Journal of Urban Mathematics Education  December 2008, Vol. 1, No. 1, pp. 10–34  ©JUME. http://education.gsu.edu/JUME  JULIUS DAVIS is a Doctoral Candidate in Mathematics Education in the School of Education  and Urban Studies at Morgan State University, 1700 East Coldspring Lane, Jenkins Building 421,  Baltimore, MD 21217. His research focuses on understanding how issues of race and racism shape  the lived realities, schooling, and mathematics education of African American students.  DANNY  BERNARD  MARTIN  is  Chair  of  Curriculum  and  Instruction  and  an  Associate  Professor  of Mathematics Education and Mathematics at  the University  of Illinois at Chicago,  College of Education (MC 147), 1040 W. Harrison, Chicago, IL 60607; e­mail:dbmartin@uic.edu.  His research has focused on understanding the salience of race and identity in African Americans’  struggle  for  mathematics  literacy.  Dr.  Martin  is  author  of  the  book  Mathematics  Success  and  Failure Among African­American Youth (Lawrence Erlbaum Associates, 2000) and editor of the  forthcoming book Mathematics Teaching, Learning, and Liberation in the Lives of Black Children  (Routledge, 2009).  Racism, Assessment, and  Instructional Practices:  Implications for Mathematics Teachers of  African American Students  Julius Davis  Morgan State University  Danny Bernard Martin  University of Illinois at Chicago  Couched within a larger critique of assessment practices and how they are used  to  stigmatize  African  American  children,  the  authors  examine  teachers’  instructional practices in response to demands of  increasing test scores. Many  mathematics  teachers might be unaware of how  these  test­driven  instructional  practices can simultaneously reflect well­intentioned motivations and contribute  to the oppression of their African American students. The authors further argue  that  the focus of assessing African American children via comparison to white  children  reveals  underlying  institutionally­based  racist  assumptions  about  the  competencies of African American students. Strategies are suggested for helping  teachers resist test­driven instructional practices while promoting excellence and  empowerment for African American students in mathematics.  KEYWORDS: African American students, assessment, instructional practice, racial  hierarchy, racism  Although the phrase “teaching to the test” has been spoken in hallways and  teachers’  lounges  throughout  the  nation’s  public  schools  for  decades,  with  the  passage  of  the  No  Child  Left  Behind  Act  of  2001  (NCLB), 1  the  phrase  has  become somewhat of a formalized instructional practice. The first author taught  and conducted research at a middle school  in the Baltimore City Public School  1 No Child Left Behind Act of 2001, Public Law 107­110, 20 U.S.C., §390 et seq. http://education.gsu.edu/JUME mailto:dbmartin@uic.edu Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  11  System that utilized teaching to the test as the dominant  instructional approach  with its African American students. Our conceptualization of teaching to the test  is characterized by classroom practices that emphasize remediation, skills­based  instruction over critical  and conceptual­oriented thinking, decreased use of rich  curriculum  materials,  narrowed  teacher  flexibility  in  instructional  design  and  decision making, and the threat of sanctions for not meeting externally­generated  performance standards. Reflecting  low­level  expectations  for African  American  children, these teaching­to­the­test approaches often require teachers to make use  of  remedial  mathematics  plans  and  strategies  that  focus  on  lower­level  mathematical content. While mastery of this lower­level content is necessary, it  often becomes the ceiling of the mathematics that students learn because it allows  students to meet minimum standards for what counts as success.  In Baltimore, district and school administrators and teachers supported this  approach by developing and implementing a supplemental Saturday mathematics  program  dedicated  to  preparing  African  American  students  for  the  state  administered  standardized  test.  The  administrative  staff  at  the  school  also  developed  and  implemented  an  additional  plan  devoted  to  increasing  African  American  students’  performance  on  the  test.  The  district  and  school  administrators selected students to participate in these remedial programs based  on  their  having  standardized  test  scores  that  were  at  basic  and  near­proficient  levels. Students were required to participate in both the in­school and Saturday  school mathematics program. Nearly 25% of the student body at the researched  middle school was required to participate in these special programs. During the  school  day,  students  were  taken  out  of  their  elective  courses  twice  a  week  to  participate in the in­school mathematics program.  In the regular mathematics courses at the school, administrators instituted an  additional remedial mathematics plan that required teachers to spend the first 30  minutes of their 90­minute class period reviewing mathematical concepts taught  to students  in previous  mathematics courses. The remainder of  their class  time  was spent focusing on the state administered test in mathematics. Students were  taught from textbooks that focused on this test. They were also inundated with  worksheets, board work, test­taking strategies, and other materials devoted to the  state administered standardized test in mathematics.  Because our conceptualization of teaching to the test is based largely on the  first author’s observation in a single middle school, it is clearly not exhaustive of  the instructional practices found throughout Baltimore. We believe, however, that  these practices are not isolated to the first author’s experiences. The practices that  were  observed  bear  a  striking  resemblance  to  those  documented  in  the  larger  literature  (see,  e.g.,  Kozol,  1992;  Lipman,  2004;  Noguera,  2003;  Oakes,  1990;  Oakes, Joseph, & Muir, 2004) on school inequality and propelled us to use this  example  to  begin  a  conversation  among  mathematics  educators  about  such Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  12  practices and approaches. The literature reveals that teachers with large numbers  of African American students reported more often that test scores were used to  evaluate  students’  progress,  select  textbooks,  provide  students  with  special  services,  and  make  curriculum  and  instructional  decisions  (Madaus,  West,  Harmon,  Lomax,  &  Viator,  1992;  Strickland  &  Ascher,  1992).  In  these  classrooms, teachers indicated that emphasis was placed on test content, teaching  test­taking skills, teaching topics known to be on the assessment, and preparing  students  for  the test more than a  month  before the test  (Madaus, et al., 1992).  These practices force teachers to rush instruction and provide students with little  to no opportunity to learn more advanced­level mathematical concepts (Madaus,  et  al.,  1992).  Teachers  of  African  American  students  who  focused  mainly  on  preparing these students for tests in mathematics spend a significant amount of  time on rudimentary levels of mathematics (Madaus, et al., 1992).  In her book, High Stakes Education, Lipman (2004) provided evidence of  this approach to educating African American and Latino/a children in the Chicago  Public School System (CPS). She documented widespread remediation and test­  focused  instruction  in  the  schools  where  she  conducted  her  research.  Lipman  stated:  CPS leaders contend that the harshness of accountability is offset by new remedial  “supports”…including  after­school  remedial  classes,  mandatory  summer  “Bridge”  classes  for  failing  students,  and  transition high  schools.  However,  these  remedial  programs  are  explicitly  aimed  at  the  [statewide  assessment  test]….The  impoverishment and redundancy of this basic skills education for students the district  has defined as “behind” can hardly be construed as an antidote for the inequities of  the  system,  particularly  as  African  American and  Latino/as  are  disproportionately  assigned  to  this  type  of  schooling.  Mandating  a rudimentary  curriculum  that  few  middle­class parents would choose for their own children publicly signals that low­  income children and children of color are deficient. (p. 47)  Lipman’s  (2004)  analysis  is  especially  powerful  because  she  also  highlighted the voices of the teachers who carried out these practices on behalf of  the  district.  The  following  comments  come  from  interviews  that  Lipman  conducted:  Grover  teacher:  I’ve  been  at  this  school  for  five  years,  and  the  emphasis  on  standardized tests weighs more heavily than it ever has in my career. (p. 77)  Westview teacher: We are test driven… everything is test driven. (p. 77)  Eighth­grade teacher: With all the teaching strategies—teaching them how to take  tests. I have tested them to death to tell you the truth. (p. 78) Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  13  We concur with  Lipman (2004) when  she stated the following about this  narrow approach to educating African American children:  The  emphasis  on  analyzing  and  preparing  for  standardized  tests;  the  immense  pressure on administrators, teachers, and students to raise scores; the substitution of  test­preparation materials for the existing curriculum; practice in test­taking skills as  a  legitimate classroom activity—these constitute a meaning system that reinforces  the definition of education as the production of “objective,” measurable, and discrete  outcomes. (p. 80)  Without an awareness that what was observed in a single middle school in  Baltimore is also taking place in other  locations around the country, one might  easily  conclude  that  the  approach  to  teaching  mathematics  to  the  students  in  Baltimore  was  appropriate.  There  would  be  no  linking  of  the  practices  in  one  context  to  similar  practices  in  another.  Hence,  the  institutionalized  nature  of  African American students’ mis­education would be lost. One might argue that  these students needed support to help raise their level of achievement to that of  white  students  and  that  the district  and  school  officials  were  simply  providing  them  with  that  support.  Many  administrators  and  teachers,  however,  might  be  unaware of how such practices can, on one hand, reflect well­intentioned goals  but  simultaneously  contribute  to  the  oppression  of  their  African  American  students.  Reflecting  on  the  experiences  of  the  first  author,  both  of  us  agree  that  although this approach resulted in increased test scores for sixth­ and eighth­grade  students, these increases do not mitigate the oppression. We unequivocally oppose  such  a  narrow  instructional  approach  and  conceptualization  of  mathematics  education  for  African  American  children.  Our  opposition  is  based  on  our  scholarly  analysis,  our  respective  teaching  experiences  in  diverse  African  American  contexts,  and  our  willingness  to  advocate,  as  African  American  scholars, on behalf of African American children.  Yet, as Lipman (2004) argued, it is insufficient to analyze such practices in  isolation of  the  larger  ideologies and political  movements  that undergird them.  Utilizing a race­critical perspective (Martin, 2009), we argue that such test­driven  instructional  practices,  particularly  within  hyper­segregated  African  American  schools, like those in Baltimore and elsewhere, must be situated within a larger  system of assessment that has “scientifically” (a) supported the social construction  of  African  American  children  as  intellectually  inferior  and  (b)  facilitated  the  development of ranking systems that reify these negative social constructions.  Although  a  full  deconstruction  of  this  assessment  system  is  beyond  the  scope of this article, we offer a partial deconstruction that links scientific racism,  race­based  ranking  systems,  and  instructional  practice  in  classrooms  predominated by African American children. In concert with this deconstruction, Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  14  we suggest strategies for helping teachers resist narrow, test­focused, instructional  approaches while promoting excellence and empowerment for African American  children in mathematics.  Assessment and Scientific Racism  Historically, testing and assessment has been linked to larger eugenics and  white supremacy efforts  that have tried to prove,  through science,  that African  Americans and other non­whites are intellectually and culturally inferior (Gould,  1981;  Herrnstein  &  Murray,  1994;  Jensen,  1969;  Ladson­Billings,  1999).  Intelligence  testing  has  evolved  alongside  various  racist  beliefs  about  African  Americans. According to Ladson­Billings (1999), “throughout U.S. history,  the  subordination of Blacks has been built on ‘scientific’ theories (e.g., intelligence  testing), each of which depends on racial stereotypes about Blacks that makes the  conditions appear appropriate” (p. 23). From the seventieth century to the first  half of the twentieth century, the scientific community participated in validating  the so­called inferiority of African Americans when compared to whites and the  formation  of  a  racial  hierarchy  in  both  intelligence  and  culture  (Gould,  1981;  Herrnstein & Murray, 1994; Jensen, 1969; Montagu, 1997; Norman, 2000).  Montagu  (1997)  argued  that  few  members  of  the  scientific  community  spoke  against  the  notion  of  a  hierarchy  of  races.  Instead,  the  shared  beliefs,  values, and techniques exhibited by the scientific community formed the basis of  scientific racism (Norman, 2000). Scientific racism can be defined as the use of  scientific methods to support and validate racist beliefs about African Americans  and other groups’ based on the existence and significance of racial categories that  form a hierarchy of races that support political and ideological positions of white  supremacy  (Gould,  1981;  Herrnstein  &  Murray,  1994;  Jensen,  1969;  Montagu,  1997;  Norman,  2000).  Gould  (1981),  Montagu  (1997),  and  Norman  (2000)  asserted  that  the  science  establishment  invested  a  considerable  amount  of  resources  into  advancing  scientific  racism.  According  to  Montagu,  “virtually  every  scientist  writing  during  the  nineteenth  century  was…caught  in  an  inexorable web of racist beliefs” (p. 32). Similarly, Norman argued, “Despite an  impressive array of eminent scientific advocates, scientific racism had, from its  inception and even up to its modern­day manifestations, been nothing more than  the uncritical couching of popular racist beliefs in the idiom of science” (p. 3).  There are three faulty assertions guiding scientific examinations of race and  intelligence that conceal and  couch racist  beliefs about African  Americans and  other groups (Gardner, 1995; Gould, 1981). First, there is widespread belief that  intelligence can be described by a single number. Gould (1981) contended that  converting  abstract  concepts  such  as  intelligence  into  numerical  entities  is  a  fallacy.  Gardner  (1995)  argued  that  the  belief  in  a  single,  standardized,  and Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  15  inherent  human  intelligence  or  g  (general  intelligence)  ignores  the  concept  of  multiple  intelligences.  Second,  these  faulty  assertions  fail  to  take  into  consideration Jones’ (1995) arguments about the long­forgotten justifications of  slavery and segregation that rest on beliefs about African American intellectual  inferiority and the alleged intellectual superiority of whites; in that, there exists a  faulty  belief  that  intelligence can  be used to rank social groups  in some  linear  order. Gould argued that such ranking requires a criterion that takes the form of  an  “objective  number”  to  assign  all  individuals  to  their  proper  status.  The  assumption is that “if ranks are displayed in hard numbers obtained by rigorous  and standardized procedures, then they must reflect reality, even if they confirm  what we wanted to believe from the start” (Gould, 1981, p. 26). Nonetheless, we  concur  with  Gould,  who  also  argued:  “Science must  be understood  as  a social  phenomenon, a gutsy, human enterprise, not the work of robots programmed to  collect  pure  information.…Science,  since  people  must  do  it,  is  a  socially  embedded activity” (p. 21). Third, the most conservative research on intelligence  suggests that it is genetically­based and immutable. This suggestion “invariably  [leads]  to  [the  conclusion]  that  oppressed  and  disadvantaged  groups—races,  classes, or sexes—are innately inferior and deserve their status” (Gould, 1981, p.  25).  Several  scholars  abandoned  the  word  intelligence  to  avoid  debates  and  endless  arguments  associated  with  intelligence  testing,  biological  determinism,  scientific rationalism, and scientific racism (Gould, 1981; Herrnstein & Murray,  1994; Jensen, 1969). Herrnstein and Murray (1994) suggested that scholars use  more neutral terms such as cognitive ability to subside criticism. Essentially, the  discourse  about  intelligence  testing  was  minimized  throughout  the  1970s.  We  argue that contemporary, race­comparative analyses began to flourish on the heels  of  this changing discourse, however. Since that time, a number of comparative  analyses of mathematics achievement have been conducted, typically supporting  and  serving  as  evidence  for  so­called  racial  achievement  gaps  (see,  e.g.,  Lubienski,  2002;  Strutchens  &  Silver,  2000).  These analyses  have consistently  normalized white student performance and portrayed African American children  as lacking in mathematics skills and ability.  Politics and Purposes of Standardized Tests  Apparently  neutral  assessments  are  not  objective  at  all,  but  rather  ‘objects  of  history’—created  to  fulfill  particular  social  functions,  which  have  shaped  the  assessments  in  particular  directions  that  are  not  readily  apparent.  The  seemingly  innocuous requirement for the results of a test to be reliable requires that the test  disperses individuals along a continuum so having the effect of placing a magnifying  glass over a very small part of human performance, and this is particularly marked in  mathematics. (Williams, Bartholomew, & Reay, 2004, p. 58) Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  16  The  history,  politics,  and  purposes  of  standardized  testing,  particularly  in  mathematics, are rooted in the research and discourse revolving around race and  intelligence that we outlined above. We contend that deconstructing this research  and  discourse  on  intelligence  testing  is  important  in  understanding  the  racist  underpinnings of contemporary standardized testing not only in mathematics, but  also in every discipline. As the quote by Williams, Bartholomew, and Reay points  out, one of the purposes of assessment is to create hierarchies. We claim that the  use of a single form of assessment or a single statistic to describe mathematical  ability  is  limited in explanatory power. Nonetheless, this happens for two main  reasons. The first—to convey certainty and absolute truth—stems from the fact  that numbers and statistics represent a special form of being “objective” (Gould,  1981, 1995). They carry the weight of proof. The analysis of all types of data,  including statistics, however, involves interpretation that cannot be divorced from  social  and  political  contexts.  How data  is  chosen  and  used depends  on  who  is  doing the choosing and their purpose for conducting the analysis.  It is not uncommon for statistical reports to be presented in the absence of  important  qualitative  and  contextual  considerations.  Even  when  inclusion  does  occur,  misunderstanding  of  these  contextual  forces  occurs  in  deference  to  supporting the validity of the statistics. For example, race, which usually appears  in achievement studies as an undertheorized independent variable, is said to cause  measured achievement differences among socially constructed racial groups. Yet,  this faulty use of the concept of race usually reflects an inadequate understanding  of  racism  and  racialization  and  their  impact  on  educational  outcomes.  Socioeconomic  status,  typically  described  by income,  is  also  said  to  determine  achievement outcomes  but  is  made  causal  without  a nuanced  understanding  of  wealth differentials (e.g., property ownership, investments, inheritance) within the  same  socioeconomic  (income)  strata  and  how  forces  like  racism  and  discrimination,  in  turn,  account  for  those  wealth  differences  (Conley,  1999).  Similarly, neighborhood effects are used to construct theories about opposition,  disengagement, and resistance to schooling that  leads to academic failure. Yet,  these  analyses  fail  to  account  for  student  success  in  these  very  same  neighborhoods.  The second reason is that statistics allow students to be ranked and sorted  along  what  are  thought  to  be  racial  lines  (Gould,  1981,  1995;  Tate,  1993).  Because  of  how  test  scores  are  used  in  race­comparative  analyses  (Lubienski,  2002; Strutchens & Silver, 2000; U.S. Department of Education, 1997), African  American students are frequently constructed and represented as being inferior to  white and Asian students  in mathematics (Martin, 2007, 2009). In mathematics  education,  these rankings and  sortings  have  been used to produce what Martin  (2009)  has  termed  the  racial  hierarchy  of  mathematical  ability.  This  racial  hierarchy  results  in  white  students  being  positioned  at  the  top  and  African Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  17  American  students  at  the  bottom.  This  “ranking”  proves  to  be  particularly  interesting  because  Asian  students,  collectively,  perform  better  than  white  students.  Yet,  it  is  white  students  who  are  used  as  the  barometer  for  African  American  students’  performance.  For  example,  a  commonly  cited  research  finding  has suggested that African  American 12th graders perform at  the same  level  as  white 8th graders  (Lubienski,  2002;  National  Research  Council,  1989;  Thernstrom  &  Thernstrom,  1999;  U.S.  Department  of  Education,  1997).  Such  findings provide pseudoscientific support for racist assumptions (Tate, 1993) that  suggest African American students are intellectually inferior to white students and  located at the lowest levels of a racial hierarchy.  A  belief  in  racial  hierarchies  undergirds  all  forms  of  intelligence  testing,  including  school­based  achievement  testing  (Gardner,  1995;  Gould,  1981;  Herrnstein & Murray, 1994), and is aligned with the same racist assumptions that  have allowed African Americans to be exploited within the laws and practices of  the United States  more generally (Ture & Hamilton, 1992;  Wilson, 1998).  We  suggest  that teachers who engage  in teaching to the test and other shortsighted  remediation must necessarily accept the existence of this hierarchy as evidenced  by their subsequent efforts to relocate African American students within it.  Assessment in Mathematics Education: Foregrounding Race and Racism  Invoking a race­critical perspective, we claim along with others (see, e.g.,  Hilliard, 2003; Ladson­Billings, 1999) that, beyond any knowledge that might be  gained  about  student  thinking  and  development,  the  larger  political  effect  of  standardized  testing,  particularly  in  the  area  of  mathematics  education,  is  to  maintain  white  supremacy  in  one  form  or  another  (e.g.,  U.S.  international  standing and competitiveness, normalization of white student behavior). 2 Ladson­  Billings (1999), for example, has  argued that  the school  curriculum suppresses  multiple voices and perspectives while simultaneously legitimizing the dominant,  white,  male, upper­class ways of knowing and  being  as the “standard” that all  students should be required to emulate (see also Swartz, 1992). This dominance is  evidenced by the fact  that schools serving  African  American  students  typically  adopt curriculum from predominantly white school districts (Davis, 2008; Martin,  2007).  Such  choices  are  often  not  done  in  response  to  the  authentic  needs  of  2 By this statement, we mean that the goals for testing are often framed in terms of improving the  “standing”  of  the  United  States  relative  to  other  countries  in  international  comparisons.  Many  high­achieving Asian countries are often discussed as threats to the standing of the United States.  The goals for African American children are often framed as increasing test scores for the purpose  of having outcomes match those of white children. Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  18  African American learners, but suggest that what African American children need  is determined by what is best for white children.  We also claim that commonly used race­comparative analyses are one small  piece of the larger structural and institutional mechanisms that support this goal. It  is  this  larger  structural  effect,  above  and  beyond  the  efforts  and  intentions  of  individual white scholars and policy­makers, that continues to drive instructional  practices  for  teachers  of  all  children  but  especially  African  American  children  when  they  are  viewed  as  less  than  ideal  learners  and  mathematically  illiterate  (Martin, 2007, 2009).  In  Tate’s  (1993)  critical  race analysis  of  standardized  testing  practices  in  poor school districts serving large numbers of African American students, he used  the voluntary national mathematics assessment as a platform to discuss the racist  underpinnings  of  standardized  testing.  Tate  argued  that  standardized  tests  are  “scientifically”  constructed  to  socially  reproduce  the  most  negative  aspects  of  African American students’ lived realities. He also argued that standardized tests  were  designed  to  prepare  poor  African  American  students  to  replicate  their  parents in the division of labor by providing them with instruction in mathematics  suitable  for  this  purpose.  Tate  further  claimed  that  policies  governing  standardized test were designed to ensure that poor African American students did  not  receive  the  same  instruction  in  mathematics  as  middle­  and  upper­class  members  of  society.  He  believed  that  test  scores  are  not  intended  to  provide  feedback for the purposes of educational improvement in mathematics, but to rank  students and to determine their economic potential. In other words, standardized  test shape the lives of poor African American students in more significant ways  than middle­class or affluent students.  We  agree  with  Tate’s  (1993)  analysis.  The  current  environment  of  high­  stakes  testing  engendered  by  NCLB  has  caused  many  states  and  local  school  districts  to  shift  their  instructional  approaches  in  ways  where  satisfactory  outcomes  on  state  assessments—not  authentic  learning  and  development—  become the primary goal. These pressures have also positioned administrators and  teachers to appropriate much of the underlying ideology that characterizes African  American  children  as  mathematically  illiterate,  using  white  and  Asian  student  performance as the standard.  The  current  environment  of  high­stakes  testing  is  not  only  just  a  contemporary  phenomenon,  but  also  one  that  has  historical  ties  to  intelligence  testing and the construction of racial hierarchies. NCLB has repositioned state and  local policies and  instruction and standardized testing efforts  in public schools,  specifically, in mathematics, to carry out the construction of these hierarchies.  There are two aspects of NCLB that shape our discussion of standardized  testing in mathematics education. First, one of the main goals of NCLB is to close  the so­called racial achievement gap in reading and mathematics. Martin (2009) Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  19  argued that plans to move African Americans and other marginalized groups from  their  perceived  positions  of  being  mathematically  illiterate  to  being  mathematically literate, an intellectual space supposedly occupied by white and  Asian  students,  is  rooted  in  racist  beliefs  about  these students.  The underlying  assumption is that African American students’ performance in mathematics must  conform  to that of  white students  in  order  for  these  students  to  be  considered  mathematically  literate  (Martin,  2009).  In  our  view,  the  performance  of  white  students as the benchmark for African American students sets an artificially low  standard for African American learners given that the collective averages of white  students on many large­scale mathematics assessments are less than the highest  levels of proficiency (Secada, 1992; Strutchens & Silver, 2000; Tate, 1997) and  ignores the needs of  African  American children as African American children.  Connecting the discourse on African American students in mathematics education  to intelligence testing, the assumption is that “Black inferiority is purely cultural  and  that  it  can  be  completely  eradicated  by  [mathematics]  education  to  a  Caucasian standard” (Gould, 1981, p. 32).  The accountability  measures  dictated by  NCLB  require  states  to  publicly  identify  low­performing  schools.  This  practice  has  played  a  major  role  in  subjecting  African  American  students,  their  schools,  and  school  systems  to  inferior labels as a result of failing to meeting standardized testing goals (Davis,  2008; Lattimore, 2001, 2003, 2005a; Sheppard, 2006). This practice was clearly  evident in the Baltimore city school and district discussed in the introduction of  this article. Currently, this African American school district is in its second year  of system improvement and the students are considered the lowest performers in  mathematics  in  the  state.  In  addition  to  these  labels,  the  failure  to  meet  standardized test goals places their schools in danger of losing federal dollars to  finance their education.  Second,  NCLB  has  explicitly  attempted  to  standardize  what  constitutes  highly  qualified  teachers  for  all  students. 3  The  policy  mandates  the  use  of  standardized  tests  to  quantify  what  constitutes  a  highly  qualified  mathematics  teacher. This policy treats the  instruction  African  American students receive  in  mathematics as a generic set of  teaching  competences that should work for all  students  (Ladson­Billings,  1999;  Martin,  2007).  When  these  approaches  to  teaching  fail  to  produce  the  desired  results,  African  American  students  are  deemed  deficient—not  the  approaches  used  to  teach  these  students  (Ladson­  Billings, 1999; Martin, 2007).  3 In this article, we do not give extensive attention to the forms of assessment used for teacher  certification. We do, however, claim that the same logic applies to these tests. The NCLB policy  document defines highly qualified as a teacher who holds at least a bachelor’s degree and has  passed state­certification or licensing exams. Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  20  Later in this article, we will briefly revisit arguments made by Martin (2007)  who problematized notions of highly qualified mathematics teachers by asking:  “Who  should  teach  mathematics  to  African  American  students?”  We  use  the  characteristics described by Martin as a catalyst to provide mathematics teachers  with  strategies  to  resist  contributing  to  the  oppression  of  African  American  students.  African American Students’ Experiences in  Mathematics Education  Martin  (2007)  discussed  how  achievement  has  served  as  the  dominant  discursive  frame used  to talk  about  the competencies  of  African  Americans  in  mathematics  within  the  context  of  mainstream  mathematics  education  research  and  policy.  He  demonstrated  how  a  framework  of  color­blind  racism,  in  turn,  supports  this  achievement­focused  discourse.  Martin  challenged  mathematics  education researchers to construct an alternative discursive and assessment frame  focused  on  how  African  American  learners  experience  mathematics  education,  and  suggested  that  future  research  should  focus  on  mathematics  learning  and  participation  as  racialized  forms of experience,  not only  for  African  American  learners but also for all learners.  Analysis  of  the  relevant  literature  reveals  two  important  insights  about  African American students’ experiences with standardized testing (Berry, 2005;  Corey & Bower, 2005; Lattimore, 2001, 2003, 2005a; Lubienski, 2002; Moody,  2003,  2004;  Strutchens  &  Silver,  2000;  U.S.  Department  of  Education,  1997).  First, school districts serving large numbers of African American students often  implement  remedial  strategies  to  comply  with  state  and  federal  regulations  surrounding standardized testing in mathematics (Davis, 2008; Lattimore, 2001,  2003, 2005a; Tate, 1993). In support of this strategy, African American students  are inundated with practice materials that include worksheets and in­class practice  tests  devoted  to  state  assessments  (Lattimore,  2001,  2003,  2005a).  The  mathematics instruction that these students are exposed to emphasizes repetition,  drill, right­answer thinking that often focuses on memorization and rote learning,  out­of­context  mathematical  computations,  and  test­taking  strategies  (Davis,  2008;  Ladson­Billings,  1997;  Lattimore,  2001,  2003,  2005a).  This  type  of  instruction  often  leaves  African  American  students  disengaged  and  viewing  mathematics as irrelevant and decontextualized from their everyday experiences  (Corey & Bower, 2005; Davis, 2008; Ladson­Billings, 1997; Lattimore, 2005b;  Tate, 1995).  Second,  standardized  tests  serve  as  a  “gatekeeper”  in  providing  African  American  students  access  to  higher­level  mathematics,  gifted  and  honors  programs,  and  future  aspirations  (Berry,  2005;  Davis,  2008;  Lattimore,  2001, Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  21  2003,  2005a;  Moody,  2003,  2004;  Oakes,  1990;  Sheppard,  2006).  Throughout  their schooling experiences, African American students are often denied access to  higher­level  mathematics and advanced programs  because of  their performance  on  standardized  test  (Berry,  2005;  Davis,  2008;  Moody,  2003,  2004;  Oakes,  1990), thereby leaving the majority of African American students in lower­level  mathematics courses (Corey & Bower, 2005; Davis, 2008; Lubienski, 2001, 2002;  Moody, 2003, 2004; Oakes, 1990; Oakes, Joseph, & Muir, 2004). In high school,  state  administered  standardized  tests  have  also  been  found  to  serve  as  the  gatekeeper  to  African  American  students  receiving  a  high  school  diploma  (Lattimore, 2001, 2003, 2005a). For example, since 2006, students in California  must pass an exit exam to graduate. Students in Maryland will have to pass the  state  administered  standardized  test  to  receive  their  high  school  diploma  beginning with the graduating class of 2009.  Re­conceptualizing the Assessment of  African American Students in Mathematics:  Implications for Teachers  There  is  very  little  consideration  given  to  the  argument  that  African  American  students  represent  a  distinct  cultural  group  (Akbar,  1980;  Ladson­  Billings,  1994),  requiring  an  education  in  mathematics  that  reflects  their  lived  realities and collective conditions (Martin, 2007; Thompson, 2008). According to  Ladson­Billings (1999):  African American students are a part of almost every social strata and their social  context may affect what experiences they have and how they view the world, their  cultural knowledge, expressions, and understandings, which may be transmitted over  many  generations,  may  share  many  features  with  African  Americans  across  socioeconomic and geographical boundaries. (p. 699)  We  argue  African  American  students  must  receive  an  education  in  mathematics  that  not only  prepares  them to  function  effectively  in  mainstream  society  but  also  builds  on  their  cultural  knowledge  base  and  value  systems  (Ladson­Billings,  1997).  This  argument  implies  framing  the purpose,  structure,  and  ideology  of  mathematics  education  for  African  American  learners  in  ways  that are responsive to their needs as African American learners (Martin & McGee,  in press).  In  reconceptualizing  and  reframing  mathematics  education  for  African  American learners, a growing number of African American scholars have begun  to  advance  liberatory  mathematics  education  agendas  for  African  American  students (Martin &  McGee,  in press;  Moses  &  Cobb, 2001; Thompson, 2008).  The most notable example of this agenda is the Algebra Project (Moses & Cobb, Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  22  2001) and its parallel youth development program, The Young People’s Project  (YPP).  Through  the  Algebra  Project,  civil  rights  activist  and  mathematics  educator Robert Moses has led the charge to provide African American students  with a liberatory mathematics experiences via a curriculum anchored in culturally  relevant activities. Moses argued the fight for mathematics literacy is a fight for  twenty­first  century  citizenship  and  that  African  American  youth  must  be  empowered to fight for their  liberation on their own terms. This empowerment  was clearly evident in Baltimore where African American youth from the Algebra  Project  in  that  city  challenged  school  officials  for  not  providing  them with  an  adequate education (Prince, 2006).  Martin and McGee (in press) argued, “Any framing of the form, philosophy,  and  content  of  mathematics  education  for  African  Americans  must  address  the  historical and contemporary social realities that they face.” They suggested that  history  “compels  us  to  frame  African  Americans  mathematics  education  and  mathematics  literacy  in  the  same  way  that  education,  in  general,  was  framed  around their life conditions in the past, for the purposes of liberation.” In defining  liberation,  they  drew  on  the work of  Watts,  Williams,  and  Jagers  (2003),  who  defined liberation as follows:  Liberation  in  its  fullest  sense  requires  the  securing  of  full  human  rights  and  the  remaking  of  a  society  without  roles  of  oppressor  and  oppressed.…It  involves  challenging  gross  social  inequities  between  social  groups  and  creating  new  relationships that dispel oppressive social myths, values, and practices. The outcome  of this process contributes to the creation of a changed society with ways of being  that  support  the  economic,  cultural,  political,  psychological,  social,  and  spiritual  needs of individuals and groups. (pp. 187–188)  Thompson (2008) similarly argued for a liberatory framing of mathematics  education for African American learners through what she calls Nation Building.  She  defined  Nation  Building  “as  the  conscious  and  focused  application  of  knowledge, skills, and abilities to the task of liberation” (p. 17). Thompson further  argued  that  Nation  Building  “involves  the  development  of  behaviors,  values,  institutions, and physical structures that elucidate African history and culture” for  the purposes of ensuring “the future identity, existence, and independence of the  nation”  (p.  17).  She  believed  that  efforts  to  increase  African  Americans  in  mathematics and science should be geared toward the liberation of African people  throughout the Diaspora and to eradicate systems of racism (white supremacy).  These liberatory agendas typically stand little chance of being accepted in  mainstream  discussions  of  mathematics  education  because  “African  Americans  seeking equal opportunity in education [specifically in mathematics] will only be  granted  when  the  opportunity  being  sought  converges  with  the  economic  self­  interest of whites” (Tate, 1993, p. 17). Bell (1980) has referred to this contingency  as interest convergence. Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  23  Critical  Reflection  and  Advocacy  by  Mathematics  Teachers  of  African  American Students  We realize that teachers cannot expect to engage in liberatory instructional  practices with African American students and be rewarded by the same system  that  demands  that  they  contribute  to  the  negative  social  construction  of  these  students  (Ture  &  Hamilton,  1992).  Yet,  we  would  appeal  to  what  is  morally  correct,  given  the  needs  and  social  realities  (Ladson­Billings,  1997)  of  these  students  and  frame  the  discussion  that  follows  as  both  a  challenge  and  an  invitation for teachers. We challenge teachers to engage in critical reflection on  their own practices and we invite them to consider the suggestions we make about  changes in these practices, where necessary.  Martin  (2007)  suggested  that  teachers  should  (a)  develop  a  deep  understanding of the social realities experienced by African American students,  (b)  take  seriously  one’s  role  in  helping  to  shape  the  racial,  academic,  and  mathematics  identities  of  African  American  learners,  (c)  conceptualize  mathematics  not  just  as  a  school  subject  but  as  a  means  to  empower  African  American students, and (d) become agents of change who challenge research and  policy  perspectives  that  construct  African  American  children  as  less  than  ideal  learners  and  in  need  of  being  saved  or  rescued  from  their  blackness.  We  encourage  teachers  of  African  American  students  to  reframe  their  instructional  practices  by  taking  the  ideas  developed  by  Martin  seriously.  In  our  view,  “teachers who are unable, or unwilling, to develop in these ways are not qualified  to teach African American students no matter how much mathematics they know”  (Martin, 2007, p. 25).  While we do not offer prescriptive or formulaic approaches for how teachers  might utilize Martin’s (2007) suggestions, we do point to some important initial  steps and underscore that many of these steps should occur simultaneously and  throughout teachers’ work with African American students. Our conceptualization  of the instructional strategies and strategies of resistance offered in this section  are  in  many  respects  inextricably  linked  and  presented  in  concert  with  one  another. The strategies are intended to help teachers resist teaching to the test and  resist  contributing  to  the  negative  social  construction  of  African  American  students.  To  help  resist  these  efforts,  we  strongly  believe  that  teachers  must  continuously engage in critical reflection about their practice, their beliefs about  African American students, and their commitment to these students. Individually  and  collectively,  teachers  must  engage  in  critical  reflection  on  how  they  conceptualize mathematics education for African American students. In so doing,  we believe that issues of race and racism must be at the forefront of discussions of  mathematics education for African American students. Martin argued that there  are several documented cases where  failing to do so can stall  the progress and  design of meaningful mathematics education for these students. Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  24  Teachers have to realize that we are all socialized by institutions (e.g. media,  policies, laws, etc.) that support racist views and beliefs about African American  children. Policies and ideologies associated with high­stakes testing, for example,  often position teachers in ways where critical reflection on their practices is de­  emphasized or derailed by progressive rhetoric. Martin (in press) discussed how  he has used the  following three­question quiz  in professional development and  research contexts with teachers from various ethnic and racial backgrounds, years  of experience, and geographic locations: •  How many of you have heard of, and understand, what  is meant by the  racial achievement gap? •  How many of you have, or plan to, devote some aspect of your practice to  closing the racial achievement gap? •  How many of you believe in the brilliance of African American children?  After  noting that the vast  majority of  teachers answer affirmatively to all  three questions, Martin (in press) goes on to point out how the second and third  questions  are  conceptually  and  practically  incompatible.  He  pointed  out  that  acceptance  of  the  racial  achievement  gap  rhetoric  necessarily  requires  that  teachers,  even  African  American  teachers,  accept  the  inferiority  of  African  American children, especially when closing the so­called racial achievement gap  is translated as raising African American children to the level of white children.  The  quiz  was  a  strategy  to  help  teachers’  resist  and  rethink  negative  social  constructions of African American students.  In addition to taking the quiz,  teachers  must ask themselves difficult and  uncomfortable  questions  about  African  American  students  and  their  conditions  that include, but are not limited to: Do I believe African American students are  intellectually inferior? Do I believe that issues of race and racism play a role in  shaping  the  lives,  schooling,  and  mathematics  education  of  African  American  students?  Do  I  harbor  racist  beliefs  about  African  American  students?  Do  I  believe that history has any bearing on African American students’ contemporary  lived realities, schooling, and mathematics education? Questions of this nature are  reflective  strategies  of  resistance  that  must  be  considered,  thought  about,  and  answered truthfully. We pose these questions for all teachers but we particularly  direct  them to those white teachers whom the  literature has  identified as  being  particularly resistant to change in their negative or deficit beliefs about African  American children (Sleeter, 1993).  We believe that teachers must decide whether they are willing to be agents  of social change for African American students. Teachers should ask themselves  the  following  questions:  What  am  I  willing  to  sacrifice  for  African  American  students? Am I willing to sacrifice or take the risk to provide African American Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  25  students  with  a  liberatory  mathematics  education  in  the  face  of  policies  that  require me to do otherwise? Am I willing to challenge policies that treat African  American students as less than ideal learners?  Once teachers have explored these considerations, we believe that teachers  need  to  spend  time  seriously  thinking  about  how  they  envision  mathematics  education for African American students. In the process of conceptualizing what  mathematics education for African American students should look like, teachers  should ask themselves the following question: What do I want African American  students to be able to do as a result of their mathematics education? We suggest  that African American students should be able to use mathematics as a tool to (a)  reexamine  history  and  use  this  history  to  generate  critiques  and  better  understandings of their immediate life conditions and collective group conditions  in the world, and (b) gain access to areas in the larger opportunity structure where  mathematics  knowledge  has  often  been  used  to  keep  African  Americans  out.  Overall, the mathematics education African American students receive should be  designed  to  improve  their  life and  group  conditions  (Martin,  2009;  Thompson,  2008).  In  terms  of  the  goals  for  mathematics  learning,  teachers  might  consider  adopting  the  stance  that  effective  teaching  should  not  only  produce  growth  in  students’  mathematical  skills  but  also  connect  to  these  students’  lives,  experiences, and lead them to employ their mathematical knowledge in multiple  settings  and  develop  their  racial,  academic,  and  mathematics  identities.  For  teachers, this entails thinking of empowerment along three lines: mathematical,  social,  and  epistemological  (Ernest,  2002;  Martin  &  McGee,  in  press). 4  This  stance does not mean that students cannot be shown how to carry out procedures  and learn to produce correct answers. However, if they do not see themselves as  legitimate doers of mathematics, then the acquisition of skills with little personal  identification on the part of students is not likely to sustain itself. In other words,  we argue that teachers of African American students should consciously attempt  to  integrate  these  students’  experiences,  home  and  community  lives  into  their  4 According to Ernest (2002), mathematical empowerment concerns the gaining of power over the  language, skills, and practices of using and applying mathematics; that is, the gaining of power  over a relatively narrow domain, for example, that of school mathematics. Social empowerment  through mathematics concerns the ability to use mathematics to better one’s life chances in study  and work and to participate more fully in society through critical mathematical citizenship. Thus it  involves the gaining of power over a broader social domain, including the worlds of work, life and  social affairs. Epistemological empowerment concerns the individual’s growth of confidence not  only in using mathematics, but also a personal sense of power over the creation and validation of  knowledge. This empowerment is a personal form: the development of personal identity so as to  become a more personally empowered person with growth of confidence and potentially enhanced  empowerment  in  both  the  mathematical  and  social  senses  (and  for  the  mathematics  teacher—  enhanced professional empowerment). Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  26  conceptualization of  mathematics and teach them how to use mathematics as a  means to view and critique the world (Lynn, 2001; Tate, 1995).  Several scholars’ work has provided insight into how mathematics teachers  have conceptualized mathematics along mathematical, social, and epistemological  lines  (Ladson­Billings,  1997;  Lynn,  2001,  Tate,  1995).  For  example,  Ladson­  Billings (1997) described a sixth­grade mathematics teacher of African American  students who went beyond the district curriculum by providing her students with  an  engaging,  rigorous,  and  challenging  education  in  algebra.  This  teacher’s  students  were  engaged  in  problem  solving  around  algebra,  pushed  to  think  at  higher  levels,  and  encouraged  and  reassured  by  their  teacher  that  they  were  capable doers of mathematics. In this class, a student with special needs benefited  from this teacher’s belief system and instruction in mathematics. At the end of the  school  year,  this  teacher  convinced  the  school  principal  to  remove  the  student  from  receiving  special  education  services  because  of  his  mathematical  performance in her class.  Lynn  (2001)  captured  the  experience  of  a  middle  school  mathematics  teacher  who  reflected  seriously  on  issues  of  poverty  and  racism.  This  teacher  engaged students in a discourse about how the history of lynching and Jim Crow  racism  has  shaped  African  Americans’  lives.  He  used  this  history  to  teach  his  students  the  importance  of  checking  their  work  and  knowing  their  math  facts.  This  teacher  connected  the  two  by  making  the  case  that  historically  African  Americans  have  had  to  prove  that  injustices  actually  occurred  to  them  by  supporting their experiential claims with facts. In this lesson, the teacher situated  this  discourse  in  a  historical  analysis  of  African  American  experiences  with  racism  in society. The teacher provided his students with concrete examples of  how to use numerical data presented in the media to critically examine the ways  that numbers get utilized in an unjust society. For example, the teacher made the  case  that  a  media  report  describing  a  decrease  in  joblessness  does  not  always  translate  into increasing  jobs  for  the masses of  African  Americans. Essentially,  this  teacher  was  committed  to  raising  African  American  students’  social  consciousness about the uses and abuses of mathematics in society much like we  attempt to do in the article.  Tate  (1995)  described  a  mathematics  teacher  who  engaged  her  African  American  students  in  real  problems  of  social  and  economic  importance  for  African  Americans  and  their  community.  This  teacher  asked  students  to  pose  problems  they  felt  were  important  to  them  and  affected  their  community,  to  conduct research on one of the posed problems, and to develop strategies to solve  that  problem.  The  students  were  then  encouraged  to  execute  the  strategy  they  developed. The students posed a wide range of problems that included the AIDS  epidemic, drugs, ethics in medicine, and sickle cell anemia. In one class, students  posed problems about the excessive number of liquor stores in their community Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  27  and “embarked on an effort to close and/or relocate 13 liquor stores within 1000  feet of their school” (p. 170). The students’ action resulted in “over 200 citations  to liquor store owners and two of the 13 stores closed down for major violations”  (p. 170).  We recommend that teachers spend time developing relationships with their  students  that  extend  beyond  the  mathematics  content  being  taught  in  their  classroom. Teachers should not rely solely on secondary sources (e.g. principals,  other teachers, cumulative records, etc.) to define their outlook, views, and beliefs  about African American students. Teachers can spend time learning about African  American  students’  home life, social realities, childhood experiences, and  likes  and dislikes. In this way, teachers can show that they are committed to African  American children and their families in ways that extend beyond just raising test  scores.  In  his  study  of  African  American  middle  school  students,  Davis  (2008)  described an African American female mathematics teacher, Mrs. Rene Taylor,  who got to know her students by spending time with them in and out of school  (e.g. lunch, after school, hallways, taking students to the movies, inviting students  to her home, etc.). Mrs. Taylor spent time listening and talking to students as they  spoke about their problems, interests, likes and dislikes. She engaged her students  in a discussion about herself that respected the boundaries of her position. Mrs.  Taylor’s  relationship  with  her  students  inevitably  resulted  in  developing  a  relationship with their parents. It should be noted that Mrs. Taylor also allowed  two students to move into her home, primarily because one student was homeless  and  the  other  student  had  problems  with  a  drug­addictive  parent.  We  are  not  suggesting that teachers should do everything that Mrs. Taylor did, but clearly her  actions demonstrate how teachers can develop relationships with students that are  genuine and meaningful. Her actions also illustrated the level of commitment she  has to her students and what she was willing to do for them.  While getting to know their African American students, teachers should not  come  to  hasty  conclusions  or  generate  stereotypical  assumptions  about  their  abilities and  values. However,  teachers should  not  lose site of  the fact  that the  historical  legacy  of  racism  continues  to  shape  African  American  students’  contemporary  lived  realities  in  their  community,  home  life,  schooling,  and  mathematics education despite the absence of overt racist laws and social customs  (Davis, 2008). Research has shown that teachers who know or get to know their  African  American  students  provide  them  with  a  more  enriching  educational,  mathematical, and social experience (Ladson­Billings, 1994, 1997; Lynn, 2001;  Moody,  2003,  2004;  Tate,  1995).  In  the  first  author’s  research  of  African  American middle and high school students, participants cited the impact that Mrs.  Taylor had on their educational, mathematical, and social experiences. Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  28  In  the  midst  of  conceptualizing  mathematics  education  for  African  American students and getting to know these students, teachers should spend time  learning about and helping to positively shape African American students’ racial,  academic, and mathematics identities (see, e.g., Martin, 2000; Nasir, 2007; Nasir,  Jones,  &  McLaughlin,  2007).  Martin  (2000)  argued  that  African  American  students’ racial, academic, and mathematics identities are linked and contribute to  these students larger sense of self. He characterizes mathematics identity as being  shaped  by  students’  beliefs  about  (a)  their  ability  to  perform  in  mathematical  contexts,  (b)  the  instrumental  importance  of  mathematical  knowledge,  (c)  the  constraints  and  opportunities  in  mathematical  contexts,  and  (d)  the  resulting  motivations and strategies used to obtain mathematics knowledge. Nasir, Jones,  and McLaughlin (2007) argued that African American students’ racial and ethnic  identities vary across individuals and that “the kind of racial  identities students  hold  has  implications  for  their  sense  of  themselves  as  students,  and  for  their  achievement” (p. 3). Hence, these scholars’ work indicated that teachers play a  significant role in shaping these identities.  Teachers  might  question  their  students  about  whether  they  believe  that  “being  African  American”  and  “being  a  doer  of  mathematics”  are  compatible  (Martin,  2006).  Ellington’s  (2006)  study  of  high  achieving  African  American  students found that  these students’ racial, academic, and  mathematics  identities  were  shaped  by  how  these  students  saw  themselves  in  the  larger  African  American  community.  If  African  American  students  do  not  perceive  “being  African American” and “being a doer of mathematics” as being compatible, then  rich  and  meaningful  discussions  that  affirm  students’  racial,  academic,  and  mathematics identities should become an ongoing part of teachers’ practice. This  practice would include explicitly addressing (through discussions or journals) and  shattering stereotypes about who can and cannot do mathematics and reducing the  “stereotype  threat”  (Steele  &  Aronson,  1995)  that  accompanies  practices  like  standardized  testing.  Stereotype  threat  occurs  when a  negative stereotype (e.g.,  African American students are lacking in mathematics ability) becomes salient as  a  criterion  for  test  evaluation.  In  that,  students  become  concerned  about  confirming  the  stereotype  and  through  various  psychological  mechanisms;  the  concern  can  cause  one  to  perform  more  poorly  than  they  would  perform  in  a  neutral context.  We  are  not  suggesting  that  teachers  are  not  engaging  in  practices  that  contribute  to  the  development  of  their  African  American  students’  racial,  academic, and mathematics identities. However, for those teachers who might not  have  considered  this  aspect  of  mathematical  development,  we  strongly  believe  that  these  identities  are  important  constructs  for  teachers  to  understand  and  intentionally incorporate into their instructional practices with African American  students.  For  example,  as  a  mathematics  teacher,  in  a  high­stakes  testing Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  29  environment at the high school level,  the first author engaged  in practices that  positively  shaped  his  African  American  students’  racial,  academic,  and  mathematics identities without formal knowledge of these identities. Davis (2005)  developed  a  project  intended  to  expose  his  African  American  students  to  the  mathematical,  technological,  and  scientific  contributions  of  people  of  African  descent. 5  The project required students to do research, write a report, do an oral  presentation, create a display, and participate in a school­wide exhibit to expose  and  engage  their  school  community  in  a  discussion  about  the  person  they  researched and their contribution to these fields. The students’ oral presentation,  research  reports,  letters,  responses  to  the  project,  exhibit,  and  trip  ultimately  allowed  the  first  author  to  understand  how  the  project  assisted  in  shaping  his  students’ racial, academic, and mathematics identities.  With  respect  to  African  American  students’  being  characterized  as  low  performers, behavior problems, and disengaged in mathematics setting, teachers  should seriously consider alternative reasons for these students’ actions other than  the ones  commonly  cited (i.e.,  mathematically  incapable,  uninterested  in  being  doers of mathematics, etc.) by researchers, teachers, and administrators (Akbar,  1980; Berry, 2005; Davis, 2008). Akbar (1980) argued that boredom and cultural  disconnect  of  schools  are  the  primary  reasons  for  African  American  students’  behavior,  disengagement,  and  performance  issues  in  these  settings.  In  mathematics education, Berry (2005) and Davis (2008) found African American  students across achievement levels were bored and disengaged from mathematics  and other academic disciplines. Berry and Davis, similar to Corey and Bower’s  (2005) research,  made the case that  these students’  mathematics education was  disconnected from their culture.  In Davis’s (2008) research, he found the African American middle school  students  who  he  studied  in  high­stakes  testing  environments  disengaged  from  mathematics because of the actions of some of their past and present mathematics  teachers. These students reported that their mathematics teachers often (a) would  not “teach” them; (b) were not able to help them learn mathematical topics and  concepts  in  which  they  were  experiencing  difficulty;  (c)  disrespected,  embarrassed, or humiliated them with respect to learning mathematics; (d) did not  provide  them  with  challenging  and  intellectually  stimulating  mathematics;  (e)  presented  them  with  mathematical  concepts  and  topics  that  they  had  already  learned;  (f)  provided  instruction  that  was  centered  around  worksheets,  rote  5  We use African descent in this context to connote that the racial and ethnic background of the  people did not just include African Americans or Africans, but included a wide range of Black  people  from  around  the  world.  This  inclusion  was  done  to  help  expand  African  American  students’ conceptualization of what it means to be Black or African American into a larger cultural  discourse that connects these students to a larger cultural history and heritage. Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  30  memorization,  board  work,  and  test­taking  materials  and  strategies;  and  (g)  maintained classrooms that were in constant disarray. While these students were  disengaged from the learning process, they participated in activities (e.g., walking  around the classroom and school hallways, horse playing, etc.) that often led them  to be further marginalized by district and school rules and policies (e.g. federal,  state,  local  testing policies) and teacher  subjectivity when their  behaviors were  reflective of  their resistance to the realities of  their schooling and  mathematics  experience.  We strongly urge teachers to continuously engage in critical reflection about  African American students, their instructional practice, and conceptualization of  mathematics  by  asking  questions  such  as:  Do  I  provide  African  American  students  with  lower­level  coursework  because  I  believe  they  are  incapable  of  doing higher­level coursework? Do I perceive African American students as being  lazy  in  mathematics  because  of  their  racial  identities  or  because  they  do  not  engage in mathematics the way white students do? Do I believe these students are  undeserving  of  a  mathematics  education  requiring  higher­level  thinking  and  coursework?  We  strongly  encourage  teachers  to consider  and  make  use of  our  questions, suggestions, and examples, where applicable.  Conclusion  We started this article by framing our discussion about standardized testing  practices in a local school district and school serving large populations of African  American students where policy initiatives and administrators require teachers to  teach to the test in mathematics. Our goal for this article was to present arguments  about  the racist  underpinnings  of  such  instructional  practices  and  how  federal,  state,  and  local  policies  institutionalize  racist  beliefs  about  African  American  students.  We  situated  our  analysis  of  these  instructional  practices  within  a  deconstruction of systems of assessment that seek to create racial hierarchies and  offer “scientific” support for African American intellectual inferiority.  Based on our critical analysis, our request to mathematics teachers is simple.  Mathematics  teachers  of  African  American  students  must  stop  engaging  in  teaching­to­the­test  and  other  narrow  instructional  practices  and  provide  these  students with a challenging and intellectually stimulating mathematics education  that  assists  these  students  in  improving  their  individual  and  collective  group  conditions. We are not dismissing the reality that teachers must operate under the  conditions  created  by  the  oppressive  forces  of  mandates  such  as  NCLB.  Nevertheless, out of genuine concern for African American students, this article is  an  instantiation  of  our  advocacy  for  these  students  to  receive  the  mathematics  education  they  deserve.  We  appeal  to  teachers’  moral  commitment  to  African Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  31  American  students  by encouraging them to put these students’ well­being over  their fear of federal, state, and local sanctions.  We  urge  teachers  to  take  action  both  individually  and  collectively  at  the  district, school, and classroom level to provide African American students with a  liberatory education in mathematics. In so doing, we have provided teachers with  insight and examples of how that might be done. We urge teachers to be agents of  social change  in their own  school and classroom contexts, hopefully driven  by  beliefs that build on the following:  African  American  children  [must  be  prepared]  with  the  knowledge,  skills,  and  attitude needed to struggle successfully against oppression. These, more than test  scores, more than high grade point averages, are the critical features of education for  African Americans. If students are to be equipped to struggle against racism they  need excellent skills from the basics of reading, writing, and math,  to understand  history, thinking critically, solving problems, and making decisions; they must go  beyond merely filling in test sheet bubbles with Number 2 pencils. (Ladson­Billings,  1994, pp. 139–140)  Acknowledgments  The essay presented here is an equally collaborative effort of both authors.  References  Akbar, N. (1980). Cultural expressions of African personality. In N. Akbar (Ed.), Akbar papers in  African psychology (pp. 116–120). Tallahassee, FL: Mind Productions & Associates.  Bell, D. (1980). Brown v. Board of Education and the  interest­convergence dilemma. Harvard  Law Review, 93, 518–533.  Berry, R. Q. (2005). Voices of success: Descriptive portraits of two successful African American  male middle school mathematics students. Journal of African American Studies, 8(4), 46–  62.  Conley, D. (1999). Being black,  living in the red: Race, wealth, and social policy in America.  Berkeley, CA: University of California Press.  Corey,  D.  L.,  &  Bower,  B.  L.  (2005).  The  experience  of  an  African  American male  learning  mathematics in the traditional and the online classroom: A case Study. The Journal of  Negro Education, 74(4), 321–331.  Davis,  J.  (2005).  The  untold  story  of  Black  mathematicians,  scientists,  and  inventors.  Paper  presented  at  the  Center  for  Excellence  in  Mathematics  and  Science  Education  17th  Annual Mathematics and Science Education Conference, Baltimore, MD.  Davis, J. (2008). The lived realities and mathematics education of Black middle school students’  living  in  a  poor  racially  segregated  community.  Paper  presented  at  the  American  Educational Research Association, New York, NY.  Ellington,  R.  (2006).  Having  their  say:  High­achieving  African­American  mathematics  majors  discuss  the  family,  educational,  communal  and  personal  factors  that  impacted  their  decision  to  succeed  and  persist  in  mathematics.  Unpublished  doctoral  dissertation,  University of Maryland, College Park. Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  32  Ernest, P. (2002). Empowerment in mathematics education, The Philosophy of Mathematics  Education Journal, 15. Retrieved December 3, 2008, from  http://www.ex.ac.uk/~PErnest/pome15/empowerment.htm  Gardner, H. (1995). Cracking open the IQ box. In S. Fraser (Ed.), The bell curve wars: Race,  intelligence, and the future of America. New York: BasicBooks.  Gould, S. J. (1981). The mismeasure of man. New York: W. W. Norton & Company.  Gould, S. J. (1995). Curveball. In S. Fraser (Ed.), The bell curve wars: Race, intelligence, and the  future of America. New York: BasicBooks.  Herrnstein,  R.  J.,  &  Murray,  C.  (1994).  The  bell  curve:  Intelligence  and  class  structure  in  American life. New York: The Free Press.  Hilliard,  A.  G.  III.  (2003).  No  mystery:  Closing  the  achievement  gap  between  Africans  and  excellence.  In  T.  Perry,  C.  Steele  &  A.  G.  Hilliard,  III,  Young,  gifted,  and  Black:  Promoting high achievement among African­American students (pp. 131–165). Boston:  Beacon Press.  Jensen,  A.  R.  (1969).  How  much  can  we  boost  IQ  and  scholastic  achievement?  Harvard  Educational Review, 39, 1–23.  Jones, J. (1995). Back to the future with the bell curve: Jim crow, slavery, and g. In S. Fraser  (Ed.), The bell curve wars: Race,  intelligence, and the  future of America. New York:  BasicBooks.  Kozol, J. (1992). Savage inequalities. New York: Harper Perennial.  Ladson­Billings, G. (1994). Dreamkeepers: Successful teachers of African American children. San  Francisco: Jossey­Bass.  Ladson­Billings,  G.  (1997).  It  doesn’t  add  up:  African  American  students’  mathematics  achievement. Journal for Research in Mathematics Education, 28(6), 697–709.  Ladson­Billings, G. (1999). Just what is critical race theory, and what’s it doing in a nice field like  education? In L. Parker, D. Deyhle, & S. Villenas (Eds.), Race is—race isn’t: Critical  race theory and qualitative studies in education. Boulder: Westview Press.  Lattimore, R. (2001). The wrath of high­stakes tests. The Urban Review, 33(1), 57–67.  Lattimore, R. (2003). African­American students struggle on Ohio’s high­stakes test. The Western  Journal of Black Studies, 27(2), 118–126.  Lattimore, R. (2005a). African American students’ perceptions of  their preparation for a high­  stakes mathematics test. The Negro Educational Review, 56(2 & 3), 135–146.  Lattimore,  R.  (2005b).  Harnessing  and  channeling  African  American  children’s  energy  in  the  mathematics classroom. Journal of Black Studies, 35(3), 267–283.  Lipman, P. (2004). High stakes education: Inequality, globalization, and urban school reform.  New York: Routledge.  Lubienski, S. T. (2001). Are NCTM “standards” reaching all students? An examination of race,  class, and instructional practices. Paper presented at the American Educational Research  Association, Seattle, WA.  Lubienski, S. T. (2002). A closer look at Black­white mathematics gaps: Intersections of race and  SES  in  NAEP  achievement  and  instructional  practices  data.  The  Journal  of  Negro  Education, 71(4), 269–287.  Lynn, M. (2001). Portraits in Black: Storying the lives and pedagogies of Black men educators.  Unpublished doctoral dissertation, University of California, Los Angeles.  Madaus, G. F., West, M. M., Harmon, M. C., Lomax, R. G., & Viator, K. A. (1992). The influence  of testing on teaching math and science in grade 4­12. Boston: Boston College, Center  for the Study of Testing, Evaluation, and Educational Policy.  Martin, D. B. (2000). Mathematics success and failure among African­American youth: The role  of  sociohistorical context, community  forces,  school  influence, and individual agency.  Mahwah, NJ: Lawrence Erlbaum Associates. http://www.ex.ac.uk/~PErnest/pome15/empowerment.htm Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  33  Martin,  D.  B.  (2007).  Beyond  missionaries  or  cannibals:  Who  should  teach  mathematics  to  African American children? The High School Journal, 91(1), 6–28.  Martin, D. B. (2009). Researching race in mathematics education. Teachers College Record,  111(2).  Retrieved December 3, 2008, from  http://www.tcrecord.org/content.asp?contentid=15226.  Martin, D. B. (in press). Racial achievement gaps and the social construction of African American  children. Teaching Children Mathematics.  Martin,  D.  B.,  &  McGee,  E.  (in  press).  Mathematics  literacy  for  liberation:  Knowledge  construction in African American contexts. In B. Greer, S. Mukhophadhay, S. Nelson­  Barber, & A. Powell (Eds.), Culturally responsive mathematics education. New York:  Routledge.  Montagu, A. (1997). Man’s most dangerous myth: The fallacy of race. Walnut Creek: AltaMira  Press.  Moody, V. R. (2003). The ins and outs of succeeding in mathematics: African American students’  notions and perceptions. Multicultural Perspectives, 5(1), 33–37.  Moody,  V.  R.  (2004).  Sociocultural  orientations  and  the  mathematical  success  of  African  American students. The Journal of Educational Research, 97(3), 135–146.  Moses, R. P., & Cobb, C. E. (2001). Radical equations: The math literacy and civil rights. Boston:  Beacon Press.  Nasir, N. S. (2007). Identity, goals, and learning. In N. S. Nasir & P. Cobb (Eds.), Diversity,  equity, and access to mathematical ideas (pp. 130–143). New York: Teachers College  Press.  Nasir, N. S., Jones, A., & McLaughlin, M. (2007). What does it mean to be African American?:  Constructions  of  race  and  academic  identity  in  an  urban  public  high  school.  Paper  presented at the American Educational Research Association, Chicago, IL.  National  Research  Council  (1989). Everybody counts: A report  to  the nation on  the  future of  mathematics education. Washington, DC: National Academy Press.  Noguera,  P.  (2003). City  schools and  the American dream: Reclaiming  the promise of public  education. New York: Teachers College Press.  Norman,  O.  (2000).  A  Kuhnian  analysis  of  scientific  racism.  Paper  presented  at  the  National  Association of Research in Science Teaching, New Orleans, LA.  Oakes, J. (1990). Opportunities, achievement and choice: Women and minority students in science  and mathematics. In C. B. Cazden (Ed.), Review of research in education (pp. 153–222).  Washington, DC: American Educational Research Association.  Oakes, J., Joseph, R., & Muir, K. (2004). Access  to achievement  in mathematics and science:  Inequalities that endure and change. In J. A. Banks & C. A. M. Banks (Eds.), Handbook  of research on multicultural education, 2nd ed. (pp. 69–90). San Francisco: Jossey­Bass.  Prince, Z. (2006, April/May). Students suing school board. The Baltimore Afro­American, pp. A1,  A5.  Secada, W. (1992). Race, ethnicity, social class, language, and achievement in mathematics. In D.  Grouws (Ed.), Handbook of research in mathematics  teaching and learning (pp. 623–  660). New York: Macmillian.  Sheppard,  P.  (2006).  Successful  African­American  mathematics  students  in  academically  unacceptable high schools. Education, 126(4), 609–625.  Sleeter, C. (1993). How  white  teachers construct race In C. McCarthy &  W. Crichlow (Eds.),  Race, identity and representation in education (pp. 157–171). New York: Routledge.  Steele,  C.,  &  Aronson,  J.  (1995).  Stereotype  threat  and  the  intellectual  test  performance  of  African­Americans. Journal of Personality and Social Psychology, 69, 797–811.  Strickland, D. S., & Ascher, C. (Eds.). (1992). Low income African American children and public  schooling. New York: Macmillian. http://www.tcrecord.org/content.asp?contentid=15226 Davis & Martin  Racism and Standardized Testing  Journal of Urban Mathematics Education Vol.1, No.1  34  Strutchens,  M.  E.,  &  Silver,  E.  A.  (2000).  NAEP  findings  regarding  race/ethnicity:  Students’  performance,  school  experiences,  and  attitudes  and  beliefs.  In  E.  A.  Silver  &  P.  A.  Kenney  (Eds.),  Results  from  the  seventh  mathematics  assessment  of  the  National  Assessment  of  Educational  Progress.  Reston,  VA:  National  Council  of  Teachers  of  Mathematics.  Swartz, E. (1992). Emancipatory narratives: Rewriting the master script in the school curriculum.  Journal of Negro Education, 61(3), 341–355.  Tate, W. F. (1993). Advocacy versus economics: A critical race analysis of the proposed national  mathematics assessment in mathematics Thresholds in Education, 19(1–2), 16–22.  Tate,  W.  F.  (1995).  Returning  to  the  root:  A  culturally  relevant  approach  to  mathematics  pedagogy. Theory in Practice, 34(3), 166–173.  Tate, W. F. (1997). Race­ethnicity, SES, gender, and language proficiency trends in mathematics  achievement:  An  update. Journal of Research in Mathematics Education, 28(6), 652–  680.  Thernstrom, S., & Thernstrom, A. (1999). America in black and white: One nation, indivisible.  New York: Simon & Schuster.  Thompson, L. (2008). There’s no one here that looks like me: A liberation agenda in the sciences.  Paper presented at the American Educational Research Association, New York, NY.  Ture, K., & Hamilton, C. V. (1992). Black power: The politics of liberation. New York: Vintage  Books.  U.S. Department of Education (1997). Mathematics Equal Opportunity. Washington, DC: U.S.  Government Printing Office.  Watts, R., Williams, N., & Jagers, R. (2003). Sociopolitical development. American Journal of  Community Psychology, 31, 185–194.  Williams,  D.,  Bartholomew,  H.,  &  Reay,  D.  (2004).  Assessment,  learning,  and identity.  In  P.  Valero  &  R.  Zevenbergen  (Eds.),  Researching  the  socio­political  dimensions  of  mathematics education: Issues of power in theory and methodology (pp. 43–61). Norwell,  MA: Kluwer.  Wilson, A. N. (1998). Blueprint for Black power: A moral political and economic imperative for  the twenty­first century. New York: Afrikan World InfoSystems.