JOURNAL OF THEORETICAL AND APPLIED MECHANICS 42, 4, pp. 739-753, Warsaw 2004 ON THE STRESS INTENSITY FACTORS FOR TRANSIENT THERMAL LOADING IN AN ORTHOTROPIC THIN PLATE WITH A CRACK Bogdan Rogowski Chair of Mechanics of Materials, Technical University of Łódź e-mail: brogowsk@p.lodz.pl This paper is concernedwith anorthotropic thinplate containinga crack perpendicular to its surfaces. It is assumed that the transient thermal stress is set up by the application of a heat flux as a function of time and position along the crack edge and the heat flow by convection from the plate surfaces. The exact analytical solutions for the stress intensity factor and crack-opening displacement are derived. Numerical examples show, among others, a dependence of the stress intensity factor on the thermal and elastic constants of the orthotropic material. Key words: orthotropic plate, crack problem, transient thermal loading, stress intensity factor 1. Introduction The study of thermoelastic problemshas always been an important branch in solidmechanics (seeNowacki, 1986;Nowiński, 1978). Inparticular, the ther- moelastic fracture problems subjected to various types of thermal boundary conditions have been discussed extensively in the literature. Most of rese- arch works discuss the steady-state crack problems and axisymmetric cases for which the Hankel transform technique and the theory of dual integral equations were usually employed (Sneddon, 1966). Recently, a report on a penny-shaped or external crack subjected to temperature and heat flux, arbi- trarily acting in a transversely isotropicmedium,was presented by the author (Rogowski, 2003). The corresponding fundamental solution canplay an impor- tant role in the boundary element method of thermoelastic fracture analysis. Some metallic materials, such as zinc, magnesium, cadmium are transversely 740 B.Rogowski isotropic (Hearmon, 1961). Many fibrous composites may also be modeled as transversely isotropicmaterials (Christensen, 1979). Therehave beenmany re- ports on crack analysis in transversely isotropic and orthotropic thermoelastic materials. Among the studies, Tsai (1983a,b) calculated the stress intensity factors of a penny shaped crack in a transversely isotropic material due to a thermal loading, while Rogowski (2001a,b) presented analysis of a crack sys- tem in transversely isotropic materials. Many of research works discuss the two-dimensional thermal crack problem in the literature. Sumi (1981, 1982), Aköz andTauchert (1972), Atkinson andClement (1977), Ghosh (1977), Cle- ments and Tauchert (1979), Clements (1983), Tsai (1983a,b) and Rogowski (1982) solved various problems in anisotropic thermoelastic solids. Gladwell et al. (1983) considered the radiation boundary conditions. But, perhapsbecause of mathematical complexity, the three-dimensional crack problem of an ani- sotropic medium under transient thermal loading have not yet received much attention. Among the studies, Koizumi and Niwa (1977) performed the ana- lysis of an edge crack in a semi-infinite plate under transient thermal loading. Noda and Matsunaga (1986) investigated the transient crack problem in an infinite medium, while Ishida (1987) calculated the stress intensity factor for a transient thermal loading in a transversely isotropic material. Ting and Ja- cobs (1979) solved the problem for transient thermal stress in a cracked solid. Many problems of thermoelasticity were solved in a book by Podstrigach and Kolyano (1972). This paper considers the transient thermal problem of a crack in an or- thotropic thin plate. The method of solution involves the use of Fourier and Laplace’s transforms and displacement potentials to reduce the mixed boun- daryvalue problemto apair of dual integral equations.The solution is given in an exact analytical form. The stress intensity factor of mode I and the crack- opening displacement for a heat flux arbitrarily acting on the crack surface, are determined. The numerical results are shown graphically to demonstrate the influence of thermal andmechanical anisotropic parameters. 2. Analysis 2.1. Temperature field Consider an orthotropic thin plate of thickness 2h containing a crack. Fi- gure 1a shows the geometry of the problem where the position of the point is defined by Cartesian co-ordiantes (x,y,z). In this co-ordinate system, the On the stress intensity factors... 741 crack occupies the region y = 0, |x| ¬ a, |z| ¬ h. We shall suppose that the crack is opened out by the heat flux depending on time and position applied to its surfaces. Referring to the semi-infinite region y 0, the boundary con- ditions in the problem can be assumed as shown in Fig.1b, since the thermal and mechanical conditions on y = 0+ are identical with those on y = 0−. Additionally, for a thin plate the unknown temperature distribution T(x,y,t) is assumed to be constant over the thickness, giving the heat exchange by convection on both surfaces of the plate, which equals −2γT , where T is the temperature change and γ is theheat transfer coefficient on theplane surfaces. Fig. 1. Geometry and co-ordinate system (a) and boundary conditions (b) The equation heat conduction governing an unsteady-state temperature field in an orthotropic thin plate with heat dissipation at both plane surfaces is (Nowacki, 1986) λ11 ∂2T ∂x2 +λ22 ∂2T ∂y2 − γ h T = cρ ∂T ∂t (2.1) where c is the specific heat, ρ is the mass density and λ11 and λ22 are the thermal conductivities in the x- and y-directions, respectively. The initial and boundary conditions for the temperature field are T =0 at t =0 λ22 ∂T ∂y = q0g(t)f(x)H(a−|x|) on y =0 (2.2) where q0 is the heat flux per unit area and unit time, and H(·) denotes Heaviside’s step function. The problem is symmetric with respect to the plane y = 0, the temperature T(x,y,t) is an even function of y and differentiable with respect to y at y = 0; in consequence, the heat flux is equal to zero 742 B.Rogowski for y = 0, |x| > a. Applying Laplace’s transform to time and Fourier cosine transform to the variable x, and using the convolution theorem for inverse Laplace’s transform, the solution to (2.1) which satisfies (2.2) and (2.3) may be expressed by T= t ∫ 0 g(t− τ) [ − 4 π2 q0χλ 2 λ22 ∞ ∫ 0 f(s)cos(sx)ds ∞ ∫ 0 cos(py)e−χ(m 2+s2+λ2p2)τdp ] dτ = (2.3) = ∞ ∫ 0 [ ∞ ∫ 0 θ(s,p,t)cos(py) dp ] cos(sx) ds where θ(s,p,t)=− 4 π2 q0χλ 2 λ22 f(s) t ∫ 0 g(t− τ)e−χ(m2+s2+λ2p2)τ dτ f(s)= a ∫ 0 f(x)cos(sx) dx (2.4) m2 = γ λ11h χ = λ11 cρ λ2 = λ22 λ11 From (2.4)2 it follows that only the symmetric problemwith respect to the y axis is considered, since it is assumed that f(x) is an even function. For the general case of the function f(x), its oddpartwill be associatedwithFourier’s sine transform and the solution can be obtained in a similarmanner; formally by replacement of cos(sx) with sin(sx) functions in Eq. (2.4)2. 2.2. Thermal stress and displacement We consider the stress and displacement field. The stress-strain equations for an orthotropic medium under a plane stress state are σxx = c11exx+ c12eyy −β1T σyy = c12exx+ c22eyy −β2T (2.5) σxy =2Gexy where eij are the strain components, σij are the stress components, cij are the moduli of elasticity of thematerial, G is the shearmodulus, β1 = c11α1+c12α2, On the stress intensity factors... 743 β2 = c12α1 + c22α2 and α1, α2 are the thermal expansion coefficients along the x- and y-directions, respectively. The strain components are exx = ∂ux ∂x eyy = ∂uy ∂y exy = 1 2 (∂ux ∂y + ∂uy ∂x ) (2.6) where ux and uy are the displacement components along the axis. The equ- ations of equilibrium for the plane stress in the absence of the body forces are ∂σxx ∂x + ∂σxy ∂y =0 ∂σxy ∂x + ∂σyy ∂y =0 (2.7) From (2.5), (2.6) and (2.7), it follows c11 ∂2ux ∂x2 +G ∂2ux ∂y2 +(c12+G) ∂2uy ∂x∂y =β1 ∂T ∂x (2.8) G ∂2uy ∂x2 + c22 ∂2uy ∂y2 +(c12+G) ∂2ux ∂x∂y = β2 ∂T ∂y The general solution to equilibriumequations (2.8)maybe obtained as the superposition of two fields. The first corresponds to the solution to homoge- neous equation (2.8), for which (Rogowski, 1975) ux = ∂ ∂x (kϕ1+ϕ2) uy = ∂ ∂y (ϕ1+kϕ2) σxx =−G(k+1) ∂2 ∂y2 (ϕ1+ϕ2) σyy =−G(k+1) ∂2 ∂x2 (ϕ1+ϕ2) σxy = G(k+1) ∂2 ∂x∂y (ϕ1+ϕ2) ∂2ϕi ∂x2 + 1 s2i ∂2ϕi ∂y2 =0 (i =1,2) (2.9) where (i =1,2) Gc22s 4 i − (c11c22− c212−2c12G)s2i +Gc11 =0 k = c22s 2 1−G c12+G (2.10) The second may be obtained in terms of the thermoelastic displacement po- tential function ψ(x,y,t), defined as follows ux = ∂ψ ∂x uy = l ∂ψ ∂y (2.11) 744 B.Rogowski Equations (2.8) are satisfied if c11 ∂2ψ ∂x2 +G ∂2ψ ∂y2 + l(c12+G) ∂2ψ ∂y2 = β1T (2.12) Gl ∂2ψ ∂x2 + c22l ∂2ψ ∂y2 +(c12+G) ∂2ψ ∂x2 = β2T A suitable expression for ψ defined by (2.12) for temperature distribution in (2.3) is in the form ψ = ∞ ∫ 0 [ ∞ ∫ 0 C(s,p,t)cos(py) dp ] cos(sx) ds (2.13) This satisfies both equations (2.12) providing C(s,p,t)[c11s 2+Gp2+ lp2(c12+G)] =−β1θ(s,p,t) (2.14) C(s,p,t)[l(c22p 2+Gs2)+s2(c12+G)] =−β2θ(s,p,t) i.e. l(s,p)= β1s 2(c12+G)−β2(c11s2+p2G) β2p 2(c12+G)−β1(c22p2+s2G) (2.15) C(s,p,t)= θ(s,p,t) β2p 2(c12+G)−β1(c22p2+s2G) (c11s2+Gp2)(c22p2+Gs2)− (c12+G)2p2s2 Appropiate solutions to Eqs (2.9)6 are ϕ1(x,y)=− s2 G(k+1)(s1−s2) ∞ ∫ 0 s−1A(s)e−s1sy cos(sx) ds (2.16) ϕ2(x,y)= s1 G(k +1)(s1−s2) ∞ ∫ 0 s−1B(s)e−s2sy cos(sx) ds On the stress intensity factors... 745 Using the above obtained potentials, we find ux(x,y,t) = 1 G(k+1)(s1−s2) ∞ ∫ 0 [ks2A(s)e −s1sy −s1B(s)e−s2sy]sin(sx)ds− − ∞ ∫ 0 [ ∞ ∫ 0 sC(s,p,t)cos(py) dp ] sin(sx) ds (2.17) uy(x,y,t) = s1s2 G(k+1)(s1−s2) ∞ ∫ 0 [A(s)e−s1sy −kB(s)e−s2sy]cos(sx) ds− − ∞ ∫ 0 [ ∞ ∫ 0 pC(s,p,t)l(s,p)sin(py) dp ] cos(sx) ds σxx(x,y,t) = s1s2 s1−s2 ∞ ∫ 0 s[s1A(s)e −s1sy−s2B(s)e−s2sy]cos(sx) ds+ + G ∞ ∫ 0 { ∞ ∫ 0 p2C(s,p,t)[l(p,s)+1]cos(py) dp } cos(sx) ds σyy(x,y,t) = − 1 s1−s2 ∞ ∫ 0 s[s2A(s)e −s1sy−s1B(s)e−s2sy]cos(sx) ds+ (2.18) + G ∞ ∫ 0 [ ∞ ∫ 0 s2C(s,p,t)[l(p,s)+1]cos(py) dp ] cos(sx) ds σxy(x,y,t) = − s1s2 s1−s2 ∞ ∫ 0 s[A(s)e−s1sy−B(s)e−s2sy]sin(sx) ds+ + G ∞ ∫ 0 [ ∞ ∫ 0 psC(s,p,t)[l(p,s)+1]sin(py) dp ] sin(sx) ds Themechanical boundary conditions on the plane y =0 are σxy =0 (2.19) σyy =0 on |x| < a uy =0 on |x| a (2.20) Applying (2.18)3 to boundary condition (2.19), we obtain A = B. 746 B.Rogowski Substituting (2.17)2 and (2.18)2 into boundary conditions (2.20) andusing A = B, we obtain the following dual integral equations for A(s) ∞ ∫ 0 sA(s)cos(sx) ds = ∞ ∫ 0 s2F(s,t)cos(sx) ds on |x| < a − 1 GC ∞ ∫ 0 A(s)cos(sx) ds =0 on |x| a (2.21) where F(s,t)=−G ∞ ∫ 0 C(s,p,t)[l(p,s)+1] dp (2.22) C =(k+1)(k−1)−1(s−12 −s −1 1 ) Equation (2.21)1 may be replaced by the following equation ∞ ∫ 0 A(s)sin(sx) ds = ∞ ∫ 0 sF(s,t)sin(sx) ds (2.23) We introduce an integral representation of the function A(s) A(s)= a ∫ 0 x′h(x′)J0(sx ′) dx′ (2.24) where J0(sx ′) is theBessel function of the first kind and zero order, and h(x′) is a new unknown function. This representation satisfies equation (2.21)2 and converts equation (2.23) to the Abel integral equation for h(x′) x ∫ 0 x′h(x′)√ x2−x′2 dx′ = ∞ ∫ 0 sF(s,t)sin(sx) ds |x| < a (2.25) The solution to this equation is h(x′)= ∞ ∫ 0 s2F(s,t)J0(sx ′) ds (2.26) where the following integral were employed 2 π 1 x′ d dx′ x′ ∫ 0 xsin(sx)√ x′2−x2 dx = sJ0(sx ′) (2.27) On the stress intensity factors... 747 Thus, the solution to the dual integral equations of form (2.21) is A(s)= a ∫ 0 x′J0(sx ′) [ ∞ ∫ 0 q2J0(qx ′)F(q,t) dq ] dx′ (2.28) The above formula is exactly the same as that obtained by Sneddon (1966, p.98) for dual integral equations of type (2.21). Therefore, we obtain the com- plete solution to the problem by substituting (2.28) and (2.22)1 into (2.17) and (2.18). The singular stress σyy(x,0) is obtained as follows σyy(x,0)= xh(a)√ x2−a2 = x√ x2−a2 ∞ ∫ 0 s2F(s,t)J0(sa) ds as x → a+ (2.29) Therefore, the stress intensity factor KI of mode I is defined as KI = lim x→a+ √ 2π(x−a)(σyy)y=0 = √ πa ∞ ∫ 0 s2F(s,t)J0(sa) ds (2.30) Note that GC(s,p,t)[l(p,s)+1]=−E1 α1p 2+α2p 2 δ2s4+2µs2p2+p4 θ(s,p,t)= (2.31) =−E1 ( α1+ c0 s21s 2+p2 − c0 s22s 2+p2 ) θ(s,p,t) where s21 and s 2 2 are the roots of algebraic equation (2.10)1, which may be written in an equivalent form s4i −2µs2i + δ2 =0 µ = E1 2G −ν21 δ2 = E1 E2 (2.32) and c0 = α1s 2 2−α2 s21−s22 = α1(µ− √ µ2− δ2)−α2 2 √ µ2−δ2 (2.33) Here E1 and E2 are Young’s moduli in the x- and y-directions, respectively, and ν21 is Poisson’s ratio. 748 B.Rogowski The stress intensity factor KI is calculated from (2.30), and we get the formula KI =− 4 √ a π √ π q0χλ 2E1 λ22 ∞ ∫ 0 s2f(s)J0(as) ∞ ∫ 0 ( α1+c0 s21s 2+p2 − c0 s22s 2+p2 ) · (2.34) · t ∫ 0 g(t− τ)e−χ(m2+s2+λ2p2)τ dτ ds dp For an isotropic material we have s1 = s2 = 1, α1 = α2 = α, λ = 1, and stress intensity factor (2.34) assume the form (KI)iso =− 4 √ a π √ π q0χEα λiso ∞ ∫ 0 s2f(s)J0(as) ∞ ∫ 0 1 s2+p2 · (2.35) · t ∫ 0 g(t− τ)e−χ(m2+s2+p2)τ dτ ds dp The displacement uy(x,0) is obtained in the form uy(x,0)= 4 √ 2 π2 q0χλ 2δ √ µ+ δ λ22 a ∫ x x′ dx′√ x′2−x2 ∞ ∫ 0 s2f(s)J0(sx ′) · (2.36) · ∞ ∫ 0 ( α1+ c0 s21s 2+p2 − c0 s22s 2+p2 ) t ∫ 0 g(t− τ)e−χ(m2+s2+λ2p2)τ dτ ds dp The displacement ux(x,0) is given by the formula ux(x,0)=− 4 π2 q0χλ 2(δ−ν21) λ22(s 2 2+ν21) ∞ ∫ 0 sf(s)sin(sx) · (2.37) · ∞ ∫ 0 ( c1+ c2 s21s 2+p2 − c2 s22s 2+p2 ) t ∫ 0 g(t− τ)e−χ(m2+s2+λ2p2)τ dτ ds dp On the stress intensity factors... 749 where a1 =2− G E1 ν12 b1 = G E1 c1 = a1α1− b1α2 a2 =1− G E2 ν12 b2 = G E2 c2 = c1s 2 2− b2α1−a2α2 s21−s22 ν12 E2 = ν21 E1 (2.38) 3. Numerical results In calculating the temperature and the stress intensity factors, the follo- wing dimensionless quantities are introduced ξ = x a η = y a t′ = χ t a2 M2 = a2m2 = γa2 λ11h λ2 = λ22 λ11 α = α2 α1 δ2 = E = E1 E2 µ = E1 2G −ν21 T = Tλ22 q0a KI = KIλ22 α1E1aq0 √ a σyy = σyyλ22 α1E1aq0 Numerical calculations were carried out for two types of the heat supply q Case 1: q = q0g(t)f(x) = q0 Case 2: q = q0g(t)f(x) = q0e −t′ where t′ is the Fourier number. Figure 2 shows the temperature at η = 0 for various values of λ2. The temperature at η =0 increases with the ratio of thermal conductivity. Figures 3a,b show the effects of λ2 and α on the normal stress σyy at η =0 for case 1 of thermal loading. Figures 4a-d show the effects of anisotropies of the material constants on the stress intensity factor for case 1 and case 2. It is assumed that only one of thematerial constants λ2, α, E, µ indicates various anisotropies, while the other constants are kept equal to those of isotropic conditions. Figures 2-4 show that the anisotropy effects of the material constants λ2, α, E and µ on the stress intensity factor are large. In the figureswe can notice 750 B.Rogowski Fig. 2. Variation of temperature at η =0with ξ for various λ2 Fig. 3. Variation of normal stress σyy at η =0with ξ for various values of λ 2 (a) and α (b) that the stress intensity factor increaseswith the thermal conductivity,Young’s modulus and thermal expansion coefficient in the direction perpendicular to the crack plane. On the stress intensity factors... 751 Fig. 4. Variation of stress intensity factor with t′ for various values of λ2 (a), α (b), E (c) and µ (d) References 1. AközA.Y., TauchertT.R., 1972,Thermal stresses in an orthotropic elastic semi-space, J. Appl. Mech. ASME, 39, 87-90 2. Atkinson C., Clements D.L., 1977, On some crack problem in anisotropic thermoelasticity, Int. J. Solids Struct., 13, 855-864 3. Christensen R.M., 1979, Mechanics of Composite Materials, Wiley, New York 4. ClementsD.L., 1983,A thermoelastic problem for a crack between dissimilar anisotropic media, Int. J. Solids Struct., 19, 121-130 5. Clements D.L., Tauchert T.R., 1979, A thermoelastic crack problem for an anisotropic slab, J. Aust. Math. Soc., Ser. B, 21, 243-255 6. 6. Ghosh S., 1977, A note on two-dimensional thermoelastic crack problem for an aelotropic solid, Indian J. Mech. Math., 15, 6-15 752 B.Rogowski 7. GladwellG.M.L.,Barber J.R.,OlesiakZ., 1983,Thermalproblemswith radiation boundary conditions,Q. Jl. Mech. Appl. Math., 36, 387-401 8. Hearmon R.F.S., 1961, An introduction to applied anisotropic elasticity, Oxford Univ. Press 9. Ishida R., 1987, Crack problem in a transversely isotropic medium with a penny-shapedcrackunder transient thermal loading,Zeit.Angew.Math.Mech., ZAMM, 67, 2, 93-99 10. KoizumiT.,NiwaH., 1977,Transient thermal stressproblem ina semi-infinite platewith anedge crackperpendicular to the edge surface,Trans. of the Society of Japan Mech. Eng., 43, 422-447 11. Noda N., Matsunaga Y., 1986, Transient thermoelastic problem in an infi- nite body containing a penny-shaped crackdue to time and position dependent temperature condition, Zeit. Angew. Math. Mech., ZAMM, 66, 6, 233-239 12. Nowacki W., 1986,Thermoelasticity, PWN,Warszawa 13. Nowiński J.L., 1978, Theory of Thermoelasticity with Applications, Sijthoff and Noordhoff Int. Publ., The Netherlands 14. Podstrigach Ya.L., Kolyano Y.M., 1972,Transient Temperature Stresses in Thin Plates, (in Russian), NaukowaDumka, Kiev 15. Rogowski B., 1975, Displacement functions for transversely isotropic media (in Polish),Mechanika Teoretyczna i Stosowana, 13, 1, 69-83 16. Rogowski B., 1982, Thermal stresses in a transversely isotropic layer conta- ining an annular crack. Tensile – and shear type crack, J. Theor. Appl. Mech., 22, 3-4, 473-492 17. RogowskiB., 2001a,Heat conductionproblem inatransversely isotropicbody with a circular crack system, Mathematical Methods and Physicomechanical Fields, 44, 3, 128-134 18. Rogowski B., 2001b,Thermal stresses problem in a transversely isotropic bo- dywith a circular crack system,Mathematical Methods and Physicomechanical Fields, 44, 4, 85-92 19. Rogowski B., 2003, Fundamental solutions related to thermal stress intensity factors of modes I and II – the axially symmetric problem, J. Theor. Appl. Mech., 41, 2, 241-269 20. Sneddon I.W., 1966, Mixed Boundary Value Problems in Potential Theory, Amsterdam: North-Holland 21. Sumi N., 1981, Thermal stresses in an orthotropic rectangular plate with a rigid ribbonlike inclusion,Nucl. Eng. Des., 66, 405-411 22. SumiN., 1982,The thermoelastic problem for an orthotropic rectangular plate with an oblique crack,Theor. Appl. Mech., 31, 135-148 On the stress intensity factors... 753 23. Ting V.C., Jacobs H.R., 1979, Stress intensity factors for transient thermal loadings of a semi-infinite medium, J. Thermal Stresses, 2, 1, 1-13 24. Tsai Y.M., 1983a, Thermal stress in a transversely isotropic medium conta- ining a penny-shaped crack,Trans. ASME J. Appl. Mech., 50, 24-28 25. Tsai Y.M., 1983b, Transversely isotropic thermoelastic problem of uniform heat flow disturbed by a penny-shaped crack. J. Thermal Stresses, 6, 379-389 O współczynnikach intensywności naprężenia dla nieustalonego termicznego obciążenia w ortotropowej cienkiej płycie ze szczeliną Streszczenie Rozpatrzono zagadnienie ortotropowej cienkiej płyty zawierającej szczelinę pro- stopadłą do jej brzegów. Założono, że nieustalone naprężenia termiczne powstają wwyniku przepływuprzez powierzchnie szczeliny strumienia ciepła będącego funkcją czasu,miejsca i konwekcyjnegoprzepływuciepłaprzez powierzchniepłyty. Znaleziono ścisłe, analityczne rozwiązanieokreślającewspółczynnik intensywnościnaprężeń i roz- warcie szczeliny. Przykłady numeryczne pokazują zależności temperatury, naprężeń i współczynnika intensywności naprężenia od parametrów geometrycznych i stałych określającychwłasności termiczne i sprężyste materiału. Manuscript received February 10, 2004; accepted for print April 24, 2004