Jurnal Riset Biologi dan Aplikasinya, Volume 4, Issue 1, March 2022 Araceae Floristic and Potential Study in Bogor Botanical Gardens, West Java, Indonesia Rizal Koen Asharo1*, Ayu Novitasari1, Sri Devi Nur Azizah1, Rahadian Ajeng Saraswati1, Fani Setyaningsih1, Puput Apriliani1, Rizky Priambodo1, Pinta Omas Pasaribu1, Vina Rizkawati1, Usman2 1Department of Biology,Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta Jln. Rawamangun Muka Raya No.11, RW.14, Rawamangun, Kec. Pulo Gadung, East Jakarta, Jakarta 2 Research Center for Plant Conservation and Botanical Gardens LIPI Jln. Ir. H. Juanda No.13, Paledang, Kecamatan Bogor Tengah, Kota Bogor, Jawa Barat *Corresponding Author: e-mail: koenindo@gmail.com Article History ABSTRACT Received : 28 February 2022 Bogor Botanical Gardens is a conservation area that assists the preservation of flora in Indonesia, including the Araceae. Araceae is often used by the public as medicine, food sources, and ornamental plants. Therefore, the Araceae is often used as an interesting research object and conservation efforts have commenced maintaining its sustainability. The purpose of this research was to determine the species of living Araceae and the potential possessed by each living Araceae species in the conservation area of the Bogor Botanical Gardens. This research was conducted on 8-9 June 2021 to determine the diversity and potential of the Araceae in Bogor Botanical Gardens. The method used in this research is the exploring method and data analysis using descriptive method. The result of this research revealed there were 60 species of Araceae consisting of 25 genera. The genera with the highest number of species are Philodendron. Two species of them are Araceae which has a habitat in the waters. A total of 33 species are terrestrial and 25 are epiphytic plants. Araceae have many potentials, such as food, aromatic, medicine, flavoring, animal feed, and ornamental plants. More than 50% of the Araceae species were used as ornamental plants. Revised : 15 March 2022 Approved : 29 March 2022 Published : 31 March 2022 Keywords Araceae, diversity, potential, Bogor Botanical Garden How to cite: Asharo, R.K., Novitasari, A., Azizah, S.D.N., Saraswati, R.A., Setyaningsih, F., Apriliani, P., Priambodo, R., Pasaribu, P.O., Rizkawati, V & Usman (2022). Araceae Floristic and Potential Study in Bogor Botanical Gardens, West Java, Indonesia. Jurnal Riset Biologi dan Aplikasinya. 4(1): 9-18. DOI:10.26740/jrba.v4n1.p 9-18. INTRODUCTION Indonesia is a country that has a high level of flora and fauna diversity. This high biodiversity is partly due to the geographical location of Indonesia, which is traversed by the equator and is located in a tropical climate. Of the approximately 1.7 million species of plants that exist in the world, around 101,000 species have been identified in Indonesia and 40-50% are endemic plants (LIPI, 2014; BAPPENAS, 2016; Aryani, 2016). This diversity includes various kinds of plants, one of which is the Araceae. Araceae is one of the largest monocotyledonous families with key characteristics, namely herbs and inflorescences arranged in the form of a cob (spadix) surrounded by a spathe (Boyce et al., 2010). This family can grow well in tropical areas that have high humidity and will be difficult to grow in dry conditions (Kurniawan et al., 2013). According to Suhono et al. (2010), Araceae plants can live in lowland and highland areas with moderate to cold climates, so Araceae plants are often found in Indonesian forest areas. The Araceae has become one of the most important plants in Indonesia. This is because many Jurnal Riset Biologi dan Aplikasinya https://journal.unesa.ac.id/index.php/risetbiologi mailto:koenindo@gmail.com Jurnal Riset Biologi dan Aplikasinya, 4(1): 9-18, March 2022 | 10 species of Araceae have their potential, so Araceae plants are widely used to meet the needs of the Indonesian people, such as food, medicine, ornamental, and others. Generally, the species of Araceae genera Aglaonema and Anthurium have the potential as ornamental plants. Several species of Araceae also have potential as alternative food ingredients, such as taro (Colocasia esculenta (L.) Schott) and suweg (Amorphophallus paeoniifolius (Dennst.) Nicolson); as medicine, namely rat taro (Typhonium flagelliform Blume) and Epipremnum pinnatum (L.) Engl.; as well as animal feed ingredients such as Montrichardia arborescens (L.) Schott. The high potential and diversity of Araceae in Indonesia encourage experts to conduct research on Araceae in various regions in Indonesia. One area that has the potential for habitat for Araceae growth is the Bogor Botanical Gardens. Bogor Botanical Gardens is an ex-situ plant conservation area in Indonesia. The existence of Araceae species in the Bogor Botanical Gardens has been previously reported by several researchers. Yuzammi (2018) reported that there were 36 genera and 130 species with 21 genera native to Indonesia, Bogor Botanical Gardens. Hariri et al. (2019) report that two species of Typhonium grow and spread in the Bogor Botanical Gardens. In this study, data were collected on all live Araceae species found in the collection and non-collection areas that we explored. This study aims to determine the species of living Araceae and the potential possessed by each living Araceae species in the conservation area of the Bogor Botanical Gardens. MATERIALS AND METHODS The research was conducted at the Bogor Botanical Gardens, Central Bogor District, Bogor City, West Java. This research was conducted during June 8-9, 2021. This study was a descriptive method using exploring method of data collection. Determination of the location is done by purposive sampling. The tools used in this research are meter, stationery, GPS (Global Positioning System), identification book “The Genera of Araceae” and camera. The materials or objects in this study are plant species of the Araceae. The research location was determined by exploring the Bogor Botanical Gardens area which was divided into 7 locations (Figure 1). The Araceae plants found were observed by recording their characters in detail and documenting. Identification of Araceae was carried out using the identification literatures: The Genera of Araceae (Mayo et al., 1997), Descriptor Taro (IPGRI, 1999), and The Araceae of Borneo–The Genera (Boyce et al., 2010). In addition, a literature study was also conducted on several potentials possessed by each type of Araceae that live in the Bogor Botanical Gardens area. Data on Araceae species are presented qualitatively in the form of a description of the character, habitat, and distribution of Araceae plants accompanied by photos of dominant species. Furthermore, the use of Araceae plants found in the conservation area of the Bogor Botanical Gardens is presented. Figure 1. Map of Research Locations. (1) Araceae garden, (2) Araceae collection garden, (3) Kenari I street, (4) Kenari II street, (5) Orchid nursery, (6) Giant lotus pond, (7) Astrid Avenue. RESULTS AND DISCUSSION Based on observations that have been made, obtained 60 species from 25 genera Araceae in the Bogor Botanical Gardens (Table 1). Location 2 has the most abundant Araceae species diversity because this location was a collection location for Araceae. The most commonly found genus of Araceae is Philodendron. The Araceae were observed to grow in three species of habitats, namely terrestrial as many as 33 species, epiphyte as many as 25 species, and aquatic as many as 2 species. Locations 1 and 2 had the highest number of collection plant species, while at location 7 there were only non-collected plants. Furthermore, the distribution of collected and non-collected plant species in the Bogor Botanical Gardens based on each location can be seen in Figure 2. Collection plants are plants that have recorded species names, important information, the process of entering the Botanical Gardens until the plants die. 11 | Asharo et al.; Araceae Floristic and Potential Study in Bogor Botanical Gardens Table 1. Distribution of Araceae species in Bogor Botanical Gardens and their habitats. Genus Species Habitat Location 1 2 3 4 5 6 7 Aglaonema A. marantifolium Blume Terrestrial  A. nitidum (Jack) Kunth  A. simplex Blume  Alocasia A. alba Schott Terrestrial    A. macrorrhizos (L.) G.Don     A. suhirmaniana Yuzammi & A.Hay  Amorphophallus A. muelleri Blume Terrestrial  A. paeoniifolius (Dennst.) Nicolson  A. titanum (Becc.) Becc.  Amorphophallus sp.  Amydrium A. zippelianum (Schott) Nicolson Epiphyte  Amydrium sp.  Anthurium A. cordatum (L.) Schott Terrestrial  A. crassinervium (Jacq.) Schott  A. pedatoradiatum Schott  Anthurium sp.   Apoballis A. acuminatissima (Schott) S.Y.Wong & P.C.Boyce Terrestrial  A. rupestris (Zoll. & Moritzi) S.Y.Wong & P.C.Boyce  Colocasia C. esculenta (L.) Schott Terrestrial       Culcasia C. mannii (Hook.f.) Engl. Terrestrial  Cyrtosperma Cyrtosperma sp. Aquatic  Dieffenbachia D. bowmannii H.J.Veitch Terrestrial  D. fournieri N.E.Br.  D. seguine (Jacq.) Schott   D. x splendens W.Bull   Dieffenbachia sp.   Epipremnum E. falcifolium Engl. Epiphyte   E. nobile (Schott) Engl.   E. pinnatum (L.) Engl.     Homalomena H. cordata Schott Terrestrial   H. pendula (Blume) Bakh.f.   Leucocasia L. gigantea (Blume) Schott Terrestrial      Monstera M. oblique Miq. Epiphyte  Montrichardia M. arborescens (L.) Schott Aquatic  Philodendron P. bipinnatifidum (Schott ex Endl.) Sakur. Epiphyte   P. crassinervium Lindl.  P. erubescens K.Koch & Augustin  P. imbe Schott ex Kunth  P. melanochrysum Linden & André  P. panduriforme (Kunth) Kunth   P. sagittifolium Liebm.  P. squamiferum Poepp.  P. tripartitum (Jacq.) Schott  Philodendron sp.    Pothos Pothos sp. Epiphyte  Rhaphidophora R. foraminifera (Engl.) Engl. Epiphyte    R. korthalsii Schott  R. montana (Blume) Schott  R. sylvestris (Blume) Engl.  Rhodospata Rhodospata sp. Epiphyte  Schismatoglottis S. calyptrata (Roxb.) Zoll. & Moritzi Terrestrial  Scindapsus S. pictus Hassk. Epiphyte  Spathiphyllum S. cannifolium (Dryand. ex Sims) Schott Terrestrial   Jurnal Riset Biologi dan Aplikasinya, 4(1): 9-18, March 2022 | 12 Genus Species Habitat Location 1 2 3 4 5 6 7 S. commutatum Schott   Spathiphyllum sp.    Syngonium S. auritum (L.) Schott Epiphyte   S. podophyllum Schott      Xanthosoma X. robustum Schott Terrestrial  X. sagittifolium (L.) Schott  Zamioculcas Z. zamiifolia (G.Lodd.) Engl. Terrestrial  Note: : collectible plant, : non-collected plant, : collectible and non-collected plant Figure 2. Number of collection and non-collection plant species in the Bogor Botanical Gardens Usually, collection plants have a registration number to make it easier for the Botanical Gardens to manage the collection. Meanwhile, non-collected plants are plants that live in the Botanical Gardens area but do not have a registration number like collection plants. In addition, non-collected plants usually grow in poorly managed areas. Figure 1 shows the number of collected plant species is greater than that of non-collected plants. This is influenced by the role of the Botanical Gardens themselves, according to Presidential Decree No. 93 of 2011 is an ex-situ plant conservation area that has a documented and organized plant collection based on a taxonomic, bioregional, thematic classification pattern or a combination of these patterns for conservation, research, education, tourism, and environmental services. Of course, there will be more collection plants than non- collections. Non-collected plants also live in the Bogor Botanical Gardens area, especially in areas that are not managed by the Botanical Gardens. Non-collected Araceae can grow wild because the seeds disperse outside the Araceae collection gardens. Barrancos et al. (2019) and Renner (2004) reported Araceae could disperse via wind, water current, and animals, such as a bird. Furthermore, Araceae grow in a wide range of environments, so they are easy to find anywhere (Croat, 2019). Locations 1 and 2 have the highest number of collection plant species because these locations are Araceae collection gardens. Likewise, location 7 only has non-collected Araceae plants because location 7 is a quite lush and only has a path that is covered by other plants. The results of environmental observation show that soil humidity in 7 locations was 40-90%. Harahap (2020) and Mansur (2021) reported Araceae can grow in 15- 90% humidity. Soil temperature on 7 locations was 27-33oC and water temperature on location 6 was 32oC. Ivanvic et al. (2008) and Zotz et al. (2019) reported Araceae was able to grow in 20-40oC temperature. Soil acidity levels (pH) on 7 locations were 7-8 and water pH was 5. Sumarwoto (2004) reported Araceae can grow on 5.6-7.5 in pH. Based on these results, all the locations are good habitats for the growth of Araceae. The differences in the number of Araceae in each location could be due to competition between plants, especially in the poorly managed area. Competition with other plants, especially Poaceae, will harm Araceae because Poaceae has great competitiveness and is one of the aggressive pioneer species (Susanti et al., 2013). 13 | Asharo et al.; Araceae Floristic and Potential Study in Bogor Botanical Gardens Figure 3 . A. Alocasia macrorrhizos (L.) G.Don (1), adaxial leaf (2); B. Colocasia esculenta (L.) Schott (1), adaxial leaf (2); C. Epipremnum pinnatum (L.) Engl.: creeping on the tree (1), adaxial leaf (2), stem (3); D. Leucocasia gigantea (Blume) Schott (1), inflorescence (2); and E. Rhaphidophora foraminifera (Engl.) Engl. (1), inflorescence (2), young leaves that have perforations (3). Table 3. Potential species of Araceae that grow and are cultivated in the Bogor Botanical Gardens as plants, food, ornamental, medicines, aromatics, and others Genus Species Usefulness References F o o d O rn a m e n ta l M e d ic in e s A ro m a ti c s O th e rs Aglaonema A. marantifolium Blume ● Nicolson, 1969 A. nitidum (Jack) Kunth ● Ilhamullah et al., 2015 A. simplex Blume ● ● Ilhamullah et al., 2015; Ismail et al., 2017 A1 A2 B1 B2 C1 C2 C3 D1 D2 E1 E2 E3 Jurnal Riset Biologi dan Aplikasinya, 4(1): 9-18, March 2022 | 14 Genus Species Usefulness References F o o d O rn a m e n ta l M e d ic in e s A ro m a ti c s O th e rs Alocasia A. alba Schott ● Asih and Kurniawan, 2019 A. macrorrhizos (L.) G.Don ● ● ● Koller, 2008; Erlinawati, 2010; Yuzammi, 2018; El- Deen et al., 2008 A. suhirmaniana Yuzammi & A.Hay ● Erlinawati, 2010 Amorphophallus A. muelleri Blume ● ● Asih and Kurniawan, 2019; Wahidah et al., 2021 A. paeoniifolius (Dennst.) Nicolson ● ● animal feed Erlinawati, 2010; Mutaqin et al., 2018 A. titanum (Becc.) Becc. ● Yudaputra et al., 2021 Amorphophallus sp. ● ● Asih and Kurniawan, 2019; Mutaqin et al., 2018; Wang and Li, 2021 Amydrium A. zippelianum (Schott) Nicolson ● Lemmens et al., 1995 Amydrium sp. ● Lemmens et al., 1995 Anthurium A. cordatum (L.) Schott ● Yuzammi, 2018 A. crassinervium (Jacq.) Schott ● Yuzammi, 2018 A. pedatoradiatum Schott ● Yuzammi, 2018 Anthurium sp. ● ● Vardhana, 2008; Yuzammi, 2018 Apoballis A. acuminatissima (Schott) S.Y.Wong & P.C.Boyce ● Yuzammi, 2018 A. rupestris (Zoll. & Moritzi) S.Y.Wong & P.C.Boyce ● Widodo and Wibowo, 2012 Colocasia C. esculenta (L.) Schott ● ● animal feed Asih and Kurniawan, 2019; Erlinawati, 2010; Murthy, 2021 Culcasia C. mannii (Hook.f.) Engl. ● Yuzammi, 2018 Cyrtosperma Cyrtosperma sp. ● Yuzammi, 2018 Dieffenbachia D. bowmannii H.J.Veitch ● ● Syamjith et al., 2018 D. fournieri N.E.Br. ● Yuzammi, 2018 D. seguine (Jacq.) Schott ● Mutaqin et al., 2018 D. x splendens W.Bull ● Yuzammi, 2018 Dieffenbachia sp. ● ● Oloyede et al., 2012 Epipremnum E. falcifolium Engl. ● Yuzammi, 2018 E. nobile (Schott) Engl. ● Yuzammi, 2018 E. pinnatum (L.) Engl. ● ● Asih and Kurniawan, 2019; Yuzammi, 2008 Homalomena H. cordata Schott ● Yuzammi, 2018 H. pendula (Blume) Bakh.f. ● ● ● Yuzammi, 2018 Leucocasia L. gigantea (Blume) Schott ● flavoring Sin Yeng, 2016; Sulaiman and Mansoor, 2002 Monstera M. oblique Miq. ● Yuzammi, 2018 Montrichardia M. arborescens (L.) ● ● ● Food for Andel TR, 2000; Portal et 15 | Asharo et al.; Araceae Floristic and Potential Study in Bogor Botanical Gardens Genus Species Usefulness References F o o d O rn a m e n ta l M e d ic in e s A ro m a ti c s O th e rs Schott manatee and turtle al., 2002 Philodendron P. bipinnatifidum (Schott ex Endl.) Sakur. ● ● Kujawska et al., 2017 P. crassinervium Lindl. ● Yuzammi, 2018 P. erubescens K.Koch & Augustin ● Rameshkumar, 2018 P. imbe Schott ex Kunth ● ● Yuzammi, 2018 P. melanochrysum Linden & André ● Yuzammi, 2018 P. panduriforme (Kunth) Kunth ● Yuzammi, 2018 P. sagittifolium Liebm. ● Yuzammi, 2018 P. squamiferum Poepp. ● ● Otero et al., 2020; Yuzammi, 2018 P. tripartitum (Jacq.) Schott ● Yuzammi, 2018 Philodendron sp. ● ● ● Kujawska et al., 2017; Rameshkumar, 2018; Yuzammi, 2018 Pothos Pothos sp. ● Yuzammi, 2018 Rhaphidophora R. foraminifera (Engl.) Engl. ● Yuzammi, 2018 R. korthalsii Schott ● Yeap et al., 2012 R. montana (Blume) Schott ● Yuzammi, 2018 R. sylvestris (Blume) Engl. ● Yuzammi, 2018 Rhodospata Rhodospata sp. ● Yuzammi, 2018 Schismatoglottis S. calyptrata (Roxb.) Zoll. & Moritzi ● ● Erlinawati et al., 2019; Sulaiman and Mansoor, 2002 Scindapsus S. pictus Hassk. ● Munawaroh and Yuzammi, 2016 Spathiphyllum S. cannifolium (Dryand. ex Sims) Schott ● ● Abdullah et al., 2012 S. commutatum Schott Mutaqin et al., 2018 Spathiphyllum sp. ● ● Abdullah et al., 2012 Syngonium S. auritum (L.) Schott ● Yuzammi, 2018 S. podophyllum Schott ● Benedetto et al., 2006 Xanthosoma X. robustum Schott ● ● Nzietchueng, 1988; Yuzammi, 2018 X. sagittifolium (L.) Schott ● ● Caxito et al., 2015; Erlinawati, 2010 Zamioculcas Z. zamiifolia ● ● Muharini et al., 2018 Research on Araceae diversity in the Bogor Botanical Gardens has been carried out by Yuzammi (2018). In this study, obtained a total of 130 species with 36 genera, while in this study obtained 60 species with 25 genera Araceae. There is a considerable difference in the results between the results of this study and that of Yuzammi (2018). This is because in Yuzammi's research Jurnal Riset Biologi dan Aplikasinya, 4(1): 9-18, March 2022 | 16 (2018), data were collected on living Araceae plants and Araceae herbarium, while in this study data was collected only on living Araceae plants. This difference in results can also be caused by the different Araceae growing in 2018 and 2021. We did not find Aglaodorum, Anadendrum, Anchomanes, Anubias, Cercestis, Dracontium, Gonatopus, Holochlamys, Lasia, and Pistia. The reason for this difference is that Araceae plants are not well cared for, unable to compete with other epiphytic plants, and the research time is short. The Araceae has various potentials that can be utilized, such as food, medicine, and ornamental plants. Several species of Araceae which are used as food ingredients are Colocasia esculenta (taro) (Figure 3), Xanthosoma sagittifolium (keladi), and Amorphophallus paeoniifolius (suweg). Araceae plants are also known to be antimalarial, cytotoxic (Frausin et al., 2015), antibacterial, antifungal, anti- inflammatory, and anti-cancer (Chen et al., 2007). Koller (2008) stated that both the rhizome and the leaf of Alocasia macrorrhizos can be used to treat cancer, tumors and snake bites. Dieffenbachia, which inhibits the activity of Salmonella typhi and Pseudomonas aeruginosa, and Colocasia esculenta, which inhibits the activity of Vibrio cholerae and V. harveyi. In addition, Araceae can also be used as ornamental plants such as Alocasia suhirmaniana and Anthurium sp. The potential for Araceae species found in the Bogor Botanical Gardens area is listed in Table 3. CONCLUSION Observation results obtained 60 species of Araceae from 25 genera that can be identified in the Bogor Botanical Gardens. Two species of them are Araceae which has a habitat in the waters. A total of 33 species are terrestrial and 25 are epiphytic plants. The location with the most Araceae species found was at location 2 where 34 species of Araceae were found, while location 6 was the location with the least number of Araceae species, which only found 4 species of Araceae. Various potential uses of the Araceae were observed, including food, aromatics, medicine, flavoring, animal feed, and ornamental plants. The greatest potential utilization is as an ornamental plant with a total of 48 species of all species observed. REFERENCES Abdullah, E., Raus, R. A., & Jamal, P. (2012). Extraction and evaluation of antibacterial activity from selected flowering plants. American Medical Journal, 3(1), 27- 32 Arga, P. H., Suminarti, N. E., & Ariffin, A. (2018). Studi Tingkat Ketebalan Mulsa Jerami Padi Pada Pertumbuhan dan Hasil Tanaman Talas (Colocasia esculenta (L.) Schoot var. Antiquorum) di Lahan Kering Pada Musim Kemarau. Jurnal Produksi Tanaman, 5(4), 1-10. Aryani, I. (2017). Studi Keanekaragaman Spermatophyta di Perbukitan Daerah Tlogodlingo Kecamatan Tawangmangu Kabupaten Karanganyar. Proceeding Biology Education Conference: Biology, Science, Enviromental, and Learning, 14(1), 109-113. Asih, N. P. S., & Kurniawan, A. (2019). Studi Araceae Bali: Keragaman dan Potensinya. Jurnal Widya Biologi, 10(02), 135-147. Asih, N. P. S., Warseno, T., & Kurniawan, A. G. U. N. G. (2015). Studi Inventarisasi Araceae di Gunung Seraya (Lempuyung), Karangasem, Bali. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 1(3), 521-527. Bago, A. S. (2020). Identifikasi Keragaman Famili Araceae sebagai Bahan Pangan, Obat, dan Tanaman Hias di Desa Hilionaha Kecamatan Onolalu Kabupaten Nisa Selatan. Jurnal Education and Development, 8(4), 695- 695. BAPPENAS, KLH dan LIPI. (2016). Indonesia Biodiversity Strategy and Action Plan (IBSAP) 2015-2020. Kementerian Perencanaan Pembangunan Nasional. Barrancos, E. P. F., Reid J. L., Hall J. S. (2019). Lack of Araceae in Young Forest Highlights the Importance of Mature Forest Conversation. Tropical Conservation Science, 12 (1):1-9. Benedetto, A. D., Molinari, J., Boschi, C., Benedicto, D., Cerrotta, M., & Cerrotta, G. (2010). Estimating crop productivity for five ornamental foliage plants. International Journal of Agricultural Research, 5(11), 997-1008. Boyce, P. C., & Wong, S. Y. (2012). Studies on Homalomena (Araceae) of Sumatera I: Homalomena hypsiantha, A Distinctive New Species of The Chamaecladon Supergroup. Webbia, 67(2), 147-150. Boyce, P. C. (1999). The genus Rhaphidophora Hassk. (Araceae-Monsteroideae-Monstereae) in Peninsular Malaysia and Singapore. Gardens’ Bulletin Singapore, 51(1), 183-256. Boyce, P. C., Wong, S. Y., Ting, A. P. J., Low, S. E., Ng, K.K., & Ooi, I.H. (2010). The Araceae of Borneo the genera. Journal of Aroideana, 33(6), 126-129. Caxito, M. L., Correia, R. R., Gomes, A. C. C., Justo, G., Coelho, M. G., Sakuragui, C. M., Kuster, R. M., & Sabino, K. C. (2015). In vitro antileukemic activity of Xanthosoma sagittifolium (Taioba) leaf extract. Evidence-Based Complementary and Alternative Medicine. Chen, J., Henny, R. J., Liao, F. (2007). Aroids are Important Medicinal Plants. Acta Horticulturae, 756, 346-354. Croat, T. B. (2019). Araceae, a Family with Great Potential. Annals of the Missouri Botanical Garden, 104(1), 3-9. Croat, T. B., & Ortiz, O. O. (2020). Distribution of Araceae and the Diversity of Life Forms. Acta Societatis Botanicorum Poloniae, 89(3). Darmayanti, A. S., & Wuryanti, S. (2010). Inventarisasi tumbuhan berkhasiat obat di wilayah Desa Egon, Kecamatan Waegete, Kabupaten Sikka Nusa Tenggara Timur. Berk. Penel. Hayati Edisi Khusus, 4, 5-11. Drastistiyana, R. (2017). Keanekaragaman dan Kelimpahan Vegetasi Riparian di hulu dan tengah sungai. [Skripsi]. Yogyakarta: Fakultas Sains dan Teknologi, UIN Sunan Kalijaga 17 | Asharo et al.; Araceae Floristic and Potential Study in Bogor Botanical Gardens Efendi, M., Hapitasari, I. G., Rustandi, S. A., & Supriyatna, A. (2016). Inventarisasi tumbuhan penghasil pewarna alami di Kebun Raya Cibodas. Bumi Lestari Journal of Environment. 16 (1), 50-58. El-Deen Helal, E. G., El-Wahab, A., Samia, M., Metwally, A. S. M., Asran, A. M., Zedan, H. A., & Ali, M. A. H. (2008). Effect Of Alocasia Macrorrhiza Extract on Hepatorenal Functions in Mice. Egyptian Journal of Hospital Medicine, 33,9-18. Erlinawati, I. (2010). The Diversity of Terestrial Araceae in Mt Watuwila Complex, South East of Sulawesi, Berk. Penel. Hayati, 15: 131- 137. Erlinawati, I., Asih, N. P. S., Kuniawan, A., & Yuzammi, Y. (2019). Studies on the Araceae of the Lesser Sunda Islands II: New Record for Scindapsus hederaceus Miq. In Bali. Reinwardtia, 18(2), 51-64. Frausin, G., Lima, R. B. S., Hidalgo, A. F., Ming, L. C., Pohlit, A.M. (2015). Plants of the Araceae Family for Malaria and Related Diseases: A Review. Revista Brasileira de Plantas Medicinais, 17(4), 657-666. Gibernau, M., & Barabé, D. (2002). Pollination ecology of Philodendron squamiferum (Araceae). Canadian Journal of Botany, 80(3), 316-320. Harahap, S. A. (2020). Inventarisasi Jenis-jenis Araceae di Kawasan Hutan Batang Toru Blok Barat Kabupaten Tapanuli Utara, Provinsi Sumatera Utara. [Skripsi]. Medan: Fakultas Matematika dan Pengetahuan Alam, Universitas Sumatera Utara. Hariri, M. R., Robiansyah, I., & Witono, J. R. (2019). Dinamika marga Typhonium Schott (Araceae: Areae) di Kebun Raya Bogor, Jawa Barat. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 5(2), 369- 373. Hartanti, R. E. D. P., Gumiri, S., & Sunariyati, S. (2020). Keanekaragaman dan Karakteristik Habitat Tumbuhan Famili Araceae di Wilayah Kecamatan Jekan Raya Kota Palangka Raya. Journal of Environment and Management, 1(3), 221-231. Hutasuhut, M. A. (2020). Inventarisasi Araceae di Hutan Sibayak 1 Kecamatan Sibolangit Kabupaten Deli Serdang Sumatera Utara. Jurnal Biolokus: Jurnal Penelitian Pendidikan Biologi dan Biologi, 3(1), 288- 292. Ilhamullah, B., Ekyastuti, W., Husni, H. (2015). Studi Potensi Jenis Tumbuhan Bawah dan Epifit Sebagai Tanaman Hias Pada Kawasan PPTAT Yayasan Dian Tama Kalimantan Barat, Jurnal Hutan Lestari, 3(3). IPGRI. (1999). Descriptors for Taro. Rome: International Plant Genetic Resources Institute. Islam, A., Kamal, T., Hosen, M., Sharmin, N., Hossain, S., & Islam, N. (2019). Lethal Efficacy of Indoor Ornamental Plant Aglaonema Marantifolium (Schott.) Against Three Economically Important Stored Product Pests Callosobruchuschinensis (L.), Sitophilus oryzae (L.) and Triboliumcastaneum (HBST). Journal of Pharmacognosy and Phytochemistry, 8(1), 2198-2201. Ismail, Z., Ahmad, A., & Muhammad, T. S. T. (2017). Phytochemical Screening of In Vitro Aglaonema simplex Plantlet Extracts as Inducers of Sr-B1 Ligand Expression. Journal of Sustainability Science and Management, 12(2), 34-44. Ivanvic, A., Roupsard, O., Garcia, J. Q., Melteras, M., Molisale, T., Tara, S., Lebot, V. (2008). Thermogenesis and flowering biology of Colocasia gigantea, Araceae. J Plant Res, 121(1), 73-82. Jansen, P. C. M., van der Wilk C., Hetterscheid W. L. A. Amorphophallus Blume ex Decaisne. In Flach M., Rumawas F. (Eds.). (1996). PROSEA: Plant Resources of South-East Asia, Plant yielding non-seed carbohydrates. Leiden: Backhuys Publishers. Kahayu. (2017). Jenis Tumbuhan Family Araceae Berpotensi Obat Untuk Menunjang Kesehatan Masyarakat dan Pemanfaatannya Di Kawasan Air Terjun Ironggolo. Simki-Techsain. 1(2), 2-7. Kujawska, M., Jiménez-Escobar, N. D., Nolan, J. M., & Arias-Mutis, D. (2017). Cognition, culture and utility: plant classification by Paraguayan immigrant farmers in Misiones, Argentina. Journal of Ethnobiology and Ethnomedicine, 13(1), 1-13. Koller, E. (2008). Javanese Medicinal Plants Used in Rural Communities. [Thesis]. Durchgefuhrt am Department fur Pharmakognosie. Universitat Wien. Kurniawan, A., Warseno, T., & Asih, N. P. S. (2013). Keanekaragaman Jenis Araceae di Kawasan Hutan Bukit Tapak, Cagar Alam Batukahu, Bali. Prosiding Seminar Nasional Pendidikan Biologi dan Biologi, Jurdik Biologi. Kurniawan, A., Wibawa, I. P. A. H., & Adjie, B. (2011). Species Diversity of Amorphophallus (Araceae) in Bali and Lombok with Attention Genetic Study in A. paeoniifolius (Dennst.) Nicolson. Biodiversitas Journal of Biological Diversity, 12(1). Lembaga Ilmu Pengetahuan Indonesia. (2014). Kekinian Keanekaragaman Hayati Indonesia. Kerja sama Kementerian PPN/Bappenas, KLH dan LIPI. Bogor: LIPI Press Lemmens, R. H. M. J., Soerianegara, I., & Wong, W. C. (1995). Plant Resources of South-East Asia. 5(2). Backhuys Publ. Lestiani, A., Lestari, R. S. D., Rizkia, R. A., Pratiwi, A. M., Azrai, E. P., & Rini, D. S. (2021). Survei Keberagaman Lumut dan Pohon Inang di Kawasan Kebun Raya Bogor. Proceeding of Biology Education, 4(1), 51-62. Lolok, R. (2020). Alat Sensor Soil Tester. [Skripsi]. Fakultas Sains dan Teknologi, Universitas Sanata Dharma Mansur, M. (2017). Potensi Serapan Karbondioksida (CO2) pada Beberapa Jenis Tumbuhan Lantai Hutan Dari Suku Araceae di Taman Nasional Gunung Halimun- Salak, Jawa Barat. Jurnal Biologi Indonesia, 8(2). Maretni, S., & Mukarlina, M. T. (2017). Jenis-Jenis Tumbuhan Talas (Araceae) di Kecamatan Rasau Jaya Kabupaten Kubu Raya, Protobiont, 6(1). Mayo, J.S., Bogner, J., & Boyce, P.C. (1997). The Genera of Araceae. Belgium: Continental Printing. Mohan, S., Abdul, A.B., Wahab, S.I.A., Al-Zubairi, A.S., Elhassan, M.M., Yousif, M. (2008). Antibacterial and Antioxidant Activities of Typhonium Flagelliforme (Lodd.) Blume Tuber. American Journal of Biochemistry and Biotechnology, 4(4), 402-407. Muharini, R., Masriani, M., & Rudiyansyah, R. (2018). Phytochemical Screening, Antioxidant, and Cytotoxicity of Zamioculcas zamiifolia Root Extract. Indonesian Journal of Pure and Applied Chemistry, 1(2), 62-67. Murthy, K. M. S. (2021). Effect of Ethanolic Extract of Colocasia esculenta Leaves and Their Cytotoxicity and Apoptosis Potential on Ovarian Cancer Cell Lines PA-1. Journal of Advanced Scientific Research, 12(1). Mutaqin, A. Z., Fatharani, M., Iskandar, J., Partasasmita, R. (2018). Utilization of Araceae by local community in Cisoka Village, Cikijing Sub-district, Majalengka District, West Java, Indonesia. Biodiversitas journal of Biological Diversity. 19(2): 560-571 Nguyen, V. D., Tien, T. V., Loan, L. T., Bouamanivon, S., Hetterscheid, W. L. A. (2018). Amorphophallus Jurnal Riset Biologi dan Aplikasinya, 4(1): 9-18, March 2022 | 18 ravenii, a New Species of Amorphophallus (Araceae) from Laos. Novon, 26(1), 53-55. Nicholson, B. J., & Halkin, S. L. (2007). Temperature Relationships in Eastern Skunk Cabbage. Bioscene: Journal of College Biology Teaching, 33(2), 6-14. Nicolson, D. H. (1969). A Revision of the Genus Aglaonema (Araceae). Smithsonian Contributions to Botany. 1, 1-69. Nzietchueng, S. (1988). Some Physiological Characteristics of Pythium Myriotylum, Causal Agent of Cocoyam (Xanthosoma sagittifolium) Root Rot Disease in Camerum. 7. Symposium of the International Society for Tropical Root Crops, Gosier (Guadalupe). Ortiz, O. O., de Stapf, M. S., & Croat, T. B. (2019). Diversity and Distributional Patterns of Aroids (Alismatales: Araceae) Along an Elevational Gradient in Darién, Panama. Webbia, 74(2), 339-352. Oloyede, G. K., Onocha, P. A., & Abimbade, S. F. (2012). Phytochemical, Toxicity, Antimicrobial and Antioxidant Screening of Extracts Obtained from Dieffenbachia picta (Araceae) Leaves and Stem. Journal of Science Research, 11(1), 31-43. Phuong, V. T. T. (2019). Morphological and Anatomical Property, Phytochemical Screening and Antibacterial Activity of Colocasia gigantea (Blume) Hook.f. International Journal of Research in Pharmacy and Pharmaceutical Sciences. 4(5), 51-57. Portal, R. R., Lima, M. A. S., Luz, V. L. F., & Bataus, Y. S. L. (2002). Vegetables Species Used as Food by Podocnemis unifilis, Troschel 1948 (Reptilia: Testudinae, Pelomedusidae) in the Pracuúba Region, State of Amapá/Brazil. Ciência Animal Brasileira. 3, 11-19. Powo. (2021). "Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew.” Published on the Internet; http://www.plantsoftheworldonline.org/taxon/urn:l sid:ipni.org:names:87046-1Diakses pada 18 Juni 2021 Pratama, M. Y. A. (2017). Inventarisasi Jenis dan Pola Sebaran Tumbuhan Famili Araceae di Kawasan Air Terjun Ironggolo Kediri Sebagai Media Konservasi In-Situ. Simki-Techsain. 1(2). Rameshkumar, S. (2018). Standardization of Plant Species and Growing Medium for Vertical Garden System: A New Urban Horticulture Concept. J. Hortl. Sci. 13, 1. Renner, S. (2004). Plant Dispersal Across the Tropical Atlantic by Wind and Sea Currents. Int. J. Plant Sci, 165, S23-S33. Simpson, M. G. (2010). Plant Systematics. Academic Press Elsevier. Sin Yeng, W. (2016). Keladi Hutan Borneo. Kuala Lumpur: Dewan Bahasa dan Pustaka. Sugiyono. (2008). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: ALFABETA. Suhono, B., Yuzammi, Witono, J. K., Hidayat, S., Handayani, T., Suciati., Mursidawati, S., Puji, I., Sudarmono., Wawangningrum, H. (2010). Ensiklopedia Flora. Jilid 1. Bandung: Kharisma Ilmu. Sulaiman, B., & Mansor, M. (2002). Medicinal Aroids Conservation: A Case Study of Floral Garden, School of Biological Sciences. Malaysia: Universiti Sains Malaysia. Sumaworto. (2004). Pengaruh Pemberian Kapur dan Ukuran Bulbil Terhadap Pertumbuhan Iles-Iles (Amorphophallus muelleri Blume) pada Tanah Ber-Al Tinggi. Ilmu Pertanian. 11(2), 45-53. Suminarti, N. E. (2015). Pengaruh Tingkat Ketebalan Mulsa Jerami pada Pertumbuhan dan Hasil Tanaman Talas (Colocasia esculenta (L.) Schott var. Antiquorum). Jurnal Agro, 2(2), 1-13. Sungkajanttranon, O., Marod, D., Thanompun, K. (2018). Diversity and distribution of family Araceae in Doi Inthanon National Park, Chiang Mai province. Agriculture and Natural Resources. 52, 125-131. Susanti, T., Suraida, S., Febriana, H. (2013). Keanekaragaman Tumbuhan Invasif di Kawasan Taman Hutan Kenali Kota Jambi. Prosiding Semirata, 1(1). Syamjith, P., Vinod, K. R., Vipuldas, M. K., Venkatesh, R., Sindhu, T. J., & Johncy, N. J. (2018). Dieffenbachia: Benefits vs Risks of a Household Ornamental Plant- A Review. Word Journal of Pharmaceutical Research, 7(17), 598-604. Takeda, S., Onishi, Y., Fukui, Y., Ohsako, T., & Kubo, N. (2018). Life Cycle and Genetic Diversity of Symplocarpus nipponicus (Araceae), an Endangered Species in Japan. Plants. 7(3), 73. van Andel, T.R. (2000). Non-Timber Forest Products of the Northwest District of Guyana, Part I and II. Tropenbos-Guyana Series 8A and 8B. [Dissertation]. Wageningen: Utrecht University,. Vardhana, R. (2008). Direct Uses of Medicinal Plants and Their Identification. Sarup & Sons. Wahidah, B. F., Afiati, N., & Jumari, J. (2021). Community Knowledge of Amorphophallus muelleri Blume: Cultivation and Utilization in Central Java, Indonesia. Biodiversitas Journal of Biological Diversity, 22(7). Wang, H., & Li, K. (2021). Research Status and Prospect in Molecular Biology of Amorphophallus. Medicinal Plant Research, 11. Widodo, P., & Wibowo, D. N. (2012). Araceae di Lereng Selatan Gunung Slamet. Ekologi Gunung Slamet, 89. Wong, S. Y., & Boyce, P. C. (2010). Studies on Schismatoglottideae (Araceae) of Borneo IX: A new genus, Hestia, and resurrection of Apoballis. Botanical Studies (Taipei), 51, 249-255. Yeap, S. K., Omar, A. R., Ali, A. M., Ho, W. Y., Beh, B. K., & Alitheen, N. B. (2012). Immunomodulatory Effect of Rhaphidophora korthalsii on Natural Killer Cell Cytotoxicity. Evidence-Based Complementary and Alternative Medicine, 2012. Yudaputra, A., Fijridiyanto, I. A., Witono, J. R., & Astuti, I. P. (2021). The Plant Expedition of an Endangered Giant Flower Amorphophallus titanum in Sumatra. Warta Kebun Raya, 19(1), 23-29. Yudhoyono, A & Sukarya, D. G. (2013). 3500 plant species of the Botanic Gardens of Indonesia. Jakarta: PT. Sukarya dan Sukarya Pendetama. Yuzammi. (2018). The Diversity of Aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization. Biodiversitas, 19(1), 140-152. Yuzzami. (2008). KR Bogor, Eladi Cancer (Epipremnum pinnatum (L.) Engl.): Alternative to Treat a Different Kinds of Diseases. Warta Kebun Raya, 8(2), 84-88 Zotz, G., Kappert, N., Muller L.-L.B., Wagner, K. (2019). Temperature dependence of germination and growth in Anthurium (Araceae). Plant Biology, 22(2), 184-190. http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:87046-1 http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:87046-1