JOURNAL OF THEORETICAL AND APPLIED MECHANICS 42, 3, pp. 695-705, Warsaw 2004 MOTION PLANNING FOR WHEELED MOBILE ROBOT USING POTENTIAL FIELD METHOD Wiesław Żylski Department of Applied Mechanics and Robotics, Rzeszów University of Technology email: wzylski@prz.rzeszow.pl A potential field method in the real-time approach toward avoidance of obstacles for a mobile robot has been developed. A collision-free path and goal-seeking behaviour are calculated using an artificial potential fieldmethod. The proposed reactive navigation approach is based on the coordination of elementary responses.To avoid convex obstacles, the na- vigator generates a ”reaching themiddle of the collision-free space” and goal-seeking behaviours. A control strategy based on artificial potential fields that generates a trajectory to be followed by a mobile robot that represents a reference for the robot at the same time is proposed. The effectiveness of the proposedmethod is numerically verifiedby a series of experiments on the emulator of the wheeledmobile robot Pioneer-2DX. Key words: mobile robots, obstacle avoidance, artificial potential field 1. Introduction The navigation problem of passing by obstacles is one of the most impor- tant problems in robotics. Complexity of this problem causes that we can not find universal planning methods and realization of movement of autonomous wheeled mobile robots. The planning of motion and its realization was ana- lysed by lots of autors (Arkin, 1998; Berenstain and Koren, 1989; Latombe, 1991). The artificial potential field method was developed by Khatib (1986), Krogh and Thorpe (1986), and was extensively studied in the obstacle avo- idance problem for autonomous mobile robots (Berenstain and Koren, 1989; Ge and Cui, 2000; Tilove, 1990). There are two main approaches toward this method. On one hand, the classical method (Khatib, 1986) depends only on the position of themobile robot. On the other hand, the generalized potential 696 W.Żylski field method (Krogh and Thorpe, 1986) depends also on the velocity of the robot. The underlying idea of themethod is to fill the workspace of the robot with an artificial potential field inwhich the vehicle is attracted to its goal and is repulsed away from obstacles. One of the inherent problems of this method is the existence of local minimawhich are undesirable equilibrium points of a gradient system. They appear when the sum of the attractive and repulsive forces induced by the potential vanishes in front of the goal. In this work, the obstacle avoidance problem associated with a mobile robot is considered. This problem will be tackled by means of the method of artificial potential fields. The problem concerned with the reactive navigation of wheeled mobile robots will be analysed in the paper. 2. Generation of motion trajectories in artificial force field Description of kinematics of a wheeled mobile robot which moves in real environment is shown in Fig.1. The kinematic equations (Giergiel et al., 2002; Żylski, 1996, 2002) are as follows    ẋA ẏA β̇    =    VAmcosβ 0 VAm sinβ 0 0 ωm    [ uv uβ ] (2.1) In this equation VAm and ωm aremaximumvalue of velocity point A and maximumvalue ofangularvelocity of the frame, respectively.Thevariables uv, uβ represent the linear andangular velocities of themobile robot.Thosevalues that result from motion in the artificial forces field should be appropriately normalized so that the inequalities 0¬uv ¬ 1, −1¬uβ ¬ 1 are true. The most interesting description of such a mobile robot motion is when it is passing by obstacles. Let us make an assumption that the robot we are analysing has special distance sensors that can give us information about ob- stacles that themobile robot ismeeting on its way. At thismoment, the robot is in a position shown in Fig.1b. L is an immovable point of the left obstacle, P is an immovable point of the right obstacle and A is a characteristic point of the robot. 2.1. Avoidance of convex obstacles Point A determines the position of the robot, β angle gives the attitude, point A thevelocity vector that hasdirection of the axis x1. Location of points Motion planning for wheeled mobile robot... 697 Fig. 1. (a) A scheme of the model; (b) forces in the potential field L,P in the co-ordinate plane x1y1, and location of point A in the co-ordinate plane xy, determine equivalent vectors radii shown in Fig.1b. Point A has to move along a trajectory so that the wheeled mobile robot could safely move between the obstacles. Assume that the motion is in the xy configuration in the artificial force field, where the forces come from the obstacles L,P shown in Fig.1b. Those forces are defined as (Żylski, 2002) FL =− k2 r2L e1 FP =− k2 r2P e2 (2.2) The forces in equation (2.2) are called repulsive forces, k is a selected coefficients, rL, rP denote distances between point A and obstacles, e1, e2 are the left and right directional unit vectors. The equivalent vector radii are set in the form rL = rLe1 rP = rPe2 (2.3) 698 W.Żylski From equation (2.3) we can determine the unit vectors e1, e2, and putting them to dependence (2.2) we get FL =− k2 r3L rL FP =− k2 r3P rP (2.4) Because we assume that forces (2.4) come from the force field, then the diffe- rential of the force function is dUR =FLdrL+FPdrP =−k 2 (drL r2L + drP r2P ) (2.5) After integration we get a function of the force field UR = k 2 ( 1 rL + 1 rP ) +C (2.6) where C is a constans. The gradient of the force function determined in po- int A is set as gradUR = ∂UR ∂rL e1+ ∂UR ∂rP e2 = k2 r2L e1+ k2 r2P e2 (2.7) Assuming that the gradient components are directed normally to the sur- face in the direction of increment of an appropriate function. Obviously, com- ponent forces of the force field have directions of the equivalent gradient com- ponentswith sensess corresponding tominimal values of the function.Because of the fact that point A moves in the assumed force field, its velocity vector has the direction of the resultant force and so has the gradient of the forces in point A of the field. The vector product of the force field gradient and the velocity vector in point A will be gradUR×VA =0 (2.8) Figure 1b shows components of the force field gradient function and ve- locity vector in point A. The vector of instantaneous angular velocity of the frame is proportional to vector (2.8), thus β̇= ε(gradUR×VA)=ω4 ε> 0 (2.9) In xy configuration we can write gradUR×VA = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ i j k ∂UR ∂xA ∂UR ∂yA 0 ẋA ẏA 0 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ (2.10) Motion planning for wheeled mobile robot... 699 Then, the angular velocity vector of the frame is described as β̇= ε (∂UR ∂xA ẏA− ∂UR ∂yA ẋA ) k=ω4 (2.11) where ∂UR ∂xA = ∂UR ∂rL cos(αL+β)+ ∂UR ∂rP cos(αP −β) (2.12) ∂UR ∂yA = ∂UR ∂rL sin(αL+β)− ∂UR ∂rP sin(αP −β) From the position of the vector in point A in this nonholonomic configuration, the following relations can be written ẋA =VAcosβ ẏA =VA sinβ (2.13) Substituting (2.12), (2.13) into (2.11), we get β̇= εk2 ( − 1 r2 L sinαL+ 1 r2 P sinαP ) k=uβ (2.14) Equation (2.8) is true, when at a givenmoment, the angular instantaneous velocity equals zero. Otherwise if (2.8) is false, then at a given moment the angular velocity of the frame occurs and themobile robotmoves approaching the position where (2.8) will hold. According to formula (2.11) it ensues that when the value of the angular velocity of the frame equals zero the proportion is true, from which one can determine the components of the velocity vector of point A in the xy axis, which are proportional to appropriate components of the gradient, which is ẋA = ε1 ∂UR ∂xA = ε1 [k2 r2 L cos(αL+β)+ k2 r2 P cos(αP −β) ] (2.15) ẏA = ε1 ∂UR ∂yA = ε1 [k2 r2L sin(αL+β)− k2 r2P sin(αP −β) ] ε1 > 0 The velocity vector in point A is determined as VA = ẋAi+ ẏAj =uv (2.16) If point A is moving with a velocity found from (2.16) with components determined from (2.15) and the angular velocity vector of the frame is deter- mined from (2.14), then the mobile robot moving in the force field is safely passing by the obstacles. 700 W.Żylski 2.2. Goal-seeking behaviour Most of theproposed potential functions are based on the following idea: themobile robot shouldbeattracted toward its goal configuration,while being repulsedby the obstacles. In this section, we illustrate the attractive potential. Analysing the problem of goal-seeking behaviour, we can assume that po- int B is the goal, as shown in Fig.2. Themotion takes place in the plane xy. Point B effects the robotwith an attractive force F , which can bedetermined as F =−krr1e1 (2.17) where r1 = d is the distance between points A and B, kr is an appropriate coefficient, e1 = r1/d is the unit vector of the A-B axis. Fig. 2. Attractive potential Equation (2.17) can be written as F =−krr1 r1 d (2.18) Assume now the above defined force (2.18) comes from a force field, then dUB =F dr1 (2.19) Using equation (2.18), we can transform relation (2.19) to the form dUB =−krr1 dr1 (2.20) Integrating equation (2.20), assuming the integration constant equal to zero, we get the field force function UB =− 1 2 krr 2 1 =− 1 2 kr[(xB −xA) 2+(yB −yA) 2] (2.21) Motion planning for wheeled mobile robot... 701 Assuming that the elements of the velocity vector in point A on appropriate axes are proportional to the corresponding elements of the gradient field force, we can receive ẋA ∼= ε ∂UB ∂xA = εkr(xB −xA) (2.22) ẏA ∼= ε ∂UB ∂yA = εkr(yB −yA) where ε and kr are coefficients adjusted through experiments to generate the best trajectory. To complete the planningmethod, we set the rotational part to be β̇ =ω. It is convenient to use the following formula β̇∼= kβα=arctan yB −yA xB −xA −β (2.23) Theproportionality coefficient kβ is chosen in suchaway so it doesnot deviate too much from the A-B direction. It is implicit in equation (23) that the forward direction characterised by β will be aligned. Using (2.22) and (2.23) in such an approach, the resulting command will be uv = √ ẋ2A+ ẏ 2 A uβ = β̇ (2.24) which should be appropriately normalised so that the inequalities 0¬uv ¬ 1, −1¬uβ ¬ 1 are true. 2.3. Fusion of behaviour scenarios In order to make the mobile robot be attracted toward its goal configura- tion, while being repulsed from the obstacles, the potential U is constructed as the sum of two additional elementary potential functions U(x)=UR(x)+UB(x) (2.25) where UR is the repulsive potential associated with given obstacles and UB is the attractive potential associated with the goal configuration xB, yB. In both cases, appropriate control coefficients for uV , uβ should be adjusted experimentally to get the best generation of the trajectory. 702 W.Żylski 3. Numerical simulation The used method of generation of the trajectory of motion, has been ve- rified by simulation on the mobile wheeled robot Pioneer 2DX emulator in a scene with rectangular obstacles. An input saturation was included, with bounds on VA and β̇, respectively and with vAm =0.4m/s, ωm =0.3rad/s. The describedmobile robot is equippedwith eight ultrasonic sensor rings. The sensors are divided into two groups. Group A is composed of four ne- ighbouring sensors which measure the distance to the obstacle. Simulations were performed using the Matlab/Simulink package with the sampling inte- rval T =0.01s. Some of the chosen simulations of the robot behaviour, among others the reaching of the middle of the collision-free space, are shown in Fig.3. Fig. 3. Realisation of analysedmotion In both cases, the nonholonomic motion obtained for xA(0) = 1, yA(0) = 2, β(0) = 0 was successful. In Fig.3b,d the associated parameters of motion VA, β̇ are shown. Motion planning for wheeled mobile robot... 703 The examples of the resulting navigation behaviour of the goal-seeking is shown in Fig.4. Fig. 4. Goal seeking behaviour Fig. 5. Fusion of the behaviours In these cases, the action according to (2.24) guides the robot to its desti- nations Bi, which are depicted inFig.4a. Theparameters ofmotion generated by such an action, Eq. (2.24), for point G(5,0.5) are depicted in Fig.4b. 704 W.Żylski In order to make the mobile robot be attracted toward its goal configura- tion, while being repulsed from the obstacles, we conducted other simulations. An example of the resulting potential field combiner is shown in Fig.5. The mobile robot received mission to reach the given goal position B from a gi- ven start position with the reaching of the middle of the collision-free space. The fusion of the ”reaching the middle of the collision free space” and ”goal- seeking” behaviours scenarios showed its efficiency in going from the source to the goal without collision. We have applied the proposedmethod to several other situations and the performance was always satisfactory. 4. Summary Wehaveproposedanapproach forplanning themotion of awheeledmobile robot moving between obstacles. The method of the artificial force field can be a basis for realisation of reactive navigation of a wheeled mobile robot. The extracted solutions can be used in the control of elementary behaviour scenarios of the robot reveal, in an unknown environment and in real time. However, experiments that some failures may occur when a concave obstacle emerges between the robot and the goal. In order to solve of such a blocking situation an additional behaviours should be proposed. References 1. Arkin R.C., 1998,Behavior-Based Robotics, TheMIT Press 2. Berenstain J., Koren J., 1989,Real-time obstacle avoidance for fastmobile robots, IEEE Transaction on Systems, Man, and Cybernetics, 19, 5, 1179-1186 3. Ge S.S., Cui Y.J., 2000, New potential functions for a mobile robot path planning, IEEE Trans. Robotics and Automat., l6, 5, 615-620 4. Giergiel M., Hendzel Z., Żylski W., 2002, Modelling and Control of Wheeled Mobile Robots, WNT,Warsaw (in Polish) 5. Khatib O., 1986, Real Time obstacle avoidance for manipulators and mobile robots,The Inter. Journal of Robotics Research, 5, l, 90-98 6. Krogh B.H., Thorpe C.E., 1986, Integrated path planning an dynamic steering control for autonomous vehicles, Proc. IEEE Int. Conf. Robotics and Automat., 1664-1669 Motion planning for wheeled mobile robot... 705 7. Latombe J.C., 1991,Robot Motion Planning, Kluwer Academic Publishers 8. Tilove R., 1990, Local obstacles avoidance for mobile robots based on the method of artificial potentials, IEEE Trans. Robotics and Automat., 566-571 9. Żylski W., 1996, Kinematics and Dynamics of Wheeled Mobile Robots, Rze- szowUniversity of Technology Press, Rzeszów (in Polish) 10. ŻylskiW., 2002,Kinematics of behavior of wheeledmobile robot,Proceedings of theXVIII-thConference onTheTheory ofMachines andMechanisms, Scien- tific Papers of the Institute of Machine Design and Operation of the Wroclaw University of Technology, 85, Wrocław, 417-422 (in Polish) Planowanie ruchu mobilnego robota kołowego z zastosowaniem sztucznego pola potencjalnego Streszczenie W pracy rozważa sie problem generowania bezkolizyjnej trajektorii ruchumobil- nego robota w czasie rzyczywistym z zastosowaniem sztucznego pola potencjalnego. Analizuje się elementarne zachowanie mobilnego robota, takie jak: osiągnij środek wolnej przestrzeni oraz idź do celu. Wygenerowana trajektoria ruchu umożliwiająca omijanie przeszkód wypukłych uwzględnia elementarne zachowania robota. Stanowi ona trajektorię zadaną, która realizuje układ sterowania. Efektywność zaproponowa- nego rozwiązaniazostałanumerycznie zweryfikowananaemulatorzemobilnego robota kołowegoPioneer-2DX. Manuscript received January 12, 2004; accepted for print March 19, 2004