vector
of instantaneous acoustic intensity can be obtained from (2.7)1 (Mann et al.,
1987; Moorse and Ingard, 1968). On account of its complex form, the vector
can be written as (2.7)2 and has two components: the active and reactive
intensity: I(r, t) andQ(r, t), respectively

Ic(r, t)=
1
2
p(r, t)v∗(r, t) Ic(r, t)= I(r, t)+ iQ(r, t) (2.7)

Averaging formula (2.7)1 over the monochromatic wave period T yields
expression (2.8). Formulas that define I(r) and Q(r) can be found in Mann
et al. (1987). Two important conclusions, vital for engineering applications,
can be drawn:



124 M.S.Kozień

• The averaged active component of the complex instantaneous intensity
vector is the averaged intensity vector in the considered period for the
analysed frequency.

• Theaveraged reactive component of the complex instantaneous intensity
is zero, hence it fails to contribute to the period-averaged acoustic power
flow.

In the light of the above conclusions, it is often claimed that the reactive
component is of no importance fromthe standpoint of energy transfer, and the
knowledge of the active component fully suffices for its quantitative description

〈Ic(r, t)〉T =
1
T

T∫

0

Ic(r, t) dt=
1
T

T∫

0

2I(r)cos2(ωt−ϕ)
︸ ︷︷ ︸

I(r,t)

dt+

(2.8)

+i
1
T

T∫

0

Q(r)sin[2(ωt−ϕ)]
︸ ︷︷ ︸

Q(r,t)

dt= I(r)

Basing on the definition of the complex intensity vector, we derive the
concept of near and far acoustic fieldswhich differ from any other geometrical
definitions known from literature. The near acoustic field refers to the ran-
ge close to the sound source where the reactive value of sound intensity is
considerable in relation to the active component (Mann et al. 1987).

2.3. Determination of the acoustic intensity vector by analysis of struc-

tural vibrations – theoretical principles of the hybrid method

Analysis of an acoustic field generated by vibrating elements consists in
finding the resultant intensity vector I at a selected point in the space. The
method canbewell applied to studies of vibrating surface elements. Thewhole
vibrating structure is divided into subdomains. When the FEM approach is
employed, the discretisation procedure is applied right from the moment the
vibrating structure is divided intofinite elements.When shell or plate elements
are considered, each finite element naturally becomes a sub-domain.
Each vibrating sub-domain becomes a source of radiated sounds. For co-

nvenience, let us consider a monochromatic wave of a given frequency ω and
the analysis is performed in the complex space. For the purpose of acoustic
analysis, we assume that our case confines to a small radiating surface ele-
ment. The smallness of the element is interpreted here in relation to thewave-
length (associated with the wave frequency), in accordance with (2.9)1, where



Hybrid method of evaluation of sounds radiated... 125

r0 is the radius of the sub-domain or the greatest distance between the sub-
domaincentre and itsboundarypoints (Kwiek, 1968;Moorseand Ingard,1968;
Śliwiński, 2001)

r0 �
λ

4π
k=
ω

c
=
2π
λ

(2.9)

Our description utilises the Cartesian coordinate system Oxyz. Let the
position of any control point P(x,y,z) be given by the vector R=OP and
that of the central point in the i-th sub-domain Qi(xi,yi,zi), i.e. by the vector
ri = QiP . The relationship between the two vectors is expressed by (2.10)1,
where ρi = OQi denotes the vector of the central point position in the sub-
domain, and equation (2.10)2 is thus satisfied

ri =ρi−Ri ri =
√

(x−xi)2+(y−yi)2+(z−zi)2 (2.10)

In this case, the acoustic pressure and components of particle velocity
generated by the i-th sub-domain (defined by the position of its central point
Q(xi,yi,zi) at a given point P(x,y,z)) are expressed by (2.11) (Kwiek, 1968),
where: ∆Si is the surface area of a sub-domain, Ai – amplitude of sub-domain
displacement. The geometry of the domain and sub-domain is schematically
shown in Fig. .

Fig. 1. Geometry of the sub-domain and the control point P



126 M.S.Kozień

Formula (2.11)2 can be written in the Cartesian coordinate system in a
formof three scalar relationships todetermine three components of thevelocity
vector v, (2.12), which has the same direction as the vector ri

pi = pi(ri,R)=−
1
2π
∆Siω

2ρ
Ai
ri
ei(ωt−kri)

(2.11)

vi =vi(ri,R)=vri(ri,R)=Ai∆Si
[

−
ω2

2πc
1
ri
+i
ω

2π
1
r2i

]

eei(ωt−kri)
ri

ri

vix(xi,yi,zi,x,y,z) =Ai∆Si
[

−
ω2

2πc
1
ri
+i
ω

2π
1
r2i

]x−xi
ri
eei(ωt−kri)

viy(xi,yi,zi,x,y,z) =Ai∆Si
[

−
ω2

2πc
1
ri
+i
ω

2π
1
r2i

]y−yi
ri
eei(ωt−kri) (2.12)

viz(xi,yi,zi,x,y,z)=Ai∆Si
[

−
ω2

2πc
1
ri
+i
ω

2π
1
r2i

]z−zi
ri
eei(ωt−kri)

Anothermajor consideration is themethodof superpositionofpressureand
particle velocity contributions fromsub-domainsat thepoint P .Thedefinition
of the acoustic intensity vector, (2.6)2, generalized by Mann et al. (1987) to
systems of N point sources, is given by formula (2.13). The assumption that a
single element becomes a point source is acceptable as long as the surface area
of a sub-domain (i.e. finite element) is small, and can be chosen arbitrarily
(via grid density)

I =
1
2

( N∑

j=1

pj
)( N∑

j=1

v
∗

j

)

(2.13)

After necessary transformations of (2.11)1, (2.12) and (2.13), we get new
concise formulas yielding components of real and imaginary parts of the aco-
ustic intensity at a selected point. Coefficients aj, bj, cj and dj are given by
formula (2.16)

Re(Ix)=
( n∑

j=1

aj
)( n∑

j=1

xjbj
)

+
( n∑

j=1

cj
)( n∑

j=1

xjdj
)

Re(Iy)=
( n∑

j=1

aj
)( n∑

j=1

yjbj
)

+
( n∑

j=1

cj
)( n∑

j=1

yjdj
)

(2.14)

Re(Iz)=
( n∑

j=1

aj
)( n∑

j=1

zjbj
)

+
( n∑

j=1

cj
)( n∑

j=1

zjdj
)



Hybrid method of evaluation of sounds radiated... 127

Im(Ix)=
( n∑

j=1

aj
)( n∑

j=1

xjdj
)

−
( n∑

j=1

bj
)( n∑

j=1

xjcj
)

Im(Iy)=
( n∑

j=1

aj
)( n∑

j=1

yjdj
)

−
( n∑

j=1

bj
)( n∑

j=1

yjcj
)

(2.15)

Im(Iz)=
( n∑

j=1

aj
)( n∑

j=1

zjdj
)

−
( n∑

j=1

bj
)( n∑

j=1

zjcj
)

aj =
AjSj
rj
cos(krj) bj =

AjSj
rj
sin(krj)

cj =
AjSj
r2j

[

kcos(krj)−
1
rj
sin(krj)

]

(2.16)

dj =
AjSj
r2j

[

k sin(krj)+
1
rj
cos(krj)]

Assuming velocities in individual sub-domains determined by structural
analysis for steady states and transients usingoneof the availablemethods (for
example FEM), the components of the resultant acoustic intensity vector are
now found for theprescribed frequency. In steady-state analysis, themaximum
(amplitude) acoustic intensity vector is obtained on the basis of the frequency
response function, (2.5). In analysis of transients, the instantaneous acoustic
intensity, (2.7)1, is obtained and this formula enables us to determinewhether
the acoustic field in the selectedpoint P shouldbe treatedas anear or farfield,
inaccordancewith thedefinitionprovided inSubsection2.2.This identification
is based on a value of the imaginary-to-real part ratio.
One has to bear inmind that the geometry of a vibrating structure ought

to be precisely chosen such that the assumption can be made that acoustic
waves should not be absorbed or reflected from the surface.
The resultant acoustic intensity vector at the given point in space P is an

excellent parameter for the evaluation of human exposure in thus generated
acoustic fields or for the evaluation of noise radiation by machines. Several
standards specifying admissible noise levels utilise the concepts of acoustic
pressure, acoustic power and intensity of an acoustic wave (e.g. Augustyńska
et al., 2000; Prascevic and Cvetkovic, 1997). When acoustic pressure is to be
estimated at the point P , the acoustic wave at that point is assumed to be a
planewave, in accordance with (2.17). This formula, however, requires certain
caution.The relationship betweenmodelled zones of an acousticwave radiated
by a rigid 2D element: a spherical wave (near the source) and a planewave (at



128 M.S.Kozień

a sufficiently great distance from the source l > D2/(4λ) (Fig.2), where D
– source diameter) is only approximate (Śliwiński, 2001). Experimental tests
performed by Weyna (1999) reveal that in the case of real radiating surfaces
the near field range is considerable, while at some distance from the source
the acoustic wave gets attenuated in the medium

I =
p2

ρc
(2.17)

Fig. 2. Spherical and plane wave generated by a vibrating flat 2D element (left) and
sound intensity in functiion of distance r (right), Śliwiński (2001)

When structural analysis is performed for prescribed natural modes, the
nodal lines of natural vibrations delineate sub-domains. In such a case, concise
formulas are available to determine the acoustic intensity for individualmodes.
These formulas are provided by Nakagawa et al. (1993a,b) for characteristic
modes of transverse vibrations of plates freely supported at edges. For the
sake of simplicity, it is assumed that the analysed intensity vector component
is normal to the surface of a vibrating plate, as it is directly associated with
particle velocity in space. Besides, only the active component of the intensity
vector is sought.
The formulas below shouldbe treated only as a special case of theproposed

hybridmethod, where uz denotes the complex amplitude of vibrations in the
Oz direction for the given mode.

• Mode (1,1)

Iz =
ω3ρuzu

∗

zS

2λ
sin(kri)
kri

(2.18)

• Mode (1,N) or (N,1)

Iz =
ω3ρuzu

∗

zS

2λ

N
∑

i=1

(−1)i−1 sin(kri)
kri

(2.19)



Hybrid method of evaluation of sounds radiated... 129

• Mode (M,N)

Iz =
ω3ρuzu

∗

zS

2λ

M
∑

i=1

(−1)i−1 sin(kri)
kri

N
∑

j=1

(−1)j−1 sin(krj)
krj

(2.20)

3. Experimental verification of the method

3.1. Verification procedure

The employed verification procedure consisted in comparing predicted and
experimental values of parameters of acoustic fields producedby radiating sur-
face elements. Theoretical valueswere obtained using the proposedhybridme-
thod.As the author had no access to the requiredmeasurement facilities ( the
anechoic chamber, reverberation room), the results obtained by Panuszka at
AGH-UST and published inCieślik andPanuszka (1993), Panuszka (1982a,b)
had to be used instead. Conditions during the experiments were reproduced
using the computer software Ansys for FEM analysis. Values of relevant aco-
ustic parameters were derived from formulas applied in the acoustic intensity
approach, with the use of FEM and the authors’ own algorithm implemented
on a PC.

3.2. Sound radiation from a round shaped plate

The first test was performed on a steel, homogeneous, round plate 0.487m
in diameter and 0.0009m in thickness, fixed at the edges. Plate vibrations
were induced by a rigid round piston placed at a small distance (5mm) and
parallel to the plate surface. Vibrations were transmitted via an air layer.
In such an arrangement, the pressure distribution on the lower plate surface
was roughly uniform.The amplitude of piston vibration acceleration was kept
constant (14.7997m/s2). The first mode of plate vibrations was considered:
28.3Hz (experiment), 35.6 (predictedvalue), 36.5 (FEMcalculation).The level
of acoustic pressure at a point on the line normal to the plate surface and
passing through its center at the distance 3.02m from the surface was taken
as the reference parameter. An assumption was made, following Panuszka
(1982a), that the acoustic field at that point was far, and hence the acoustic
pressure level could be obtained from (2.17). The acoustic pressure level found
experimentallywas 80dB,Panuszka (1982a). Thepressure level obtainedusing
the hybrid method was 80.7dB. The reference level of the acoustic pressure
was assumed to be p0 =2.0 ·10−5Pa.



130 M.S.Kozień

3.3. Sound radiation from a round shaped rigid piston

The second test was aimed to investigate the sound radiation from a vi-
brating, rigid and round piston 0.07m in diameter. Vibrations were excited
directly by a shaker and the amplitude was constant 0.05m/s throughout the
analysed frequency range.Monochromatic vibrations of the frequency 1150Hz
were considered in experiments and calculations. The level of the acoustic vec-
tor component Iz at a point on the line normal to the piston surface and
passing through its centre at the distance 0.6m from the surface was taken as
the reference parameter. The level of sound intensity obtained experimentally
was 95dB (Cieślik andPanuszka, 1993), and in the hybrid analysis 93dB.The
reference value of the sound intensity was I0 =1.0 ·10−12W/m2.
Some more comparisons between results of experimental analysis (Cieślik

and Panuszka, 1993), results obtained by theoretical formulas (Wyrzykowski,
1972) and results obtained fromthe hybridmethod for the control points lying
on the same line but different distances from the piston are discussed by the
author in Kozień (2004).

4. Conclusions

The FEM approach is now widespread in structural analysis of complex
mechanical systems and in engineering applications. However, full analysis of
coupled structural-acoustic interactions, though possible, is subject to certain
limitations, chiefly due to dramatic increase of the number of dofs of a model,
and hence the size of relevantmatrices. As a result, calculations become time-
consuming, and it is a major drawback in optimisation and vibration control
tasks, which prove difficult or even impossible to handle using FEM only.
Application of theFEMapproach to analysis of structural vibrations, followed
by the intensity method applied to studies of acoustic fields, is possible and
often brings good results, which is confirmed by the experimental verification.
The accuracy of thus combined analysis is sufficiently high for engineering
applications. The original formulation of the acoustic intensity method, put
forward and verified by the author, allows the FEM discretisation procedure
to be further utilised in the analysis of acoustic fields.

References

1. Augustyńska D., Pleban D.,Mikulski W., Tadzik P., 2000,Estimation
of the Sound Radiated by Machines. Requirements and methods (in Polish),
Central Institute of Environmental Protection,Warszawa



Hybrid method of evaluation of sounds radiated... 131

2. Bukowski J., 1959,Fluid Mechanics (in Polish), PWN,Warszawa

3. Burczyński T., 1995, Boundary Element Method in Mechanics (in Polish),
WNT, Warszawa

4. Cichoń C., 1994, Introduction in the Finite Element Method (in Polish),
CracowUniversity of Technology, Kraków

5. Cieślik J., PanuszkaR., 1993, Influence of reverberation field conditions on
sound power evaluationwith the aid of intensitymetod,Archives of Acoustics,
18, 2, 197-207

6. Ciskowski R.D., Brebbia C.A., 1996, Boundary Element Methods in
Acoustics, Computational Mechanics Publications co-published with Elsevier
Applied Science

7. Cremer L., Heckl M., Ungar E., 1973, Structure-Borne Sound, Springer-
Verlag, Berlin

8. Eliott S.P., Nelson P.A., 1997, Active Control of Vibrations, Academic
Press, London

9. FahyF.J., 1990,Sound Intensity, ElsevierApplied Science, London-NewYork

10. Karniadakis G., Sherwin S.J., 1999,SpectralHp Element Methods for CFD
(NumericalMathematics and ScientificComputation),OxfordUniversityPress,
NewYork

11. Kleiber M. (red.), 1995,Technical Mechanics Vol.XI: Computer methods of
mechanics of solid bodies (in Polish);WydawnictwoNaukowePWN,Warszawa

12. Kozień M.S., 2004, Analytical verification of estimation of sound radiated by
vibrating surface structural elements (in Polish), Proceedings of the LI Open
Seminar on Acoustics OSA’2004, Gdańsk, 179-182

13. Kruszewski J., 1975, Rigid Finite Element Method (in Polish), Arkady,
Warszawa,

14. Kruszewski J., Gawroński W., Ostachowicz W., Tarnowski J.,
Wittbrodt E., 1984,Finite Element Method in Dynamiscs of Constructions
(in Polish), Arkady,Warszawa

15. Kwiek M., 1968, Laboratory Acoustics. Vol.1: Basis of Theoretical Acoustics
(in Polish), PWN,Warszawa-Poznań

16. Łaczek S., 1999, Introduction in the Finite Element System ANSYS (Ver.5.0
i 5-ED) (in Polish), CracowUniversity of Technology, Kraków

17. Malecki I., 1964, Theory of Acoutic Waves and Systems (in Polish), PWN,
Warszawa

18. Mann J.A.III, Tichy J., Romano A.J., 1987, Instantaneous and time-
averagedenergy transfer in acousticfields,The Journal of theAcoustical Society
of America, 82, 1, 17-29



132 M.S.Kozień

19. MoorseP.M., IngardK.U., 1968,Theoretical Acoustics,McGraw-HillBook
Company

20. Nakagawa N., Furusu K., Asai M., 1993a, Analysis and application of
dissipated energy using vibration intensity, Proceedings of the ASIA-PACIFIC
Vibration Conference’93, Kitakyushu

21. Nakagawa N., Higashi A., Sekiguchi Y., Higashi A., 1993b, Energy
transformation efficiency of vibrating plate from vibration to sound, Proce-
edings of the Third International Conference onMotion and Vibration Control,
Chiba, 359-364

22. Nakagawa N., Sekiguchi Y., Higashi A., Mahrenholtz O., 1996 Ef-
fects of dissipation energy on vibrational and sound energy flow, Technische
Mechanik, 16, 2, 107-116

23. Nizioł J. et al., 1989, Reduction of vibrations and noise in cages of heavy
duty machines (in Polish), Raport for HSW Stelworks, Cracow University of
Technology, Kraków

24. PanuszkaR., 1982a,Equivalent surface and radiation efficiency of the rectan-
gular plates (in Polish), Zeszyty Naukowe AGH – Mechanika, 1, 2, 7-31

25. Panuszka R., 1982b, Researches on the sound radiated by round plate (in
Polish), Zeszyty Naukowe AGH – Mechanika, 1, 1, 125-145

26. PrascevicM., CvetkovicD., 1997,Diagnostics of acoustic processes by in-
tensity measurements,Facta Universitatis – Series: Working and Living Envi-
ronmental Protection, University of Nis, 1, 2, 9-16

27. Szmelter J.,DackoM.,Dobrociński S.,WieczorekM., 1973,Computer
Programs of Finite Element Methods (in Polish), Arkady,Warszawa

28. Szmelter J., Dacko M., Dobrociński S., Wieczorek M., 1979, Finite
Element Method in Static of Constructions (in Polish), Arkady,Warszawa

29. Śliwiński A., 2001, Ultrasounds and their Applications (in Polish), WNT,
Warszawa

30. WaszczyszynZ.,CichońC.,RadwańskaM., 1990,Finite ElementMethod
in Stability of Constructions (in Polish), Arkady,Warszawa

31. WeynaS., 1999,Application of the intensitymethod to vecroral analysis of so-
und field of realistic sources (inPolish),Proceedings of the XLVIOpen Seminar
on Acoustics OSA’99, Kraków-Zakopane, 67-76

32. Wyrzykowski R., 1972, Linear Field Theory of Gas Mediums (in Polish),
Rzeszow Society of Science Friends and Rzeszow High Pedagogic School,
Rzeszów

33. Wyrzykowski R. (red.), 1994, Selected Topics on Theory of Acoustic Field
(in Polish), Education Press FOSZE, Rzeszów



Hybrid method of evaluation of sounds radiated... 133

34. Zienkiewicz O.C., 1972, Finite Element Method (in Polish), Arkady,
Warszawa

35. ZienkiewiczO.C., 1982, Introductory Lectures on the Finite ElementMethod,
CISM Lectures and Courses – No. 130, Springer-Verlag,Wien-NewYork

Hybrydowa metoda oceny promieniowanego dźwięku przez drgające

elementy powierzchniowe

Streszczenie

W pracy przedstawiono podstawy teoretyczne metody hybrydowej służącej in-
żynierskiemu oszacowaniu promieniowania akustycznego przez drgające powwierzch-
niowe elementy strukturalne.Metoda umożliwia wyznaczenie wektora natężenia aku-
stycznegowwybranympunkcie ośrodka otaczająegodrgający element. Przy pewnych
założeniach upraszczczających (pole dalekie) możliwa jest estymacja promieniowana-
ego ciśnienia akustycznego. Metoda została zweryfikowana doświadczalnie. Drgania
elementu strukturalnego mogą być wyznaczone na drodze teoretycznej metodą ele-
mentów skończonych bądź pochodzić z pomiarów drgań rzeczywistch struktur.

Manuscript received March 9, 2004; accepted for print November 8, 2004