jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 113 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional implementasi metode simple additive weighting (saw) pada sistem pendukung keputusan untuk menyeleksi saham prima ratna kusumawardani1, achmad solichin2 1,2) prodi teknik informatika, fakultas teknologi informasi universitas budi luhur, jakarta 1)ratna.kusumawardani@budiluhur.ac.id, 2)achmad.solichin@budiluhur.ac.id abstrak pada penelitian ini dibahas mengenai sistem pendukung keputusan untuk menyeleksi saham prima. masalah yang terjadi dalam penelitian adalah adanya kalangan umum maupun profesional yang masih melakukan analisis fundamental secara manual dalam pengambilan keputusan pembelian saham. penggunaan sistem pendukung keputusan diharapkan dapat membantu dalam proses pengolahan data saham yang memiliki kategori prima menjadi lebih efektif. metode simple additive weighting (saw) ini dipilih karena mampu menyeleksi alternatif terbaik dari sejumlah alternatif. dalam hal ini alternatif yang dimaksudkan yaitu saham prima berdasarkan kriteria-kriteria yang ditentukan. penelitian dilakukan dengan menentukan nilai bobot untuk setiap atribut, kemudian dilakukan proses perankingan yang akan menentukan alternatif yang optimal, yaitu saham terbaik. hasil penelitian berupa aplikasi sistem pendukung keputusan penyeleksi saham prima yang dibangun dengan bahasa pemrograman java dan basisdata mysql. aplikasi ini berguna untuk memilih alternatif yang terbaik untuk mendapatkan saham prima. para investor yang akan berinvestasi di saham, tidak akan salah membeli saham karena sudah memiliki daftar nama-nama saham prima. kata kunci: saw, spk, seleksi saham, perankingan, pendukung keputusan abstract in this study we proposed the decision support system for selecting prime stock. problems that occur in the research is the general public as well as professionals who are still doing fundamental analysis in decision making stock purchases manually. the use of a decision support system is expected to assist in the data processing stocks that have become more effective prime category. simple additive weighting (saw) method have been selected because it is able to select the best alternative from a number of alternatives. in this case the alternative meant that prime stocks based on specified criteria. research carried out by determining the weight value for each attribute, then do ranking process that will determine the optimal alternative, which is the best stock. results of the research is a decision support system application prime stock selectors that is built using the java programming language and mysql database. this application allows you to choose the best alternative to get prime stock. the investors who will invest in stocks, will not go wrong b uying stocks because it already had a list of names of the prime stocks. keywords: saw, dss, stock selection, ranking, decision support pendahuluan investasi merupakan suatu langkah seseorang dalam pemenuhan kebutuhan di masa yang akan datang. dewasa ini, dunia investasi tidak lagi didominasi oleh jenis investasi konvensional seperti tabungan atau deposito di bank. para investor saat ini mulai tertarik untuk menanamkan modalnya melalui pembagian kepemilikan perusahaan yang ditandai dengan surat berharga yang disebut saham. proses investasi ini dilakukan dengan cara jual beli sejumlah saham yang akan menentukan persentasi kepemilikan seorang investor terhadap perusahaan yang bersangkutan. proses jual beli tersebut dilakukan dengan cara lelang di suatu tempat perdagangan khusus yang disebut dengan bursa saham atau pasar modal (haryadi, 2013). kalangan umum maupun profesional masih banyak yang melakukan analisis fundamental secara manual dimana hal itu akan memakan waktu yang lama dan kurang efektif dalam mengolah data saham yang sangat banyak jumlahnya. analisis fundamental memerlukan pemahaman beberapa teknik dan teori, serta sulit dilakukan oleh orang awam (fahrurrozy, 2006; http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 114 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional falani, sugiono, & junaedi, 2012; soemapradja, logahan, & ongowarsito, 2014). permasalahan yang terjadi pada saat penyeleksian saham adalah keterbatasan kemampuan sumber daya manusia dalam hal ini bagian admin dalam mencari kriteria-kriteria yang diinginkan dalam waktu yang lebih singkat (fahrurrozy, 2006; falani et al., 2012). oleh karena itu diperlukan pengembangan suatu perangkat lunak yang dapat mempercepat pengambilan keputusan dalam memilih saham prima. pada penelitian ini dikembangkan sebuah sistem pendukung keputusan menggunakan metode simple additive weighting (saw). metode ini dipilih karena mampu menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan proses perankingan yang akan menyeleksi alternatif terbaik dari sejumlah alternatif. dalam hal ini, alternatif yang dimaksud adalah saham prima berdasarkan kriteria-kriteria yang ditentukan. metode saw sering dikenal dengan istilah penjumlahan terbobot. konsep dasar metode simple additive weighting (saw) adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut (kusumadewi, 2003). metode saw membutuhkan proses normalisasi matrik keputusan (x) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada. sistem pendukung keputusan yang dikembangkan, diterapkan untuk menyeleksi saham prima pada cv. bintang semesta. metode ini dipilih karena mampu menyeleksi alternatif terbaik dari sejumlah anternatif. dalam hal ini alternatif yang dimaksud adalah saham-saham yang terdaftar di bursa efek indonesia (bei). penelitian dilakukan dengan mencari penjumlahan terbobot dari nilai yang didapat pada setiap alternatif kemudian dilakukan proses perangkingan yang akan menentukan alternatif yang optimal yaitu saham prima. berdasarkan penelitian pada jurnal yang berjudul sistem pendukung keputusan penilaian proses belajar mengajar menggunakan metode simple additive weighting (saw) (usito, 2013), penulis menggunakan metode yang sama yaitu metode simple additive weighting (saw), namun diterapkan pada objek penelitian yang berbeda dan data yang berbeda pula. pada penelitian sebelumnya (usito, 2013), metode saw diterapkan di bidang pendidikan, sedangkan pada penelitian ini diterapkan pada data saham. tabel 1. rangkuman penelitian terkait no. paper tujuan penelitian metode kriteria 1 (yobioktabera, susanto, & wijayanti, 2012) untuk mengetahui pattern minat suatu sekolah atau institusi pendidikan terhadap jenis artikel tertentu simple additive weighting sistem pendukung keputusan yang dibangun ini berguna untuk mengetahui pattern minat suatu sekolah atau institusi pendidikan terhadap jenis artikel tertentu. 2 (usito, 2013) penilaian proses belajar mengajar yang dilakukan oleh dosen. simple additive weighting kriteria: tingkat kehadiran mengajar, ketepatan memulai dan mengakhiri kuliah, kesesuaian materi dengan silabus, kemudahan penyampaian materi untuk dipahami, memotivasi belajar dalam mendalami mata kuliah. 3 (oktaputra & noersasongko, 2014) spk kelayakan pemberian kredit motor pada perusahaan leasing. simple additive weighting kriteria: kepribadian, uang muka, kemampuan, jaminan, kondisi 4 (pohan & wibowo, 2017) spk pemilihan vendor pada pt. samudera indonesia ship management fuzzy-anp & topsis kriteria: delivery, price, quality, service 5 (prayogo, 2018) spk pemilihan karyawan teladan pt. bank rakyat indonesia simple additive weighting kriteria: absensi, produktivitas, tugas individual, tanggung jawab, penilaian supervisor 6 (bunajjar & solichin, 2018) rekomendasi lokasi cabang toko untuk gerai pulsa anp & topsis kriteria: price, quality, enviromental, facilities. 7 (mardiana & tanjung, 2019) sistem pendukung keputusan pemilihan perguruan tinggi swasta topsis kriteria: akreditasi, jumlah mahasiswa, jumlah dosen, biaya, fasilitas, jumlah jurusan. hasil penelitian ini dapat berguna untuk memilih alternatif yang terbaik untuk mendapatkan saham prima. dengan demikian, para investor yang akan berinvestasi di saham, tidak http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 115 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional akan salah membeli saham karena sudah memiliki daftar nama-nama saham prima. metode penelitian langkah penelitian untuk menyelesaikan permasalahan, dalam penelitian ini dilakukan beberapa langkah dan metode penelitian, sebagai berikut: a. studi pustaka metode ini dilakukan untuk mengumpulkan data dengan mencari dan membaca buku-buku referensi, jurnal, paper dan karya ilmiah lainnya yang dapat menunjang penelitian ini. b. analisis dokumen dokumen yang diperoleh kemudian dipelajari dan dianalisis untuk mengetahui bentuk sistem cara kerja yang akan dibangun. c. rancangan sistem metode ini dilakukan dengan membuat rancangan layar, flowchart, database dan lainlain sesuai dengan hasil analisis. d. implementasi rancangan sistem yang sudah dibuat akan diimplementasikan berdasarkan hasil analisis. kemudian hasil analisa akan dituangkan dalam kode-kode dengan menggunakan bahasa pemrograman tertentu. e. uji coba sistem setelah sistem selesai dibangun, maka dilakukan uji coba terhadap sistem yang dibangun. pengujian dilakukan dengan metode black box. teknik analisis data metode simple additive weighting (saw) sering dikenal dengan istilah metode penjumlahan terbobot. konsep dasar metode simple additive weighting (saw) adalah mencari penjumlahan terbobot dari rating kinerja dari masing-masing alternatif pada semua atribut. metode simple additive weighting (saw) membutuhkan proses normalisasi matriks keputusan (x) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada. kriteria-kriteria yang dibutuhkan salah satunya adalah laba bersih, laba usaha, pendapatan dan per, penentuan kriteria dapat digolongkan ke dalam 2 kriteria : a. benefit benefit adalah nilai maksimum dari suatu kriteria. adapun kriteria yang dapat digolongkan ke dalam kriteria benefit adalah pendapatan, laba kotor, laba usaha, laba bersih, aset. b. cost cost adalah nilai minimum dari suatu kriteria. adapun kriteria yang dapat digolongkan ke dalam kriteria cost adalah per. terdapat 4 tahapan yang harus dilakukan pada metode simple additive weighting (saw) dan diterapkan pada penelitian ini, yaitu: a. pengumpulan kriteria tabel 2 menyajikan kriteria yang digunakan untuk seleksi saham prima. selain itu, ditetapkan skala pembobotan seperti pada tabel 3. tabel 2 tabel kriteria kriteria keterangan c1 pendapatan c2 laba kotor c3 laba usaha c4 laba bersih c5 aset c6 per tabel 3 skala pembobotan skala pembobotan bobot cukup 5 rendah 2.5 sangat rendah 1 sangat tinggi 10 tinggi 7.5 b. pembobotan kriteria tabel 4 merupakan tabel pembobotan kriteria yang berguna untuk menampung data-data pembobotan kriteria yang sudah dipilih oleh admin. tabel 4 contoh pembobotan kriteria alternatif kriteria c1 c2 c3 c4 c5 c6 a1 5 2.5 2.5 2.5 5 2.5 a2 2.5 1 1 1 7.5 10 a3 10 1 10 10 10 1 a4 2.5 1 2.5 2.5 2.5 1 a5 10 7.5 5 7.5 7.5 5 a6 7.5 2.5 5 2.5 5 10 keterangan : a1 = adro a2 = born a3 = bumi a4 = brau a5 = atpk a6 = ptba c1 = aset (benefit) c2 = laba bersih (benefit) c3 = laba kotor (benefit) c4 = laba usaha (benefit) c5 = pendapatan (benefit) c6 = per (cost) c. matrik keputusan matrik keputusan dibuat untuk melakukan normalisasi data pembobotan setiap alternatif. http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 116 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional normalisasi dipisahkan antara kriteria yang bersifat benefit dan cost. d. perankingan hasil normalisasi selanjutnya diranking dengan mengurutkan dari nilai terbesar ke nilai terkecil. hasil penelitian dan pembahasan desain sistem implementasi merupakan salah satu tahapan dalam pembuatan program. sistem pendukung keputusan ini dibangun dengan menggunakan bahasa pemrograman java dan basis data menggunakan mysql. berikut ini beberapa tampilan layar sistem pendukung keputusan yang telah dikembangkan dalam penelitian ini. gambar 1. tampilan form data saham gambar 2. tampilan form data kriteria gambar 1 adalah tampilan form data saham. pada menu ini dapat mengubah dan menghapus data saham dengan cara pilih salah satu data yang berada di dalam tabel. sementara itu, gambar 2 menampilkan form data kriteria untuk menambahkan, mengubah dan menghapus data kriteria. bobot kriteria dapat dikelola melalui halaman data bobot (gambar 3). di halaman ini, pengguna dapat menambahkan, mengubah dan menghapus data bobot. gambar 3. tampilan from data bobot gambar 4 menyajikan tampilan layar analisis saham. pada menu ini, pengguna dapat melakukan analisis saham dengan menentukan bobot pada masing-masing kriteria. kriteria yang digunakan adalah aset, laba bersih, laba kotor, laba usaha, pendapatan dan per. gambar 4. tampilan halaman input analisis saham hasil analisis saham ditampilkan pada gambar 5. pada menu ini, pengguna dapat melihat hasil dari pemilihan saham. http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 117 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional gambar 5. tampilan hasil analisis saham gambar 6. tampilan hasil analisis saham dalam bentuk grafik selain dalam bentuk tabel, sistem juga mampu menampilkan hasil analisis dalam bentuk grafik seperti disajikan pada gambar 6. untuk pengolahan lebih lanjut, sistem juga dapat menampilkan hasil analisis dalam bentuk microsoft excel. pengujian sistem pada penelitian ini dilakukan pengujian sistem dengan metode pengujian black box. pengujian bertujuan untuk mengetahui fungsionalitas dari sistem atau aplikasi yang dihasilkan. tabel 5 menyajikan cuplikan hasil pengujian perangkat lunak dengan metode black box. berdasarkan hasil pengujian, sistem pendukung keputusan yang dibangun dapat berjalan dengan baik. tabel 5. hasil pengujian sistem dengan blackbox # modul fungsionalitas hasil 1 login menginputkan username dan password dengan benar berhasil masuk ke halaman pengguna 2 login menginputkan username dan/atau password yang salah menampilkan pesan gagal 3 data saham menambahkan, mengubah dan menghapus data saham berhasil tersimpan di db dan tampil di layar 4 data kriteria menambahkan, mengubah dan menghapus data kriteria berhasil tersimpan di db dan tampil di layar 5 analisis saham menjalankan modul analisis data saham berhasil ditampilkan hasil perhitungan dan perangkinan saham dalam bentuk tabel dan grafik 6 analisis saham mengekspor data hasil analisis ke file ms excel berhasil menyimpan ke file dan dapat dibuka dengan program ms excel simpulan simpulan berdasarkan penelitian yang telah dilakukan, dapat ditarik beberapa kesimpulan, antara lain: 1) permasalahan dapat diselesaikan dengan mengimplementasikan sistem pendukung keputusan dengan metode simple additive weighting (saw). 2) aplikasi ini dibangun sebagai alat bantu bagi cv. bintang semesta untuk memilih alternatif yang terbaik untuk mendapatkan saham prima. 3) hasil akhir dari perhitungan simple additive weighting (saw) ini berupa diagram batang dan dapat dieksport ke microsoft excel. 4) berdasarkan hasil pengujian fungsionalitas dengan metode pengujian black box disimpulkan bahwa aplikasi dapat berjalan dengan baik dan dapat menampilkan hasil analisis saham prima bagi penggunanya. saran selain menarik beberapa kesimpulan, peneliti juga memberikan saran dalam penerapan aplikasi sistem pendukung keputusan yang telah http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 118 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional dihasilkan dalam penelitian ini. spesifikasi kebutuhan perangkat keras dan perangkat lunak harus dipenuhi agar aplikasi dapat bekerja dengan baik dan optimal. selain itu, penelitian ini dapat dikembangkan untuk menyelesaikan permasalahan di bidang lain. daftar referensi bunajjar, k., & solichin, a. (2018). determining the location of a wholesale pulse business branch with anp and topsis methods. international journal of advanced studies in computer science and engineering (ijascse), 7(11), 1–5. fahrurrozy. (2006). sistem penunjang keputusan investasi saham pada bursa efek jakarta. uin syarif hidayatullah. falani, a. z., sugiono, j. p., & junaedi, h. (2012). sistem pendukung keputusan investasi saham berbasis fuzzy logic. in proceeding seminar nasional fakultas teknik (snft) (hal. b-1-b-9). universitas muhammadiyah sidoarjo. haryadi, r. (2013). start up trader : jangan jadi trader sebelum baca buku ini ! visimedia pustaka. kusumadewi, s. (2003). artificial intelligence (teknik dan aplikasinya). yogyakarta: graha ilmu. mardiana, t., & tanjung, s. s. (2019). sistem pendukung keputusan pemilihan perguruan tinggi swasta menggunakan topsis. jurnal riset informatika, 1(2), 25–34. oktaputra, a. w., & noersasongko, e. (2014). sistem pendukung keputusan kelayakan pemberian kredit motor menggunakan metode simple additive weighting pada perusahaan leasing hd finance. program studi sistem informasi. universitas dian nuswantoro. pohan, f., & wibowo, a. (2017). integrasi model pendukung keputusan evaluasi pemilihan vendor dengan fuzzy analytical network process dan topsis studi kasus pt. samudera indonesia ship management. jurnal teknik, 6(2), 83–91. prayogo, j. (2018). sistem pendukung keputusan karyawan teladan pt. bank rakyat indonesia dengan metode simple additive weighting. jurnal riset informatika, 1(1), 35– 42. soemapradja, t. g., logahan, j. m., & ongowarsito, h. (2014). pengembangan aplikasi simulasi perdagangan saham dengan sector rotation dan linear programming. binus business review, 5(1), 418–428. usito, n. j. (2013). sistem pendukung keputusan penilaian proses belajar mengajar menggunakan metode simple additive weighting (saw). universitas diponegoro semarang. https://doi.org/10.1017/cbo978110741532 4.004 yobioktabera, a., susanto, h., & wijayanti, s. (2012). perancangan e-learning cerdas berbasis dss dengan menggunakan metode simple additive weighting pada smp n 9 semarang, 2012(semantik), 444–447. http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 2 maret 2019 p-issn: 2656-1743 e-issn: 2656-1735 107 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. rancang bangun sistem informasi manajemen disposisi surat menyurat dengan menggunakan model rad (rapid application development) instianti elyana1, ishak kholil2, frans eduard schaduw3 1administrasi bisnis universitas bina sarana informatika www.bsi.ac.id instianti.iny@bsi.ac.id 2 sistem informasi, stmik nusa mandiri www.nusamandiri.ac.id ishak.ihk@nusamandiri.ac.id 3administrasi bisnis universitas bina sarana informatika www.bsi.ac.id frans.fes@bsi.ac.id abstract—many numbers of letters are made and accepted in the administrative administration section, so that data search will be inefficient in terms of time and energy using a manual system. so that at this time a more structured letter management administration system is needed in order to speed up the search for existing data and create reports. this filing application has the following capabilities: this filing application is run on a personal computer network in the administrative space, administrative officers can access this filing application by entering the correct user login, can add, edit, cancel, delete and save incoming mail and out, can search incoming letters and outgoing letters based on the sender and subject matter, search results can be sorted according to the letter id or date of the letter, can print reports based on search results that have been done based on the letter id or date of the letter. using the rad model will make it easier to design a correspondence disposition information system. keywords: correspondence letter, outgoing letter, entry letter, administration abstrak—banyak jumlah surat yang dibuat dan diterima dibagian administrasi tata usaha, sehingga pencarian data akan menjadi tidak efisien dalam hal waktu dan tenaga dengan menggunakan sistem manual. sehingga pada saat ini diperlukan suatu sistem administrasi manajemen surat yang lebih terstruktur agar dapat mempercepat pencarian data yang ada dan pembuatan laporan. aplikasi kearsipan ini mempunyai kemampuan sebagai berikut: aplikasi kearsipan ini dijalankan pada jaringan personal komputer pada bagian ruang tata usaha, petugas tata usaha dapat mengakses aplikasi kearsipan ini dengan memasukkan login user yang benar, dapat melakukan menambah, mengedit, membatalkan, menghapus dan menyimpan surat masuk dan keluar, dapat melakukan pencarian surat masuk dan surat keluar berdasarkan pengirim dan perihal, hasil pencarian dapat dilakukan pengurutan berdasar id surat atau tanggal surat, dapat mencetak laporan berdasarkan hasil pencarian yang telah dilakukan berdasarkan id surat atau tanggal surat. dengan menggunakan model rad akan lebih memudahkan dalam perancangan sistem informasi disposisi surat menyurat. kata kunci:.surat menyurat, surat keluar, surat masuk, administrasi pendahuluan surat menyurat merupakan hal yang tidak dapat dihindari dalam suatorganisasi/perusahaan karena hal ini memegang peranan penting dalam proses administrasi. surat merupakan rekaman kegiatan ataupun peristiwa dalam suatu instasi yang harus tersimpan dalam jangka waktu tertentu untuk kebutuhan tertentu. manajemen surat menyurat dibutuhkan untuk mengatur http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 2 maret 2019 108 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. jalannya suatu prosedur dalam suatu perusahaan, agar surat tertata baik dan tidak tercecer yang berdampak pada kerugian bagi perusahaan(ferdinandus, sandy, 2012). pengelolaan surat masuk dan surat keluar dikatakan penting karena banyak informasi yang dibutuhkan perusahaan. data surat masuk dan surat keluar harus tersimpan dengan baik agar dapat memudahkan dalam pengelolaannya. pengelolaan surat masuk dan surat keluar yang menggunakan cara manual (saputra & famukhit, 2014) yaitu dengan melakukan pencatatan data surat kedalam buku kendalanya adalah apabila buku tersebut hilang atau rusak maka data pun akan ikut hilang. dan jika pihak perusahaan menyimpan dokumen fisik surat yang ada akan ikut hilang dan rusak menyulitkan perusahaan dalam mencari dokumen surat yang dibutuhkan. peran sebuah tool dalam pengolahan data dan memiliki peran yang sangat penting bagi sebuah organisasi/perusahaan, tentu tool yang dimaksud adalah sebuah system informasi yang bertugas mengelola data dengan jumlah yang relative cukup banyak setiap harinya, apalagi disebuah organisasi/perusahaan besar pasti memerlukan suatu alat bantu yang memiliki tingkat kecepatan perhitungan dan penyampaian data yang tinggi. alat bantu tersebut berupa perangkat keras dan perangkat lunak. keunggulan aplikasi berbasis komputer untuk memproses data akan meningkatkan efektifitas dan produktifitas, serta efisiensi proses dan prosedur yang ada diorganisasi/perusahaan. pengunaan sistem aplikasi pengelolaan surat masuk dan surat keluar pada pt angkasa pura 1 semarang sudah menggunakan sistem informasi yang terkomputerisasi baik pada penginputan, pencarian data surat masuk/ surat keluar dan pembuatan laporan dapat dilakukan kapan saja dalam waktu yang cepat karena data tersimpan dengan aman dan terstruktur serta tidak terjadi lagi keterlambatan dalam pencarian data. (sugiharti & triliani, 2015). permasalahan surat menyurat dengan sistem konvensional pernah dibahas pada studi kasus kantor desa tanjungsari kotawinangun kebumen ini adalah dimana bentuk pelayanan surat menyuratnya masih menggunakan sistem yang konvensional (priyadi & lestari, 2018). bentuk permasalahan yang sering timbul adalah sulitnya pelaporan surat masuk (suherman, 2017) dan keluar dan pencariaan data surat masuk dan surat keluar, pada era informasi saat ini, permasalahan yang sering timbul akibat dari belum termanfaatkannya teknologi dengan baik, teknologi harus dapat menjadi solusi permasalahan tersebut. yaitu bagaimana mengolah data sedemikian rupa untuk menghasilkan informasi yang berguna, dan mudah digunakan oleh pengguna informasi (sasongko & diartono, 2009). untuk itu dibutuhkan pemanfaatan teknologi informasi untuk mendukung proses administrasi surat menyurat hal ini tentu untuk mempercepat pembuatan laporan dan pencarian data. karena itu perlu dibangun suatu sistem untuk pengelolaan dan pengarsipan berkas-berkas surat yang berupa aplikasi kearsipan untuk memudahkan dalam sistem surat menyurat dalam sebuah perusahaan. berdasarkan kebutuhan perusahan adalah membuat perangkat lunak untuk workflow pengelolaan surat menyurat lebih khususnya pada bagian pengelolan surat masuk dan keluar. pengembangan sebuah perangkat tentu harus didukung oleh metode yang tepat, unified modeling language (uml) dapat membantu tim pengembangan proyek berkomunikasi, mengeksplorasi potensi desain, dan memvalidasi desain arsitektur perangkat lunak atau pembuat program. komponen atau notasi uml diturunkan dari 3 (tiga) notasi yang telah ada sebelumnya yaitu grady booch, ood (object-oriented design), jim rumbaugh, omt (object modelling technique), dan ivar jacobson oose objectoriented software engineering)(haviluddin, 2013). bahan dan metode langkah-langkah penelitian dapat dilihat pada diagram berikut ini : gambar 1. bagan penelitian http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 2 maret 2019 p-issn: 2656-1743 e-issn: 2656-1735 109 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. gambar 2 : rad model business modeling aliran informasi antar fungsi bisnis dimodelkan dalamcara yang menjawab pertanyaan-pertanyaan berikut: informasi apa yang mendorong bisnis proses? informasi apa yang dihasilkan? siapa yang menghasilkannya? kemana perginya informasi? siapa yang memprosesnya? data modeling aliran informasi didefinisikan sebagai bagian dari fase pemodelan bisnis disempurnakan menjadi satu set objek data yang diperlukan untuk mendukung bisnis acteristics (disebut atribut) dari setiap objek diidentifikasi dan hubungan antara objek-objek ini didefinisikan proces modeling objek data yang didefinisikan dalam fase pemodelan data ditransformasikan untuk mencapai aliran informasi yang diperlukan untuk mengimplementasikan fungsi bisnis. memproses deskripsi dibuat untuk menambah, mengubah, menghapus, atau mengambil a objek data. application generation. rad mengasumsikan penggunaan teknik generasi keempat (bagian 2.10). daripada membuat perangkat lunak menggunakan generasi ketiga konvensional bahasa pemrograman proses rad bekerja untuk menggunakan kembali komponen program yang ada (bila memungkinkan) atau membuat komponen yang dapat digunakan kembali (bila perlu). dalam semua kasus, alat otomatis digunakan untuk memfasilitasi pembangunan perangkat lunak. testing and turnover karena proses rad menekankan penggunaan kembali, banyak komponen program telah diuji. ini mengurangi waktu pengujian keseluruhan. namun, komponen baru harus diuji dan semua antarmuka harus dilakukan sepenuhnya. hasil dan pembahasan model rad mengadopsi model waterfall dan pembangunan dalam waktu singkat yang dicapai dengan penerapan : 1. component based construktion ( pemprograman berbasis komponen bukan prosedural ) 2. penekanan pada penggunaan ulang ( reuse ) komponen perangkat lunak yang telah ada. 3. pembangkitan kode program otomatis atau semi otomatis 4. multiple ( banyak team) business modeling prosedur surat masuk surat masuk dari pengirim baik dari luar atau pun melalui email kemudian diterima oleh administrasi fo yang akan di catat data surat masuk dan surat keluar pensortiran surat, disposisi surat serta pengarsipan dan penerimaan surat keluar, pensortiran surat, pengiriman serta pengarsipan. prosedur surat keluar surat surat yang keluar akan dicatat oleh administrasi fo dimasukkan kedalam sistem kemudian diberikan no surat barulah surat akan keluar ketujuan masing-masing. laporan surat menyurat surat menyurat akan diinformasikan ke perusahaan melalui sistem informasi disposisi surat masuk dan surat keluar dibangun untuk memudahkan pengguna sistem manajemen disposisi dapat tersimpan dan terkelola dengan baik. data modelling sistem informasi disposisi surat ini dimulai surat yang diterima oleh administrasi untuk disortir berdasarkan tujuan surat yang harus dicatat pada form/buku surat masuk, surat akan didisposisikan ke tujuan masing-masing. begitupun dengan surat yang keluar akan dicatat oleh admin berdasarkan tujuan surat tersebut. tujuan utama memahami alur bisnis dan segala pengetahuan yang terkait operasional proses surat menyurat erd ( entity relationship diagram) model ini dimaksudkan untuk menjelaskan hubungan antar data dalam basis data berdasarkan objek-objek dasar data yang mempunyai hubungan antar relasi. dari hasil pengamatan surat menyurat di suatu perusahaan dibuat lah erd dengan penggambaran sebagai berikut : http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 2 maret 2019 110 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. kelola surat masuk surat keluar no_sukel tgl_sukeltujuan no_sm pengiriman status tgl_sm prihal administrasi level kode admin email user_name password 1 m kelola1 m file scand sm disposisi surat masuk tujuan disposisi user_name user_name gambar 5. rancangan erd semua surat yang masuk dan keluar diterima dan diteliti tujuannya adalah untuk memudahkan dibuka dan dicatatnya informasi kedalam lembar kendali surat masuk dan keluar yang telah disediakan oleh sistem informasi. proses disposisi surat oleh pengolah mengikuti aturan dan pola yang telah disepakati. @kode admin user_name password level email @no sm perihal tgl_sm pengiriman status file scand sm tujuan disposisi @@[@kode admin] tujuan @no_surat keluar tgl_sm tujuan disposisi @@[@kode admin] administrasi surat masuk surat keluar gambar 6. rancangan lrs proses modeling dalam proses modeling menggunakan unified modeling language (uml) pemodelan mengunakan uml dapat memberikan gambaran pada sistem yang penulis bahas yaitu surat yang diterima oleh administrasi akan disortir terlebih dahulu untuk mengetahui tujuan surat, seletah proses sortir surat akan disiposisikan kebagian/divisi tujuan surat, dan administrasi mencatat dokumentasi penerimaannya sebagai arsip. sedangkan untuk surat keluar, administrasi menerima surat yang dibuat oleh bagian/divisi, untuk dilakukan sortir tujuan surat agar tertulis alamat yang jelas, setelah dilakukan sortir surat akan dikirim melalui kurir, dan administrasi mengarsipkan bukti surat keluar.. metode ini juga bertujuan menyatukan teknik pemodelan berorientasi objek yang terstandarisasi. sistem informasi disposisi surat ini adalah dimulai surat yang diterima oleh admin untuk disortir berdasarkan tujuan surat yang harus dicatat pada form/buku surat masuk, surat akan didisposisikan ke tujuan masing-masing. begitupun dengan surat yang keluar akan dicatat oleh admin berdasarkan tujuan surat tersebut. requirement untuk mengambarkan kebutuhan dari sebuah system dengan mengunakan use case diagram menggambarkan manfaat system jika dilihat menurut pandangan orange yang berada diluar system ( actor ). diagram ini menjelaskan fungsionalitas suatu system atau kelas dan bagian system berinteraksi dengan dunia luar. komponen pembentuk diagram use case adalah: a. aktor menggambarkan pihak-pihak yang berperan dalam system. b. use case aktifitas atau sarana yang disiapkan oleh bisnis atau system. hubungan link actor mana saja yang terlibat dalam use case ini. gambar 3. rancangan use case activity diagram diagram aktiftas lebih memfokuskan diri pada eksekusi dan alur system dari pada bagaimana system dari pada bagaimana system ini dirakit. diagram ini tidak hanya memodelkan software melainkan memodelkan model bisnis uc use case model administrasi kelola surat masuk login surat keluar laporan disposisi «extend» http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 2 maret 2019 p-issn: 2656-1743 e-issn: 2656-1735 111 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. juga. diagram aktivitas menunjukkan aktivitas system dalam bentuk kumpulan aksi-aksi. sumber : hasil penelitian, 2019 gambar 4. rancangan activity diagram proses application generation datadata sistem pengolahan data memerlukan interface masukkan ( input ). dimana data-data membentuk keluaran output dalam bentuk informasi. sumber : ( hasil penelitian, 2019) gambar 8. desain input data disposisi desain input data disposisi digunakan untuk menginput, menambahkan, mencari data surat masuk dan menghapus. dengan memasukkan no agenda kemudian surat akan dapat mudah untuk dapat mencarinya. sumber : ( hasil penelitian, 2019) gambar 9. desain input data surat masuk desain input data surat masuk dengan memasukkan data surat input no agenda, tanggal agenda dan memasukkan no surat. desain ini memudahkan untuk mencari surat masuk dapat juga untuk menghapus, menyimpan, mencari dan menambahkan surat dengan tetap menggunakan no agenda. act activ ity diagram kelola surat masuk start tampilan surat masuk tambah t ambah ? menampilkan no agenda dan tanggal agenda secara otomatis input data surat masuk simpan simpan ? proses simpan data tersimpan gagal tersimpan merge simpanmerge t ambah cari data surat input kata kunci yang akan dicari ditemukan ? menampilka data yang dicari data tidak sesuai hapus hapus ? proses hapus data surat masuk hapusmerge cari finish http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 2 maret 2019 112 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. testing and turnover testing login no sekenario pengujian test case hasil yang diharapkan hasil pengujian kesimpulan 1 mengosongkan semua field yang berada di halaman baru semua field atau semua text box kosong sistem akan menolak akses jika no agenda tidak dimasukkan sesuai harapan valid 2 hanya mengisi 5 field saja lalu klik cari no.agenda : 1231, tanggal agenda: 6 agustus 2019 , no.surat : 1444, sisanya kosong sistem akan menolak akses daftar dan menampilkan pesan “kesalahan pada pengisian form (masih kosong)” sesuai harapan valid 3 mengisi semua field yang ada semua field di isi sistem menerima akses sesuai harapan valid testing masuk no sekenario pengujian test case hasil yang diharapkan hasil pengujian kesimpulan 1 mengosongkan semua field yang berada di halaman baru semua field atau semua text box kosong sistem akan menolak akses jika no agenda tidak dimasukkan sesuai harapan valid 2 hanya mengisi klik simpan semua field terisi sistem dapat mengakses masuk sesuai harapan valid 3 mengisi semua field yang ada semua field di isi sistem menerima akses sesuai harapan valid 4 mengisi hanya dengan 5 field no. agenda : 12341, tgl. agenda : 6 agustus 2019, no surat : 12351, pengirim : pt bumi reza, hal : penting sistem akan menolak akses masuk dan menampilkan pesan “kesalahan pada pengisian form (masih kosong)” sesuai harapan valid kesimpulan dari pembahasan diatas dapat dianalisa bahwa sebuah organisasi/ perusahaan sudah sangat tidak layak mengunakan sisten konvensional dalam pengelolaan surat menyuratnya diera informasi saat ini karena sifat pendataan masih dilakukan pencatatan biasa dan belum terolah secara maksimal terutama untuk, pencatatan, pencarian surat surat yang sudah pernah diterbitkan atau surat surat yang sudah pernah diterima. dengan solusi yang diusulkan adalah pengunaan system informasi agar dapat mengelola data surat, baik surat masuk maupun surat keluar sehingga surat-surat tersebut dapat dicari kapan saja dengan cepat apabila diperlukan. referensi ferdinandus, sandy, h. w. (2012). perancangan aplikasi surat masuk dan surat keluar pada pt. pln (persero) wilayah suluttenggo. american journal of germanic linguistics and literatures, 3(2), 161–174. https://doi.org/10.1017/s10408207000006 9x haviluddin. (2013). summary for policymakers. memahami penggunaan uml (unified modelling language) haviluddin program, 9(2), 1–6. https://doi.org/10.1017/cbo97811074153 24.004 priyadi, d. a., & lestari, e. w. (2018). perancangan sistem informasi pelayanan surat menyurat pada kantor desa tanjungsari kutowinangun kebumen berbasis desktop. jurnal teknik komputer, iv(2), 84–91. https://doi.org/10.31294/jtk.v4i2.3444 saputra, k. a., & famukhit, m. l. (2014). perancangan sistem informasi pengelolaan surat masuk dan surat keluar pada mts guppi jetiskidul. ijns indonesian journal on networking and security, 3(4). https://doi.org/10.1123/ijns.v3i4.979 sasongko, j., & diartono, d. a. (2009). rancang bangun sistem informasi manajemen surat, xiv(2), 137–145. sugiharti, e., & triliani, s. e. (2015). perancangan aplikasi surat masuk dan keluar pada pt. angkasa pura 1 semarang. scientific journal of informatics, 1(1), 39–52. https://doi.org/10.15294/sji.v1i1.3640 suherman, y. (2017). sistem informasi kearsipan tata kelola surat pada kantor inspeksi bri kota padang. jurnal resti (rekayasa sistem dan teknologi informasi), 1(1), 26–33. https://doi.org/10.29207/resti.v1i1.7 http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 11 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. perancangan sistem informasi penjualan daur ulang botol bekas (pet) berbasis web aad aediyansyah program studi manajemen informatika amik bsi jakarta aadafz.crb@gmail.com abstract plastic bottle recycling is the use of recycling unused bottles into various kinds of goods or products for our daily needs, this product is also not only useful for decoration but also can be used as a daily necessity product. currently there are not many sites selling used plastic bottles online. in this case the author tries to analyze the information system for recycling sales of web-based plastic bottles. some sales data collection processes sometimes occur in recording errors, inaccurate sales reports are made and delays in searching for the required data. in addition, at the moment there are still many factories that are currently poorly managed and conventional, and the data collection method for the sale of their goods is not well managed. this sales information system development model uses the waterfall model, because it is easy in the process of applying information systems development. the purpose of this study is to provide convenience to consumers in online purchases, without having to come directly to the factory. make it easy for consumers to get information about products in detail through the website. keywords: sales information system, waterfall model, sales of used bottles abstrak daur ulang botol plastik merupakan pemanfaatan daur ulang botol-botol yang sudah tidak terpakai menjadi berbagai macam bahan barang ataupun produk kebutuhan kita sehari-hari, produk ini juga bukan hanya bermanfaat hiasan semata tetapi juga dapat dimanfaatkan sebagai suatu prodak kebutuhan sehari hari. saat ini banyak belum banyak situs penjualan botol plastik bekas secara online. dalam hal ini penulis mencoba menganalisa sistem informasi penjualan daur ulang botol plastik berbasis web. beberapa proses pendataan penjualan kadang terjadi kesalahan dalam pencatatan, kurang akuratnya laporan penjualan yang dibuat dan keterlambatan dalam pencarian data-data yang diperlukan. selain pada saat ini masih banyak pabrik-pabrik yang cara pendataan penjualanan barangnya saat ini masih kurang dikelola dengan baik dan masih konvensional, dan tidak terdata dengan baik. model pengembangan system informasi penjualan ini menggunakan model waterfall, dikarena mudah dalam proses penerapan pengembagan system informasi. tujuan penelitian ini untuk memberikan kemudahan pada konsumen dalam pembelian secara online, tanpa harus datang langsung ke pabrik. memudahkan konsumen untuk mendapatkan informasi tentang produk secara detail melalui website. kata kunci: sistem informasi penjualan, model waterfall, penjualan botol-botol bekas pendahuluan dalam kehidupan sehari-hari kita pasti menggunakan berbagai macam peralatan yang menggunakan bahan dasar botol plastik untuk keperluan ataupun untuk hiasan rumah sehari hari. daur ulang botol plastik merupakan pemanfaatan daur ulang botol-botol yang sudah tidak terpakai menjadi berbagai macam bahan barang (sari, sunarko, & hardati, 2016) ataupun produk kebutuhan kita sehari-hari, produk ini juga bukan hanya bermanfaat hiasan semata tetapi juga dapat dimanfaatkan sebagai suatu prodak kebutuhan sehari hari. saat ini banyak belum banyak situs penjualan botol plastik bekas secara online. dalam hal ini penulis mencoba menganalisa sistem informasi penjualan daur ulang botol plastik berbasis web. beberapa proses pendataan penjualan kadang terjadi kesalahan dalam pencatatan (christian & ariani, 2018), kurang akuratnya laporan penjualan yang dibuat (suci, zuraidah, & wajhillah, 2016) dan keterlambatan dalam pencarian data-data yang diperlukan (sintawati & sari, 2017). http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 12 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. selain pada saat ini masih banyak pabrik-pabrik yang cara pendataan penjualanan barangnya saat ini masih kurang dikelola dengan baik dan masih konvensional (frieyadie, 2014), (rachmawati, septiana, & yulianti, 2016) dan tidak terdata dengan baik. dengan adanya permasalahan tersebut maka harus ada suatu perkembangan dalam penjualan daur ulang botol-botol agar mudah di jangkau oleh pembeli, sebab itu penulis mencoba untuk membuat sebuah media pemasaran botol-botol daur ulang dengan membangun situs penjualan secara online atau lebih sering disebut dengan e-commerce dengan menggunakan fasilitas internet, agar pembeli tidak kesulitan untuk mendapatkan produk yang diinginkan, tanpa perlu datang langsung ke pabrik untuk membeli prodak yang akan di beli tersebut. model pengembangan system informasi penjualan ini menggunakan model waterfall, dikarena mudah dalam proses penerapan pengembagan system informasi. tujuan penelitian ini untuk memberikan kemudahan pada konsumen dalam pembelian secara online, tanpa harus datang langsung ke pabrik. memudahkan konsumen untuk mendapatkan informasi tentang produk secara detail melalui website. metodologi penelitian teknik pengumpulan data metode pengumpulan data yang digunakan dengan beberapa metode, meliputi : 1. metode observasi dalam pengumpulan data ini penulis mengadakan pengamatan pada situs website yang menjual daur ulang botol-botol bekas dengan melihat jalannya proses penjualan produk tersebut. 2. metode studi pustaka pengumpulan data dan informasi yang diperlukan dengan cara mempelajari buku-buku yang berkaitan dengan permasalahan yang dibahas, sehingga didapatkan dasar ilmiah yang kuat. model pengembangan perangkat lunak rekayasa perangkat lunak ini juga mengumpulkan kebutuhan pada tingkat bisnis strategis, yaitu: 1. analisa kebutuhan software tahap ini sangat menekan pada masalah pengumpulan kebutuhan penggunaan sistem dengan menentukan konsep system, fungsional sistem yang menghubungkan dengan lingkungan sekitar yang menghasilkan spesifikasi sistem. 2. desain merupakan tahapan proses multi langkah yang focus pada desain pembuatan program perangkat lunak struktur data, arsitektur data perangkat lunak dan representasi antar muka. 3. pengkodean pembuatan kode program pada tahap ini desain harus di implementasikan ke dalam program perangkat lunak. hasil dari tahap ini adalah program computer yang sesuai dengan desain yang telah di buat. 4. pengujian merupakan tahapan yang focus pada secara logika dan fungsional dan memastikan semua sudah di uji. metode yang digunakan untuk pengujian yaitu black box testing. 5. implementasi pada tahap ini perancangan perangkat lunak direalisasikan sebagai serangkaian program atau unit program. kemudian pengujian unit melibatkan fertivikasi bahwa setiap unit program telah memenuhi spesifikasinya. tiap aktivitas yang digunakan untuk dapat melakukan evaluasi suatu atribut atau kemampuan dari program atau sistem dan menentukan apakah memenuhi kebutuhan atau hasil yang diharapkan hasil dan pembahasan analisa kebutuhan software analisa kebutuhan untuk website penjualan daur ulang botol bekas yang diusulkan dengan beberapa prosedur diantaranya a. kebutuhan pengunjung a.1. pengunjung dapat melihat halaman utama a.2. pengunjung dapat melihat profil a.3. pengunjung dapat melihat barang yang dijual a.4. pengunjung dapat melihat panduan berbelanja a.5. pengunjung dapat melihat testimoni pembeli a.6. pengunjung dapat melakukan daftar akun baru b. kebutuhan pembeli b.1. pembeli dapat melakukan login b.2. pembeli dapat mengecek lupa password b.3. pembeli dapat memasukan ke keranjang belanja b.4. pembeli dapat melihat history transaksi b.5. pembeli dapat menginput testimoni http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 13 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. b.6. pembeli dapat melakukan konfirmasi pembayaran c. kebutuhan penjualan c.1. penjualan dapat mengganti password c.2. penjualan dapat mengelola data kota c.3. penjualan dapat mengelola data barang c.4. penjualan dapat mengelola data pembeli c.5. penjualan dapat mengelola pemesanan barang c.6. penjualan dapat mengelola konfirmasi pembayaran c.7. penjualan dapat mengelola laporan pemesanan c.8. penjualan dapat mengelola laporan pembayaran perancangan (desain) analisa kebutuhan untuk website penjualan daur ulang botol bekas yang diusulkan dengan beberapa prosedur diantaranya a. desain sistem informasi 1. desain fungsional sistem dengan usecase diagram a. usecase diagram fungsional kebutuhan pengunjung sumber: (aediyansyah, 2016) gambar 1. rancangan fungsional kebutuhan pengunjung b. usecase diagram fungsional kebutuhan pembeli. sumber: (aediyansyah, 2016) gambar 2. rancangan fungsional kebutuhan pembeli c. usecase diagram fungsional kebutuhan penjual sumber: (aediyansyah, 2016) gambar 1. rancangan fungsional kebutuhan penjual b. desain user interface 1. rancangan user interface halaman awal web. halaman pelanggan adalah halaman yang dapat diakses oleh user yang telah melakukan uc use case model pengunj ung melihat halaman utama melihat halaman profile melihat barang yang dij ual melihat panduan berbelanj a melihat testimoni pembeli melakukan daftar akun baru uc use case model pembeli melakukan login mengecek lupa passw ord melihat keranj ang belanj a melihat history transaksi menginput testimoni konfirmasi pembayaran uc use case model penj ual mengelola data kota mengelola data barang mengelola data pembeli mengelola data pemesanan barang mengelola konfirmasi pembayaran mengelola laporan pemesanan mengelola laporan pembayaran http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 14 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. registrasi. melalui halaman pembeli ini, pengunjung dapat melakukan pembelian produk. home profil barang panduan testimoni cari barang xxxxxxxxx cari kategori transfer pengiriman header footer sms:9xxx bbm:9xxx [id user : xxxx] transaksi keranjang belanja history transaksi testimoni [input] konfirmasi logout gambar gambar gambar koleksi barang xxxxxxxxxxxxxx xxxxxxxxxxxxxxx xxxxxxxxxxxxxxx stok:99 jenis barang;xxx rp.999999 beli xxxxxxxxxxxxxx xxxxxxxxxxxxxxx xxxxxxxxxxxxxxx stok: 99 jenis barang:xxx rp.999999 rp.999999 beli beli xxxxxxxxxxxxxx xxxxxxxxxxxxxxx xxxxxxxxxxxxxxx stok: 99 jenis barany:xxx xxxxxxxxxxx rek.9999999999 gambar gambar sumber: (aediyansyah, 2016) gambar 4. rancangan halaman awal 2. rancangan user interface keranjang belanja halaman keranjang belanja merupakan halaman dimana digunakan pembeli untuk menampung data-data barang yang akan dipesan. home profil barang panduan testimoni cari barang xxxxxxxx cari layanan pelanggan transfer pengiriman header footer sms:9xxx bbm:9xxx [id user : xxxx] transaksi keranjang belanja history transaksi testimoni[input] konfirmasi logout gambar nama barang stok harga total (rp) grade total : gambar ubah data lanjutkan keranjang belanja xxxxxxxxx 99 rp.999999 rp.999999 rp.999999 xxxxxxxxxx rek.9999999999 gambar gambar sumber: (aediyansyah, 2016) gambar 5. rancangan halaman keranjang belanja 3. rancangan user interface mengelola data barang. halaman mengelola data barang merupakan halaman dimana digunakan penjual untuk mengelola meta data item barang yang dijual. header · home · password admin · data kota · data barang · data pelanggan · pemesanan barang · konfirmasi transfer · laporan · logout no nama barang tools edit delete +add data data barang kode stok harga (rp.) footer 99 9999 xxxxxxxxxxxx 99 rp.999999 sumber: (aediyansyah, 2016) gambar 6. rancangan halaman mengelola data barang c. desain basis data 1. rancangan entity relationship diagram berikut rancangan basis data secara abstrak dengan menggunakan perangkat rancangan basis data entity relationship diagram (erd). konfirmasi pelanggan pemesanan barang melakukan melakukan punya isi no_pemesanan kd_prlanggan jumlah_transfer keterangan tanggal nm_pelanggan email no_telepon username password kd_pelanggan tgl_daftar kd_pelanggan tgl_pemesanan nama_penerima alamat_lengkap kd_provinsi kd_kota kode_pos status_bayar no_pemesanan no_telepon id no_pemesanan harga kd_kategori file_gambar keterangan harga_jual harga_modal nm_barang kd_barang 1 m 1 m 1 1 m 1 m id stok 1 1 nm_pelanggan kd_pelanggan kd_barang dikirim kota kd_kota nm_kota biaya_kirim kd_kota jumlah sumber: (aediyansyah, 2016) gambar 8. rancangan erd sistem daur ulang botol 2. rancangan logical record struktur berikut rancangan lrs yang merupakan hasil dari pemodelan entity relationship (er) berserta atributnya sehingga bisa terlihat hubunganhubungan antar entitas. http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 15 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. sumber: (aediyansyah, 2016) gambar 8. rancangan lrs sistem daur ulang botol pengkodean (code) pengkodean (code) merupakan tahap dimana dilakukan setelah melakukan kegiatan desain atau perancangan. adapun pengkodean tidak ditampilkan dikarenakan yang akan ditampilkan adalah source code program dimana sangat banyak sekali. untuk itu penulis hanya menyebutkan bahasa script yang digunakan untuk membangun system informasi ini. adapun bahasa script yang digunakan php, html, css, dan beberapa bahasa script pendukung. pengujian (testing) pengujian pada pembuatan system informasi penjualan daur ulang botol bekas, dengan menggunakan metode black box testing. berikut contoh pengujian pada login pembeli. tabel 1. pengujian login n o scenario pengujian test case hasil yang diharapka n hasil penguji an kesimpul an 1. mengosongk an isian username dan password lalu langsung mengklik tombol login usernam e: (kosong) password : (kosong) login anda salah sistem menampilk an “data username dan password yang anda masukan belum benar”. sesuai harapan valid 2. mengisi username dan mengosongk an password kemudian klik tombol login usernam e: bambang password : (kosong) login anda salah sistem menampilk an menampilk an “data password kosong, silahkan isi dengan benar”. sesuai harapan valid 3. mengisi usernam login sesuai valid username dan password dengan data yang benar kemudian klik tombol login e: bambang passwor d: bambang berhasil menampilk an pesan “selamat datang di website kami” harapan sumber: (aediyansyah, 2016) kesimpulan sistem informasi yang dibangun saat ini menggunakan model waterfall, dikarena untuk memudahkan membangun sistem informasi pengelolaan pendataan botol-botol bekas untuk daur ulang. memberikan kemudahan informasi pada konsumen dalam pembelian secara online, tanpa harus datang langsung ke pabrik. sistem dapat menyediakan informasi sesuai yang dibutuhkan pengelola daur ulang botol bekas, laporan transaksi pemesanan botol daur ulang, dan laporan penjualan. dengan adanya fasilitas tersebut maka pengelola akan lebih mudah, cepat dan akurat dalam membuat laporan karena pengolahan datanya dilakukan oleh sistem. referensi aediyansyah, a. (2016). laporan akhir penelitian “perancangan sistem informasi penjualan daur ulang botol bekas (pet) berbasis web.” jakarta. christian, a., & ariani, f. (2018). rancang bangun sistem informasi peminjaman perangkat demo video conference berbasis web dengan metode waterfall. jurnal pilar nusa mandiri, 14(1), 131–136. retrieved from http://ejournal.nusamandiri.ac.id/ejurnal/i ndex.php/pilar/article/view/802 frieyadie, f. (2014). penggunaan model rad untuk pembangunan sistem informasi penjualan tiket bus online. jurnal pilar nusa mandiri, 10(2), 204–208. retrieved from http://ejournal.nusamandiri.ac.id/ejurnal/i ndex.php/pilar/article/view/359 rachmawati, y., septiana, l., & yulianti, s. d. (2016). sistem informasi penjualan alat tulis kantor berbasis web pada cv. sumber rezeki jakarta. in seminar nasional ilmu pengetahuan dan teknologi komputer (p. inf283–inf.288). jakarta: pppm stmik nusa mandiri jakarta. http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 16 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. retrieved from https://konferensi.nusamandiri.ac.id/prosid ing/index.php/sniptek/article/view/231 sari, i. y., sunarko, s., & hardati, p. (2016). tingkat pengetahuan warga kampus di fakultas ilmu sosial universitas negeri semarang tentang pengelolaan sampah. edu geography, 4(3), 50–56. retrieved from https://journal.unnes.ac.id/sju/index.php/e dugeo/article/view/13815 sintawati, i. d., & sari, a. m. (2017). perancangan sistem informasi penjualan perlengkapan tidur berbasis web studi kasus toko batik galinah jakarta. paradigma jurnal komputer dan informatika, 19(2), 127–130. https://doi.org/10.31294/p.v19i2.2331 suci, f., zuraidah, e., & wajhillah, r. (2016). perancangan sistem informasi persediaan barang pada pt. cipta niaga semesta sukabumi berbasis intranet. seminar nasional ilmu pengetahuan dan teknologi komputer, 135– inf.142. retrieved from http://konferensi.nusamandiri.ac.id/prosidi ng/index.php/sniptek/article/view/253 http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 5, no. 2 march 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.467 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 171 evaluation of machine learning using the k-nn algorithm to determine the quality of meat before consumption feronika-1*), masrizal-2, ibnu rasyid munthe-3 1,3 department of information system, 2department of informatics management 1,2,3 universitas labuhanbatu sumatera utara, indonesia 1*) feronika@gmail.com, 2masrizal120405@gmail.com, 3ibnurasyidmunthe@gmail.com (*) corresponding author abstract meat is one of the sources of animal protein for humans, and one of the requirements that must be met so that the human body does not lack protein, especially animal; this protein can be obtained from beef, chicken, and other meats, but the most important thing here is the content contained in meat, whether it has been contaminated with chemicals, e.g., chicken that has been injected with chemicals that cause the chicken to look fat, or beef whose flexibility has decreased and the ph is getting more acidic. this research tries to predict meat quality by looking at two parameters: flexibility and acidity. the programming language used is r language, using the k-nn method or algorithm to determine the meat's condition suitable for consumption. in detail, it will be processed in machine learning using the k-nn algorithm; there are two criteria for consumption of meat, namely good or not good for consumption; in detail, the output will be explained using a specific graph using a plot function, and array data will be specifically classified to represent values. the value of 2 variables, namely feasible or not suitable for consumption. keywords: machine learning, k-nn algorithm, r language, meat, acidity prediction, flexibility prediction abstrak daging adalah salah satu sumber protein hewani bagi manusia, dan salah satu syarat yang harus dipenuhi agar tubuh manusia tidak kekurangan protein khususnya hewani, protein ini bisa didapatkan dari sapi, ayam, dan daging lainnya, namun yang terpenting disini adalah kandungan yang terdapat pada daging, apakah sudah terkontaminasi dengan zat kimia, misalnya ayam potong yang telah disuntik dengan zat kimia yang menyebabkan ayam kelihatan gemuk, atau daging sapi yang tingkat kelenturannya sudah berkurang dan ph yang semakin asam. riset ini mencoba untuk melakukan prediksi kualitas daging dengan melihat dua parameter yaitu kelenturan dan keasaman. bahasa pemrograman yang digunakan adalah r languag e, menggunakan metode atau algoritma k-nn yang dapat menentukan kondisi daging layak untuk dikonsumsi. secara detail akan diolah pada machine learning menggunakan algoritma k-nn ini, terdapat dua kriteria daging konsumsi yaitu bagus atau kurang bagus untuk dikonsumsi, secara detail output akan dijelaskan menggunakan specific graph menggunakan plot function, dan data array akan secara spesifik diklasifikasikan untuk merepresentasikan nilai-nilai dari 2 variable yaitu layak atau tidak layak konsumsi. kata kunci: machine learning, k-nn algorithm, r language, daging, prediksi keasaman, prediksi kelenturan introduction the economic factor is an essential and decisive factor to be able to escape the recession in indonesia in 2023, so what needs to be done by farmers is to utilize the existing land for several types of livestock, including broiler breeders. beef or chicken in the freezer for a long time causes the level of flexibility in the beef to be reduced or hard. likewise, with cattle farms, broiler breeders, and other breeders such as rabbits, goats, and others whose type of cuisine tends to be "sate." researchers need to write and share in detail new methods such as aiot & lorawan (adi & kitagawa, 2020), (liani et al., 2021), (mukti et al., 2021). machine learning and k-nn algorithm (lv et al., 2021), (du & li, 2019), ((jia, 2022) in solving quality problems of beef, chicken, and other types of meat consumption. one of the indonesian people's favorite foods is 'meatballs', like a resident of malang, east java, indonesia, is one of the fans of meatballs with many variants of meatballs. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.467 jurnal riset informatika vol. 5, no. 1 march 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 172 meatballs are also made from meat, e.g., beef. however, if when it is processed into meatballs, you see the quality of the beef being grilled, is it healthy, fresh, or the condition of the meat is no longer red or bluish. figure 1. k-nn algorithm overview figure 1 can be seen as an example of a binary classification with k=3. the green dot in the middle is the test sample x. the labels of the three neighbors are 2×(+1), and 1×(-1) yields the majority prediction (+1). k-nn algorithm ((pawlovsky & matsuhashi, 2017),(palacios & suzuki, 2019) uses a distance matrix, and it concludes that the closest parameter is the best conclusion. equation 1 shows the formula for this k-nn algorithm (chang & liu, 2011), (yao & cao, 2022), (salim et al., 2020), (song et al., 2020), (li et al., 2020). dist(x,x’)≥ max dist(x,x’’), (x’’,y’’) ⋲ 𝑆𝑥 ................... (1) dist(x, z)=(∑ |𝑋𝑟 − 𝑍𝑟 | 𝑑 𝑟=1 𝑝 ) 1/𝑝 ................................. (2) h(x)=mode ({y”( x’’,y’’) ⋲ 𝑆𝑥 }) .................................. (3) √∑ 𝑥𝑖 − 𝑦𝑖 2𝑘 𝑖=1 .................................................................. (4) figure 2. k-nn algorithm for the feasibility of meat consumption furthermore, figure 2 explains the method used in this manuscript where the k-nn method (yao & cao, 2022), (song et al., 2020), (sun et al., 2020), (sushmitha & jagadeesh, 2022) can solve the problem of eligible or not like meat consumed by the community, especially in indonesia. research methods this research will focus on using the k-nn algorithm (zhai, 2022), (li et al., 2020), (jia, 2022), (sushmitha & jagadeesh, 2022), (sun et al., 2020), (yunneng, 2020), (palacios & suzuki, 2019) and (setia & garg, 2021). this algorithm is used to classify new objects based on attributes and samples from training data, and this algorithm uses the predicted value of the new instance value. step-by-step to running of k-nn algorithm in general: 1. choose k nearest neighbors randomly 2. map dataset to vector space 3. separate the dataset into training data and test data 4. calculate the distance, d, between the test data and the training data 5. sorting d from smallest to largest 6. take and separate k-sorting data 7. observe the majority class 8. classify test data by majority jurnal riset informatika vol. 5, no. 2 march 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.467 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 173 furthermore, it will be explained in full in the following flowchart, where the value of k must be determined first, then calculate the distance, sort it, and classified the test data. moreover, pseudo code is made to understand the flow of the program so that readers do not experience difficulties in understanding (setia & garg, 2021). figure 3. k-nn algorithm flowchart pseudocode_1 // x: training data // y: class labels of x //x: unknown sample classify (x,y,x) for i = 1 to m do compute distance d(x,..,x) end for compute set 1 containing indicates for the k smallest distances d (x,...x). end for compute set 1 containing indicates for the k smallest distances d (x,..x). return majority label for {yi where i e i} results and discussion the following table data determines the value to look for or predictions that will give the best quality value on meat quality. moreover, table 1 is a classification of meat quality. table 1. classification of meat quality brand acidity value flexibility value category a 7 1.2 good b 6 1.7 not good c 8 1.5 good d 5 1.3 not good e 9 1.0 good f 9.5 1.4 good g 8.3 0.8 not good h 7.5 1.1 ? furthermore, the next step is to run the program using r language using k-nn algorithm (salim et al., 2020), (riquelme et al., 2020); the display on the website page is data taken; this is stage 1. next is the relationship between flexibility and uniformity of product data as specifically shown in figure 4. code_1_running x<-c(7,6,8,5,9,9.5,8.3,7.5) > y bagus_x<-c(7,8,9,9.5) > bagus_y<-c(1.2,1.5,1.0,1.4) > kurang_x<-c(6,5,8.3) > kurang_y<-c(1.7,1.3,0.8) > test_x<-(7.5) > test_y<-(1.1) > merk_bagus<-c('a','c','e','f') > merk_kurang<-c('b','d','g') > merk_test<-c('h') >plot(x,y,col="blue",main="dataproduk" ,cex=1.3,pch=16,xlab="keasamaan",ylab= "kelenturan") step-by-step to running of k-nn algorithm on this project: 1. group product data into product array objects according to their respective categories 2. group the product brand data (label) into the brand array object according to their respective categories 3. plot an array of products using different symbols 4. plot array brands 5. plot legend p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.467 jurnal riset informatika vol. 5, no. 1 march 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 174 figure 4. the relationship between flexibility and uniformity of product data step 2 is to determine the value of k; for example, if k is 3, then k=3, we can choose k odd, 1, 3, or 5. then step 3 is to calculate the distance (d) between the test data (h) and neighbors; based on the results of observations of the type of data and the shape of the graph plot, then we can use the euclidean distance formula to determine the distance d as the figure 5. euclidean distance (d) = √(𝑥2 − 𝑥1) 2 + (𝑦2 − 𝑦1) 2 figure 5. the euclidean distance (d) then we will determine the coordinate value, the coordinate value is seen in table 2. table 2. coordinate value number coordinate 1 a(7, 1.2) 2 b (6, 1.7) 3 c(8,1.5) 4 d(5,1.3) 5 e(9,1.0) 6 f (9.5,1.4) 7 g(8.3,0,8) 8 h(7.5,1.1) 𝑑𝐻𝐴 = √7.5 − 7 2 + 1.1 − 1.22 = 0.509902 𝑑𝐻𝐵 = √7.5 − 6 2 + 1.1 − 1.72 = 1.615549 𝑑𝐻𝐶 = √7.5 − 8 2 + 1.1 − 1.52 = 0.640312 𝑑𝐻𝐷 = √7.5 − 5 2 + 1.1 − 1.32 = 2.507987 𝑑𝐻𝐸 = √7.5 − 9 2 + 1.1 − 1.02 = 1.503333 𝑑𝐻𝐹 = √7.5 − 9.5 2 + 1.1 − 1.42 = 2.02237 𝑑𝐻𝐺 = √7.5 − 8.3 2 + 1.1 − 0.82 = 0.85440 stage 4 is sorting the results of the d calculations from the smallest to the most significant d. then choose d as much as the value of k, namely k = 3 pieces, before sorting the results of the d calculation as following table 3. table 3. distance calculation d d value classification ha 0.509902 a (good) hb 1.615549 b (good) hc 0.640312 c (not good) hd 2.507987 d (not good) he 1.503333 e (not good) hf 2.022375 f (good) hg 0.854400 g (good) the next step is to determine a good product with a cross and determine the test data. the plot results can be seen in figure 3. in figure 3, those marked with a cross are of good quality, while those not marked with a cross are data that are not of good quality. the box is a sample of test data. moreover, the relationship between flexibility and uniformity of product data is presented explicitly in figure 6. code_2_running >points(bagus_x,bagus_y,col="red",pch= 4,lwd=2,cex=2) >points(test_x,test_y,col="black",pch= 22,lwd=2,cex=2) figure 6. the relationship between flexibility and uniformity of product data conclusions and suggestions conclusion using the k-nn algorithm using r language, the meat quality can be determined by several parameters, namely the value of flexibility and the value of acidity, which is inputted for processing or the data to be trained by the k-nn algorithm. good quality of the meat was found at acidity seven and flexibility 1.2, 8 and 1.5, 9 and 1.0, and 9.5 and 1.4 suggestion the new method can be compared to produce an error comparison value (%) of the quality of processed meat or meat consumed by the jurnal riset informatika vol. 5, no. 2 march 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.467 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 175 community if it is seen not only as two parameters but can be more. references adi, p. d. p., & kitagawa, a. (2020). performance evaluation of low power wide area (lpwa) lora 920 mhz sensor node to medical monitoring iot based. eeccis 2020 2020 10th electrical power, electronics, communications, controls, and informatics seminar, 278–283. https://doi.org/10.1109/eeccis49483.2020 .9263418 chang, y., & liu, h. (2011). semi-supervised classification algorithm based on the knn. 2011 ieee 3rd international conference on communication software and networks, iccsn 2011, 9–12. https://doi.org/10.1109/iccsn.2011.60143 76 du, s., & li, j. (2019). parallel processing of improved knn text classification algorithm based on hadoop. 2019 7th international conference on information, communication and networks (icicn), 167–170. https://doi.org/10.1109/icicn.2019.883497 3 jia, x. (2022). detecting water quality using knn, bayesian and decision tree. proceedings 2022 asia conference on algorithms, computing and machine learning, cacml 2022, 323–327. https://doi.org/10.1109/cacml55074.2022 .00061 li, b., wan, s., xia, h., & qian, f. (2020). the research for recommendation system based on improved knn algorithm. proceedings of 2020 ieee international conference on advances in electrical engineering and computer applications, aeeca 2020, 796–798. https://doi.org/10.1109/aeeca49918.2020. 9213566 liani, y. a., munthe, i. r., irmayani, d., broto, b. e., yanris, g. j., prasetya, d. a., haryanto, r., adi, p. d. p., muslikh, a. r., & arifuddin, r. (2021). the broiler chicken coop temperature monitoring use fuzzy logic and lorawan. proceeding icera 2021: 2021 3rd international conference on electronics representation and algorithm, 161–166. https://doi.org/10.1109/icera53111.2021. 9538771 lv, w., huang, h., tang, w., & chen, t. (2021). research and application of intersection similarity algorithm based on knn classification model. 2021 international conference on artificial intelligence, big data and algorithms (caibda), 141–144. https://doi.org/10.1109/caibda53561.202 1.00037 mukti, f. s., adi, p. d. p., prasetya, d. a., sihombing, v., rahanra, n., yuliawan, k., & simatupang, j. (2021). integrating cost-231 multiwall propagation and adaptive data rate method for access point placement recommendation. international journal of advanced computer science and applications, 12(4), 772–777. https://doi.org/10.14569/ijacsa.2021.0120 494 palacios, p. a., & suzuki, y. (2019). an immune algorithm that uses a master cell for component selection for the knn method. pan american health care exchanges, pahce, 2019-march. https://doi.org/10.1109/gmepepahce.2019.8717318 pawlovsky, a. p., & matsuhashi, h. (2017). the use of a novel genetic algorithm in component selection for a knn method for breast cancer prognosis. 2017 global medical engineering physics exchanges/pan american health care exchanges (gmepe/pahce), 1–5. https://doi.org/10.1109/gmepepahce.2017.7972084 riquelme, j. a., barrientos, r. j., hernandez-garcia, r., & navarro, c. a. (2020). an exhaustive algorithm based on gpu to process a knn query. 2020 39th international conference of the chilean computer science society (sccc), 1–8. https://doi.org/10.1109/sccc51225.2020.9 281231 salim, a. p., laksitowening, k. a., & asror, i. (2020). time series prediction on college graduation using knn algorithm. 2020 8th international conference on information and communication technology, icoict 2020. https://doi.org/10.1109/icoict49345.2020. 9166238 setia, v., & garg, s. (2021). psychometric assessment of teacher mindset using hybrid knn-svm algorithm. proceedings of the 5th international conference on i-smac (iot in social, mobile, analytics and cloud), i-smac 2021, 951–955. https://doi.org/10.1109/ismac52330.2021.9640923 song, h., zhu, e., & ma, l. (2020). design of embedded real-time target tracking system based on knn algorithm. 443–446. https://doi.org/10.1109/itaic49862.2020.9 339101 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.467 jurnal riset informatika vol. 5, no. 1 march 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 176 sun, y., chen, m., & lin, g. (2020). design of intelligent paper counting system based on knn algorithm. proceedings of the 32nd chinese control and decision conference, ccdc 2020, 2910–2914. https://doi.org/10.1109/ccdc49329.2020.9 164216 sushmitha, k., & jagadeesh, p. (2022). feature extraction and classification of bone tumor using cnn classifier with knn classifier. 2022 international conference on business analytics for technology and security, icbats 2022. https://doi.org/10.1109/icbats54253.2022 .9759035 yao, l., & cao, t. (2022). research on talent classification based on improved knn algorithm. proceedings 2022 international symposium on control engineering and robotics, iscer 2022, 252–256. https://doi.org/10.1109/iscer55570.2022. 00050 yunneng, q. (2020). a new stock price prediction model based on improved knn. proceedings 2020 7th international conference on information science and control engineering, icisce 2020, 77–80. https://doi.org/10.1109/icisce50968.2020. 00026 zhai, h. (2022). improving knn algorithm efficiency based on pca and kd-tree. proceedings 2022 international conference on machine learning and knowledge engineering, mlke 2022, 83–87. https://doi.org/10.1109/mlke55170.2022. 00021 jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.527 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 263 extreme programming method for integrated service system website development in rejosari village eka supriyati-1, muhamad azrino gustalika-2*) teknik informatika-1,-2 institut teknologi telkom purwokerto purwokerto, indonesia 19102002@ittelkom-pwt.ac.id-1, *azrino@ittelkom-pwt.ac.id-2 *) corresponding author abstrak the rejosari village hall provides a manual letter submission service which is sometimes problematic, including when residents are about to submit an application letter, they have to come directly to the village hall office while the residents are still out of town. apart from that, there was no media information which resulted when they were going to submit the requirements for the letters they brought were not in accordance, then from the data collection, and the letters were still in the books. therefore we need a service system for the submission of letters. this integrated service system for residents of rejosari village is a web-based information system, the use of technology in the form of a website makes it easier to receive all forms of existing information. the extreme programming (xp) method is applied in developing this system, a software engineering process that refers to an object-oriented approach. the stages of this method start from the planning, design, coding and testing stages using black box testing with descriptive analysis techniques, which produce tests in the form of a proportion value of 96.42% and have a possible interpretation. in addition, this system can impact progress in the field of informatics in the form of information media as well as learning materials. keywords: extreme programming (xp); information system; integrated services abstract balai desa rejosari menyediakan pelayanan pengaujuan surat masih bersifat manual yang terkadang bermasalah, diantaranya pada saat penduduk akan mengajukan surat permohonan harus langsung datang ke kantor balai desa dan sementara penduduk tersebut masih diluar kota. selaian itu tidak adanya media informasi yang diberikan akibatnya ketika akan mengajukan surat persyaratan yang dibawa belum sesuai, kemudian dari pendataan suratnya masih dalam pembukuan. oleh karena itu diperlukan suatu sistem pelayanan untuk pengajuan surat. sistem pelayanan terpadu bagi warga desa rejosari ini merupakan sistem informasi berbasis web, pemanfaatan teknologi berupa website memudahkan dalam menerima segala bentuk informasi yang ada. dalam proses pengembangan sistem ini diterapkan metode extreme programming (xp) yang merupakan proses rekayasa perangkat lunak yang mengacu pada pendekatan berorientasi objek. tahapan metode ini dimulai dari tahap perencanaan, perancangan, pengkodean dan pengujian menggunakan pengujian blackbox dengan teknik analisis deskriptif yang menghasilkan pengujian berupa nilai persentase sebesar 96,42% dan memiliki interpretasi yang sangat layak. selain itu sistem ini dapat memberikan dampak kemajuan dalam bidang ilmu informatika berupa media informasi sekaligus sebagai bahan pembelajaran. kata kunci: extreme programming (xp); sistem informasi; pelayanan terintegrasi introduction in the era of revolution 4.0, digital technology is growing, for example, in information systems. according to the ministry of communication and information of the republic of indonesia, developing information systems can provide many advantages in various fields. one of them is in the field of public services. public service is an action that is needed by the community in all administration by public service providers (bazarah & pujiastuti, 2022). one type of public service is administrative service. the administration itself is a series of recording information in the form of information that is useful in action and facilitates a relationship (wiryananta, k., safitri, r., & prasetyo, 2020). one of the forms of implementing administrative services is integrated p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.522 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 264 system services in the village. based on law number 6 of 2014 concerning villages (bender, 2016) states that the village government must carry out its duties properly to serve all the administrative needs of the village community. rejosari village is in bojong district, pekalongan regency, central java province. based on the central bureau of statistics for pekalongan regency, the village has a population of around 1,972. the administrative service for application letters is still manual at the village hall, which must come to the village hall office with only one person in charge. therefore, sometimes people experience problems. based on the results of observations and interviews that have been conducted, some obstacles are often experienced, including when residents are still out of town and temporarily really need an application letter at an urgent time, so they cannot come directly to the village hall office. in addition, there are no information media provided. as a result, when residents are going to submit an application letter, the requirements needed are not suitable, so residents must complete the requirements first. it is less effective. then for the data collection process, the application letter is still in the form of books which must be calculated first if you report the total in one year. thus the need for a service system submission of application letters. the application letter submission service system will be designed as a website to solve existing problems. technology can be accessed via a website on a browser via an internet connection to obtain all available information. this research also applies the extreme programming (xp) method. the extreme programming (xp) method is an object-oriented approach in software engineering. in addition, this method is more efficient, adaptive and flexible in the system development process (widiastuti & cakranegara, 2022). that way, in making this system, there is involvement from the village as admin and residents as users. so that this system becomes adaptive to all changes that exist, and it is hoped that this research will make it easier for rejosari village hall officers and residents of rejosari village to carry out service processes and administrative submissions in the form of application letters with more significant test results than previous studies from research conducted by julisatya et al. regarding the development of a public service system with a test result of 88% and noer azni septiani et al. regarding the creation of a village information system that applies the extreme programming (xp) method. research methods extreme programming (xp) method (shrivastava et al., 2021) is one of the software engineering processes that refers to an objectoriented approach. in addition, this method is more efficient, adaptive and flexible in the system development process, and the core values of extreme programming include communication, courage, simplicity, feedback and hard work. stages in extreme programming (supriyatna & puspitasari, 2021): figure 1. extreme programming planning the initial stage of this method is planning. several planning activities were carried out during this phase, including: identifying problems, analyzing needs, and determining implementation schedules during system development (hartawan et al., 2021). the results of this stage are based on data collection by conducting interviews and observations. design design is a system architectural modelling process in the form of creating wireframes or mockups with figma tools while also designing databases using draw.io (lamada et al., 2022) coding coding is a stage in implementing the design process using a programming language (sudarsono, 2020). this stage uses visual studio code and xampp tools, which use a bootstrap framework while using php and javascript. testing system testing is the final stage in this method, where the results of the implementation will be tested to determine the feasibility of the system being built or whether it is to the client's needs (wanti et al., 2021), and at this final stage, it jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.527 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 265 uses the black box testing method which focuses on system functionality. data collection at the data collection stage (dewi, 2022) observation process is carried out (ahmadi et al., 2021) by monitoring directly the process of submitting a letter at the rejosari village hall by aiming to know the conditions of the existing problems to provide appropriate solutions. in addition, it also conducts an interview process with related parties in the system creation process, which aims to obtain information regarding the process of submitting an application letter at the rejosari village hall. blackbox testing the black box testing method (supriyono, 2020) requires the lower and upper limits to be tested with the number of entry data fields or based on its functionality (mahendra & asmarajaya, 2022). the method of testing black box testing is inputting data on a form so that the output results are by the inputs (purnama et al., 2022). descriptive analysis techniques descriptive analysis functions to produce percentage values from test respondents (rombey et al., 2019) and is usually used in testing the functionality of a system with the formalities of the calculation as follows(sopian, 2018) : 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 x 100 % ............................ (1) table 1. eligibility percentage presents eligibility level 81% 100% very worth it 61% 80% worthy 41% 60% enough 21% 40% not feasible ≤ 20% very unworthy based on the table above, there are four categories of system testing feasibility from the results of descriptive analysis calculations. results and discussion the results of this study can be seen from the data collection stage to the system website testing stage according to the flowchart in figure 2. at the data collection stage, based on the results of observations, interviews, and literature study then, proceed with the system development stage, which starts with planning in the form of identifying problems and analyzing needs, so that it can be continued with the design stage in the form of system modelling, system ui and database, from the design stage directly implemented into the coding stage as well as system testing. figure 2. research flowchart system development in developing the system using the extreme programming (xp) stage, which produces the following system implementation design: admin implementation results (village officials) dashboard page, figure 3, is the admin dashboard page menu which contains information on total incoming and outgoing data based on user submissions. in addition, there is also a letter format that can be downloaded. figure 3. dashboard page p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.522 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 266 entry page, data then figure 4 is the admin login data page menu which contains information from the user who submitted. besides that, the admin can also use the data search feature. and the admin can find out whether the user's submission has been processed. figure 4. entry page data data page out, in figure 5, is the data page menu. on this page, submit an application that the admin has processed. besides that, the admin can also use the data search feature. figure 5. data page out user implementation page (resident) the list page in figure 6 is a list page menu. on this page, the user inputs the appropriate personal data so they can register and input their id card and family card in jpg, jpge and png formats with a maximum size of 2mb. figure 6. list page dashboard page, figure 7, is the user dashboard page menu. this page displays information about the types of requirements and how to use the system. figure 7. dashboard page page, figure 8, is the form page menu. on this page, a user submitting a certificate must input data along with the required pdf document of less than two mb. figure 8. from page history page, then in figure 9 is the submission history page menu. this page displays information regarding submission information that has been carried out, whether the admin has processed it or not. figure 9. history page requirements page, next in fig 10, is the submission requirements page menu. this page displays information on various types of requirements that need to be prepared by the user for each type of submission made. jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.527 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 267 figure 3. requirements page system testing techniques figure 11 is the final stage of making the system using the extreme programming method, which is the testing stage of the entire system's appearance. at this stage, black box testing is used to determine whether the system can be used in the calculations using descriptive analysis techniques. and 17 testers tested this system with details of 6 testers from institutions by lecturers five testers from the expert field of the system in the form of a website with 58 scenarios consisting of 42 scenarios for user pages then 14 scenarios for admin pages. for three village device testers, it consisted of 17 scenarios from the admin page and three testers from villages in the youth, adult and elderly categories consisting of 45 user page scenarios and 14 scenarios from the admin page. figure 4. system testing the following is the result of black box theatre testing using descriptive analysis technique calculations: 𝑌𝑒𝑠 = 783 812 𝑥 100 % = 96,42% 𝑁𝑜 = 29 812 𝑥 100 % = 3,57% the calculation results above can be interpreted when converted to the feasibility percentage table in the black box testing test with a value of 96.42%. conclusions based on the results of implementing the method and creating an integrated server system website. it can be concluded as follows: this study applies the extreme programming (xp) method to produce an integrated service system website that can provide information about the requirements for submitting letters and making letters so that they can carry out data collection and archiving. and testing this website system uses black box testing, which is taken into account in descriptive analysis techniques with a result of 96.42% and has a possible interpretation. based on the system website design method and the test results, various suggestions can be obtained so that it can be developed in further research, including creating a system website that is expected to provide additional features in the form of coded signatures, complaint services and additional notifications that go directly to whatsapp, then test the black box testing website. this system is expected to reach 100% and can add more types of testing to make it more complex, such as white box testing to analyze bugs based on the program's components and usability testing that can give a responsive impression to users. references ahmadi, a., darni, & yulianto, b. (2021). international journal of multicultural and multireligious understanding the techniques of qualitative data collection in mapping indonesian litterateurs in east java : an initial design. international journal of multicultural and multireligious understanding, 8(8), 19–29. bazarah, j., & pujiastuti, n. (2022). concept of public service in indonesia (literacy analysis of public service implementation in indonesia). budapest international research and critics institute-journal, 5, 6256–6262. https://doi.org/https://doi.org/10.33258/bi rci.v5i1.4345 bender, d. (2016). optimization of variable structure modelica models using custom annotations. acm international conference proceeding series, 18-april-2(1), 45–54. https://doi.org/10.1145/2904081.2904088 dewi, i. g. a. a. o. (2022). understanding data collection methods in qualitative research: the perspective of interpretive accounting research. journal of tourism economics and policy, 1(1), 23–34. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.522 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 268 https://doi.org/10.38142/jtep.v1i1.105 hartawan, p. n., sudarma, m., & widyantara. (2021). extreme programming for developing additional employee income system(case study: karangasem regency government). international journal of engineering and emerging technology, 6(2), 117–121. https://ojs.unud.ac.id/index.php/ijeet/articl e/view/ijeet.2021.v06.i01.p21/39900 lamada, m., bakry, a., & ifani, a. z. (2022). development of web-based project tender documents application using extreme programming methods. electronics, informatics, and vocational education, 7(november), 101–111. https://doi.org/https://doi.org/10.21831/el invo.v7i2.49863 development mahendra, g. s., & asmarajaya, i. k. a. (2022). evaluation using black box testing and system usability scale in the kidung sekar madya application. sinkron, 7(4), 2292–2302. https://doi.org/10.33395/sinkron.v7i4.1175 5 purnama, e. d., putra, f. a., bangsa, u. b., & serangbanten, k. (2022). design and implementation of web-based registration system in klinik medika antapani bandung using. jurnal simasi, 2(1), 1–12. rombey, t., allers, k., mathes, t., hoffmann, f., & pieper, d. (2019). a descriptive analysis of the characteristics and the peer review process of systematic review protocols published in an open peer-review journal from 2012 to 2017. bmc medical research methodology, 19(1), 1– 9. https://doi.org/10.1186/s12874-0190698-8 shrivastava, a., jaggi, i., katoch, n., gupta, d., & gupta, s. (2021). a systematic review on extreme programming. journal of physics: conference series, 1969(1). https://doi.org/10.1088/17426596/1969/1/012046 solfema, s., bartin, t., & sunarti, v. (2020). descriptive analysis of students’ empathy ability padang state university (unp). digital press social sciences and humanities, 6, 00022. https://doi.org/10.29037/digitalpress.4638 7 sopian, i. (2018). implementasi dan pengujian sistem informasi tracer study berbasis web menggunakan standard iso/iec 9126 (studi kasus: fakultas pendidikan matematika dan ilmu pengetahuan alam upi). fiki jurnal teknologi informasi dan komunikasi, viii(2), 116–127. https://doi.org/https://doi.org/10.56244/fi ki.v8i2.314 sudarsono, b. g. (2020). using an extreme programming method for hotel reservation system development. international journal of emerging trends in engineering research, 8(6), 2223--2228. https://doi.org/10.30534/ijeter/2020/0186 2020 supriyatna, a., & puspitasari, d. (2021). implementation of extreme programming method in web based digital report value information system design. ijistech (international journal of information system & technology), 5(1), 67. https://doi.org/10.30645/ijistech.v5i1.116 supriyono, s. (2020). software testing with the approach of blackbox testing on the academic information system. ijistech (international journal of information system and technology), 3(2), 227–233. https://ijistech.org/ijistech/index.php/ijiste ch/article/view/54 wanti, l. p., somantri, o., romadloni, a., & tripustikasari, e. (2021). optimization of extreme programming methods in plastics waste management company websites. jisa(jurnal informatika dan sains), 4(2), 144– 148. https://doi.org/10.31326/jisa.v4i2.1018 widiastuti, i., & cakranegara, p. a. (2022). development of the public service management information system through extreme programming in sukarame district, bandar lampung. international journal of multidisciplinary research and literature, 1(3), 284–292. https://doi.org/10.53067/ijomral.v1i3.29 wiryananta, k., safitri, r., & prasetyo, b. d. (2021). (2020). a new decade for social changes. technium social sciences journal, 7, 312–320. https://techniumscience.com/index.php/soc ialsciences/article/view/332/124 207 the effectiveness analysis of random forest algorithms with smote technique in predicting lung cancer risk ita yulianti1, ami rahmawati2*), tati mardiana3 sistem informasi akuntansi kampus kota sukabumi universitas bina sarana informatika ita.iyi@bsi.ac.id1 sistem informasi2*), sains data3 universitas nusa mandiri ami.amv@nusamandiri.ac.id2*), tati.ttm@nusamandiri.ac.id3 (*) corresponding author abstrak jika dibandingkan dengan jenis kanker lainnya, sebagian besar penduduk penderita kanker meninggal karena kanker paru-paru. seseorang perlu melakukan tes skrining melalui rontgen, ct scan, dan mri untuk mendeteksi penyakitnya. namun, sebelum melakukan proses tersebut, dokter biasanya akan melakukan anamnesis dan pemeriksaan fisik terlebih dahulu untuk mempelajari gejala dan kemungkinan faktor risiko kanker paru-paru. kumpulan data kanker paru memiliki ketidakseimbangan kelas sehingga mempengaruhi kinerja algoritma random forest dalam memprediksi risiko kanker paru. penelitian ini bertujuan untuk menerapkan teknik smote untuk meningkatkan kinerja algoritma random forest dalam memprediksi risiko kanker paru. pada penelitian ini pengolahan dan analisis data menggunakan bahasa pemrograman python. hasil pengujian menunjukkan nilai akurasi sebesar 88% dengan nilai auc sebesar 0,93. saat menggunakan algoritma random forest untuk memperkirakan risiko kanker paru-paru, teknik smote berguna dalam menangani ketidakseimbangan kelas dalam kumpulan data. kata kunci: kanker paru-paru, python, random forest, smote abstract when compared with other types of cancer, most of the population with cancer die from lung cancer.a person needs to do a screening test through x-rays, ct scans, and mri to detect the disease. however, before carrying out the process, the doctor will ordinarily investigate a medical history and physical examination first to study the symptoms and possible risk factors for lung cancer. the lung cancer data set has a class imbalance that affects the performance of the random forest algorithm in predicting the risk of lung cancer. this study aims to employ the smote technique to the random forest algorithm to increase accuracy in predicting lung cancer risk. in this research, data processing and analysis use the python programming language. the test results show an accuracy value of 88% with an auc value of 0.93. when employing the random forest method to forecast lung cancer risk, the smote technique is useful in dealing with class imbalances in the data set. keywords: lung cancer, python, random forest, smote introduction cancer is one of the leading causes of significant morbidity and mortality worldwide (sofia & tahlil, 2018). in 2018, the number of deaths from cancer reached 9.6 million people. lung, prostate, colorectal, stomach, liver, and breast cancers are the biggest causes of cancer deaths every year (who, 2022). when compared with other types of cancer, most of the population with cancer died from lung cancer (rattan et al., 2018). according to who data from 2020, lung cancer is the leading cause of death, with 1.80 million cases (who, 2021). in indonesia itself, the majority of lung cancer sufferers are male due to smoking habits which can make the risk of getting cancer higher (bulan et al., 2017). lung cancer is difficult to detect because many cases of this cancer appear and show symptoms when its development has reached a certain stage (makaju et al., 2018). screening tests through x-rays, ct scans, and mris can detect the 208 disease in the lungs (kurnia et al., 2016). however, before carrying out this process, the doctor will usually do a medical history and physical examination first to study the symptoms and possible risk factors for lung cancer (american cancer society, 2022). in line with the development of science and technology today, various fields ranging from education, economics, social, health, and many others are increasingly taking advantage of the role of technology, especially in the decision-making process. the many applications of this technology certainly encourage researchers to facilitate human work, for example in the health sector, namely to predict certain diseases using data mining techniques. this technique has many methods/algorithms that can be used, one of which is a random forest which is a modified algorithm from the decision tree. this approach has the advantage of being able to process a random selection of features in image datasets or in the form of attributes/parameters, resulting in a low error rate (sari et al., 2020). the random forest algorithm is generally widely used in previous studies including to measure the severity of disease in apple leaf images (ratnawati & sulistyaningrum, 2019). in addition, this algorithm is also better than the xgboost algorithm in overcoming the imbalance class in the classification of hepatitis c disease levels (syukron et al., 2020). therefore, the purpose of this study was to analyze and measure the effectiveness of the random forest algorithm in predicting the risk of lung cancer through a physical examination in the form of perceived symptoms and habits or lifestyles. patients with lung cancer usually have symptoms including shortness of breath, chest pain that does not improve, cough with blood, changes in the shape of the fingers, difficulty swallowing, and weight loss (syifa et al., 2016). not only that but in this study, the rf algorithm will also be integrated with the smote technique to overcome if there is a class imbalance in the dataset used so that it can improve the performance of the algorithm and the predicted outcome obtained is optimal. this research is expected to provide novelty in the form of modeling that can be developed into a system that can predict the disease. although not all lung cancer can be prevented, knowing the early detection of the risk of this disease, allows a person to immediately carry out a follow-up examination (screening) and be treated by a doctor so that it can reduce the risk of lung cancer. research methods the following is an overview of the research framework used to describe all the stages carried out in this research: figure 1. research methode framework the figure above describes the stages or steps taken to achieve the results of this research. this stage begins with selecting a dataset according to the topic raised, namely lung cancer. the next stage is preprocessing which includes removing duplicates, feature scaling and over-sampling smote. in the preprocessing stage, the dataset is processed first before entering the modeling stage. this is done so that the dataset used does not have problems that can complicate the processing. then move on to the modeling stage, the dataset is divided into training data and testing data with a ratio of 80:20 using split validation combined with cross validation using the tested algorithm, namely random forest. finally, the results of the algorithm test are validated with the help of a confusion matrix which gives output in the form of accuracy values and auc graphs. data collection the dataset in this research is a secondary dataset obtained from the kaggle repository with csv format which has a total of 16 attributes including the target class. 209 preprocessing in this research, there are three stages of preprocessing the data used, namely, removing duplicates, feature scaling and over-sampling smote. the purpose of removing duplicates is to prevent duplication of data by filtering and deleting the same data in the dataset (hendra & fitriyani, 2021). meanwhile, feature scaling is carried out to examine the diversity of values that occur in each variable and to balance the scale so that it has the same range of values (aripin, 2021). class balance in the application of classification algorithms is important to pay attention to so that the resulting performance has a good prediction. therefore, to overcome the class imbalance in the research dataset, a resampling technique is used, namely oversampling, this technique was chosen because it can balance the dataset that is lacking in the minority class without reducing the dataset (sulistiyono et al., 2021). the oversampling algorithm used is synthetic minority over-sampling technique (smote), where this algorithm is an algorithm that can be called similar to random oversampling (ros) but the difference is that in smote, existing samples are not duplicated randomly but are made with the nearest neighbor concept (arifiyanti & wahyuni, 2020). the workings of the smote algorithm are to interpolate the original data and then enter the artificial data generated in the minority class so that the data obtained varies (indrawati, 2021). in general, the function of this algorithm is written with smote (x, n, k), where x is the minority data, while n is the percentage of the total instances to be created, and k is the number of closest instances of the instance being searched for using the euclidean distance formula as following (sulistiyono et al., 2021): 𝑑𝑖𝑠𝑡 = √(𝑋1 − 𝑌1) 2 + (𝑋2 − 𝑌2) 2 + ⋯ + (𝑋𝑛 − 𝑌𝑛 ) 2…….(1) modeling random forest was first introduced by breiman in 2021, which is one of the decision treebased machine learning methods that is often used because it has the advantage of having high dimensions with a faster process that functions, especially on subset features (ardiningtyas & paulina heruningsih prima, 2021). this algorithm can be explained as a non-parametric model with the concept of combining learning models to improve performance in both regression and classification cases (aripin, 2021). there are three steps in the development of the random forest algorithm, namely (religia et al., 2021): 1. set sampling is part of training k, 2. making each decision tree model, and 3. collection of k trees into the rf model the random forest algorithm is a development method from the cart decision tree, so it is not surprising that in building the decision tree the cart method is used which begins by finding the entropy value first (aripin, 2021) using equation (2) below: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑌) = − ∑ 𝑖𝑝(𝑌)𝑙𝑜𝑔2𝑝(𝑌) ......................... (2) then proceed with calculating the information gain using eq. (3) 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 (𝑌, 𝑎) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌) − ∑ 𝑣𝑎𝑙𝑢𝑒𝑠(𝑎) |𝑌𝑣| |𝑌𝑎| (𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌𝑣)) ................................ (3) results and discussion dataset collecting data that is processed in this study is public data obtained from the kaggle website. the dataset was collected from the lung cancer prediction system's online site. the following is a description of the lung cancer dataset as shown in table 1. table 1. lung cancer dataset description lung cancer dataset number of attributes number of instances 16 309 from the data obtained, there are attributes, namely: gender, age, smoking, yellow fingers, anxiety, peer pressure, chronic disease, fatigue, allergy, wheezing, alcohol consuming, coughing, shortness of breath, swallowing difficulty, chest pain, and lung cancer. an explanation of each attribute will be described in table 2. table 2. description of data attributes attributes value gender m (male), f (female) age 21 – 87 smoking yes = 2, no = 1 yellow fingers yes = 2, no = 1 anxiety yes = 2, no = 1 peer pressure yes = 2, no = 1 chronic disease yes = 2, no = 1 fatigue yes = 2, no = 1 allergy yes = 2, no = 1 wheezing yes = 2, no = 1 alcohol yes = 2, no = 1 210 coughing yes = 2, no = 1 shortness of breath yes = 2, no = 1 swallowing difficulty yes = 2, no = 1 chest pain yes = 2, no = 1 class lung cancer yes, no data exploration and visualization data exploration and visualization are carried out to obtain information and understand the attributes in the dataset. exploration and visualization of several attributes are presented in graphical form as follows: figure 2. age attribute the results in the first graph (see figure 2.) show that the age attribute that dominates people at risk for lung cancer is the age of 60-70 years. figure 3. yellow fingers attribute then, the second result is in the form of a pie chart that shows the percentage of yellowing fingers symptoms experienced by people who are at risk of lung cancer by 42.39%. figure 4. shortness of breath attribute based on the results of exploration and visualization of further data, it shows that shortness of breath is a symptom that is often experienced by people who are at risk of lung cancer. figure 5. smoking attribute exploration of data for smoking attributes shows that active smokers are more susceptible to lung cancer. 211 figure 6. age dan alcohol attribute the next graph (see figure 6.) proves that the age range of 50-80 years and consuming alcohol is more at risk of lung cancer. figure 7. coughing attribute in addition, there is also another attribute that is the most common symptom experienced by people at risk for lung cancer, namely cough (see results of data exploration and visualization in figure 7.). figure 8. wheezing attribute finally, the graphic results from the wheezing attribute show that loud, high-frequency breathing sounds are often experienced by people who are at risk for lung cancer. modeling results a. remove duplicate removing duplicates is a step taken to remove duplication of data. in the lung cancer dataset, there are 33 duplicates, so removing duplicates is done. the number of tuples in the dataset, which was originally 309, has changed to 276. b. feature scaling in this research, feature scaling is carried out, namely to make numerical data have the same range of values. the scaling feature used is minmaxscaler to scale data values into a range. c. synthetic minority over-sampling technique (smote) figure 9. class lung cancer based on figure 9, it can be seen that there is a very large distribution of data between classes, where the yes class has a sample size of more than 212 250 data while the no class only has a sample number of fewer than 50 data so that the class is not balanced. to deal with imbalanced classes, in this study, smote was used. smote will select a point from the minority class and calculate the k nearest neighbors for this point. d. modeling results with random forest to determine and test the classification model, a data split was carried out, namely dividing the data into two parts. 80% for training data and 20% for test data. the training data is used to build the model while the test data is used for valid performance evaluation. in addition, crossvalidation was also carried out on the test data with a value of k = 10. the results of the tests carried out were to produce values of accuracy (confusion matrix), precision, recall, and auc. the results of the confusion matrix can be seen in table 3. table 3. confusion matrix of rf algorithm classification classified as positive negative positive 4 5 negative 2 45 based on table 3, there are details on the number of true positive = 4, false positive = 5, false negative = 2, and true negative = 45. from this data, accuracy, precision, and recall can be calculated. the test result data can be seen in figure 10 and table 4. table 4. results of random forest test performance random forest accuracy 0,88 precision 0,90 recall 0,95 figure 10. results of random forest test in addition, the test results for the random forest algorithm can also be seen based on the roc graph which can be seen through the resulting auc value of 0.93. this proves that the accuracy of the model is included in the excellent classification category. the resulting roc graph can be seen in figure 11. figure 11. auc random forest meanwhile, the precision and recall graphs are visualized through a graph that can be seen in the following figure. figure 12. prc random forest conclusions and suggestions conclusion from the research results obtained, the lung cancer dataset has a class imbalance. to overcome the class imbalance, smote (minority over sampling technique) was used and the random forest algorithm was used for classification testing. testing the lung cancer dataset yielded an accuracy of 88% with an auc value of 0.93. while the precision value is 0.90 and the recall value is 0.95. based on this explanation, it can be concluded that the application of the smote technique to the random forest algorithm can improve the performance of unbalanced data classification, so that the level of effectiveness of the resulting algorithm test becomes more optimal. suggestion 213 for further research, it is hoped that the modeling resulting from this research can be redeveloped by being integrated using optimization algorithms and implemented into a gui application that can be easily accessed by everyone, as well as adding image datasets so that prediction results are better. references american cancer society. (2022). lung cancer. american cancer society. https://www.cancer.org/cancer/lungcancer/ ardiningtyas, y. e., & paulina heruningsih prima, r. (2021). analisis balancing data untuk meningkatkan akurasi dalam klasifikasi. 24–28. arifiyanti, a. a., & wahyuni, e. d. (2020). smote : metode penyeimbang kelas pada klasifikasi data mining. xv, 34–39. aripin, h. a. (2021). jurnal informatika dan komputer (infokom). 9, 30–45. bulan, i. a. k. t., ratnawati, h., wargasetia, t. l., bulan, i. a. k. t., ratnawati, h., & wargasetia, t. l. (2017). gambaran pasien kanker paru di rumah sakit immanuel bandung periode januari 2013 hingga desember 2014. journal of medicine and health, 1(6), 517–524. hendra, a., & fitriyani. (2021). analisis sentimen review halodoc menggunakan nai ̈ ve bayes classifier. 6(2), 78–89. indrawati, a. (2021). penerapan teknik kombinasi oversampling dan undersampling hybrid oversampling and undersampling techniques to handling imbalanced dataset. 4(1), 38– 43. https://doi.org/10.33387/jiko kurnia, r., rahmadewi, r., & aini, f. (2016). deteksi dini penyakit paru dengan metoda bayesian berbasis android. national conference of applied engineering, business and information technology, politeknik negeri padang, 317– 323. makaju, s., prasad, p. w. c., alsadoon, a., singh, a. k., & elchouemi, a. (2018). lung cancer detection using ct scan images. procedia computer science, 125(2009), 107–114. https://doi.org/10.1016/j.procs.2017.12.016 ratnawati, l., & sulistyaningrum, d. r. (2019). penerapan random forest untuk mengukur tingkat keparahan penyakit. 8(2). rattan, s., kaur, s., kansal, n., & kaur, j. (2018). an optimized lung cancer classification system for computed tomography images. 2017 4th international conference on image information processing, iciip 2017, 2018-janua, 15–20. https://doi.org/10.1109/iciip.2017.8313676 religia, y., nugroho, a., & hadikristanto, w. (2021). jurnal resti analisis perbandingan algoritma optimasi pada random forest untuk. 1(10), 187–192. sari, v. r., firdausi, f., & azhar, y. (2020). perbandingan prediksi kualitas kopi arabika dengan menggunakan algoritma sgd, random forest dan naive bayes. edumatic : jurnal pendidikan informatika, 4(2), 1–9. https://doi.org/10.29408/edumatic.v4i2.220 2 sofia, r., & tahlil, t. (2018). pengalaman pasien kanker dalam menghadapi kemoterapi. jurnal ilmu keperawatan, 6(2), 81–91. sulistiyono, m., pristyanto, y., adi, s., & gumelar, g. (2021). implementasi algoritma synthetic minority over-sampling technique untuk menangani ketidakseimbangan kelas pada dataset klasifikasi. sistemasi, 10(2), 445. https://doi.org/10.32520/stmsi.v10i2.1303 syifa, r. a., adi, k., fisika, d., & diponegoro, u. (2016). analisis tekstur citra mikroskopis kanker paru menggunakan metode gray level co-occurance matrix (glcm) dan tranformasi wavelet dengan klasifikasi naive bayes. youngster physics journal, 5(4), 457–462. syukron, m. ;, santoso, r., & widiharih, t. (2020). issn: issn: 2339-2541jurnal gaussian, volume9, nomor 3, tahun 2020, halaman 227-236online di: https://ejournal3.undip.ac.id/index.php/gaus sian/perbandingan metode smote random forest dan smote xgboost untuk klasifikasi tingkat penyakit hepatitis c pada im. jurnal gaussian, 9(3), 227–236. who. (2021). cancer. world health organization. https://www.who.int/news-room/factsheets/detail/cancer who. (2022). cancer. world health organization. https://www.who.int/healthtopics/cancer#tab=tab_1 jurnal riset informatika vol. 1, no. 4 september 2019 p-issn: 2656-1743 e-issn: 2656-1735 167 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional penerapan data mining terhadap penjualan pipa pada cv. gaskindo sentosa menggunakan metode algoritma apriori golda tm napitupul1, anggi oktaviani2, dahlia sarkawi3, ita yulianti4 1sistem informasi sekolah tinggi manajemen informatika dan komputer nusa mandiri www.nusamandiri.ac.id goldatmn0904@nusamandiri.ac.id 2teknik informatika sekolah tinggi manajemen informatika dan komputer nusa mandiri www.nusamandiri.ac.id anggi.aov@nusamandiri.ac.id 3administrasi perkantoran universitas bina sarana informatika www.bsi.ac.id dahlia.dls@bsi.ac.id 4sistem informasi universitas bina sarana informatika www.bsi.ac.id ita.iyi@bsi.ac.id abstrak cv. gaskindo sentosa merupakan salah satu perusahaan manufaktur yang bergerak di bidang penjualan pipa. guna meningkatkan kualitas pelayanan terhadap konsumen, perusahaan tersebut dituntut untuk dapat mengatasi permasalahan yang seringkali muncul diantaranya, kurangnya atau tidak ada (habis) stok persediaan dari jenis pipa yang paling diminati. hal tersebut dapat disebabkan karena pola perilaku belanja konsumen yang selalu berubah-ubah dan tidak dapat diprediksi. oleh karena itu, dalam upaya mengatasi permasalahan yang terjadi, penelitian ini dibuat dengan tujuan untuk memprediksi penjualan pipa pada cv. gaskindo sentosa dengan menerapkan algoritma apriori sehingga dapat diketahui pola perilaku konsumen dan diharapkan dapat meningkatkan penjualan pada perusahaan tersebut. adapun untuk data yang digunakan yaitu dengan memanfaatkan data history dari semua transaksi yang pernah terjadi di cv. gaskindo sentosa. dari hasil penelitian ini, diperoleh bahwa algoritma apriori dapat membantu mengembangkan strategi pemasaran untuk memasarkan produk lain dengan menganalisa kelebihan dari nilai jual produk yang paling laris terjual. kata kunci: algoritma apriori, data mining, penjualan produk, pipa abstract cv. gaskindo sentosa is one of the manufacturing companies engaged in pipe sales. in order to improve the quality of service to consumers, the company is demanded to be able to overcome problems that often arise including, lack or not (out of stock) inventory of the most desirable types of pipes. this can be caused by the ever-changing and unpredictable patterns of consumer shopping behavior. therefore, in an effort to overcome the problems that occur, this study was made with the aim to predict the sales of pipes in the cv. gaskindo sentosa by applying a priori algorithm so that it can be known patterns of consumer behavior and is expected to increase sales at the company. as for the data used, namely by utilizing data history of all transactions that have occurred in the cv. gaskindo sentosa. from the results of this study, it was found that a priori algorithm can help develop marketing strategies to market other products by analyzing the advantages of selling the most selling products. keywords: a priori algorithms, data mining, product sales, pipes http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 4 september 2019 168 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional pendahuluan dalam dunia bisnis, setiap perusahaan sudah tentu harus bisa bersaing dan berpikir bagaimana caranya agar perusahaan bisa terus berkembang dan dapat memperluas skala bisnisnya tersebut. agar dapat meningkatkan penjualan produk yang dijual, para pelaku usaha harus memiliki berbagai strategi yang dilakukan. salah satu caranya yaitu dengan memanfaatkan seluruh data transaksi penjualan yang telah terjadi pada perusahaan itu sendiri. cv. gaskindo sentosa merupakan salah satu perusahaan manufaktur yang bergerak di bidang penjualan pipa dengan jenis pipa diantaranya pipa spiral, pipa seamless, pipa carbon steel, pipa bakrie, pipa gasket, gasket tombo, gasket non asbestos, reducer tee, reducer concentric dan masih banyak lagi jenis yang lainnya. guna meningkatkan kualitas pelayanan terhadap konsumen pada cv. gaskindo sentosa, perusahaan dituntut untuk dapat mengatasi permasalahan yang seringkali muncul diantaranya, kurangnya atau tidak ada (habis) stok persediaan dari jenis pipa yang paling diminati oleh konsumen sehingga dapat berdampak terhadap penurunan penjualan. hal tersebut dapat disebabkan karena pola perilaku belanja konsumen saat ini yang selalu berubah-ubah dan tidak dapat diprediksi setiap harinya. maka dari itu, untuk mengatasi permasalahan yang terjadi pada cv. gaskindo sentosa, diperlukan suatu model khusus agar dapat memprediksi penjualan periode selanjutnya dengan memanfaatkan data melalui pengamatan history transaksi. data tersebut tidak hanya berfungsi sebagai arsip bagi perusahaan, tetapi juga dapat diolah menjadi informasi yang berguna dalam upaya peningkatan penjualan dan pemasaran produk. ada beberapa peneliti yang sebelumnya sudah melakukan penelitian mengenai prediksi penjualan diantaranya; (purnia & warnilah, 2017), pada penelitian tersebut untuk mendapatkan informasi produk yang paling laris dan diminati tiap konsumen dari suatu database transaksi digunakan algoritma apriori sehingga menghasilkan model dari penelitian yang dapat digunakan untuk pengembangan dalam meningkatkan jumlah jual dan pemasaran produk. selain itu, algoritma apriori juga dapat diimplementasikan sebagai metode yang dapat memprediksi penentuan tata letak barang seperti penelitian yang telah dilakukan oleh (syahdan & sindar, 2018) sehingga dapat mempermudah dan mennghemat waktu para konsumen dalam menemukan letak barang yang dicari. terakhir, penelitian yang dilakukan oleh (choiriah, 2019) yang memanfaatkan algoritma apriori dalam memprediksi penjualan e-tiket sehingga dapat diketahui pola frekuensi tiket yang paling banyak terjual. algoritma apriori termasuk jenis rule asosiasi dalam data mining yang memiliki cara kerja dengan mencari frekuensi set items yang dijalankan di sekumpulan data yang kompleks (pane, 2013). analisis apriori juga bisa dikatakan sebagai suatu proses dimana pencarian semua rule apriori dilakukan dengan melihat syarat minimum untuk support dan confidence-nya. dari model pengetahuan yang dihasilkan oleh algoritma tersebut dapat digunakan untuk memprediksi kecenderungan data yang akan datang (warumu, buulolo, & ndururu, 2017). berdasarkan penjelasan tersebut, penelitian ini bertujuan untuk memprediksi penjualan pipa pada cv. gaskindo sentosa dengan menerapkan algoritma apriori sehingga dapat diketahui pola perilaku konsumen dan diharapkan dapat meningkatkan penjualan pada perusahaan tersebut. metode penelitian jenis penelitian penelitian ini menggunakan pendekatan kuantitatif dan berupa penelitian terapan. target/subjek penelitian target/subjek dalam penelitian ini akan menghasilkan prediksi penjualan pada cv. gaskindo sentosa dengan menggunakan data history transaksi yang sudah terjadi dan menerapkan teknik data mining yaitu algoritma apriori dengan cara mencari rule prediksinya. model pengembangan sistem model pengembangan sistem digunakan dalam penelitian ini melibatkan teknik data mining, dimana data mining ini merupakan rangkaian proses untuk menemukan nilai tambah dari kumpulan data yang besar berupa pengetahuan yang selama ini tidak diketahui secara manual (kusrini & taufiq, 2007). dalam proses penggunaannya data mining selalu melibatkan teknik statistik, matematika, kecerdasaan buatan, dan mesin pembelajaran yang biasanya digunakan untuk mengektraksi dan merekongnisi informasi yang bermanfaat dan pengetahuan yang terbentuk dari berbagai database besar dan kompleks. data mining bertujuan untuk mencari pola atau hubungan yang biasanya tidak disadari kebenarannya berdasarkan http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 4 september 2019 p-issn: 2656-1743 e-issn: 2656-1735 169 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional hasil analisis otomatis dari data yang berjumlah besar atau kompleks (kusrini & taufiq, 2010). berdasarkan uraian yang telah disampaikan, ada beberapa hal penting yang terkait dengan data mining, diantaranya: 1. data mining merupakan suatu prosedur otomatis yang menghasilkan prediksi berdasarkan data yang sudah ada. 2. data yang akan dianalisi yaitu berupa kumpulan data yang kompleks . 3. data mining bertujuan untuk menemukan relasi yang memungkinkan dapat menghasilkan manifestasi yang bermanfaat. proses data mining terdiri dari beberapa fase yang saling terkait dan tidak harus dijalankan secara linear (lukman & imam sunoto, 2017). metodologi cross-industry standard process model for data mining (crisp-dm) merupakan upaya untuk standarisasi proses data mining yang memiliki enam fase saling terkait meliputi bussines understanding, data understanding, data preparation, modelling, evaluation, dan deployment yang digunakan untuk menggambarkan proses data mining (maimon & rokach, 2010). sumber: (maimon & rokach, 2010) gambar 1. proses crisp-dm algoritma apriori adalah salah satu algoritma yang menggunakan teknik asiosiasi dengan melakukan pencarian frequent itemset (gunadi & sensue, 2012). algoritma apriori juga merupakan salah satu algoritma yang dapat digunakan pada implementasi analisis pemasaran dengan menemukan setiap rule pada asosiasi yang telah memenuhi syarat yakni batas support dan confidence-nya. setiap rule asosiasi ditemukan dengan cara menggunakan parameter, sehingga pembentukan rules yang didapat menghasilkan nilai prediksi yang akurat. rule asosiasi dinyatakan dengan beberapa atribut yang biasanya sering disebut sebagai (affinity analysis) atau (market basket analysis). analisis asosiasi atau association rule pada data mining merupakan salah satu teknik data mining untuk mencari aturan suatu pada gabungan item. yang menarik dari analisis ini yaitu salah satu tahapannya dalam menghasilkan algoritma yang efisien dengan menganalisis pola frekuensi tinggi (frequent pattern mining). cara kerja algoritma ini adalah dengan memeriksa perkembangan calon itemset dari hasil frekuensi itemset dengan support-based pruning yang bertujuan untuk menghapus itemset yang tidak berpengaruh dengan memilih minimal support. sedangkan prinsip dari algoritma apriori itu sendiri adalah bila mana itemset dikategorikan sebagai frekuensi itemset yang mempunyai support lebih dari yang ditetapkan sebelumnya, maka setiap subset-nya juga termasuk golongan frekuensi itemset, begitupun sebaliknya. support merupakan suatu parameter yang membuktikan besarnya tingkat dominasi suatu item/itemset dari total transaksi yang terjadi. parameter ini memastikan apakah suatu item/itemset disebut layak untuk dicari nilai confidence-nya; contohnya seperti, dari total transaksi yang ada, seberapa besar tingkat dominasi yang membuktikan bahwa item a dan b memungkinkan dibeli secara bersamaan. berikut tahapan yang dilakukan dalam perhitungan dengan algoritma apriori: 1. mencari 3 nilai yang paling banyak terjual. untuk langkah pertama yaitu dengan mencapai nilai penjualan yang paling tinggi dalam suatu data transaksi selama sebulan dengan langakah-langkah: a. menentukan daftar merek pipa. b. menentukan data penjualan pipa. 2. melakukan pengelompokan 3 merek pipa yang paling laku terjual. 3. melakukan representasi data transaksi . setelah pengelompokan 3 merek yang dilakukan pada tahap 2 selanjutnya data juga dapat direpresentasikan. 4. pembuatan format tabular bila sudah diketahui nilai penjualan terbesar setiap bulannya maka di buatlah format tabular agar dapat dianalisis dengan algoritma apriori. 5. analisa pola frekuensi tinggi tahapan ini dilakukan dengan mencari full item yang telah termasuk kedalam syarat minimum dari nilai support dalam database. nilai support pada sebuah item dapat ditemukan dengan menggunakan rumus sebagai berikut: 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴) = ∑𝑇𝑟𝑎𝑛𝑠𝑎𝑘𝑠𝑖 𝑚𝑒𝑛𝑔𝑎𝑛𝑑𝑢𝑛𝑔 𝐴 ∑𝑇𝑟𝑎𝑛𝑠𝑎𝑘𝑠𝑖 *100....................(1) sementara itu, untuk perhitungan 2 itemset dapat diperoleh dengan menggunakan rumus berbeda dari sebelumnya yaitu: http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 4 september 2019 170 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴, 𝐵) = 𝑃 (𝐴 ∩ 𝐵) 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴, 𝐵) = ∑𝑇𝑟𝑎𝑛𝑠𝑎𝑘𝑠𝑖 𝑚𝑒𝑛𝑔𝑎𝑛𝑑𝑢𝑛𝑔 𝐴 𝑑𝑎𝑛 𝐵 ∑𝑇𝑟𝑎𝑛𝑠𝑎𝑘𝑠𝑖 *100..........(2) dalam pencarian pola frekuensi tinggi akan dihentikan apabila kombinasi sudah tidak memenuhi syarat support yang sudah di tentukan. 6. pembentukan aturan asosiasi setelah langkah kelima dilakukan yakni menemukan semua pola frekuensi tinggi, langkah selanjutnya adalah mencari rule asosiasi yang telah termasuk kedalam syarat minimum confidence dengan cara menghitung confidence atau asosiatif menggunakan ketentuan berikut: 𝐴 → 𝐵 ............................................................................ (3) dengan minimum confidence 70% dari nilai confidence tersebut, kemudian dihasilkan rumus berikut: 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐵|𝐴) = ∑transaksi mengandung a dan b ∑transaksi mengandung a .............................. (4) pencarian nilai confidence juga dilakukan sampai nilainya sudah tidak memenuhi syarat minimum confidence lagi. aturan asosiasi final dari analisis yang telah dilakukan dalam tahap ini akan terlihat asosiasi yang terbentuk dengan menggunakan perhitungan algoritma apriori. data, intrumen, dan teknik pengumpulan data untuk menunjang penulisan penelitian ini, penulis menggunakan beberapa metode pengumpulan data yaitu: 1. observasi (field research) pada tahapan ini pengumpulan data dilakukan dengan mengamati proses kegiatan jual beli pada cv gaskindo. 2. wawancara (conversation research) pada tahap ini wawancara dilakukan langsung kepada pemilik dan karyawan yang terlibat dalam transaksi penjualan produk di cv. gaskindo sentosa untuk mendapatkan data yang diperlukan dalam penelitian. 3. studi pustaka (library research) untuk melengkapi informasi-informasi yang berhubungan dengan penelitian ini, penulis mengumpulkan data dari sumbersumber yang berhubungan dengan objek maupun target penelitian ini. sumber-sumber bacaan ini dapat berupa artikel, jurnal atau sumber dari situs internet yang berhubungan dengan objek yang akan diteliti. teknik analisis data setiap data yang diperoleh akan dianalisa supaya dapat diketahui tentang apa saja yang dibutuhkan pada proses asosiasi data dalam penyelesaian masalah (yanto & khoiriah, 2015). dalam penelitian ini, teknik analisis data yang digunakan adalah analisis data kuantitatif yang merupakan suatu analisis data yang dipergunakan jika kesimpulan yang diperoleh dapat dibuktikan dengan angka dan perhitungan rumus yang ada keterkaitannya dengan analisis objek penelitian. data tersebut berupa jumlah penjualan dari tiap jenis produk yang nantinya akan diterapkan kedalam algoritma apriori sehingga dapat menghasilkan prediksi penjualan periode berikutnya di cv. gaskindo sentosa. hasil penelitian dan pembahasan analisa kebutuhan pada tahapan ini dilakukan analisa semua kebutuhan yang diperlukan untuk menerapkan algoritma apriori dalam memprediksi penjualan produk di cv. gaskindo sentosa. data yang dibutuhkan untuk menerapkan algoritma tersebut digunakan data primer penjualan produk pipa yang diperoleh dari cv. gaskindo sentosa dengan list sebagai berikut: tabel 1. list nama material pipa no nama material 1 stud bolt 2 stud anchor 3 union tee 4 tee 5 union connector 6 red union 7 male connector 8 needle valve 9 ball valve langkah selanjutnya yaitu melakukan pengelompokkan 3 merk pipa yang paling banyak terjual berdasarkan data transaksi penjualan pada cv. gaskindo sentosa dimulai dari januari 2018 sampai dengan desember 2018, sehingga menghasilkan pola transaksi yang disajikan pada tabel dibawah ini: tabel 2. pola transaksi penjualan pipa di cv. gaskindo sentosa pada tahun 2018 no nama material pipa 1 stud anchor, red union, stud bolt 2 stud anchor, red union, union tee 3 stud anchor, union tee, red union 4 stud anchor, tee, union tee 5 red union, union tee, stud bolt http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 4 september 2019 p-issn: 2656-1743 e-issn: 2656-1735 171 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional 6 stud anchor, red union, union tee 7 tee, union tee, red union 8 stud bolt, tee, red union 9 stud anchor, tee, stud bolt 10 stud anchor, union tee, red union 11 stud anchor, tee, stud bolt 12 stud anchor, red union, union tee penentuan itemset tahapan ini diawali dengan proses pembentukan c1 atau biasa disebut itemset dengan jumlah minimun support = 30% dan dihitung menggunakan rumus (1) yang menghasilkan nilai support sebagai berikut: tabel 3. hasil support dari tiap itemset itemset support stud anchor 75% red union 75% tee 41,67% stud bolt 41,67% union tee 66,67% setelah hasil perhitungan c1 didapat, maka dapat dilanjutkan proses pembentukan c2 (kombinasi 2 itemset) dengan menggunakan rumus (2). tabel 4. support dan kombinasi 2 itemset itemset support stud anchor, red union 50% stud anchor, tee 25% stud anchor, stud bolt 25% stud anchor, union tee 50% red union, tee 16,67% red union, stud bolt 25% red union, union tee 58,33% tee, stud bolt 25% tee, union tee 16,67% stud bolt, union tee 8,33% minimal support yang ditentukan yaitu 30%, maka kombinasi 2 itemset yang tidak memenuhi minimal suppport akan dihilangkan, sehingga menghasilkan nilai berikut: tabel 5. minimal support 2 itemset 30% itemset support stud anchor, red union 50% stud anchor, union tee 50% red union, union tee 58,33% terakhir, dilanjutkan proses pembentukan c3 (kombinasi 3 itemset) dengan jumlah minimal support = 30% yang menghasilkan itemset sebagai berikut: tabel 6. minimal support 3 itemset 30% itemset support stud anchor, red union, union tee 41,67% aturan/rule asosisasi final setelah semua pola frekuensi tinggi ditemukan (c1 c2, dan c3) barulah dicari aturan asosiasi dengan hasil pola frekuensi yang disajikan dalam tabel 7. tabel 7. hasil pola frekuensi tinggi yang memenuhi syarat itemset support stud anchor, red union 50% stud anchor, union tee 50% red union, union tee 58,33% stud anchor, red union, union tee 41,67% langkah berikutnya yaitu mencari aturan asosiasi yang memenuhi syarat minimum untuk confidence pada tabel 7. dengan menghitung confidence atau asosiatif a→b, dengan minimum confidence 70% menggunakan rumus (3) dan (4). tabel 8. hasil confidence atau asosiasi aturan confidence jika membeli stud anchor,maka akan membeli red union 6/9 66,66% jika membeli red union,maka akan membeli stud anchor 6/9 66,66% jika membeli stud anchor,maka akan membeli union tee 6/9 66,66% jika membeli union tee,maka akan membeli stud anchor 6/8 75% jika membeli red union,maka akan membeli union tee 7/9 77.78% jika membeli union tee,maka akan membeli red union 7/8 87,5% jika membeli stud anchor dan red union, maka akan membeli union tee 5/6 83,33% jika membeli stud anchor dan union tee, maka akan membeli red union 5/6 83,33% langkah terakhir, pembentukan asosiasi final terurut diperoleh berdasarkan minimal support dan minimal confidence yang telah ditentukan sehingga dapat dideskripsikan pada tabel dan grafik dibawah ini: tabel 9. rule asosiasi final rule support confidence stud anchor, red union 50% 85,71% stud anchor, union tee 50% 85,71% red union, union tee 58,33% 77,78% stud anchor,red union, union tee 41,67% 83,33% http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 4 september 2019 172 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional gambar 2. hasil pembentukan aturan asosiasi final penjualan terbanyak. berdasarkan tabel 9. dan gambar 2., dapat diketahui produk mana yang paling laris terjual produknya pada cv. gaskindo sentosa. simpulan dan saran simpulan berdasarkan pembahasan diatas, maka dapat diperoleh kesimpulan bahwa penelitian algoritma apriori dapat membantu mengembangkan strategi pemasaran untuk memasarkan produk lain dengan menganalisa kelebihan dari nilai jual produk yang paling laris terjual. hal tersebut dapat dilihat dari hasil penelitian yang menunjukkan bahwa penjualan produk pipa paling banyak terjual pada cv. gaskindo sentosa, dengan melihat produk yang memenuhi minimal support dan minimal confidence, produk yang banyak terjual tersebut adalah stud anchor, red union, stud bolt, union tee. dari aturan asosiasi final yang diketahui jika membeli union tee maka akan membeli red union dengan support 50% dan confidence 87,5%. jika membeli red union maka akan membeli union tee dengan support 50% dan confidence 77,78%. jika membeli stud anchor, red union maka akan membeli union tee dengan support 33,33% dan confidence 83,33%. jika membeli stud anchor, union tee maka akan membeli red union dengan support 33,33% dan confidence 83,33%. saran berdasarkan kesimpulan diatas maka dapat diambil saran bahwa penerapan algoritma apriori dapat di selaraskan dengan aplikasi tanagra dan dengan mendefinisikan lebih banyak variable yang kompleks serta melibatkan lebih banyak jenis produk untuk asosiasi aturan final. daftar referensi choiriah, w. (2019). analisis penjualan e-tiket menggunakan algoritma apriori pada cv. guti mulia wisata. zonasi: jurnal sistem informasi, 1(1). gunadi, g., & sensue, d. . (2012). penerapan data mining market basket analysis terhadap data penjualan produk buku dengan menggunakan algoritma apriori dan frequent pattern growth (fp-growth). jurnal telematika mkom, 4(1). kusrini, & taufiq, l. e. (2007). algoritma data mining. yogyakarta: cv andi offset. kusrini, & taufiq, l. e. (2010). algoritma data mining. yogyakarta: cv andi offset. lukman, & imam sunoto. (2017). komparasi algoritma multilayer perceptron dan support vector machine dalam pemilihan beasiswa. jurnal sap, 2(1), 114–128. maimon, & rokach. (2010). data mining and knowledge discovery handbook. new york: springer. pane, d. k. (2013). implementasi data mining pada penjualan produk elektronik dengan algoritma apriori (studi kasus: kreditplus). pelita informatika budi darma, 4(3), 25–29. purnia, d. s., & warnilah, a. i. (2017). implementasi data mining pada penjualan kacamata menggunakan algoritma apriori. implementasi data mining pada penjualan kacamata menggunakan algoritma apriori, 2(2), 31–39. syahdan, s. al, & sindar, a. (2018). data mining penjualan produk dengan metode apriori pada indomaret galang kota. jurnal nasional komputasi dan teknologi informasi (jnkti), 1(2). https://doi.org/10.32672/jnkti.v1i2.771 warumu, f. t., buulolo, e., & ndururu, e. (2017). implementasi algoritma apriori pada analisa pola data penyakit manusia yang disebabkan oleh rokok. komik (konferensi nasional teknologi informasi dan komputer), 1(1), 176–182. yanto, r., & khoiriah, r. (2015). implementasi data mining dengan metode algoritma apriori dalam menentukan pola pembelian obat. citec journal, 2(2), 102–113. stud anchor,red union,union tee stud anchor,red union stud anchor,union tee red union, union tee stud anchor,red union,union tee 5 6 6 7 5 41.67% 50% 50% 58.33 41.67 56% 67% 7% 78% 56% grafik apriori support count support confidence http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 119 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasiona sistem pendukung keputusan penerimaan asisten laboratorium menggunakan metode multi factor evaluation process (mfep) painem1, hari soetanto2 prodi sistem informasi, fakultas teknologi informasi universitas budi luhur, jakarta 1)painem@budiluhur.ac.id 2) prodi teknik informatika, fakultas teknologi informasi universitas budi luhur, jakarta 2)hari.soetanto@budiluhur.ac.id abstrak asisten lab ict merupakan mahasiswa fakultas teknologi informasi dan fakultas ekonomi dan bisnis yang aktif. asisten laboratorium mempunyai tugas mendampingi dosen pada saat dosen mengajar praktikum di lab ict, dan harus memahami materi praktikum dosen yang sedang mengajar, dan harus mampu memperbaiki komputer yang bermasalah. asisten bukan jabatan permanen di lab ict. asisten lab bukan merupakan jabatan yang permanen, sehingga setiap tahun ajaran baru dibuka pendaftaran calon asisten. banyak mahasiswa yang mendaftar menjadi calon asisten tetapi jumlah calon asisten yang diterima terbatas. untuk menjadi asisten lab ada beberapa kriteria yang dijadikan sebagai penilaian, yaitu nilai hardware, nilai psikotes, nilai kompetensi, nilai wawancara, nilai project1, nilai project2 dan nilai absensi. untuk menentukan asisten yang diterima berdasarkan beberapa kriteria diatas belum ada metode tertentu dalam mengambil keputusan. untuk membantu dalam mengambil keputusan maka dibuat sistem pendukung keputusan untuk penentuan penerimaan asisten lab. metode yang digunakan digunakan dalam sistem pendukung keputusan adalah multi factor evaluation process (mfep). prototype yang dibuat menggunakan bahasa pemrograman php. kata kunci: mfep, spk, penerimaan asisten, pendukung keputusan abstract the lab ict assistant is an active information technology and faculty of economics and business student. the laboratory assistant has the task of assisting the lecturer when the lecturer teaches practicum at lab ict, and must understand the lecturer practicum material that is teaching, and must be able to repair the problematic computer. assistants are not permanent positions in lab ict. the lab assistant is not a permanent position, so that every new school year the registration of prospective assistants is opened. many students register to be prospective assistants but the number of prospective assistant candidates is limited. to become a lab assistant there are several criteria that are used as assessments, namely hardware value, psychological value, competency value, interview value, project1 value, project value and attendance value. to determine the assistants who are accepted based on the above criteria there is no particular method in making decisions. to assist in making decisions, a decision support system is made for determining the acceptance of the lab assistant. the method used in decision support systems is the multi factor evaluation process (mfep). the prototype is made using the php programming language. keywords: mfep, dss, lab assistant, decision support pendahuluan lab ict merupakan laboratorium komputer pusat yang digunakan untuk kuliah praktikun fakultas teknologi informasi, fakultas ekonomi dan bisnis, fakultas ilmu komunikasi, fakultas teknik di universitas budi luhur. lab ict juga digunakan untuk mendukung kegiatan pengabdian kepada masyarakat bagi dosen universitas budi luhur. lab ict saat ini dibawah direktorat digitalisasi penunjang akademik. lab ict saat ini mempunyai 13 ruang praktikum. masing-masing ruangan praktikum berkapasitas 35 komputer. mahasiswa yang http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 120 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional menggunakan lab ict untuk praktikum kurang lebih 12.000 mhs setiap harinya. jumlah asisten lab ict saat ini hanya 22 asisten. jumlah tersebut masih kurang untuk memenuhi kebutuhan lab ict. asisten bukan merupakan jabatan yang permanen. sehingga setiap tahun ajaran baru ada pembukaan pendaftaran asisten untuk mahasiswa fakultas teknologi informasi dan fakultas ekonomi dan bisnis. peminat untuk menjadi asisten lab banyak, kurang lebih 20-45 pendaftar setiap tahun ajaran baru. tetapi tidak semua peminat akan menjadi asisten. penentuan menjadi asisten ada beberapa kriteria dalam penilaiaan antara lain : nilai hardware, nilai psikotes, nilai kompetensi, nilai wawancara, nilai project1,nilai project2 dan nilai absensi. banyaknya kriteria dalam penentuan penerimaa asisten maka membutuhkan waktu lama dalam perhitungannya dan belum ada metode yang digunakan untuk penentuan penerimaan asisten. berdasarkan latar belakang diatas maka dibutuhkan sistem pendukung keputusan untuk penentuan penerimaan asisten. metode yang digunakan dalam sistem pendukung keputusan penentuan penerimaan asisten adalah metode multi factor evaluation process. sistem pendukung keputusan yang dibuat diharapkan dapat membantu menyelesaikan permasalahan dalam penentuan penerimaan asisten lab. penelitian sistem pendukung keputusan dengan metode mfep sudah banyak dilakukan. sebagai contoh hutabri (2015) mengembangkan spk dalam pemilihan kelas unggul menggunakan metode mfep. selanjutnya andoko dkk. menerapkan metode mfep pada sistem pendukung keputusan penentuan kelayakan pemberi pinjaman (andoko, alfiarini, & yanto, 2018) dan djunaedi dkk juga mengembangkan sistem pendukung keputusan penilaian kinerja pegawai (djunaedi, subiyakto, & fetrina, 2017). tabel 1 menyajikan beberapa penelitian terkait penerapan metode mfep dalam spk. konsep sistem pendukung keputusan (spk) atau decision support system pertama kali diungkapkan pada awal tahun 1971 oleh michael s. scott morton (turban, 2001) dengan istilah management decision system. menurut kusrini, pada (turaina, gustia e, & cici, 2017) spk merupakan sistem informasi interaktif yang menyediakan informasi, pemodelan dan pemanipulasian data. spk berfungsi membantu pengambil keputusan dengan memberikan alternatif-alternatif keputusan yang tepat. tabel 1. penelitian terkait penerapan metode mfep dalam spk no peneliti metode judul kriteria kesimpulan 1. (t. henny febriana harumy, 2016) mfep sistem penunjang keputusan penentuan jabatan manager menggunakan metode mfep pada cv. sapo durin kedisiplinan (0,2) keaktifan (0,15) total anggota(0,3) jumlah anggota(0,25) kegigihan (0,15) aplikasi ini digunakan untuk memudahkan perusahaan dalam menentukan siapa yang berhak dipromosikan sebagai manajer 2. (purnomo, nurdin, & nangi, 2017) mfep penerapan multi factor evaluation process (mfep) untuk penilaian guru (studi kasus: man 1 kota kendari) tanggungjawab(1-4) kejujuran(1-4) kerjasama (1-4) kedisplinan (1-4) kehadiran (1-4) perhitungan yang dihasilkan oleh sistem adalah sesuai dengan hasil pengujian yang dihasilkan melalui perhitungan yang dilakukan secara manual 3 (diwanda et al., 2016) mfep sistem penunjang keputusan penilaian kinerja karyawan menggunakan metode mfep pada pt.konsuil wilayah sulawesi tenggara kecakapan (4) watak dan tingkah laku (5) loyalitas (5) dengan adanya aplikasi ini pengambil keputusan dapat memberikan penilaian kinerja karyawan secara obyektif dengan menimbang berbagai faktor yang mempunyai pengaruh penting terhadap alternatif pilihan pengambil keputusan 4. (hutabri, 2015) mfep spk dalam pemilihan siswa kelas unggul 1. administrasi: nilai un (0,40), piagam sistem penunjang keputusan dalam http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 121 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasiona no peneliti metode judul kriteria kesimpulan menggunakan metode mfep di smpn 2 solok (0,60) 2. akademik: pengetahuan umum (0,40), ipa (0,60) 3. wawancara: tata krama (0,40), kepribadian (0,60) pemilihan calon siswa kelas unggul yang dibuat telah membantu kepala sekolah dalam menerima informasi dan mengambil keputusan dalam penerimaan calon siswa kelas unggul dengan cepat dan tepat metode mfep (multi factor evaluation process) merupakan metode yang menjadi fundamental dari pengembangan metode pada sistem pendukung keputusan (latif, jamil, & abbas, 2018). teknik penyelesaian metode ini yaitu dengan penilaian subyektif dan intuitif terhadap indikator atau faktor penyebab dari sebuah masalah yang dianggap penting. pertimbangan – pertimbangan tersebut yaitu dengan memberikan bobot (weighting system) berdasarkan skala prioritas berdasarkan tingkat kepentingannya. adapun algoritma penyelesaian metode ini yaitu : 1. langkah 1 : mendefinisikan terlebih dahulu kriteria – kriteria atau faktor-faktor yang menyebabkan masalah beserta bobotnya 2. langkah 2 :menghitung nilai bobot evaluasi (nbe) 3. langkah 3 :menghitung total bobot evaluasi (tbe) 4. langkah 4 : lakukan perangkingan untuk mendapatkan keputusan adapun rumus yang digunakan untuk menghitung nilai (nbe) pada metode mfep menggunakan persamaan (1). 𝑁𝐵𝐸 = 𝑁𝐵𝐹 ∗ 𝑁𝐸𝐹 ……………………………………….. (1) keterangan : nbe : nilai bobot evaluasi nbf : nilai bobot factor nef : nilai evaluasi factor sementara itu, persamaan (2) merupakan rumus yang digunakan untuk menghitung nilai tbe pada metode mfep. 𝑇𝐵𝐸 = ∑ 𝑁𝐵𝐸(𝑛)𝑘𝑛=1 ………………………………….. (2) keterangan : tbe : total bobot evaluasi nbe : nilai bobot evaluasi k : jumlah kriteria metode penelitian langkah penelitian untuk menyelesaikan permasalahan, dalam penelitian ini dilakukan beberapa langkah dan metode penelitian, seperti disajikan pada gambar 1 dan dijelaskan sebagai berikut: a. studi pustaka metode ini dilakukan untuk mengumpulkan data dengan mencari dan membaca buku-buku referensi, jurnal, paper dan karya ilmiah lainnya yang dapat menunjang penelitian ini. b. analisis dokumen dokumen yang diperoleh kemudian dipelajari dan dianalisis untuk mengetahui bentuk sistem cara kerja yang akan dibangun. c. rancangan aplikasi / prototype metode ini dilakukan dengan membuat rancangan layar, flowchart, database dan lainlain sesuai dengan hasil analisis. d. pembuatan prototype rancangan sistem yang sudah dibuat akan diimplementasikan berdasarkan hasil analisis. kemudian hasil analisa akan dituangkan dalam kode-kode dengan menggunakan bahasa pemrograman tertentu. e. pengujian dan analisis setelah sistem selesai dibangun, maka dilakukan uji coba terhadap sistem yang dibangun. pengujian dilakukan dengan metode black box dan pengujian persepsional dengan iso 9126. f. pembuatan laporan dan publikasi berdasarkan hasil pengujian yang dilakukan, dibuat laporan penelitian dan publikasi hasil penelitian. http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 122 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional gambar 1. langkah penelitian kerangka pikir gambar 2 menampilkan kerangka pikir yang digunakan dalam penelitian ini. kerangka pikir mencakup analisis terhadap kondisi saat ini di laboratorium ict universitas budi luhur. selanjutnya dirumuskan permasalahan penelitian dan rancangan solusi dengan menerapkan metode mfep dalam sistem pendukung keputusan. gambar 2. kerangka pikir hasil dan pembahasan perhitungan mfep secara manual pada tabel 2 disajikan kriteria – kriteria yang dibutuhkan dalam penentuan penerimaan asisten lab ict tabel 2. kriteria penerimaan asisten lab ict kode kriteria nama kriteria k001 nilai hardware k002 nilai psikotes k003 nilai kompetensi k004 nilai wawancara k005 nilai project 1 k006 nilai project 2 k007 nilai absensi sementara itu, pada tabel 3 ditampilkan bobot yang akan digunakan untuk setiap alternatif adalah dibutuhkan dalam penentuan penerimaan asisten lab ict tabel 3. pembobotan kriteria langkah selanjutnya adalah melakukan penilaian untuk setiap alternatif, dalam hal ini calon asisten untuk setiap kriteria. tabel 4 merupakan hasil penilaian calon asisten berdasarkan berdasarkan test yang sudah diikuti. tabel 4. nilai alternatif n o nama n h np s n k n w np 1 np 2 n a 1. irennada 60 65 75 72 60 60 90 2. nurul azzahra 65 67 70 62 60 60 94 3. erika nur komala sari 80 66 65 60 60 60 93 4. amirudin 68 66 60 70 69 62 89 5. m. verdiansyah 90 67 70 74 76 90 86 6. nur fahmi aziz 76 50 70 68 60 65 84 7. muhamad satrio aditomo 75 55 80 65 73 0 83 8 selfiana halfiana 77 65 60 65 69 60 81 9 kamil salim 75 65 60 65 70 60 79 kode kriteria alternatif bobot k001 nilai hardware 20% k002 nilai psikotes 10% k003 nilai kompetensi 20% k004 nilai wawancara 10% k005 nilai project 1 10 % k006 nilai project 2 10% k007 nilai absensi 20% http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 123 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasiona n o nama n h np s n k n w np 1 np 2 n a 10 harry setiawan 92 72 70 70 71 0 73 11 juan kalyzta 92 70 70 72 65 65 70 12 sanding riyanto 93 65 65 72 65 65 69 13 kris setiawati 75 66 70 70 71 60 67 14 grace a l simamora 68 56 60 68 50 61 64 15 muhamad rifki adnan 92 66 65 70 68 70 63 16 muhamma d iqbal aryabima 67 65 70 70 72 68 62 17 yogi angga putra 76 67 65 68 72 60 49 18 muhamma d arya java 72 66 65 60 50 0 44 keterangan : nh=nilai hardware, nps=nilai psikotes, nk=nilai kompetensi, nw=nilai wawancara, np1= nilai project1, np2=nilai project2, na=nilai absensi. berdasarkan hasil perhitungan diatas maka didapatkan perankingan dari total bobot evaluasi (tbe) seperti pada tabel 5. tabel 5. hasil perangkingan berdasarkan tbe no nama alternatif tbe 1. muhammad verdiansyah 79.9 2. juan kalyzta 73.6 3. erika nur komalasari 72.2 4. sanding riyanto 72.1 5. irennada 71.9 6. muhammad rifki adnan 71.4 7. nurul azzahra 70.7 8. nur fahmi aziz 70.3 9. amirudin 70.1 10. selfiana halfiana 69.5 11. kris setiawati 69.1 12. kamil salim 68.8 13. harry setiawan 68.3 14. muhammad iqbal a 67.3 15. muhammad satrio a 66.9 16. yogi angga putra 64.7 17. grace a l simamora 61.9 18. muhammad arya java 53.8 rancangan prototipe tabel 6, tabel 7, dan tabel 8 merupakan struktur tabel utama yang digunakan dalam aplikasi sistem pendukung keputusan penentuan penerimaan asisten lab ict : tabel 6. tb_kriteria no nama field type keterangan 1. kode_kriteria varchar (16) kode kriteria 2. nama_kriteria varchar (225) nama kriteria tabel 7. tb_alternatif no nama field type keterangan 1. kode_alternatif varchar (16) kode kriteria 2. nama_alternatif varchar (225) nama kriteria tabel 8. tb_detailalternatif no nama field type keterangan 1. kode_kriteria varchar(16) kode kriteria 2. kode_alternatif varchar(16) kode alternatif 3. nilai integer(3) nilai alternatif prototipe aplikasi pendukung keputusan dikembangkan dengan bahasa pemrograman php dan perangkat basis data mysql. gambar 3 dan gambar 4 merupakan contoh tampilan aplikasi yang telah dikembangkan pada penelitian ini. pada gambar 3 tampilan layar untuk menginput nilai alternatif dari masing-masing kriteria. sedangkan pada gambar 4 akan ditampilkan daftar hasil perankingan total bobot evaluasi (tbe) dari semua alternatif di urutkan secara ascending (urut dari nilai terbesar ke nilai terkecil). gambar 3. tampilan halaman tambah nilai alternatif http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 124 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional pengguna dapat menambahkan nilai alternatif dengan memilih nama alternatif (calon asisten) dan menginput nilai masing-masing komponen. nilai yang diinputkan dalam rentang 0100. setelah semua nilai diinput, pengguna dapat menekan tombol simpan. gambar 4. laporan perankingan tbe gambar 4 menyajikan laporan perhitungan total bobot evaluasi (tbe) untuk setiap alternatif. pelaporan disajikan secara terurut dari nilai tbe yang terbesar hingga terkecil. nilai tbe berada pada rentang 0-100. pada contoh laporan di gambar 4, nilai tbe terbesar diperoleh oleh alternatif (calon asisten) dengan nama muhammad verdiansyah. pengujian sistem pengujian yang pertama menggunakan metode pengujian perangkat lunak black box. menurut roohullah jan dan j. watkins dalam (jaya, 2018), black box testing merupakan teknik pengujian perangkat lunak yang berfokus pada spesifikasi fungsional dari perangkat lunak. untuk memastikan sistem bekerja dengan maksimal maka dilakukan pengujian sistem. pada penelitian menggunakan pengujian sistem dengan metode black box. hasil pengujian sistem dengan menggunakan metode black box terlihat pada tabel 9. tabel 9: hasil pengujian sistem no halaman hal diuji hasil 1. login notifikasi login berhasil dan masuk ke halaman menu utama sukses 2. kriteria menu sukses no halaman hal diuji hasil menampilkan kode kriteria, nama kriteria, bobot, aksi untuk ubah dan hapus,tambah, dan proses pencarian kriteria 3. alternatif menu menampilkan kode alternatif, nama alternatif, aksi untuk ubah dan hapus,tambah, dan proses pencarian alternatif sukses 4. transaksi nilai alternatif menu menampilkan kode alternatif, nama alternatif , semua nilainilai kriteria dan menginput ilainilai kriteria untuk masing-masing alternatif serta searching. sukses 5. transaksi perhitungan menu untuk menampilkan ranking hasil sukses 6. laporan menu untuk laporan per alternatif dan menampilkan laporan ranking semua alternatif / total bobot evaluasi sukses 7. logout menu untuk keluar dari aplikasi sukses berdasarkan hasil pengujian yang dilakukan terhadap sistem yang dibangun, sistem berjalan optimal sesuai dengan kebutuhan yang diperlukan. dimana sistem yang dibangun sesuai dengan memberikan hasil sesuai dengan yang diinginkan oleh user. seluruh fungsionalitas sistem sudah diujicoba dan terbukti dapat berjalan dengan baik. http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 125 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasiona selain menggunakan metode blackbox, pada penelitian ini juga dilakukan pengujian persepsional dengan metode pengujian iso 9126. international organization for standarization (iso) dalam iso strandard 9126 telah mengusulkan beberapa karakteristik untuk melakukan pengujian terhadap kualitas sebuah perangkat lunak. (andoko et al., 2018), iso-9126 mengidentifikasikan enam karakteristik sebuah perangkat lunak dikatakan berkualitas, yaitu functionality, reliability, usability, efficiency, maintability dan portability. dalam sistem pendukung keputusan penentuan penerimaan asisten lab mengusulkan beberapa karakteristik functionality, realiability, usability, efficiency untuk melakukan pengujian terhadap aplikasi tersebut berdasarkan jawaban dari 7 (tujuh) responden yang mengisi kuesioner indikator kualitas perangkat lunak menurut iso 9126, dapat diukur dengan persamaan (3). %𝑆𝑘𝑜𝑟 = 𝑆𝑘𝑜𝑟 𝐴𝑘𝑡𝑢𝑎𝑙 𝑆𝑘𝑜𝑟 𝐼𝑑𝑒𝑎𝑙 𝑥 100% ............................... (3) gambar 5. hasil pengujian dengan iso 9126 berdasarkan analisis data yang diperoleh dari kuesioner, dapat disimpulkan bahwa total keseluruhan skor hasil pengujian kualitas aplikasi berdasarkan empat aspek kualitas perangkat lunak aplikasi (functionality, reliability, usability, efficency) dengan standar iso 9126 adalah 90 % dan termasuk kategori sangat baik. untuk functionaly dan usability perlu ditingkatkan karena nilai yang didapatkan kurang dari 90 %. simpulan berdasarkan perhitungan serta perancangan sistem pendukung keputusan, sehingga disimpulkan bahwa pengambilan keputusan penentuan penerimaan asisten laboratorium information and communication technologi (lab ict) dapat dilakukan dengan menggunakan metode multi factor evaluation process (mfep). pemberian bobot faktor kriteria akan mempengaruhi penilaian dan hasil perhitungan metode mfep. hasil uji coba untuk perhitungan mfep yang dilakukan oleh sistem sesuai dengan hasil pengujian yang dilakukan secara manual. berdasarkan pengujian sistem dengan metode black box maka sistem berjalan secara maksimal sesuai dengan fungsinya. berdasarkan pengujian aplikasi dengan iso 9126 dengan menggunakan karakteristik functionality, realiability, usability, efficiency didapatkan nilai 90 % atau sangat baik. daftar referensi andoko, alfiarini, & yanto, r. (2018). penerapan metode multi factor evaluation process pada sistem pendukung keputusan penentuan kelayakan pemberi pinjaman ( studi kasus nsc finance kota lubuklinggau ), 4(2), 113– 122. diwanda, s. a., ode, l., sagala, h. s., informatika, j. t., teknik, f., & oleo, u. h. (2016). sistem pendukung keputusan penilaian kinerja karwayan menggunakan metode multi factor evaluation process pada pt. konsuil wilayah sulawesi tenggara. semantik, 2(1), 341–348. djunaedi, a., subiyakto, a., & fetrina, e. (2017). sistem pendukung keputusan penilaian kinerja pegawai (studi kasus : pt . pln (persero distribusi jakarta raya area pondok gede)). jurnal sistem informasi, 10(1), 37–44. hutabri, e. (2015). spk dalam pemilihan siswa kelas unggul menggunakan metode mfep di smp n 2 solok. edik informatika, 1(2), 55–63. jaya, t. s. (2018). pengujian aplikasi dengan metode blackbox testing boundary value analysis. jurnal informatika: jurnal pengembangan it poltek tegal, 03(02), 45– 48. https://doi.org/10.30591/jpit.v3i1.647 latif, l. a., jamil, m., & abbas, s. h. (2018). sistem pendukung keputusan teori dan implementasi. deepublish. purnomo, r., nurdin, a., & nangi, j. (2017). penerapan multifactor evaluation process (mfep) untuk penilian guru (studi kasus: http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 126 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional man 1 kota kendari). seminar nasional riset kuantitatif terapan, (april), 76–79. t. henny febriana harumy, i. s. (2016). sistem penunjang keputusan penentuan jabatan manager menggunakan metode mfep pada cv. sapo durin. seminar nasional teknologi informasi dan multimedia 2016, 6–7. turaina, r., gustia e, & cici. (2017). sistem penunjang keputusan penerimaan calon tenaga honorer di sma n 1 junjung sirih kab. solok menggunakan metode multifaktor evaluasi proses (mfep). jurnal momentum, 18(2), 60–66. https://doi.org/10.21063/jm.2016.v18.2.6066 http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 4 september 2019 p-issn: 2656-1743 e-issn: 2656-1735 173 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional perancangan dan pembuatan aplikasi e-learning menggunakan model waterfall pada sekolah menengah atas ari puspita1, muhammad fahmi2, yuyun yuningsih3 1sistem informasi universitas bina sarana informatika ari.arp@bsi.ac.id 2teknik informatika stmik nusa mandiri fahmi.mmf@nusamandiri.ac.id 3sistem informasi stmik nusa mandiri yuyun.yyg@nusamandiri.ac.id abstrak berbagai konsep dan teknik baru dalam pengajaran telah banyak dikembangkan untuk menggantikan metode tradisional yang hanya mengandalkan pada metode pengajaran satu arah di kelas. salah satu metode pengajaran yang sedang berkembang di masa sekarang adalah e-learning. e-learning dapat membantu para pengajar dalam mendistribusikan bahan ajar mereka tanpa harus berada di kelas dengan menggunakan internet, hal ini dapat memaksimalkan waktu pembelajaran di kelas yang terbatas. pengembangan sistem informasi dalam pembuatan perangkat lunak menggunakan model waterfall dan dalam pembuatan perangkat lunak ini menggunakan php sebagai bahasa script yang digunakan untuk membuat halaman website dan mysql sebagai database tempat penyimpanan data. memudahkan para guru untuk dapat mendistribusikan materi pelajaran untuk siswa dapat dengan mudah mendapat materi pelajaran. website e-learning ini dapat dijadikan media mengerjakan soal-soal ujian berupa pilihan ganda dan mengumpulkan tugas-tugas yang di berikan oleh guru. kata kunci: website, e-learning, waterfall abstract if the teacher is not present and the learning time is limited by the school, then automatically the learning process will be hampered. new concepts and techniques in teaching have been developed to replace traditional methods that rely solely on one-way teaching methods in the classroom. one of the teaching methods that are developing in the present is e-learning. e-learning can help teachers in distributing their teaching materials without having to be in the classroom by using the internet, this can maximize the time of learning in a limited classroom. development of information system in making software using waterfall method and in making this software using php as script language which is used to create website page and mysql as database of data storage. with this e-learning can help the learning process to be more optimal. make it easier for teachers to distribute subject matter for students and also students can easily get the subject matter. this e-learning website can be used as media to do exam questions in the form of multiple choice and collect tasks given by the teacher. keywords: website, e-learning, waterfall pendahuluan pendidikan merupakan suatu sarana yang sangat penting bagi kelangsungan hidup manusia, hal ini disebabkan karena pendidikan adalah sektor yang dapat menciptakan kecerdasan manusia dalam melangsungkan kehidupannya. (aryadhi, parmiti, putu, & mahadewi, 2015) dalam penerapan pembelajaran di sekolah menengah atas , guru harus mampu memberikan http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 4 september 2019 174 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional pengetahuan kepada peserta didik mengenai konsep-konsep yang terkandung dalam mata pelajaran yang diajarkan. namun pada kenyataannya, penyampaian materi masih sering dilakukan secara konvensional (salim, 2015). hal ini akan menyebabkan pembelajaran cendrung membosankan (inayati, subroto, & supardi, 2012) karena hanya mendengarkan ceramah dari guru, yang akan mengakibatkan siswa kurang termotivasi (wulandari, 2012) dan malas untuk belajar. sistem pembelajaran kebanyakan yang digunakan bersifat tatap muka di dalam kelas dengan adanya kehadiran guru dan siswa yang melakukan komunikasi di tempat dan waktu yang sama dan telah ditentukan. jika guru dan siswa tidak melakukan interaksi di dalam kelas pada proses pembelajaran maka sistem pembelajaran seperti ini menjadi kurang efisien dan tidak berhasil. proses pembelajaran merupakan upaya menyeimbangkan keaktifan yang dimiliki peserta didik dan pendidik (wahyuningsih & makmur, 2017). apabila peserta didik aktif maka pendidik berada pada posisi pasif, sebaliknya jika peserta didik pasif maka pendidik harus aktif. keaktifan pendidik dalam hal ini bukan untuk mengatur setiap tindakan belajar peserta didik, melainkan berfungsi untuk mendorong peserta didik agar tergugah kesadarannya untuk belajar. dengan latar belakang masalah yang telah dikemukakan sebelumnya, salah satu metode pengajaran yang sedang berkembang di masa sekarang adalah e-learning. e-learning dapat membantu para pengajar dalam mendistribusikan bahan ajar mereka tanpa harus berada di kelas dengan menggunakan internet, hal ini dapat memaksimalkan waktu pembelajaran di kelas yang terbatas. pada penelitian sebelumnya (romindo, 2017) dengan adanya e-learning ini dapat membantu proses belajar mengajar agar lebih optimal. sistem pembelajaran e-learning juga dapat mempermudah para guru untuk mengembangkan materi yang di ajarkan dan memberikan materi tambahan . dan siswa juga dapat mengakses dari mana saja. web e-learning juga dapat menjadi wadah untuk berdiskusi membahas materi yang memang belum dapat di paham . siswa juga dapat mengerjakan soal latihan yang sudah disiapkan oleh guru sehingga siswa dapat mengetahui seberapa pemahaman siswa tersebut mengenai materi pembelajaaran yang dibahas. dari hasil penelitian (wicaksono, winarno, & sunyoto, 2015) perancangan dan implementasi e-learning dapat mendukung project based learning yang sudah berhasil dibangun menggunakan lms moodle yang digunakan sebagai alternatif dalam proses belajar mengajar. untuk itu penulis bermaksud untuk membuatkan aplikasi elearning untuk sekolah menengah atas dengan model pengembangan waterfall. menurut (yohendra, saputra, & thjin, 2013) perancangan sistem informasi dengan metodologi object oriented dan waterfall mengimplementasikannya dengan menggunakan bahasa pemrograman php dan database menggunalan mysql, sehingga terbentuk sistem elearning yang akan digunakan pada proses belajar mengajar. setelah aplikasi e-learning sudah selesai di buat tahapan selanjutnya adalah tahap implementasi didalam tahapan implementasi tersebut adanya evaluasi sesuai dengan desain intruksional. agar dapat memperbaiki sistem dan melakukan penyesuaian terhadap tahapan tahapan yang sebelumnya desain instruksional merupakan proses dinamis yang dapat berubah-ubah sesuai dengan informasi dan evaluasi yang diterima bertujuan untuk meningkatkan hasil pembelajaran peserta didik sehingga tujuan pembelajaran dapat tercapai. (hanum, 2013) tujuan dari penelitian ini adalah untuk memfasilitasi dan mempermudah komunikasi antara guru dengaan siswa/i melalui forum diskusidan memperoleh materi pelajaran secara lengkap yang dapat mengoptomalkan proses belajar di kelas. metode penelitian jenis penelitian penelitian yang penulis buat merupakan pendekatan kualitatif dan penelitian terapan. waktu dan tempat penelitian tempat penelitian dilakukan pada sekolah menengah atas di daerah bekasi. waktu penelitian pada bulan april 2019 sampai dengan agustus 2019 target/subjek penelitian target penelitian pada penelitian ini adalah guru – guru yang mengajar pada sekolah menengah atas di daerah bekasi model pengembangan sistem metode penelitian yang digunakan dalam penelitian ini menggunakan kualitatif didasarkan pada siklus hidup pengembangan sistem (sdlc) dengan model waterfall (sukamto & shalahuddin, 2018), model ini dapat dapat menghasilkan http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 4 september 2019 p-issn: 2656-1743 e-issn: 2656-1735 175 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional perangkat lunak yang mampu meningkatkan kerja sistem e-learning dan dapat mengurangi kesalahkesalahan yang disebabkan oleh faktor manusia (human error).(muthia, amalia, puspita, & lestari, 2019) model waterfall terbagi menjadi 5 tahap yaitu 1. analisis kebutuhan perangkat lunak penulis melakukan pengumpulan kebutuhan secara intensif untuk mespesifikasikan kebutuhan perangkat lunak agar dapat dipahami perangkat lunak seperti apa yang dibutuhkan oleh user. 2. desain pada tahap desain penulis melakukan proses yang fokus pada desain pembuatan program perangkat lunak mulai dari rancangan antar muka, pembuatan erd (entity relationship diagram) sampai dengan pembuatan struktur navigasi. pada tahap ini mentranslasi kebutuhan perangkat lunak dari tahap analisis kebutuhan ke representasi desain agar dapat diimplementasikan menjadi program pada tahap selanjutnya. dalam pembuatan database aplikasi e-learning ini menggunakan mysql, dimana pengertian mysql merupakan software database management system (rdbms) yang dapat mengelola database yang sangat cepat, dapat menampung data dalam jumlah sangat besar, dapat diakses oleh banyak user (rofiah, 2018) 3. pembuatan kode program tahap ini penulis diharuskan mentranslasikan desain ke dalam program perangkat lunak. hasil dari tahap ini adalah program komputer sesuai dengan desain yang telah dibuat pada tahap desain. 4. pengujian pengujian pada program ini fokus pada logik dan fungsional dan memastikan semua bagian sudah diuji, pada hal ini penulis menggunakan sistem pengujian black box testing hal ini dilakukan untuk meminimalisir kesalahan (error) dan memastikan keluaran yang dihasilkan sesuai dengan yang diiinginkan penulis. 5. pendukung (support) dan pemeliharaan (maintenance) melakukan pengoperasian perdana kepada beberapa orang dan melakukan pemeliharaan, seperti penyesuaian atau perubahan dengan situasi sebenarnya. data, intrumen, dan teknik pengumpulan data metode pengumpulan data adalah factor yang penting dalam proses dan keberhasilan suatu penelitian. hal ini berkaitan dengan bagaimana cara mengumpulkan data dan siapa sumber yang dapat memberikan informasi data yang dapat digunakan dalam penelitian tersebut:(yuningsih, 2019) 1. observasi penulis melakukan pengamatan langsung terhadap kegiatan yang bekaitan dengan masalah yang diambil pada sekolah menengah atas 2. wawancara dalam penulisan tugas akhir ini untuk mendapatkan informasi secara lengkap, maka penulis melakukan suatu metode tanya jawab dengan kepala sekolah menengah atas 3. studi pustaka selain melakukan kegiatan diatas penulis juga melakukan studi kepustakaan melalui literatur-literatur atau referensi-referensi yang ada di beberapa perpustakaan maupun internet sebagai bahan perbandingan maupun referensi yang berhubungan dengan masalah berkaitan dengan penulisan tugas akhir ini. hasil penelitian dan pembahasan analisa kebutuhan perangkat lunak sekolah merupakan suatu lembaga yang dirancang sebagai tempat pengajaran siswa atau murid di bawah pengawasan guru. sedangkan perpustakaan adalah tempat bagi para murid mendapatkan ilmu selain dari guru, dengan demikian untuk mempermudah siswa untuk meminjam dan membaca maka di butuhkan suatu sistem e-learning. tahap analisa kebutuhan merupakan tahap perencanaan mengenai sistem informasi yang di inginkan . perencanaan mengenai sistem informasi yang akan di bangun. dan menganalisa apa saja yang dibutuhkan dalam membangun aplikasi elearning ini. dalam penelitian ini dilakukan perencanaan dengan membuat analisa kebutuhan sistem a. kebutuhan penguna pada pembuatan website elearning ini telah diperoleh kebutuhan-kebutuhan yang dapat menghubungkan dan saling beriteraksi dalam lingkungan sistem yang telah diinginkan yaitukebutuhan pengguna yang meliputi skenario kebutuhan pengujung, siswa, guru, dan admin. setiap pengguna memiliki kebutuhan informasi yang berbeda-beda, yaitu: 1. pengunjung a. dapat melihat informasi sekolah http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 4 september 2019 176 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional b. dapat memberikan umpan balik kepada admin 2. siswa a. dapat mendownload modul b. dapat melihat kelas dan teman satu kelas c. dapat melihat daftar mata pelajaran d. dapat mengerjakan quiz online e. dapat melakukan upload tugas f. dapat melihat nilai g. dapat merubah profil 3. guru a. dapat meng-upload modul b. dapat melihat matapelajaran yang diajar dan melihat siswa c. dapat membuat quiz dan topik quiz d. dapat membuat penugumpulan tugas dan lihat tugas yang telah diterima e. dapat memberikan nilai tugas siswa f. dapat melihat daftar nilai siswa 4. admin a. dapat mengelola data siswa b. dapat mengelola data guru c. dapat mengelola data kelas d. dapat mengelola data mata pelajaran b. kebutuhan sistem pada website elearning tentunya terdapat sistem yang digunakan untuk memproses semua kebutuhan yang diperlukan untuk mengendalikan website. setiap sistem mempunyai kegunaan masing-masing yaitu: 1. sistem membatasi administrator agar melakukan login terlebih dahulu untuk masuk ke halaman admin dan logout untuk keluar. admin dapat menambah, meng-edit, dan menghapus data siswa, guru, kelas dan matapelajaran. 2. sistem membatasi siswa dan guru untuk melakukan login terlebih dahulu untuk masuk ke menu utama. 3. sistem dapat menambah, meng-edit, dan menghapus data siswa, guru, kelas dan matapelajaran yang tedapat pada halaman admin 4. sistem dapat mengkalkulasi nilai hasil quiz 5. sistem dapat mengirim file tugas dari siswa ke folder yg sudah ditentukan 6. dapat mengirim pesan dari pengunjung ke admin desain tahapan desain ini dapat dilakukan dengan pengambaran aplikasi e-learning yang akan dibangun adalah sebagai berikut: 1. perancangan database: perancangan basis data menghasilkan pemetaan tabel-tabel yang digambarkan dengan entity relationship diagram (erd). gambar 1. entity relationship diagram (erd)aplikasi e-learning http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 4 september 2019 p-issn: 2656-1743 e-issn: 2656-1735 177 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional rancangan logical record structure aplikasi elearning sumber : (frieyadie, 2019) gambar 2. logical record structure aplikasi elearning 2. perancangan navigasi aplikasi e-learning ini mempunyai perancangan struktur navigasi a. struktur navigasi pengunjung login siswa login guru contac us about gambar 3.struktur navigasi pengunjung b. struktur navigasi siswa download modul pilih mata pelajaran latihan quiz upload tugas halaman soal ujian halaman cetak bukti ujian halaman cetak bukti upload tugas nilai profil edit profil gambar 4.struktur navigasi siswa c. struktur navigasi guru lihat mata pelajaran upload modul buat quiz pengumpulan tugas upload soal quiz daftar nilai profil edit profil gambar 5. struktur navigasi guru d. struktur navigasi admin dashboard manajemen siswa manajemen guru tambah guru edit guru tambah siswa manajemen kelas manajemen matapelajaran profil edit profil edit siswa tambah kelas edit kelas tambah matapelajaran edit matapelajaran gambar 6. struktur navigasi admin 3. perancangan user inteface a. halaman utama pada halaman utama menampilkan informasi mengenai profil sekolah dan terdapat dua tombol yaitu “saya siswa” dan “saya guru” ini untuk menampilkan popup modal untuk login baik itu siswa maupun guru. gambar 6.halaman utama pengunjung http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 4 september 2019 178 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional b. halaman login siswa pada halaman ini terdapat form login siswa dimana siswa wajib menginputkan email berserta password jika meng-klik tombol login dan hanya siswa yang berhasil login yang dapat masuk ke halaman dashboard gambar 7.halaman login siswa c. login guru pada halaman ini terdapat form login guru dimana guru wajib menginputkan email berserta password dan meng-klik tombol login dan hanya guru yang berhasil login yang dapat masuk ke halaman dashboard guru. gambar 8.halaman login guru d. contact us pada halaman ini terrdapat form untuk menghubungi admin website berguna untuk melaporkan mengenai apa yang berkaitan dengan website dan menjadi wadah saran atau masukkan dari user untuk pengembangan website. gambar 9.halaman contact us e. dashboard guru pada halaman ini menyediakan menumenu yang berkaitan dengan proses pembelajaran elearning guru seperti membuat tugas, upload modul, memberi nilai tugas dan lain-lain. gambar 10.halaman dashboard guru f. login admin pada halaman ini terdapat form login admin dimana admin wajib menginputkan email berserta password dan meng-klik tombol login dan hanya admin yang berhasil login yang dapat masuk ke halaman dashboard admin. gambar 11.halaman login admin g. dashboard admin pada halaman ini menyediakan menumenu yang berkaitan dengan penunjangan website elearning seperti pengelolaan master dat. gambar 12.halaman dashboard admin code program code program yang digunakan dalam pembuatan aplikasi e-learning ini adalah menggunakan bahasa pemograman php . http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 4 september 2019 p-issn: 2656-1743 e-issn: 2656-1735 179 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional pengujian program pengujian terhadap program yang dibuat menggunakan blackbox testing yang fokus terhadap proses masukan dan keluaran program. a. pengujian terhadap form login siswa tabel.1 hasil pengujian blackbox testing form login siswa no skenario pengujian test case hasil yang diharapkan hasil pengujian kesimpulan 1. user email dan password tidak diisi kemudian klik tombol login user email: (kosong) password: (kosong) sistem akan menolak akses user dan menampilkan “harap isi bidang email dan password” sesuai harapan valid 2 mengetikkan user email dan password tidak diisi atau kosong kemudian klik tombol login user email: (setiawanjaka59 gmail.com) password: (kosong) sistem akan menolak akses user dan menampilkan “harap isi bidang email ” sesuai harapan valid 3 mengetikkan password dan user email tidak diisi atau kosong kemudian klik tombol login user email: (kosong) password: (123) sistem akan menolak akses user dan menampilkan “harap isi bidang password ” sesuai harapan valid 4 mengetikkan user email dengan data yang benar dan password dengan data yang salah kemudian klik tombol login user email: (setiawanjaka59@gmail .com) password: (3219) sistem akan menolak akses user dan menampilkan“password/ email salah!” sesuai harapan valid 5 mengetikkan user email dengan data yang salah dan password dengan data yang benar kemudian klik tombol login user email: (setiawanjaka5129 @gmail.com) password: (123) sistem akan menolak akses user dan menampilkan “password/ email salah!” sesuai harapan valid 6 mengetikkan user email dengan data yang benar dan password dengan data yang benar kemudian klik tombol login user email: (setiawanjaka59@gmail . com) password: (123) sistem akan menerima akses user dan menampilkan halaman dashboard siswa sesuai harapan valid simpulan dan saran simpulan program elearning dapat membantu meningkatakan proses belajar dan mengajar antara siswa dan guru. dengan adanya website elearning proses belajar lebih efisien karena pembelajaran bisa dimana saja dengan penerapan sistem pembelajaran elearning guru dapat memantau perkembangan belajar tiap siswanya. saran berdasarkan kesimpulan di atas penulis membuat beberapa saran untuk mengembangkan aplikasi e-learning ini agar lebih baik lagi dengan adanya maintenance berkala jika sudah diterapkan seperti mengelola database program yang harus diperhatikan agar adanya backup database secara berkala agar data selalu aman apabila terjadi kerusakan software atau hardware yang tidak diinginkan pada server penyimpan database dan menghambat kinerja website itu sendiri sekolah dan guru dapat meman-faatkan media pembelajaran e-learning seba-gai salah satu solusi pemanfaatan internet se-bagai sumber dan media belajar. penambahan beberapa fitur yang dirasa masih kurang seperti adanya metode pembelajaran berbasis video dan fitur chatting atau kirim pesan antar siswa maupun guru. referensi aryadhi, w., parmiti, d. p., putu, l., & mahadewi, p. (2015). pengembangan e-learningdengan model waterfall pada mata pelajaran ipa kelas viii. journal edutech universitas pendidikan ganesha jurusan teknologi pendidikan, 3(1). http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 4 september 2019 180 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional frieyadie. (2019). logical record structure (lrs). retrieved october 9, 2019, from http://frieyadie.web.id/logical-recordstructure-lrs/ hanum, n. s. (2013). keefektifan e-learning sebagai media pembelajaran (studi evaluasi model pembelajaran e-learning smk telkom sandhy putra purwokerto) the effectiveness of e-learning as instructional media (evaluation study of e-learning instructional model insmk telkom san. jurnal pendidikan vokasi, 3(1), 90–102. inayati, i., subroto, t., & supardi, k. i. (2012). pembelajaran visualisasi, auditori, kinestetik menggunakan media swishmax materi larutan elektrolit dan non-elektrolit. chemistry in education, 1(2), 35–41. retrieved from https://journal.unnes.ac.id/sju/index.php/c hemined/article/view/875 muthia, n., amalia, h., puspita, a., & lestari, a. f. (2019). rancang bangun sistem informasi akuntansi penjualan dengan model waterfall berbasis java desktop. jitk (jurnal ilmu pengetahuan dan teknologi komputer), 5(1), 15–22. https://doi.org/10.33480/jitk.v5i1.582 rofiah, s. (2018). pembelajaran php dengan codeigniter berbasis project based learning, 5(2), 183–192. romindo. (2017). perancangan aplikasi elearning berbasis web pada sma padamu negeri medan. jurnal & penelitian teknik informatika, volume 2 n, 6. https://doi.org/10.1007/s13398-014-01737.2 salim, a. (2015). pembelajaran matematika berbasis komputer dengan metode multikomunikasi untuk siswa kelas iv sdlb penyandang tuna rungu dan wicara. jurnal techno nusa mandiri, 12(1), 77–95. retrieved from http://ejournal.nusamandiri.ac.id/index.php /techno/article/view/500 sukamto, r. ., & shalahuddin, m. (2018). rekayasa perangkat lunak terstruktur dan berorientasi objek terstruktur dan berorientasi objek. bandung: informatika. wahyuningsih, d., & makmur, r. (2017). elearning teori dan aplikasi (1st ed.). bandung: informatika. wicaksono, a. r., winarno, w. w., & sunyoto, a. (2015). perancangan dan implementasi elearning pendukung project. seminar nasional teknologi informasi dan komunikasi, 2015(sentika), 333–343. wulandari, d. a. n. (2012). efektifitas computer aided learning (cal) dalam pembelajaran kosakata bahasa inggris siswa sekolah dasar. jurnal pilar nusa mandiri, 8(2), 108–115. retrieved from http://ejournal.nusamandiri.ac.id/index.php /pilar/article/view/481 yohendra, saputra, d., & thjin, s. (2013). perancangan dan kajian penerapan e learning : studi kasus : cyber solution. seminar nasional sistem informasi indonesia, (desember). yuningsih, y. (2019). metode delone dan mclean dalam kepuasan konsumen terhadap aplikasi shopee, 6(1), 55–64. http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.463 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 165 a real-time web information system based on a global positioning system for monitoring environmental pollution eko gustriyadi-1, volvo sihombing-2, masrizal-3, puput dani prasetyo adi-4 1,3 sistem informasi, 2 manajemen informatika universitas labuhanbatu sumatera utara, indonesia 1gustriyadiieko@gmail.com, 2volvolumbantoruan@gmail.com, 3masrizal120405@gmail.com, 4badan riset dan inovasi nasional (brin) jakarta, indonesia 4pupu008@brin.go.id (*) corresponding author abstract this research will discuss monitoring pollution in waterways in real time based on gps. a website-based information system is an essential factor for information media, not only database-based but can be communicated with gps. gps is a satellite system that can determine the point of an area with longitude and latitude parameters. the global positioning system is one of the parameters used in this study. longitude and latitude are the primary keys to getting the point in a particular area or point. in research, this location is used in sensor or environmental pollution monitoring. in this paper, we try to review the projects carried out and perform analysis, management, and governance on the server and local host. the program is made by developing the frontend and backend sides. development can be done on desktop based programming and then extended to mobile by manipulating and modifying programs using javascript, json, and other building scripts for better performance and suitable for deployment on various platforms such as mobile-based. this system is very efficient in determining various parameters, for example, the environmental pollution factor. from testing, the gps data is not perfect, all data can be sent, but the accuracy of gps data can reach 96%. this is due to data errors during uplinking and downlinking data. keywords: information systems; global positioning system; environmental monitoring, real-time, longitude-latitude abstract pada riset ini akan membahas pemantauan pencemaran pada saluran air secara realtime berbasis gps. sistem informasi berbasis website merupakan faktor penting untuk media informasi, tidak hanya berbasis database tetapi dapat dikomunikasikan dengan gps. gps merupakan sistem satelit yang dapat mengetahui titik suatu daerah dengan parameter bujur dan lintang, global positioning system merupakan salah satu parameter yang digunakan dalam penelitian ini, dimana parameter bujur dan lintang merupakan kunci utama untuk mendapatkan suatu titik dalam suatu daerah atau titik tertentu, dalam penelitian ini merupakan lokasi yang digunakan dalam pemantauan sensor atau pemantauan pencemaran lingkungan. dalam naskah ini, kami mencoba meninjau proyek-proyek yang telah dilakukan dan melakukan analisis, manajemen, dan tata kelola di server dan localhost. program dibuat dengan mengembangkan sisi frontend dan backend. pengembangan dapat dilakukan pada pemrograman berbasis desktop dan selanjutnya diperluas ke mobile dengan memanipulasi dan memodifikasi program menggunakan javascript, json, dan skrip bangunan lainnya untuk kinerja yang lebih baik dan cocok untuk ditempatkan di berbagai platform seperti berbasis mobile. sistem ini sangat efisien digunakan untuk mengetahui berbagai parameter dalam sistem, misalnya faktor pencemaran pada suatu lingkungan. dari pengujian data gps belum sempurna, semua data dapat terkirim namun akurasi data gps dapat mencapai 96%. hal ini dikarenakan adanya kesalahan data pada saat proses uplink dan downlink data. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.463 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 166 kata kunci: sistem informasi; sistem penentuan posisi global; pemantauan lingkungan, realtime, bujurlintang introduction conventional systems carry out periodic checks using manual methods, for example, checking water conditions or water quality in areas full of pollution, for example, water pollution in crowded settlements. for example, every week, officers from the cleaning service and health services check the ph of water in areas such as sewers or water reservoirs adjacent to residential areas; this is done to determine the level of pollution that may occur in well water or air pollution. preventive efforts are needed to overcome pollution, which uses conventional methods. in this research, automatic detection or real-time monitoring (moushi et al., 2018) of pollution that occurs in certain areas is carried out using a combination of website-based (hnatushenko et al., 2018) and realtime based technology (benitez cortes et al., 2019), (adi et al., 2022), realtime here is novelty research where data can be appropriately read using gps in real-time (aji et al., 2022). sensor data can be recognized quickly (hnatushenko et al., 2018), (benitez cortes et al., 2019), (liani et al., 2021), (mukti et al., 2021), (vinnikov et al., 2021), (xie et al., 2022), (shi et al., 2018). this method provides quick action for health and hygiene workers to cope with leaking waterways from farm points and other polluting factors such as factory areas. figure 1. gps iot prototype system to monitor river water pollution from the previous research, ganesh ram, aravind dhandapani (june 2022), with his research entitled, development of ph value detection sensor for water to detect and automate water neutralization process, at the end of the research is the detection of quality water for people usage. it indicates the same with its auto-monitoring system. figure 1 obtains the descriptions of this gps-based monitoring (vinnikov et al., 2021), (radhika et al., 2022), (shi et al., 2018). the first is how the power consumption of sensor nodes, the overall prototype, the application server, and the internet server is obtained. the first is how to analyze river water and how much ph is produced by the river water according to the point where the gps module is installed (want et al., 2018), (sunehra et al., 2020). then the next thing is regulating the power consumption taken from sunlight. then how to transmit water ph sensor data to the internet server, attenuation, and quality of service from lorawan devices (moushi et al., 2018), (anand et al., 2019). figure 2. water ph level in an area from gps data furthermore, the prototype data analyzed the value of uplink and downlink data from the lorawan server. from here, we can discover the quality and service of the device or prototype built in the test or monitoring area. at the same time, the website is a system that will display data from mysql or mariadb using python programming code. then display the data simultaneously from the stored ph sensor to mariadb. moreover, mariadb sends the data to the server in real-time. in this case, php and javascript are needed to convert and call data from mariadb or mysql db so that data can be displayed in real time on the website we build. an area monitoring system with water ph level data is shown in figure 2. talking about the website is the same as talking about management information systems. in this case, the water pollution information system is based on the website and the internet of things (iot) (arta et al., 2022), (zhang et al., 2022), (radhika et al., 2022), (adi, sihombing, et al., 2021), jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.463 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 167 (adi, mustamu, et al., 2021). this management information system is a planning control that provides detailed, fast, and accurate information. this fast value is taken from the internet of things, a system that was built (munsadwala et al., 2019), (arta et al., 2022), while the accuracy comes from data sensors installed in the environment, referred to as sensor calibration, for example, water ph. until ph water data can be obtained by all people easily using an ip address or homepage address of application servers such as thingspeak, the things network, or domains in general. figure 3. iot to web of things finally, from the discussion on the internet of things, the water ph monitoring system combined with the website service will turn into a web of things, as shown in figure 3. the role of web technology influences this, the script code used and the combination of gps data (adi, sihombing, et al., 2021) and iot sensors (xie et al., 2022), (want et al., 2018), (xie et al., 2022) based on mysql database which is changed to real-time graph and data table form. then a new problem arises, namely how to determine the incoming data because the incoming data on this web application is not limited in number. to overcome this, a limitation of the data sensor to the server or website server is needed. research methods the flowchart in figure 4 shows the method used in this research. from the method, it can be seen that the initial data is obtained from the sensors contained in the end node, and then the conversion process is carried out to get the sensor data displayed on the web server and internet server and continued on the website pages. the first time is to initialize the gps lib library. in the lora module, run the gps module (anand et al., 2019), and ensure that the ph water is connected correctly and calibrated, then the ph water data is sent to the internet via the application server, and sensor data can be seen in real time on the website. in figure 5, the gps module works with a satellite system (sunehra et al., 2020), (shi et al., 2018). gps detects the longitude and latitude layout, uses uart connected to the microcontroller and power supply, sends data to the gui using python and mariadb, then converts to php and javascript and displays it to the website. figure 4. the system work figure 5. communication data from a satellite to a website the system as a whole can be seen in figure 5 to facilitate an understanding of the system to be built. from figure 5, it can be concluded that the gps module contained in the prototype reads position data from the ph water sensor, and then from that data, it is processed into mysql data form and displayed on the website pages. the processes p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.463 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 168 occur the conversion process of the sensor data entered in the mysql database belonging to the raspberry pi 4.0, namely mariadb, which is then converted to php and javascript. (𝑥 − 𝐴1) 2 + (𝑦 − 𝐵1) 2 + (𝑧 − 𝐶1) 2 − (𝑐(𝑡1 − 𝑑)) 2 = 0 ............ (1) (𝑥 − 𝐴2) 2 + (𝑦 − 𝐵2) 2 + (𝑧 − 𝐶2) 2 − (𝑐(𝑡2 − 𝑑)) 2 = 0 ............ (2) (𝑥 − 𝐴3) 2 + (𝑦 − 𝐵3) 2 + (𝑧 − 𝐶3) 2 − (𝑐(𝑡3 − 𝑑)) 2 = 0 ............ (3) (𝑥 − 𝐴4) 2 + (𝑦 − 𝐵4) 2 + (𝑧 − 𝐶4) 2 − (𝑐(𝑡4 − 𝑑)) 2 = 0 ............ (4) in equations 1-4, x, y, and z are the rectangular coordinates of the gps on the receiver, while a, b, and c are the coordinates of the gps satellites; moreover, satelite positions define (𝐴𝑖, 𝐵𝑖 , 𝐶𝑖 , ), from spherical coordinates (𝜌𝑖 , 𝜑𝑖 , 𝜃𝑖), then the relationship between the satellite and spherical positions is as in equations 5-7. 𝐴𝑖 = 𝜌 cos(𝜑𝑖 ) ................................................................................ (5) 𝐵𝑖 = 𝜌 cos(𝜑𝑖 ) sin(𝜃𝑖 ) ................................................................ (6) 𝐶𝑖 = 𝜌 sin(𝜑𝑖 ) ................................................................................. (6) results and discussion the display on the website page is data taken from the end-node sensor. the system other than the real-time mechanism can also be seen by adding the crud system (create, read, update, delete). this system needs to be made on the website based. as shown in the following figure 6. figure 6. data on the web page’s example furthermore, figure 7 and figure 8 are examples of a web page for adding data, in which there is a crud that can change data easily. figure 7. additional data menu example gps performs specific location tracking at a minor area known as ward and street. this is where gps performs additional important points when tracking, as shown in figure 9 and figure 10. figure 8. add data districts example figure 9. add data ward example figure 10. add data street example furthermore, this gps-based web feature has three view features openstreetmap view, street view, and satellite point view. openstreetmap view is shown in figure 11, and the display is just a line of street data added to the web. while street point view can be seen in figure 12, these are the points where measurements are made. to make it more transparent, change the satellite point view menu so that the satellite displays specific points, namely longitude and latitude, and the results of capture images when we perform measurements. in detail can be seen in figure 14. figure 11. openstreetmap view figure 12. street point view jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.463 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 169 the point in figure 12 can be more specific and detailed if the user adds data. for example, the data is water ph and water temperature. the data taken is the measurement of the ph sensor located on the sensor and attached to the gps module as a single unit. the ph sensor, gps, and lora module are installed as a single unit, and we can take this ph water and gps data as primary data. moreover, satellite point view and details data view is shown in figure 13 and figure 14, and this is gps data that has been combined or synchronized with longitude and latitude data on google maps. figure 13. satellite point view figure 14. details data view conclusions and suggestions conclusion the overall system of this environmental monitoring website can work well and provide specific information for users. this gps-based detection system has been tested and shows high accuracy, but for iot devices, it must continue to be updated and maintained at any time, for example, once a week. from testing gps data not to perfect, all data can be sent but can reach 96% accuracy of gps data. this is because there is a data error during the uplink and downlink process data. the data obtained is data on the position of ph water with the points that have been fixed so that we can automatically get real-time data on ph water with the gps module's value. suggestion there must be data settings; therefore, gps data with ph water data is not sent continuously. data can be sent weekly, then delay or automatic sleep every 5 hours. this is done to reduce packet loss or packet data error (bit) and data effectiveness and mysql data capability in storing data in the database, so it is also necessary to increase the database capacity to be more significant. finally, an increase in programming ability towards a more specific mobile is needed for accessibility, flexibility, and user convenience. references adi, p. d. p., indarti, n., wahyu, y., sudarmanto, b. a., mukti, f. s., & parenreng, j. m. (2022). ecglpwan based for real-time monitoring patient’s heart beat status. in 2022 international seminar on application for technology of information and communication (isemantic), 7–14. adi, p. d. p., mustamu, n. e., siregar, v. m. m., & sihombing, v. (2021). drone simulation for agriculture and lora based approach. internet of things and artificial intelligence journal, 1(4), 221–235. https://doi.org/10.31763/iota.v1i4.501 adi, p. d. p., sihombing, v., siregar, v. m. m., yanris, g. j., sianturi, f. a., purba, w., tamba, s. p., simatupang, j., arifuddin, r., & prasetya, d. a. (2021). a performance evaluation of zigbee mesh communication on the internet of things (iot). in 2021 3rd east indonesia conference on computer and information technology (eiconcit), 7–13. https://doi.org/10.1109/eiconcit50028.20 21.9431875 aji, a. f., lathief, m. f., munawwaroh, d. a., & gumilar, l. (2022). sistem keamanan biometrik sidik jari dan gps tracking pada sepeda motor berbasis teknologi iot. jurnal teknik informatika dan elektro, 4(2), 73–81. https://doi.org/10.55542/jurtie.v4i2.256 anand, s., johnson, a., mathikshara, p., & karthik, r. (2019). real-time gps tracking using serverless architecture and arm processor. 2019 11th international conference on p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.463 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 170 communication systems & networks (comsnets), 541–543. https://doi.org/10.1109/comsnets.2019.8 711273 arta, i. k. c., febriyanto, a., nugraha, i. b. m. h. a., widharma, i. g. s., & purnama, i. b. i. (2022). animal tracking berbasis internet of things. majalah ilmiah teknologi elektro, 21(1), 7. https://doi.org/10.24843/mite.2022.v21i0 1.p02 benitez cortes, r. p., lopez espinoza, r., aguilar navarrete, p., camacho gonzalez, y., & torres covarrubias, v. j. (2019). meyotl: a web-app prototype for the geolocation of people with cognitive impairment. 2019 international conference on inclusive technologies and education (contie), 85–855. https://doi.org/10.1109/contie49246.201 9.00025 hnatushenko, v. v., sierikova, k. y., & sierikov, i. y. (2018). development of a cloud-based web geospatial information system for agricultural monitoring using sentinel-2 data. 2018 ieee 13th international scientific and technical conference on computer sciences and information technologies (csit), 270–273. https://doi.org/10.1109/stccsit.2018.8526717 liani, y. a., munthe, i. r., irmayani, d., broto, b. e., yanris, g. j., prasetya, d. a., haryanto, r., adi, p. d. p., muslikh, a. r., & arifuddin, r. (2021). the broiler chicken coop temperature monitoring use fuzzy logic and lorawan. proceeding icera 2021: 2021 3rd international conference on electronics representation and algorithm, 161–166. https://doi.org/10.1109/icera53111.2021. 9538771 moushi, o. m., kamal, m., haque, m., & ahsan, m. s. (2018). design and development of an online bus monitoring system. 2018 10th international conference on electrical and computer engineering (icece), 69–72. https://doi.org/10.1109/icece.2018.86367 90 mukti, f. s., adi, p. d. p., prasetya, d. a., sihombing, v., rahanra, n., yuliawan, k., & simatupang, j. (2021). integrating cost-231 multiwall propagation and adaptive data rate method for access point placement recommendation. international journal of advanced computer science and applications, 12(4), 772–777. https://doi.org/10.14569/ijacsa.2021.0120 494 munsadwala, y., joshi, p., patel, p., & rana, k. (2019). identification and visualization of hazardous gases using iot. 2019 4th international conference on internet of things: smart innovation and usages (iot-siu), 1–6. https://doi.org/10.1109/iotsiu.2019.8777481 radhika, a., manochitra, g., keerthanen, k., mahendran, k., kumar, r. m., & sarath, n. m. (2022). low-cost iot-based early detection of flood monitoring and alert system using gps and gsm. proceeding of 2nd international colloquium on computational & experimental mechanics (iccem 2021), 2545, 040007. https://doi.org/10.1063/5.0108131 shi, j., zhang, l., & ge, d. (2018). remote intelligent position-tracking and control system with mcu/gsm/gps/iot. proceedings of the 2018 international conference on computing and artificial intelligence, 66–70. https://doi.org/10.1145/3194452.3194464 sunehra, d., sreshta, v. s., shashank, v., & kumar goud, b. u. (2020). raspberry pi based smart wearable device for women safety using gps and gsm technology. 2020 ieee international conference for innovation in technology (inocon), 1–5. https://doi.org/10.1109/inocon50539.202 0.9298449 vinnikov, v., pshehotskaya, e., & gritsevich, m. (2021). partial decoding of the gps extended prediction orbit file. 2021 29th conference of open innovations association (fruct), 375– 384. https://doi.org/10.23919/fruct52173.202 1.9435474 want, r., wang, w., & chesnutt, s. (2018). accurate indoor location for the iot. computer, 51(8), 66–70. https://doi.org/10.1109/mc.2018.3191259 xie, z., zhang, r., fang, j., & zheng, l. (2022). a monitoring system based on nb-iot and bds/gps dual-mode positioning. electronics, 11(16), 2493. https://doi.org/10.3390/electronics111624 93 zhang, x., chen, p., tang, l., xia, y., li, j., jiang, n., xie, h., xia, q., & wu, l. (2022). planning bus networks by exploiting gps trajectories collected by iot‐enabled vehicles. international journal of communication systems. https://doi.org/10.1002/dac.5229 127 comparative analysis of the k-nearest neighbor algorithm on various intrusion detection datasets andri agung riyadi 1), fachri amsury 2), irwansyah saputra 3), tiska pattiasina 4), jupriyanto 5) sains data1, sistem informasi2,3,5 universitas nusa mandiri andriagu1603@nusamandiri.ac.id1, fachri.fcy@nusamandiri.ac.id2, irwansyah.iys@nusamandiri.ac.id3, jupriyanto.kahar@gmail.com5 teknologi informasi universitas bina sarana informatika elleoratiska07@gmail.com4 abstrak keamanan di dalam jaringan komputer dapat menjadi rentan, hal ini disebabkan kita memiliki kelemahan dalam membuat kebijakan keamanan, konfigurasi sistem komputer yang lemah atau bug pada perangkat lunak. intrusion detection adalah mekanisme mengamankan jaringan komputer dengan cara mendeteksi, mencegah, dan menghalangi usaha ilegal untuk mengakses informasi yang bersifat rahasia. mekanisme ids dirancang untuk dapat melindungi sistem dan mengurangi dampak kerusakan yang ada dari setiap serangan di dalam jaringan komputer karena melanggar kebijakan keamanan komputer meliputi ketersediaan, kerahasiaan, dan integritas. teknik data mining telah digunakan untuk memperoleh pengetahuan yang berguna dari penggunaan dataset-dataset ids. beberapa dataset ids yang umum digunakan adalah nsl-kdd, 10% kdd, full kdd, corrected kdd99, unsw-nb15, adfa windows, caida, dan unm telah digunakan untuk mendapatkan tingkat akurasi menggunakan algoritma k-nearest neighbors (k -nn). dataset ids terbaru yang disediakan oleh canadian institute of cybersecurity yang berisi sebagian besar skenario serangan terbaru bernama dataset cicids2017. eksperimen pendahuluan menunjukkan bahwa pendekatan menggunakan metode k-nn pada dataset cicids2017 berhasil menghasilkan nilai rata-rata akurasi deteksi intrusi tertinggi dibandingkan dataset ids lainnya. kata kunci: intrusion detection system, k-nearest neighbors, machine learning, network security abstract because we have flaws in developing security rules, inadequate computer system settings, or software defects, security in computer networks can be vulnerable. intrusion detection is a computer network security method that detects, prevents, and blocks unauthorized access to confidential information. the ids method is intended to defend the system and minimize the harm caused by any attack on a computer network that violates computer security policies such as availability, confidentiality, and integrity. data mining techniques were utilized to extract relevant information from ids databases. the following are some of the most widely utilized ids datasets nsl-kdd, 10% kdd, full kdd, corrected kdd99, unsw-nb15, adfa windows, caida, dan unm have been used to get the accuracy rate using the k-nearest neighbors algorithm (k-nn). the latest ids dataset provided by the canadian institute of cybersecurity contains most of the latest attack scenarios named the cicids2017 dataset. preliminary experiment shows that the approach using the k-nn method on the cicids2017 dataset successfully produces the highest average value of intrusion detection accuracy than other ids datasets. keywords: intrusion detection system, k-nearest neighbors, machine learning, network security introduction the number of internet users around the world has exploded in the previous two decades. hundreds of thousands of institutions and millions of people communicate with each other every day over the internet. as a result of these advancements, the number of attacks on internet networks continues to rise on a daily basis. data integrity and privacy become a significant concern. the three principles of network security are confidentiality, integrity, and availability, and network security 128 attempts to defend the network from assaults on these three principles. an attempt to violate these three key characteristics is referred to as a network attack (bace & mell, 2001). there is a lot of software that protects data and networks from incoming threats, such as firewalls, antivirus, data encryption, and user authentication, but it can't protect against all attacks. a lot of studies have been done on this subject to tackle this problem. intrusion detection systems (ids) was created to track and filter network activity by detecting threats and alerting network administrators (chung & wahid, 2012). the misuse detection method and the anomaly detection method are the two basic approaches for ids. ineffective against all forms of threats, yet each has its own set of strengths and weaknesses (lin, ke, & tsai, 2015). misuse detection is a methodical strategy to detect an assault on a computer network by comparing actions or looking for patterns that have previously been designated as attack symptoms. the abuse detection method is effective for detecting known assaults, but it is unable to detect fresh attacks (zhang, li, gao, wang, & luo, 2015). anomaly detection is useful at identifying novel assaults, with the exception that it is not very effective at known detection rates, resulting in a high fpr (kim, lee, & kim, 2014). data mining techniques have been used to obtain useful knowledge from the use of ids datasets. some ids datasets that are commonly used are nsl-kdd, 10% kdd, full kdd, corrected kdd99, unsw-nb15, adfa windows, caida, dan unm have been used to get the accuracy using the k-nn algorithm approach (hamid, et al., 2018). cicids2017, one of the latest ids datasets from the canadian cybersecurity institute (cic) at new brunswick university (unb), was analyzed for research purposes (sharafaldin, habibi lashkari, & ghorbani, 2018). the cicids2017 dataset is created using a modern framework that takes into account your organization's policies and conditions and uses coefficients that can be individually determined for each criterion (gharib, sharafaldin, lashkari, & ghorbani, 2016). the solution to overcome the challenges of fraud detection and anomaly detection technologies and maximize the capabilities of the two technologies is to use a hybrid approach(depren, topallar, anarim, & ciliz, 2005). for use with ids, three hybrid methods are recommended: fraud detection and subsequent anomaly detection, anomaly detection and subsequent fraud detection, or fraud detection and anomaly detection at the same time. the ids hybrid method uses a combination of many results from independent training of fraud detection and anomaly detection. for example, in the hybrid method, if at least one of the two methods classifies network traffic as an attack, then network traffic is considered an attack. in this case, the detection rate is high, but the ids's fpr is still high. conversely, if the hybrid method considers network traffic as an attack only if both methods are classified as attacks, the fpr will be low, but many attacks in the network traffic will be ignored (kim et al., 2014). false positive rate (fpr) is when the ids system detects benign or normal activity on the computer network and classifies it as a dangerous attack. this research uses the k-nearest neighbor algorithm approach to measure the attack detection accuracy of the cicids2017 dataset. the algorithm method is not used in the cicids2017 dataset. research methods in conducting research, will use knowledge discovery in databases (kdd) method consisting of five stages, namely data selection, preprocessing, transformation, data mining, interpretation, or evaluation (fayyad, 1997). the cicids2017 dataset will be used as the latest standard dataset for research and evaluation studies in the field of ids, performing analysis to further identify the data, creating the initial findings, and then evaluating the quality of the data. the cicids2017 dataset consists of 3.1 million records with 85 attributes, including one attribute used as a label. dataset attributes have seven attack categories and one normal category. the preprocessing process includes removing duplicate data, checking for inconsistent data, removing low-value or completely useless features, converting labels of all attack types to attack labels, and fixing data errors. feature selection is used to determine which features are important and to discard low-quality and uncorrelated features. given the number of records in the cicids2017 dataset, you should perform data sampling for efficiency reasons. in this study, we obtained a 1% sample from the cicids2017 dataset. the fitted model is used to compare the result of the precision value using the k-nn algorithm approach with the value of k = 5, 6, 7, 8, 9. results obtained in the form of accuracy, precision, and recall values are produced by comparison with other ids datasets. literature study a. intrusion detection systems and cicids2017 dataset intrusion detection systems (ids) are a very important part of protecting information systems in computer networks. the research report written by anderson (1980) whose purpose was to 129 enhance the audit capabilities of computer security and customer surveillance capabilities of the system, served as the initial concept of ids (anderson, 1980). there are three commonly used approaches to ids systems: misuse detection, anomaly detection, and hybrid detection (mchugh, christie, & allen, 2000). hybrid detection uses the ids approach. this method combines the use of misuse detection and anomaly detection to improve the ability of both attack detection methods. there are three ways to implement hybrid methods on ids, namely the use of the misuse detection method followed by the anomaly detection method, the anomaly detection method followed by the method of misuses detection or integrating the method of misuse detection, and the anomaly detection method at the same time (kim et al., 2014). cicids2017 is a dataset made by the university of new brunswick's (unb) canadian institute for cybersecurity (cic). cicids2017 was created using a modern framework that takes into account organizational policies and conditions with coefficients that can be individually determined for each criterion. this dataset consists of approximately 3.1 million records with more than 80 attributes, where 1 attribute is used as a label. the attributes in the dataset have 7 attack categories and 1 benign or normal category. the 7 categories of attacks in this dataset are heartbleed attack, botnet, dos attack, brute force attack, ddos attack, infiltration attack, and web attack. b. methodology data mining is the application of special algorithms to extract patterns from data (fayyad, 1997). data mining is about solving problems by analyzing existing data in the database (witten et al., 2005). there are numerous techniques and methods for carrying out various types of data mining tasks. this method is classified into three major data mining paradigms, which are as follows: predictive modeling, discovery, and deviation detection. data mining and knowledge discovery in databases (kdd) are frequently used interchangeably to describe the process of uncovering hidden information in a large database (agushinta & irfan, 2008). although they have different concepts, data mining and kdd are related. data mining is one of the stages in the kdd process. one of the ten best data mining techniques is the k-nearest neighbors (k-nn) classification algorithm method. the k-nearest neighbors (k-nn) method uses famous ciceroprinciplepares cum paribus facility congregant (birds of a feather flock together or equals with equals easily associate) (mucherino, papajorgji, & pardalos, 2009). the accuracy, precision, and recall of eight different ids datasets were compared using the k-nn algorithm. in the nsl-kdd dataset, the k-nn algorithm outperforms other algorithms in terms of accuracy, precision, and recall (hamid et al., 2018). the k-nn method does not generate a classifier from the data in a training set, but rather uses the training set every time classification is required; thus, the k-nn method is often referred to as a lazy classifier. classification employs the analogy-based k-nn algorithm method, which compares test records with training records that have similarities. the k-nearest neighbors (k-nn) algorithm is a method for classifying objects that are based on learning data that is close to the object. this technique is very simple and straightforward to use. similar to clustering techniques, namely grouping new data based on its distance from some existing data or its nearest neighbor. the first step is to calculate the distance to a neighbor before searching for data. then, to define the distance between two points, namely the point on the training data and the point on the testing data, the euclidean formula is used with equation (1), as follows: 𝑑(𝑎, 𝑏) = (𝑥 + 𝑎)𝑛 = ∑ (𝑋𝑖 − 𝑌𝑖)² 𝑛 𝑖=0 ………… (1) explanation: x: data 1 y: data 2 i: feature n d (a,b): euclidean distance n: number of features in the concept of data mining, a confusion matrix is a method that is commonly used to calculate accuracy. if the dataset only has two classes, one is considered positive and the other is considered negative. table 1. confusion matrix data class positive negative positive true positives (tp) false negatives (fn) negative false positive (fp) true negative (tn) accuracy is defined as the degree of similarity between predicted and actual values. precision is the degree of agreement between the information requested by the user and the response provided by the system. precision values are calculated by dividing the number of positive examples correctly classified by the number of positive examples labeled as positive by the system. 130 the recall rate is the system's success rate in rediscovering information. the recall value is calculated by dividing the number of correctly classified positive samples by the number of positive examples in the data. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁 𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁 ............................................ (2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 𝑇𝑃+𝐹𝑃 ......................................................... (3) 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 𝑇𝑃+𝐹𝑁 ................................................................ (4) research framework development the ideas for this research were proposed using references from previous evaluations regarding data collection in several ids datasets, beginning with the use of the cicids2017 dataset as a standard dataset for researchers in the field of intrusion detection systems (ids) (sharafaldin et al., 2018). data will be preprocessed by removing features that have been written twice, discarding wrong notes, no value, or incomplete data, and so on (alshammari & nur zincir-heywood, 2007; radford, richardson, & davis, 2018). the dataset's data is labeled with two labels: benign and attack. the benign traffic represents normal network traffic, while the rest is an attack. it is feared that data cleansing or feature selection, which eliminates features that are less valuable or completely useless, will render research results irrelevant. to prepare for the data mining process, data reduction and data splitting are performed. the k-nearest neighbors (k-nn) approach will be used as a data mining algorithm to improve intrusion detection accuracy with values of k = 5, 6, 7, 8, 9. results and discussion the data mining algorithm method approach is used at the classification stage to determine the accuracy of attack detection in the cicids2017 dataset. the algorithm used is the k-nn algorithm with values of k = 5, 6, 7, 8, 9. a. k-nearest neighbour figure 1 depicts the accuracy, precision, and recall values in the cicids2017 dataset using the k-nn algorithm with values of k = 5, 6, 7, 8, 9. figure 1. classification results using the k-nn algorithm b. comparison with another dataset table 2 compares the accuracy, precision, and recall values in several other ids datasets using the k-nn algorithm with the value of k = 5, 6, 7, 8, 9. table 2. comparison of the results of the k-nn algorithm on various ids datasets dataset neighborhood 5 6 7 8 9 accuracy precision recall accuracy precision recall accuracy precision recall accuracy precision recall accuracy precision recall full kdd99 0.7342 0.722 0.734 0.70979 0.721 0.71 0.72028 0.736 0.72 0.65734 0.624 0.657 0.6958 0.633 0.696 corrected kdd 0.6682 0.67 0.668 0.71495 0.707 0.715 0.48598 0.496 0.486 0.71962 0.722 0.72 0.71028 0.701 0.71 nslkdd 0.7853 0.677 0.785 0.92 0.92 0.92 0.97592 0.959 0.976 0.9875 0.977 0.988 0.77193 0.77 0.772 10% kdd 0.8421 0.874 0.842 0.57142 0.571 0.571 0.64285 0.629 0.643 0.71428 0.706 0.714 0.5 0.521 0.5 unsw 0.4285 0.351 0.429 0.57142 0.571 0.571 0.66083 0.655 0.661 0.8421 0.874 0.842 0.82456 0.83 0.825 caida 0.6428 0.413 0.643 0.42857 0.762 0.351 0.5 0.521 0.5 0.71428 0.706 0.714 0.64285 0.413 0.643 adfa windows 0.7142 0.714 0.714 0.64285 0.413 0.643 0.82456 0.83 0.825 0.91228 0.92 0.912 0.85308 0.858 0.853 unm dataset 0.6382 0.626 0.638 0.79906 0.794 0.799 0.66822 0.67 0.668 0.72429 0.712 0.724 0.57943 0.53 0.579 cicis2017 0.9688 0.9172 0.926 0.9697 0.919 0.929 0.9676 0.9157 0.922 0.9683 0.916 0.925 0.9664 0.9113 0.921 131 the k-nn algorithm with the value of k= 5, 6, 7, 8, 9 is used in figure 2 to calculate the average value of accuracy, precision, and recall. figure 2. comparison of the average values of accuracy, precision, and recall of the k-nn algorithm on various ids datasets we represented cicids2017 for comparison with several other existing ids datasets; as shown in figure 1, the highest accuracy value of the cicids2017 dataset was obtained using the k-nn algorithm with the value of k = 6, which equals 96.97%. table 2 shows the accuracy, precision, and recall values in some ids datasets, with the nslkdd dataset having the highest level of accuracy using the k-nn algorithm with k = 8. conclusions and suggestions conclusion the goal of this study is to detect network anomalies using machine learning methods. because of its up-to-dateness, wide attack diversity, and various network protocols, the cicids2017 dataset was used in this context. the average value of accuracy, precision, and recall uses the k-nn algorithm with the value of k= 5, 6, 7, 8, 9 on the cicids2017 dataset higher than other ids datasets which are 96.8160%, 91.5840%, 92.4640% as seen on figure 2. suggestion based on the conclusions obtained, several suggestions can later be done for future research that researchers can use a more varied algorithm and up-to-date ids datasets. references agushinta, d. (2008, august). perancangan aplikasi data mining untuk memrediksi permintaan customer pada perusahaan persewaan mobil. in proceeding, seminar ilmiah nasional komputer dan sistem intelijen (kommit 2008). alshammari, r., & nur zincir-heywood, a. (2007). a flow-based approach for ssh traffic detection. in 2007 ieee international conference on systems, man and cybernetics (pp. 296–301). ieee. doi:10.1109/icsmc.2007.4414006 anderson, j. p. (1980). computer security threat monitoring and surveillance. technical report, james p. anderson company. chung, y. y., & wahid, n. (2012). a hybrid network intrusion detection system using simplified swarm optimization (sso). applied soft computing, 12(9), 3014–3022. doi:10.1016/j.asoc.2012.04.020 data mining: practical machine learning tools and techniques. (2011). elsevier. doi:10.1016/c2009-0-19715-5 witten, i. h., frank, e., hall, m. a., pal, c. j., & data, m. (2005). practical machine learning tools and techniques. in data mining (vol. 2, p. 4). depren, o., topallar, m., anarim, e., & ciliz, m. k. (2005). an intelligent intrusion detection system (ids) for anomaly and misuse detection in computer networks. expert systems with applications, 29(4), 713–722. doi:10.1016/j.eswa.2005.05.002 fayyad, u. (1997). data mining and knowledge discovery in databases: implications for scientific databases. in proceedings. ninth international conference on scientific and statistical database management (cat. no.97tb100150) (pp. 2–11). ieee comput. soc. doi:10.1109/ssdm.1997.621141 gharib, a., sharafaldin, i., lashkari, a. h., & ghorbani, a. a. (2016). an evaluation framework for intrusion detection dataset. in 2016 international conference on information science and security (iciss) (pp. 1–6). ieee. doi:10.1109/icissec.2016.7885840 kim, g., lee, s., & kim, s. (2014). a novel hybrid intrusion detection method integrating anomaly detection with misuse detection. expert systems with applications, 41(4), 1690– 1700. doi:10.1016/j.eswa.2013.08.066 lin, w.-c., ke, s.-w., & tsai, c.-f. (2015). cann: an intrusion detection system based on combining cluster centers and nearest neighbors. knowledge-based systems, 78, 13– 21. doi:10.1016/j.knosys.2015.01.009 mchugh, j., christie, a., & allen, j. (2000). defending yourself: the role of intrusion detection systems. ieee software, 17(5), 42–51. doi:10.1109/52.877859 bace, r., & mell, p. (2001). nist special publication on intrusion detection systems. booz-allen and hamilton inc mclean va. mucherino, a., papajorgji, p. j., & pardalos, p. m. (2009). k-nearest neighbor classification (pp. 83–106). doi:10.1007/978-0-387-88615-2_4 radford, b. j., richardson, b. d., & davis, s. e. (2018). sequence aggregation rules for anomaly 132 detection in computer network traffic. arxiv preprint arxiv:1805.03735. sharafaldin, i., habibi lashkari, a., & ghorbani, a. a. (2018). toward generating a new intrusion detection dataset and intrusion traffic characterization. in proceedings of the 4th international conference on information systems security and privacy (pp. 108–116). scitepress science and technology publications. doi:10.5220/0006639801080116 hamid, y., balasaraswathi, v. r., journaux, l., & sugumaran, m. (2018). benchmark datasets for network intrusion detection: a review. int. j. netw. secur., 20(4), 645-654. zhang, j., li, h., gao, q., wang, h., & luo, y. (2015). detecting anomalies from big network traffic data using an adaptive detection approach. information sciences, 318, 91–110. doi:10.1016/j.ins.2014.07.044 jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.556 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 425 clickbait detection in indonesia headline news using indobert and roberta muhammad edo syahputra-1*, ade putera kemala-2, dimas ramdhan-3 computer science department1*), 2, data science / school of computer science3 bina nusantara university jakarta, indonesia muhammad.syahputra002@binus.ac.id1 , ade.kemala@binus.ac.id2, dimas.ramdhan@binus.ac.id3 (*) corresponding author abstract this paper explores clickbait detection using transformer models, specifically indobert and roberta. the objective is to leverage the models specifically for clickbait detection accuracy by employing balancing and augmentation techniques on the dataset. the research demonstrates the benefit of balancing techniques in improving model performance. additionally, data augmentation techniques also improved the performance of roberta. however, it resulted differently for indobert with slightly decreased performance. these findings underline the importance of considering model selection and dataset characteristics when applying augmentation. based on the result, indobert, with a balanced distribution, outperformed the previous study and the other models used in this research. this study used three dataset distribution settings: unbalanced, balanced, and augmented with 8513, 6632, and 15503 total data counts, respectively. furthermore, by incorporating balancing and augmentation techniques, the research surpasses previous studies, contributing to the advancement of clickbait detection accuracy, contributing to the advancement of clickbait detection accuracy with 95% accuracy in f1-score with unbalanced distribution. however, the augmentation method in this study only improved the roberta model. moreover, performance might be boosted by gathering more varied datasets. this work highlights the value of leveraging pre-trained transformer models and specific dataset-handling techniques. the implications include the necessity of dataset balancing for accurate detection and the varying impact of augmentation on different models. these insights aid researchers and practitioners in making informed decisions for clickbait detection tasks, benefiting content moderation, online user experience, and information reliability. the study emphasizes the significance of utilizing state-of-the-art models and tailored approaches to improve clickbait detection performance. keywords: clickbait detection; transformer; deep learning; data augmentation abstrak makalah ini mengeksplorasi pendeteksian clickbait menggunakan model transformer, khususnya indobert dan roberta. tujuannya adalah untuk memanfaatkan model khusus untuk akurasi deteksi clickbait dengan menggunakan teknik penyeimbangan dan augmentasi pada dataset. penelitian menunjukkan manfaat teknik penyeimbangan dalam meningkatkan kinerja model. selain itu, teknik augmentasi data juga meningkatkan kinerja roberta. namun hasil yang didapatkan berbeda bagi indobert dengan sedikit penurunan kinerja. temuan ini menggarisbawahi pentingnya mempertimbangkan pemilihan model dan karakteristik dataset saat menerapkan augmentasi. berdasarkan hasil tersebut, indobert dengan distribusi berimbang mengungguli penelitian sebelumnya serta model lain yang digunakan dalam penelitian ini. penelitian ini menggunakan tiga skema dataset untuk melakukan eksperimen yaitu distribusi unbalanced sebanyak 8513 total data, balanced 6631 data, dan augmented data dengan total 15503 data. selain itu, dengan menggabungkan teknik penyeimbangan dan augmentasi, penelitian ini melampaui penelitian sebelumnya, dengan mendapatkan akurasi sebesar 95% pada model indobert yang divalidasi menggunakan metode f1 score. namun, berdasarkan eksperimen metode augmentasi tidak memberikan kenaikan pada model indobert. sebaliknya metode augmentasi cukup efektif pada model roberta. selain itu, dengan menambahkan jumlah data yang lebih bercvariasi dapat meningkat performa model secara signifikan. pekerjaan ini menyoroti nilai memanfaatkan model transformer yang telah dilatih sebelumnya dan teknik mailto:muhammad.syahputra002@binus.ac.id mailto:ade.kemala@binus.ac.id2 mailto:dimas.ramdhan@binus.ac.id p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.556 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 426 penanganan kumpulan data tertentu. implikasinya termasuk perlunya penyeimbangan dataset untuk deteksi yang akurat dan berbagai dampak augmentasi pada model yang berbeda. wawasan ini membantu peneliti dan praktisi dalam membuat keputusan yang tepat untuk tugas deteksi clickbait, yang menguntungkan moderasi konten, pengalaman pengguna online, dan keandalan informasi. studi ini menekankan pentingnya memanfaatkan model canggih dan pendekatan yang disesuaikan untuk meningkatkan kinerja deteksi clickbait. kata kunci: clickbait detection; deep learning; deep learning; data augmentasi introduction clickbait has become a mainstream approach in online media, where the headline is not aligned with the content. usually, the headline uses catchy or exaggerated words to attract the reader’s attention. this approach considerably negatively impacts society (bondielli & marcelloni, 2019; zhou et al., 2022). in a survey (bondielli & marcelloni 2019), the clickbait approach potentially leads to a polarized society. the existence of social media with its algorithm can amplify the distribution of information, including news, which could shape society’s discourse in a public space (shukai et al., 2017). such phenomenon also appears in the united states, uk, and arguably worldwide social media. many studies have been conducted exploring methods to tackle this clickbait problem. an early approach using a machine learning classifier is explored (abbas et al., 2019; chakraborty et al., n.d.; manjesh et al., 2018; potthast et al., 2016). however, the studies mentioned still lack performance in capturing meaning and validating using fleiss’ within the context of headline news (zheng et al., 2021). however, recent studies using the deep learning approach have shown promising results (agrawal, n.d.; kim, 2014; zhou et al., 2022). a study (aju et al., 2022) conducted an empirical study comparing the performance of the machine learning and deep learning approaches. the result shows that bert provides maximum efficiency by outperforming the machine learning method with 10% accuracy. also, in the study (oliva et al., 2022), the divergence measures technique in deep learning to tackle dataset availability in clickbait detection outperforms the machine learning approach in accuracy. however, there is still a gap to be filled in indonesian clickbait detection. since there are still only a few studies focusing on bahasa indonesia using the deep learning approach. moreover, the availability of the dataset in bahasa indonesia is also one of the gaps in this research and in deep learning research in general. also, one of the disadvantages of the deep learning approach is that it takes more time to train since a large dataset is needed to extract and learn features (sirusstara et al., 2022a). therefore, this research aims to explore and leverage a pre-trained model to build a classifier model for indonesian headline news compared to the previous research (sirusstara et al., 2022a) using the same dataset from (hadiyat, 2019). in addition, this research utilized the dataset for balancing and augmentation to improve model accuracy, which was not utilized in the previous study. research methods the methodology proposed in this research consists of three phases: obtaining the dataset, preprocessing, and training using deep learning models. dataset this research obtained the dataset from (william & sari, 2020). the dataset contains more than 15000 indonesian headline news from 12 news publishers. every headline is annotated as clickbait and non-clickbait by the 3 annotators method (fleiss & cohen, 1973). based on annotation results, the dataset has several versions. the version used in this research is mainly from the inter-annotator agreement score of 0.42, the highest fleiss’ k score with distribution, as shown in table 1. table 1. dataset label distribution class total count clickbait 3316 non-clickbait 5297 total 8513 jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.556 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 427 pre-processing considering the amount of headline news dataset, which is relatively small, this research used augmentation techniques such as eda (wei & zou, n.d.) and bootstrapping (stine, 2016) to balance the distribution. since the deep learning technique requires a large amount of data to achieve great results, constructing the dataset will most likely affect the model's performance dramatically. in addition, data augmentation has been proven to be effective and improve performance in many tasks, including computer vision (perez & wang, 2017) and speech recognition (park et al., 2019). data augmentation is a technique that utilizes the available data to synthesize new similar data. therefore, it allows researchers to overcome the scarcity of the dataset available. furthermore, adding more variety to the data also leads to avoiding overfitting. bootstrapping in this research, a simple balancing method is conducted using resample method. in this method, a random resampling is proceeded by generating extra data points to the dataset based on bootstrapping procedure (stine, 2016). table 2 is shown the difference in dataset distribution after resampling. table 2. before and after resampling class total count clickbait 3316 non-clickbait 3316 total 6632 eda another approach to data augmentation used in this research is eda (easy data augmentation). in general, eda consists of four approaches synonym replacement (sr), random insertion (ri), random swap (rw), and random deletion (rd). in the first step, sr’s function is initialized to randomly selects n number of words and replaces these words randomly based on selected synonyms from ir’s function. ir generates synonyms in n times randomly, excluding stop words to be replaced in sr with random positions. also operated in n times, rs randomly selects two words in a sentence to swap their positions. finally, rd measures these selected words in a sentence in a probability of p. table 3 shows the dataset distribution after eda. table 3. before and after augmentation class total count clickbait 9539 non-clickbait 5964 total 15503 deep learning technique this paper focuses on deep learning algorithms, specifically using large models from indonesian bert (koto et al., 2020; wilie et al., 2020) or called indobert. indobert uses the same architecture as the original bert with different pre-training datasets, which are unlabeled textcorpus. bert uses a multi-headed attention mechanism as its method (vaswani et al., n.d.) and has been proven to outperform other methods in many nlp benchmarks. in other words, bert is currently known as the state-of-the-art in nlp research. a paper from (koto et al., 2020) proposed indobert, which heavily pre-trained the model using mostly news datasets such as kompas, tempo, liputan6, wikipedia, etc. in total, indobert trained over 220m corpus words. indobert trained purely as a masked language model using the huggingface framework. they also followed the default configuration for bert-base, which has 12 hidden layers, 12 attention heads, and feed-forward hidden layers of 3,072d. the model used an adam optimizer and linear scheduler in pre-training. moreover, the paper also shows the model's high performance in many tasks, such as summarization, sentiment analysis, named entity recognition, etc. unlike (koto et al., 2020), (wilie et al., 2020) also proposed indobert with a larger and more general pre-training dataset. the model trained over 4 billion corpus indonesian words from many sources such as wikipedia, webpage articles, and twitter. therefore, this research implemented a model from (wilie et al., 2020). however, the model from (koto et al., 2020) is also considered to see the impact of specifically pre-training datasets from news headlines that are dominantly used in the research, which is suitable for this research. for training both indobert models, this research used adam optimizer with a learning rate 2e-5 and batch size of 64 and 10 epochs using one gpu nvidia rtx 3080ti. furthermore, this research added more than 3000 headline news to the dataset and trained on both models with the same configuration. then, examine the result for further analysis. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.556 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 428 results and discussion model comparison table 4 shows the experimental results of indobert (wilie et al., 2020) and roberta model from hugging face by cahya, in which the model has been trained with the indonesian dataset. overall, indobert architecture trained with a balanced dataset and without augmentation outperformed other models with (95%) accuracy of f1-score. this accuracy also outperformed previous research using xlm-roberta with (91%) accuracy of f1-score. table 4. experiment results model train test split 8:2 average precision average recall f1-score train test indobenchmark/indobert-base-p1 imbalance 0.99 0.93 0.96 0.86 0.94 balance 0.9882 0.9396 0.9259 0.9176 0.9508 imbalance + augment 0.9964 0.98 0.907 0.87 0.93 balance + augment 0.9952 0.936 0.904 0.934 0.94 cahya/roberta-base-indonesian-522m imbalance 0.98 0.92 0.87 0.92 0.93 balance 0.9839 90.36 0.84 0.9182 0.91 imbalance + augment 0.9925 0.7766 0.6935 0.7589 0.8119 balance + augment 0.993 0.9164 0.8764 0.9131 0.9308 this study also experimented with the same model as the previous study, adding the balancing and augmentation method to the dataset. the augmentation method combined with a balanced dataset improved the accuracy by 4%. thus, this study's model performed better than the previous one. also, based on the experiment results shows that balanced data distribution could improve the accuracy of both models. whereas the augmentation method only boosts performance on the roberta model. data distribution results table 4 also shows the experiment results based on the type of dataset presented in the table. according to the results, they are revealing distinct trends for the indobert and roberta. the experiment using a dataset with a balanced distribution exhibited improved accuracy for indobert and roberta. in contrast with the augmentation method, the model only improves roberta. however, the augmentation method only enhances the performance of the roberta model while slightly decreasing the performance of indobert. the eda augmentation method dramatically increases dataset distribution, as table 3 illustrates. this method leverages the indonesian wordnet, incorporating operations such as synonym replacement, insertion, swap, and deletion, which introduce noise into the training data. although the eda method employs simple operations, the unilingual indonesian wordnet is better suited for our dataset, which consists of indonesian headline news. the amount of augmented dataset could be tuned and equated for each augmentation method. however, this paper used the default parameters, thus producing a different amount of augmented dataset. comparison with previous study table 5 compares the results of this study with the best results from the previous study. table 5 showcases the performance of indobert and roberta models using the eda augmentation method and the previous research's best method, including roberta and xlm-roberta models without data augmentation. the results indicate that when combined with balanced data distribution and the augmentation method, the models in this study outperformed the previous research in all testing scenarios. jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.556 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 429 table 5. model comparison with previous study model augmentation type precision recall f1-score indobert (this study) normal 0.96 0.86 0.94 indobert (this study) eda 0.92 0.91 0.95 robert (sirusstara et al., 2022b) normal 0.87 0.874 8738 roberta eda 0.87 0.91 0.93 xlmroberta (sirusstara et al., 2022b) normal 0.91 0.91 0.91 conclusions and suggestions this research employed two architectural models and three dataset settings: imbalance, balance, and augmented. despite utilizing the eda augmentation method, indobert demonstrated superior performance with 95% accuracy in the f1score when the distribution was balanced. however, as observed in previous studies, augmentation improved accuracy in the roberta model without balancing an augmentation method towards the dataset. to further advance clickbait detection, exploring additional deep learning architectures for future research would be beneficial. furthermore, collecting more diverse datasets could enhance performance, and investigating the parameters in the augmentation models could be another avenue for future investigation. references abbas, m., ali memon, k., & aleem jamali, a. (2019). multinomial naive bayes classification model for sentiment analysis. ijcsns international journal of computer science and network security, 19(3), 62. agrawal, a. (n.d.). clickbait detection using deep learning. retrieved september 21, 2022, from https://www.reddit.com/r/news aju, d., kumar, k. a., & lal, a. m. (2022). exploring news-feed credibility using emerging machine learning and deep learning models. journal of engineering science and technology review, 15(3), 31–37. https://doi.org/10.25103/jestr.153.04 bondielli, a., & marcelloni, f. (2019). a survey on fake news and rumour detection techniques. information sciences, 497, 38–55. https://doi.org/10.1016/j.ins.2019.05.035 chakraborty, a., paranjape, b., kakarla, s., & ganguly, n. (n.d.). stop clickbait: detecting and preventing clickbaits in online news media. fleiss, j. l., & cohen, j. (1973). the equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. educational and psychological measurement, 33(3), 613–619. https://doi.org/10.1177/001316447303300 309/asset/001316447303300309.fp.png_ v03 hadiyat, y. d. (2019). clickbait on indonesia online media. journal pekommas, 4(1), 1. https://doi.org/10.30818/jpkm.2019.20401 01 kim, y. (2014). convolutional neural networks for sentence classification. emnlp 2014 2014 conference on empirical methods in natural language processing, proceedings of the conference, 1746–1751. https://doi.org/10.3115/v1/d14-1181 koto, f., rahimi, a., lau, j. h., & baldwin, t. (2020). indolem and indobert: a benchmark dataset and pre-trained language model for indonesian nlp. 757–770. https://doi.org/10.18653/v1/2020.colingmain.66 manjesh, s., kanakagiri, t., vaishak, p., chettiar, v., & shobha, g. (2018). clickbait pattern detection and classification of news headlines using natural language processing. 2nd international conference on computational systems and information technology for sustainable solutions, csitss 2017. https://doi.org/10.1109/csitss.2017.84477 15 oliva, c., palacio-marín, i., lago-fernández, l. f., & arroyo, d. (2022). rumor and clickbait detection by combining information divergence measures and deep learning techniques. 1–6. https://doi.org/10.1145/3538969.3543791 park, d. s., chan, w., zhang, y., chiu, c.-c., zoph, b., cubuk, e. d., & le, q. v. (2019). specaugment: p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.556 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 430 a simple data augmentation method for automatic speech recognition. https://doi.org/10.21437/interspeech.20192680 perez, l., & wang, j. (2017). the effectiveness of data augmentation in image classification using deep learning. undefined. potthast, m., köpsel, s., stein, b., & hagen, m. (2016). clickbait detection. lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 9626, 810–817. https://doi.org/10.1007/978-3-319-306711_72 shukai, slivaamy, wangsuhang, tangjiliang, & liuhuan. (2017). fake news detection on social media. acm sigkdd explorations newsletter, 19(1), 22–36. https://doi.org/10.1145/3137597.3137600 sirusstara, j., alexander, n., alfarisy, a., achmad, s., & sutoyo, r. (2022a). clickbait headline detection in indonesian news sites using robustly optimized bert pre-training approach (roberta). 2022 3rd international conference on artificial intelligence and data sciences: championing innovations in artificial intelligence and data sciences for sustainable future, aidas 2022 proceedings, september, 248–253. https://doi.org/10.1109/aidas56890.2022. 9918678 sirusstara, j., alexander, n., alfarisy, a., achmad, s., & sutoyo, r. (2022b). clickbait headline detection in indonesian news sites using robustly optimized bert pre-training approach (roberta). 2022 3rd international conference on artificial intelligence and data sciences: championing innovations in artificial intelligence and data sciences for sustainable future, aidas 2022 proceedings, 248–253. https://doi.org/10.1109/aidas56890.2022. 9918678 stine, r. (2016). an introduction to bootstrap methods. http://dx.doi.org/10.1177/00491241890180 02003, 18(2–3), 243–291. https://doi.org/10.1177/004912418901800 2003 vaswani, a., brain, g., shazeer, n., parmar, n., uszkoreit, j., jones, l., gomez, a. n., kaiser, ł., & polosukhin, i. (n.d.). attention is all you need. wei, j., & zou, k. (n.d.). eda: easy data augmentation techniques for boosting performance on text classification tasks. 6382–6388. retrieved september 23, 2022, from http://github. wilie, b., vincentio, k., indra winata, g., cahyawijaya, s., li, x., lim, z. y., soleman, s., mahendra, r., fung, p., bahar, s., purwarianti, a., & bandung, i. t. (2020). indonlu: benchmark and resources for evaluating indonesian natural language understanding (pp. 843–857). https://aclanthology.org/2020.aacl-main.85 william, a., & sari, y. (2020). click-id: a novel dataset for indonesian clickbait headlines. data in brief, 32, 106231. https://doi.org/10.1016/j.dib.2020.106231 zheng, j., yu, k., & wu, x. (2021). a deep model based on lure and similarity for adaptive clickbait detection. knowledge-based systems, 214, 106714. https://doi.org/10.1016/j.knosys.2020.106 714 zhou, m., xu, w., zhang, w., & jiang, q. (2022). leverage knowledge graph and gcn for finegrained-level clickbait detection. world wide web, 25(3), 1243–1258. https://doi.org/10.1007/s11280-02201032-3 jurnal riset informatika vol. 5, no. 3 june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.555 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 419 analysis of indonesian language dataset for tax court cases: multiclass classification of court verdicts ade putera kemala-1*, hafizh ash shiddiqi-2 data science1*, computer science2 school of computer science, bina nusantara university jakarta, indonesia ade.kemala@binus.ac.id1*), hafizh.shiddiqi@binus.ac.id2) (*)coresponding author abstrak pajak adalah kewajiban yang timbul akibat adanya undang-undang, menciptakan kewajiban bagi warga negara untuk memberikan sebagian pendapatan mereka kepada negara. pengadilan pajak berperan sebagai otoritas peradilan bagi wajib pajak yang mencari keadilan dalam sengketa pajak. penelitian ini menyajikan analisis dataset pengadilan pajak dalam bahasa indonesia dengan tujuan melakukan klasifikasi multiclass untuk memprediksi putusan pengadilan. sebelum digunakan dataset melalui tahap pra-pemrosesan untuk membersihkan data, proses augmentasi data menggunakan metode oversampling dan label weighting untuk mengatasi ketidakseimbangan kelas. dua model, yaitu bi-lstm dan indobert, digunakan untuk melaksanakan proses klasifikasi. penelitian ini menghasilkan model akhir dengan akurasi 75,83% menggunakan model indobert. hasil penelitian menunjukkan efektivitas kedua model dalam memprediksi putusan pengadilan. penelitian ini memiliki implikasi dalam memprediksi kesimpulan pengadilan dengan informasi kasus yang terbatas, dan memberikan wawasan berharga untuk proses pengambilan keputusan hukum. temuan ini berkontribusi pada bidang analisis data hukum, menampilkan potensi teknik nlp dalam memahami dan memprediksi hasil pengadilan, sehingga meningkatkan efisiensi proses hukum. kata kunci: nlp; tax; bert; deep learning; klasifikasi abstract tax is an obligation that arises due to the existence of laws, creating a duty for citizens to contribute a certain portion of their income to the state. the tax court serves as a judicial authority for taxpayers seeking justice in tax disputes, handling various types of taxes on a daily basis. this paper presents an analysis of an indonesian language dataset of tax court cases, aiming to perform multiclass classification to predict court verdicts. the dataset undergoes preprocessing steps, while data augmentation using oversampling and label weighting techniques address class imbalance. two models, bi-lstm and indobert, are utilized for classification. the research produced a final result of model with 75.83% using indobert model. the results demonstrate the efficacy of both models in predicting court verdicts. this research has implications for predicting court conclusions with limited case details, providing valuable insights for legal decisionmaking processes. the findings contribute to the field of legal data analysis, showcasing the potential of nlp techniques in understanding and predicting court outcomes, thus enhancing the efficiency of legal proceedings. keywords: nlp; tax; bert; deep learning; classification introduction taxation, from an economic standpoint, refers to the transfer of resources from the private sector to the public sector. from a legal perspective, taxation is an obligation that arises due to the existence of laws, creating a duty for citizens to contribute a certain portion of their income to the state (sutedi, 2022). tax is a compulsory contribution imposed by the government on taxpayers, whether individuals or corporations, and it is enforced based on legal provisions. the government does not provide direct compensation to taxpayers; however, tax revenue should be utilized for the maximum prosperity of the people and the needs of the state (halim et al., 2014). taxation in indonesia is primarily regulated in the constitution through article 23a of the undang undang dasar (uud) tahun 1945 (pracasya, 2021) “taxes and other compulsory p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.555 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 420 levies for the purposes of the state are regulated by law”. based on the collecting institutions, taxes in indonesia are levied by both central and regional institutions. the types of taxes managed by the central government include income tax (pph), value-added tax (ppn), luxury goods sales tax (ppnbm), stamp duty (bea materai), land and building tax for plantations, forestry, and mining. these taxes are mostly managed by the directorate general of taxes and the ministry of finance (farouq, 2018). taxes play a crucial role in the life of a nation, particularly in the implementation of development, as taxes serve as a source of state revenue to finance expenditures, including development expenses. the general functions of taxes are budgetary, regulatory, stability, and income redistribution functions (rohendi, 2014). the tax court is a judicial body that exercises judicial authority over taxpayers or tax payers seeking justice in tax disputes they encounter. the tax court has the same status, rank, and independence as other equivalent courts. this tax court operates within the framework of state administration and has an organizational structure that ultimately reports to the mahkamah agung (supreme court) (sandra, 2021). nlp (natural language processing) research has been flourishing in recent years due to the advancements in context-based models in nlp research, revolutionalized by the publication of the transformer model (vaswani et al., 2017). one of the developments stemming from the transformer model is the bert (bidirectional encoder representations from transformers) model (devlin et al., 2018), which is an architecture created by stacking the encoder component of the transformer model. previously, the popular method involved using word vectors like word2vec (church, 2017) or glove(pennington et al., 2014) combined with deep neural networks such as lstm (yu et al., 2019). using bert architecture, it is possible to create a pre-trained model that is trained with a huge amount of unlabeled data to provide it with a general understanding of language. subsequently, the pre-trained model can be further fine-tuned using a small amount of labeled data to adapt it to a specific task. the bert model has achieved remarkable results in various nlp tasks, such as classification (sun et al., 2019), question answering (wang et al., 2019), and named entity recognition (church et al., 2020). one of the implementation of the bert architecture, pre-trained on the indonesian language, is referred to as indobert (wilie et al., 2020). this model is trained with dataset called indo4b which is a 23gb collection of corpus dataset, including wikipedia, twitter, newsletter data. the resulting model has achieved state-of-the-art results in several nlp tasks specific to indonesian language. the aim of this paper is to analyze the dataset of legal cases from the indonesian tax court and attempt to predict the court verdict using available data by leveraging the capabilities of the bert model for multiclass classification tasks. due to the limited availability of textual dataset in the indonesian language (ferdiana et al., 2019), there is still a gap that needs to be addressed in indonesian natural language processing research. therefore, this research aims to explore and utilize pre-trained models to build a classifier model for analyzing and classifying court-based data. research methods this quantitative research focuses on analyzing and performing a multiclass classification task to predict court verdicts based on provided indonesian language text data. most of the research was conducted in the virtual space, utilizing cloud services provided by google for the required computational tasks. the execution timeframe for this research was from june 1, 2023, to july 7, 2023. figure 1. flowchart research figure 1 shows the steps involved in this research, starting with the dataset processing and utilizing the data to develop two nlp models. each jurnal riset informatika vol. 5, no. 3 june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.555 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 421 model has different mechanisms, resulting in different treatments for the training dataset. once the training process is completed, the accuracy of the models is evaluated. dataset the dataset used is the indonesian tax court verdict summary, which is a secondary dataset and is open source, obtained through kaggle (christian, 2021). this dataset consists of 12,283 text data entries describing the content of tax disputes in the tax court along with the court decisions. each data row represents a case in the tax court. the dataset consists of 7 columns. the detailed explanations for each column can be found in table 1. table 1. dataset features no column desc 1 text textual data from court documents 2 nomor_putusan court decision number 3 tahun_pajak tax year 4 jenis_pajak tax type 5 tahun_putusan year of court decision 6 pokok_sengketa main dispute 7 jenis_putusan type of verdicts the dataset contains tax disputes handled by the tax court from 2005 to 2020. among these 7 columns, the jenis_pajak (tax type) and pokok_sengketa (main dispute) columns will be used as features for analysis, while the jenis_putusan (verdict type) column will be used as the label column. in this stage, we will attempt a multiclass classification task using the dataset. we will analyze the dataset, clean it, and determine which parameters to use. based on preliminary inspection, we are particularly interested in using the pokok_sengketa (main dispute) as the primary feature for determining the verdict. this column contains the textual main object of discussion regarding the dispute related to this legal case. figure 2. tax type distribution figure 3. court verdict distribution figures 2 and 3 display the statistical data distribution based on the jenis_putusan (decision type) and jenis_pajak (tax type) columns. it is evident that based on the jenis_putusan column, there are three types of verdicts with higher frequencies which is : mengabulkan seluruhnya (approved completely), mengabulkan sebagian (partially approved), and menolak (rejected). for convenience, menolak will be referred to as label '0', mengabulkan sebagian as label '1', and mengabulkan seluruhnya as label '2'. in figure 2, it is shown that there are four major types of tax cases in the dataset: beacukai (customs), ppn (value-added tax), pph (income tax), and gugatan (tax lawsuit). based on this preliminary examination, we will only utilize these four types of cases that have verdicts falling into the three most common categories in the dataset. table 2 displays the final data to be used for training and testing. there is a significant imbalance in the dataset labels, and various approaches will be employed to address this issue later. table 2. data distribution data total count class distribution (0 : 1 : 2) all data 11380 4011 : 1464 : 5905 beacukai 4371 1340 : 265 : 2766 ppn 3992 1201 : 773 : 2018 pph 1730 573 : 404 : 753 gugatan 1287 897 : 22 : 368 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.555 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 422 models there are two models used in this research. the first model is the bi-lstm model. for this algorithm, the dataset is further pre-processed by removing stopwords and punctuation. afterward, the dataset is split into an 80:20 distribution as training data and testing data. the resulting training data is fed into a bi-lstm network to train the model. to ensure the best result, we employ a gridsearch method (akiba et al., 2019) to find the optimal hyperparameters for the model. the search space consists of the embedding dimension ranging from 50 to 300, lstm units ranging from 64 to 256, and dropout rates ranging from 0 to 0.5. the best hyperparameters generated by this method and the default initial values to train the model can be observed in table 3. the resulting models then evaluated with testing data to find the accuracy of the model. table 3. hyperparameter searching hyperparameter range best value default value embedding dimension 50 – 300 271 100 lstm unit 64 – 256 75 128 dropout 0 – 0.5 0.11 0.5 the second model used in this research is called indobert, which is an implementation of the bert architecture specifically for the indonesian language. for this model, pre-processing is not required since the model focuses on the context of the sentences as a whole. deleting or modifying the sentences may remove or alter the context. the data split used remains the same, with an 80:20 ratio for the train data and test data. the model is trained with the following hyperparameter settings: maximum input length of 512, batch size of 16, epoch of 10, and a learning rate of 5e-06. several scenarios were tested with this model, and further details of these scenarios will be explained in the following section. imbalance dataset to address data imbalance, two methods will be employed namely : label weighting and oversampling. label weighting is a technique used to address the issue of imbalanced datasets in machine learning. it involves assigning different weights to the labels or classes in the dataset based on their frequency or importance (madabushi et al., 2020). with label weighting, each label will be assigned a different weight based on its frequency distribution. label weighting helps in giving more importance to the minority classes on the other hand, for the oversampling method, the eda (easy data augmentation) technique (wei & zou, 2019) combined with wordnet will be used to generate new synthetic data using similar words from the wordnet corpus. it is worth noted that only the train data will be oversampled to prevent data testing leakage. there are several steps implemented by the eda method to perform data augmentation, including replacing words with their synonyms, deleting a percentage of words, rearranging the positions of words in a sentence, and randomly inserting words into sentences. these steps are randomly applied to each data row. this augmentation will result in a more balanced dataset, where all classes with fewer instances will be augmented to match the size of the majority class. the results of the oversampling technique are presented in table 4. table 4. data distribution after oversampling data class distribution (0 : 1 : 2) beacukai 2166 : 2180 : 2195 ppn 1950 : 1833 : 1607 pph 924 : 630 : 607 gugatan 731 : 630 : 846 results and discussion the overall results of the research are presented in table 5. several insights can be derived from these results. table 5. research result model data acc indobert all data normal 75.83% weighted label 75.04% beacukai data normal 79.66% weighted label 78.29% oversampling 65.49% ppn data normal 80.48% weighted label 79.50% oversampling 51.81% pph data normal 66.48% weighted label 65.61% oversampling 43.06% gugatan data normal 86.05% weighted label 81.78% oversampling 64.34% bi-lstm all data normal parameter 67.36% best parameter 67.57% the first insight observed from the results is that context-based models like bert outperformed word vector-based models with deep jurnal riset informatika vol. 5, no. 3 june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.555 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 423 neural networks such as bi-lstm. even with the best parameters applied to the bi-lstm model, there was no significant increase in performance compared by using the initial hyperparameter in bilstm model. for the indobert model, several scenarios were tested. the first scenario involved fine-tuning the model using all available data. there was no significant difference between using normal distribution data or weighted distribution data; both scenarios achieved an accuracy of 75%. after observing the performance using all the data, it was decided to attempt dividing the data by tax types. the rationale behind this is that different types of taxes may involve distinct wording and contextual elements in each legal case. the results indicated that the fine-tuning process using beacukai and ppn data yielded better results compared to the previous approach. it is worth noting that among all tax types, pph (income tax) proved to be the most challenging for the model to classify accurately. regarding the gugatan (tax lawsuit) data, its comparatively higher performance may be attributed to significant label imbalances within the testing data. there were only sufficient data for two labels, while the last label had very little representation. as a result, the model primarily focused on classifying the two main labels, which was relatively easier than classifying all three labels, leading to a more significant improvement in performance. it is also observed that using the weighted label and oversampling methods does not contribute to an improvement in the models' performance. in the case of oversampling, where several words in a sentence may be altered, removed, or added, it can potentially change the contextual meaning of the text, making it more challenging for the bert model to accurately analyze the true context of the data. conclusions and suggestions after analyzing the data, performing the necessary preprocessing data for each model it is concluded that context-based model like bert performed best on a multiclass classification task. interestingly, neither label weighting and oversampling method yielded a better result in this particular case. this research has implications for predicting court conclusions with limited case details, providing valuable insights for legal decision-making processes. the findings contribute to the field of legal data analysis, showcasing the potential of nlp techniques in understanding and predicting court outcomes, thus enhancing the efficiency of legal proceedings. suggestion for future research is to use ‘text’ column in dataset as a new features and extract relevance information from it in order to perform multiclass classification with a better result. references akiba, t., sano, s., yanase, t., ohta, t., & koyama, m. (2019). optuna: a next-generation hyperparameter optimization framework. proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining, 2623–2631. christian, w. (2021). indonesian tax court verdict summary. https://www.kaggle.com/datasets/christian wbsn/indonesia-tax-court-verdict church, k. w. (2017). emerging trends: word2vec. natural language engineering, 23(1), 155– 162. https://doi.org/10.1017/s13513249160003 34 church, k. w., luoma, j., & pyysalo, s. (2020). exploring cross-sentence contexts for named entity recognition with bert. arxiv preprint arxiv:2006.01563, 23(1), 155–162. devlin, j., chang, m.-w., lee, k., & toutanova, k. (2018). bert: pre-training of deep bidirectional transformers for language understanding. arxiv preprint arxiv:1810.04805. farouq, m. (2018). hukum pajak di indonesia. prenada media. ferdiana, r., jatmiko, f., purwanti, d. d., ayu, a. s. t., & dicka, w. f. (2019). dataset indonesia untuk analisis sentimen. jurnal nasional teknik elektro dan teknologi informasi, 8(4), 334–339. halim, a., bawono, i. r., & dara, a. (2014). perpajakan: konsep, aplikasi, contoh, dan studi kasus. jakarta: salemba empat. madabushi, h. t., kochkina, e., & castelle, m. (2020). cost-sensitive bert for generalisable sentence classification with imbalanced data. arxiv preprint arxiv:2003.11563. pennington, j., socher, r., & manning, c. d. (2014). glove: global vectors for word representation. proceedings of the 2014 conference on empirical methods in natural language processing (emnlp), 1532–1543. pracasya, d. p. (2021). penerapan peraturan perundang-undangan pajak daerah atas p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.555 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 424 perubahan pasal mengenai perpajakan dalam undang-undang dasar republik indonesia tahun 1945. " dharmasisya” jurnal program magister hukum fhui, 1(2), 13. rohendi, a. (2014). fungsi budgeter dan fungsi regulasi dalam ketentuan perpajakan indonesia. jurnal ecodemica: jurnal ekonomi, manajemen, dan bisnis, 2(1), 119–126. sandra. (2021). mengenal tugas dan wewenang pengadilan pajak. https://www.pajakku.com/read/60cc494e5 8d6727b1651ab0f/mengenal-tugas-danwewenang-pengadilan-pajak sun, c., qiu, x., xu, y., & huang, x. (2019). how to fine-tune bert for text classification? china national conference on chinese computational linguistics, 194–206. sutedi, a. (2022). hukum pajak. sinar grafika. vaswani, a., shazeer, n., parmar, n., uszkoreit, j., jones, l., gomez, a. n., kaiser, ł., & polosukhin, i. (2017). attention is all you need. arxiv preprint arxiv:1706.03762. https://arxiv.org/abs/1706.03762 wang, z., ng, p., ma, x., nallapati, r., & xiang, b. (2019). multi-passage bert: a globally normalized bert model for open-domain question answering. arxiv preprint arxiv:1908.08167. wei, j., & zou, k. (2019). eda: easy data augmentation techniques for boosting performance on text classification tasks. arxiv preprint arxiv:1901.11196. wilie, b., vincentio, k., winata, g. i., cahyawijaya, s., li, x., lim, z. y., soleman, s., mahendra, r., fung, p., & bahar, s. (2020). indonlu: benchmark and resources for evaluating indonesian natural language understanding. arxiv preprint arxiv:2009.05387. yu, y., si, x., hu, c., & zhang, j. (2019). a review of recurrent neural networks: lstm cells and network architectures. neural computation, 31(7), 1235–1270. 191 the effect of amount of data on results of accuracy value of c4.5 algorithm on student achievement index data anton sunardi 1*), sienny rusli 2, christina juliane 3 information system master's program stmik likmi https://likmi.ac.id antonsunardi@gmail.com1*), siennyrusli@gmail.com2, christina.juliane@likmi.ac.id3 (*) corresponding author abstract of the many academic data, data in the form of an achievement index needs to be used in-depth so that it does not become a display of numbers and information only. this achievement index evaluation data reflects the educational process students and teaching staff carries out in an educational process. this study aims to measure the accuracy of data mining processing based on differences in test data by analyzing the c4.5 algorithm using rapidminer as a data processing tool and determining the decisions students can make and academic institutions in developing study strategies and educational curricula to be maximized. the data processing is carried out by classifying the student achievement index data at a private university using data analysis test equipment. the data source comes from kaggle.com, which consists of 1687 data that have been processed and processed. the conclusion from the results of this study is that the amount of data turns out to have a significant influence on the accuracy value of the c4.5 algorithm, where an accuracy rate of 91.69% is obtained from the test results of 1687 data with four main attributes, namely ipk1, ipk2, ipk3, ipk4 and correctly or not as a label. keywords: the amount of data, c4.5, achievement index, data mining abstrak dari sekian banyak data akademik, data berupa indeks prestasi perlu dimanfaatkan secara mendalam agar tidak menjadi tampilan deret angka dan informasi saja. data evaluasi indeks prestasi ini merupakan cerminan dari proses pendidikan yang dilakukan pelajar, mahasiswa, dan tenaga pengajar dalam suatu proses pendidikan. penelitian ini bertujuan untuk mengukur tingkat akurasi pengolahan data mining berdasarkan perbedaan jumlah data uji dengan menganalisa algoritma c4.5 menggunakan rapidminer sebagai alat bantu olah data, dan untuk mengetahui keputusan yang dapat diambil oleh pelajar, mahasiswa dan institusi akademis dalam menyusun strategi studi dan kurikulum pendidikan agar lebih maksimal. proses olah data dilakukan dengan mengklasifikasikan data indeks prestasi mahasiswa pada sebuah perguruan tinggi swasta menggunakan alat uji analisis data. sumber data berasal dari kaggle.com yang terdiri dari 1687 data yang telah diproses dan diolah. kesimpulan dari hasil penelitian ini adalah jumlah data ternyata memiliki pengaruh signifikan terhadap nilai akurasi algoritma c4.5, dimana tingkat akurasi sebesar 91.69 % didapatkan dari hasil uji terhadap 1687 data dengan 4 atribut utama yaitu ipk1, ipk2, ipk3, ipk4 dengan tepat atau tidak kelulusan sebagai label. kata kunci: jumlah data, c4.5, indeks prestasi, data mining introduction from time to time, along with the rapid development of the world of data and education, a person is required to improve knowledge and skills to have a good and quality thinking pattern to plan strategies in the face of future competition. performance evaluations are stored and collected by various universities in the form of student achievement index data that universities can use as one of the supports that the management of education organizers can use to determine their educational strategies. the way to use historical data is to process it using data mining methods, one of which is by applying data classification methods so that patterns and rules can produce helpful information to support students and educational institutions in developing learning strategies and educational strategies. mailto:antonsunardi@gmail.com1 mailto:siennyrusli@gmail.com2 mailto:christina.juliane@likmi.ac.id3 192 in previous studies, the level of accuracy in processing student graduation data using several methods can also be tested using machine learning or deep learning techniques, as has been done by (maryanto, 2017). from the explanation in the research, data processing requires a tool that can measure the level of accuracy. according to 2020 college statistics (handini et al., 2020) the amount of student data recorded nationally compared to the number of students enrolled in the ministry of education and culture has a significant difference. therefore, research is needed to apply extensive data collection to support the industrial revolution as a breakthrough in rapid technological progress. research that has been done previously by (budiman & ramadina, 2015) regarding predictions using the data mining classification algorithm conducted by (windarti & suradi, 2019) applies large amounts of data to data analysis concepts that can help readers, especially students and teaching staff and related agencies. their field determines educational strategies by considering various aspects, especially the influence of gpa and the accuracy of the student achievement index data results. this research is presupposed to provide benefits for students as an early reminder about the potential for untimely graduation so that students can develop a more effective study plan strategy. for academic institutions to foreknown provide information in the form of patterns and images that can be used to determine policies in minimizing the student's potential untimely graduation, which is not timely in the scientific field, it is hoped that this research can provide changes in data mining testing techniques. the classification method uses the c4.5 algorithm for varying amounts of data so that this research can be used as a reference for parties in need. research methods the method used in data collection and reference consists of analytical techniques used to classify data and is done by selecting large amounts of data sourced from kaggle.com, then sorting and cleaning steps to be arranged according to research needs, namely 1687 data divided into five research attributes. data processing is carried out using the rapidminer data processing tool to find c4.5 accuracy through careful calculations to find the best level of precision to produce data references to be implemented. the data is applied through the process of extracting patterns from data using training data of 80% and testing data of 20%, then conducted a comparison test of the accuracy rate of the c4.5 algorithm, with the number of data 100, 400, 900, 1250, 1450, and 1687 from a private university in indonesia, referring to the student achievement index. the research flow can be presented in figure 1 below: figure 1. research flow research type according to (chapman et al., 2000), crispdm is a method that connects the background to be achieved to data usage and provides an overview of the data cycle. research using similar techniques was conducted by (sabna & muhardi, 2016) regarding the data cycle of the data wealth of college students. this study uses six stages of the data processing process, namely: 1. business understanding the focus of this stage is more on understanding the objectives and requirements than turning this knowledge into the purpose of extracting data. 2. data understanding data understanding begins with data collection, then getting to know the data, identifying data quality, looking for insights, and detecting groups of data parts that can generate hypotheses on confidential information. 3. data preparation (amir & abijono, 2018) it is posited that the stages in the preparation of data are processed in several locations and can be non-sequential as modelling tools are performed labelling, attribute selection, transformation, and data cleaning to build the final dataset. rapidminer is a data processing tool used to find patterns, designs, knowledge, and evaluation of large amounts of data. it is an opensource learning machine that contains data tools for pre-processing, classification, rule, and association 193 so that it is easy to visualize stated. (muis & affandes, 2015) 4. modelling this research refers to previous research by (romadhona, suprapedi, & himawan, 2017). in his discussion of data modelling using the c4.5 algorithm decision tree, he explains that there is a higher level of accuracy when compared to id3 and chaid algorithms. therefore, modelling is determined and adjusted to achieve optimal values at the modelling stage. at this stage, the authors tested the amount of data against the level of accuracy by comparing data < 1000, namely 100, 400, and 900, and data >1000 data, namely 1250, 1400, and 1687. (hermawanti, asriyanik, & sunarto, 2019) found an accuracy rate of 68.42% using 145 test data, comparing < 1000 data i.e. 100, 400, 900 and data > 1000 data namely 1250, 1400 and 1687. this study used training data of 80% test data of 20% to produce optimal accuracy values referring to discussions done previously by (musu, ibrahim, & heriadi, 2021) 5. evaluation at the evaluation stage, an assessment of the data that has been generated from accuracy values based on confusion matrix, under curve area values (auc) and execution time (et). (olson & shi, 2007) his book entitled introduction to the science of business data excavation explains that a confusion matrix produces four types of classifications, namely true positive (tp), true negative (tn), false positive (fp), and false-negative (fn). the formulation of the confusion matrix in table form is described in table 1 below: table 1. confusion matrix table (olson and shi 2007) true value true false predicted value true tp (true positive) correct result fp (false positive) unexpected result false fn (false negative) missing result tn (true negative) correct absence of result information: true positive (tp): the amount of positive and predicted data to be accurate as positive. false positive (fp): the amount of harmful data but predicted as positive. false negative (fn): the amount of data that is positive but predicted as negative. true negative (tn): the amount of negative and predicted data to be accurate as negative. referring to research conducted by (azhari, situmorang, & rosnelly, 2021), it is mentioned that precision is the accuracy of getting information from accurate positive and negative class data. in addition to the accuracy value, there is also a value to recall specific information obtained from the recall value. the comparison value in testing against research data is obtained from the system's predictive value and the tester's prediction value called accuracy. once the results of the confusion matrix calculation are obtained, estimations for precision, recall, and accuracy values can be calculated as in the measures in formula 1 below: precision = 𝑇𝑃 𝑇𝑃+𝐹𝑃 ............................................................... (1) recall = 𝑇𝑃 𝑇𝑃+𝐹𝑁 .................................................................... (2) accuracy = 𝑇𝑃+𝑇𝑁 𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 .............................................. (3) formula1. table precision, recall, and accuracy (olson & shi, 2007) formula with the following description: tp: true positive fp: false positive tn: true negative fn: false negative 6. deployment according to (saefulloh & moedjiono, 2013), after the formation of the model, further analysis and measurements are carried out at the previous stage. at this stage, the most accurate model or rule is applied to predict timely graduation and can then be used to evaluate new data. the concept of data deployment refers to the application of a model to predict the accuracy results of 91.69% of 1687 data that students, educators, and readers can use to monitor data processing strategy plans with the implementation of data mining if the purpose of the model is to increase knowledge about data, knowledge. what is obtained needs to be arranged and presented so that students, educators, and related institutions can use it? the implementation stage produces research reports that can be used for repetitive data mining. students or students, educators, and educational institutions that carry out deployment steps need to be understood to redevelop necessary knowledge so that the results have use value. 194 procedure this research was conducted by referring to various literature studies in the form of research results in journals and books seized according to related research needs as a reference for writing. the steps of the data excavation and processing process procedure using rapidminer that we do can be presented in figure 2 below: figure 2. process of processing data, methods, knowledge, evaluation using rapidminer (author source) results and discussions (megna, 2021) in his research in 2021, he believed that large amounts of data are enormous data sets in volume but grow exponentially with the time that traditional data does not have, so it requires management tools that can store or process it to be efficient. based on this, the diversity of data formats that are increasingly complex and grow over time requires data governance using techniques and technology. here are the results obtained based on the crisp-dm methodology theory 1. business understanding the purpose of the study was to determine the amount of data in the dataset that affects the degree of accuracy in the decision tree classification method with the c4.5 algorithm. 2. data understanding the student achievement index dataset is in the form of public data taken from kaggle.com, with 1687 data and four attributes containing student achievement index values and 1 point of appropriate or inappropriate graduation used as a label. the initial data is presented in table 2 and table 3 below: table 2. initial dataset table no sai1 sai2 sai3 sai4 yes / no 1 2.30 1.97 1.80 1.56 no 2 1.81 1.68 1.57 1.86 no 3 3.07 3.00 2.75 3.21 no 4 2.71 2.33 2.61 1.98 no 5 3.17 3.02 3.28 2.96 no 6 3.16 3.45 3.02 3.06 no 7 2.72 2.50 2.92 3.00 no . . . . . . 1687 3.18 3.05 3.05 3.27 yes table 3. dataset description table attribute name information sai1 student achievement index 1 sai2 student achievement index 2 sai3 student achievement index 3 sai4 student achievement index 4 yes / no right or not graduation 3. data preparation in the preparatory stage, the dataset was adjusted to the data mining processing process using rapidminer, and the decision tree classification method was carried out with the c4.5 algorithm and then obtained 1687 data with four attributes. student achievement index and one attribute are appropriate or not timely as labels as presented in table 4 below: table 4. pre processing data table no sai1 sai2 sai3 sai4 yes / no 1 2.30 1.97 1.80 1.56 no 2 1.81 1.68 1.57 1.86 no 3 3.07 3.00 2.75 3.21 no 4 2.71 2.33 2.61 1.98 no 5 3.17 3.02 3.28 2.96 no 6 3.16 3.45 3.02 3.06 no 7 2.72 2.50 2.92 3.00 no . . . . . . 1687 3.18 3.05 3.05 3.27 yes 195 according to (dengen, kusrini, & luthfi, 2020) the calculation steps in the c4.5 algorithm decision tree using manual calculation methods are as follows: the calculation steps in the c4.5 algorithm decision tree using manual calculation methods are as follows: 1. prepare dataset samples 2. calculate the entropy value using the formula:: entropy (s) = ∑ − 𝑝𝑖 ∗ log 2 𝑝𝑖𝑛𝑖=1 ............................ (4) information: s: set n: number of partitions s pi: proportion of si to ss 3. calculate the gain value of each attribute, followed by selecting the highest gain value gain (s,a) = entropy(s) ∑ ∗ entropy(si)ni=1 ...... (5) information: s: set a: attributes n: number of attribute partitions a | si |: the amount of data on the ith partition | s |: number of cases in s 4. modelling this stage progressed by testing <1000 data with 100, 400, and 900 samples and testing data >1000 with examples taken from 1250, 1400, and 1687. this study processed the composition of training data by 80% and testing data by 20%. using rapid miner, data testing was executed to get performance vector results through the presentation in table 5 and table 6. table 5. in performance, vector data < 1000 obtained calculation results for 100 data with an accuracy result of 70% with confusion matrix on prediction "yes" and prediction result "yes" of 1, and on prediction "yes" and prediction result "no" by 5. the results of the performance vector 400 data calculation were obtained with an accuracy result of 85% with confusion matrix on prediction "yes" and prediction result "yes" of 0, and on projection "yes" and prediction result "no" of 5. performance vector calculation results from 900 data obtained an accuracy result of 86.11% with confusion matrix on prediction "yes" and prediction result "yes" of 1, and on prediction "yes" and prediction result "no" of 12. table 5. rapidminer vector performance table (data < 1000) data < 1000 amount of data performance vector 100 accuracy 70.00 % confusion matrix true no yes no 1 5 yes 1 13 400 accuracy 85.00 % confusion matrix true no yes no 0 5 yes 7 68 900 accuracy 86.11 % confusion matrix true no yes no 1 12 yes 13 154 table 6. rapidminer vector performance table (data > 1000) data > 1000 amount of data performance vector 1250 accuracy 86.60 % confusion matrix true no yes no 0 6 yes 20 224 1400 accuracy 90.36 % confusion matrix true no yes no 0 3 yes 24 253 1687 accuracy 91.69 % confusion matrix true no yes no 2 3 yes 25 307 table 6. in performance, vector data >1000 obtained calculation results for 1250 data with an accuracy result of 86.6% with confusion matrix on prediction "yes" and prediction result "yes" of 0, and on prediction "yes" and prediction result "no" of 6. the results of the performance vector 1400 data calculation were obtained an accuracy result of 90.36% with confusion matrix on prediction "yes" and prediction result "yes" of 0, and on prediction "yes" and prediction result "no" of 3. performance vector 1687 data obtained an accuracy result of 91.69% with confusion matrix on the forecast "yes" and the prediction result "yes" of 196 2, and on the prediction "yes" and the development of the prophecy. "no" of 3. 5. evaluation the evaluation is seen from the results of calculating accuracy values based on confusion matrix using rapidminer obtained results as table 7 below: table 7. c4.5 algorithm data evaluation table amount of data accuracy algorithm of c4.5 100 70.00 % true no true yes class precision prediction no 1 5 16.67 % prediction yes 1 13 92.86 % class recall 50.00 % 72.22 % 400 85.00 % true no true yes class precision prediction no 0 5 0.00 % prediction yes 7 68 90.67 % class recall 0.00 % 93.15 % 900 86.11 % true no true yes class precision prediction no 1 12 7.69 % prediction yes 13 154 92.22 % class recall 7.14 % 92.77 % 1250 89.60 % true no true yes class precision prediction no 0 6 0.00 % prediction yes 20 224 91.80 % class recall 0.00 % 97.39 % 1400 90.36 % true no true yes class precision prediction no 0 3 0.00 % prediction yes 24 253 91.34 % class recall 0.00 % 98.83 % 1687 91.69 % true no true yes class precision prediction no 2 3 40.00 % prediction yes 25 307 92.47 % class recall 7.41 % 99.03 % table 7 shows the percentage value of c4.5 algorithm calculation accuracy against the number of data > 1000, i.e., 1250, 1400, and 1687 and the amount of information < 1000, i.e., 100, 400, and 900. the c4.5 algorithm showed higher accuracy in > 1000 data, namely 1250, 1400, and 1687. it indicates that data processing using rapidminer from several data samples has a high degree of accuracy on data amounting to > 1000. the highest accuracy obtained is 91.69%, with 1687 data. 6. deployment the results of this research are enclosed conceive writing comprise information on differences in the results of calculating the accuracy value of the c4.5 algorithm, which is affected by the amount of data. this paper can be functioned as an information and reference for research by using the following data classification methods. conclusions and suggestions conclusion the study concluded that the achievement index data processing test using rapidminer against <1000 data showed a lower graduation accuracy rate than the graduation accuracy rate with the number of data > 1000. the difference in the amount of data tested causes a difference in the results of the accuracy value. the highest accuracy percentage is shown in data 1687 at 91.69%, while the test data amounting to 100 produced the lowest accuracy value of 70%. 197 suggestion to obtain the outcome of the achievement index grouping, appropriate data support is needed. to aim for a more accurate potential value in the c4.5 algorithm technique, the suitability of the type of data and the amount of data is essential because it has a significant effect. the more data tested, the accuracy level will be determined, therefore it is concluded that the amount of data influences the result of processing the accuracy value. reference amir, s., & abijono, h. (2018). penerapan data mining untuk mendukung pemasaran produk. cahayatech, 7(2), 161–182. retrieved from https://ojs.cahayasurya.ac.id/index.php/ct/ article/view/102 azhari, m., situmorang, z., & rosnelly, r. (2021). perbandingan akurasi, recall, dan presisi klasifikasi pada algoritma c4. 5, random forest, svm dan naive bayes. jurnal media informatika budidarma, 5(2), 640–651. https://doi.org/10.30865/mib.v5i2.2937 budiman, i., & ramadina, r. (2015). penerapan fungsi data mining klasifikasi untuk prediksi masa studi mahasiswa tepat waktu pada sistem informasi akademik perguruan tinggi. jupiter (jurnal penelitian ilmu dan teknologi komputer), 7(1), 39–50. retrieved from https://jurnal.polsri.ac.id/index.php/jupiter/ article/view/709 chapman, p., clinton, j., kerber, r., khabaza, t., reinartz, t. p., shearer, c., & wirth, r. (2000). crisp-dm 1.0: step-by-step data mining guide. in spss inc. crisp-dm consortium. retrieved from https://www.kde.cs.unikassel.de/wpcontent/uploads/lehre/ws201213/kdd/files/crispwp-0800.pdf dengen, c. n., kusrini, k., & luthfi, e. t. (2020). implementasi decision tree untuk prediksi kelulusan mahasiswa tepat waktu. sisfotenika, 10(1), 1–11. retrieved from https://www.stmikpontianak.ac.id/ojs/index .php/st/article/view/484 handini, d., hidayat, f., attamimi, a. n. r., putri, d. a. v., rouf, m. f., & anjani, n. r. (2020). statistik pendidikan tinggi tahun 2020. jakarta: sekretaris direktorat jenderal pendidikan tinggi. retrieved from sekretaris direktorat jenderal pendidikan tinggi website: https://pddikti.kemdikbud.go.id/asset/data/ publikasi/statistik pendidikan tinggi 2020.pdf hermawanti, s. n., asriyanik, a., & sunarto, a. a. (2019). implementasi algoritma c4.5 untuk prediksi kelulusan tepat waktu ( studi kasus : program studi teknik informatika ). jurnal ilmiah santika, 9(1), 853–864. https://doi.org/10.37150/jsa.v9i1.552 maryanto, b. (2017). big data dan pemanfaatannya dalam berbagai sektor. media informatika, 16(2), 14-19. retrieved from https://jurnal.likmi.ac.id/jurnal/7_2017/071 7_02_budimaryanto.pdf megna, a. a. k. (2021). big data: development of revolutionary technologies in business. istanbul. muis, i. a., & affandes, m. (2015). penerapan metode support vector machine (svm) menggunakan kernel radial basis function (rbf) pada klasifikasi tweet. jurnal sains, teknologi dan industri, 12(2), 189–197. retrieved from http://ejournal.uinsuska.ac.id/index.php/sitekin/article/view/1 010 musu, w., ibrahim, a., & heriadi, h. (2021). pengaruh komposisi data training dan testing terhadap akurasi algoritma c4.5. seminar sistem informasi dan teknologi informasi (sisiti), 186–195. makasar: stmik dipanegara makassar. retrieved from https://www.ejurnal.dipanegara.ac.id/index. php/sisiti/article/view/802 olson, d., & shi, y. (2007). pengantar ilmu penggalian data bisnis introduction to business data mining. jakarta: salemba empat. romadhona, a., suprapedi, s., & himawan, h. (2017). prediksi kelulusan mahasiswa tepat waktu berdasarkan usia, jenis kelamin, dan indeks prestasi menggunakan algoritma decision tree. jurnal teknologi informasi cyberku, 13(1), 69–83. retrieved from http://research.pps.dinus.ac.id/index.php/cy berku/article/view/10 sabna, e., & muhardi, m. (2016). penerapan data mining untuk memprediksi prestasi akademik mahasiswa berdasarkan dosen, motivasi, kedisiplinan, ekonomi, dan hasil belajar. jurnal coreit: jurnal hasil penelitian ilmu komputer dan teknologi informasi, 2(2), 41. https://doi.org/10.24014/coreit.v2i2.2392 saefulloh, a., & moedjiono, m. (2013). penerapan metode klasifikasi data mining untuk prediksi kelulusan tepat waktu. infosys 198 journal, 2(1), 41–54. windarti, m., & suradi, a. (2019). perbandingan kinerja 6 algoritme klasifikasi data mining untuk prediksi masa studi mahasiswa. telematika, 12(1), 14–30. retrieved from https://ejournal.amikompurwokerto.ac.id/in dex.php/telematika/article/view/778 jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 27 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. sistem monitoring volume lifting minyak dan gas bumi berbasis scada (supervisory control and data acqucition) pada pt. astron optima haerudin sistem informasi stmik nusa mandiri www.nusamandiri.ac.id aerudinraw@gmail.com abstract during this time the community can control things from a distance by using a remote control, but the control is hampered by distance. if the distance between the controlled device and the controller exceeds the tolerance limit, the equipment cannot function as desired. in addition, there are also constraints on costs for distance. the longer the distance the greater the cost of the pulses issued. the problem that often arises is the difference in parameters possessed by the kkks including the character of data filling. the problem that often arises is the difference in parameters possessed by the kkks including the character of data filling. especially for kkks with oil products there is flushing which should not be included as a lifting volume. the value of flushing is different for each kkks so it is necessary to equalize the perception with the kkks regarding the procedure for recording data including the time of filling in the database. there is still a time difference at the ctp point, the time at the poller migas control center and the time in the database server so that there is a partial data flowrate that has been filled but has not yet been displayed on the web. the purpose of this study is to increase the effectiveness and efficiency of business management and trade in oil and gas, especially in terms of monitoring the volume of oil and gas lifting. installation of a monitoring system that is an integration of a number of software applications, hardware and a number of procedures that are capable of verifying and tracking the truth of the lifting volume reports submitted by the kkks. keywords: scada, supervisory control and data acqucition, oil and gas lifting volume monitoring system abstrak selama ini masyarakat dapat mengontrol sesuatu dari jarak jauh dengan menggunakan remote control, akan tetapi pengontrolan tersebut terhambat oleh jarak. apabila jarak antara alat yang dikontrol dengan pengontrol itu melewati batas toleransinya, maka peralatan tersebut tidak dapat berfungsi sesuai dengan yang diinginkan. selain itu juga adanya kendala biaya terhadap jarak. jarak semakin jauh maka biaya pulsa yang dikeluarkan semakin besar. permasalahan yang sering muncul yaitu perbedaan parameter yang dimiliki kkks termasuk karakter pengisisan data. permasalahan yang sering muncul yaitu perbedaan parameter yang dimiliki kkks termasuk karakter pengisisan data. khusus untuk kkks dengan produk minyak terdapat flushing yang seharusnya tidak dimasukkan sebagai volume lifting. nilai flushing ini berbeda-beda untuk tiap kkks sehingga perlu penyamaan persepsi dengan kkks tentang tata cara recording data termasuk waktu pengisian database. masih terdapat perbedaan waktu di titik ctp, waktu di poller migas control center dan waktu di database server sehingga ada sebagian data flowrate yang terisi tetapi belum sempat ditampilkan di web. tujuan dari penelitian ini untuk peningkatan efektifitas dan efisiensi pengelolaan usaha dan tata niaga minyak dan gas bumi, khususnya dalam hal monitoring volume lifting minyak dan gas bumi. pemasangan sistem monitoring yang merupakan integrasi dari sejumlah aplikasi perangkat lunak, perangkat keras serta sejumlah prosedur yang mampu melakukan verifikasi serta penelusuran terhadap kebenaran laporan volume lifting yang disampaikan oleh pihak kkks kata kunci: scada, supervisory control and data acqucition, sistem monitoring volume lifting minyak dan gas bumi http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 28 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. pendahuluan inovasi di dalam teknologi telekomunikasi berkembang dengan cepat dan selaras dengan perkembangan karakteristik masyarakat modern yang memiliki mobilitas tinggi, mencari layanan yang fleksibel, serba mudah dan memuaskan serta mengejar efisiensi di segala aspek. kebutuhan akan sistem untuk pengendalian jarak jauh semakin meningkat sejalan dengan era globalisasi dimana perpindahan dan pergerakan manusia semakin luas dan cepat. selama ini masyarakat dapat mengontrol sesuatu dari jarak jauh dengan menggunakan remote control, akan tetapi pengontrolan tersebut terhambat oleh jarak. apabila jarak antara alat yang dikontrol dengan pengontrol itu melewati batas toleransinya, maka peralatan tersebut tidak dapat berfungsi sesuai dengan yang diinginkan. pengontrolan melalui jalur telepon merupakan hal yang lumrah, tetapi sistem ini kerap digunakan untuk sistem fix-point to point. selain itu juga adanya kendala biaya terhadap jarak. jarak semakin jauh maka biaya pulsa yang dikeluarkan semakin besar. teknologi jaringan komputer merupakan solusi yang dapat dimanfaatkan untuk mengatasi fix-point to point dan biaya, serta menjadi model fleksibel multi point to multi point. pesatnya perkembangan dunia jaringan komputer akhir-akhir ini, memicu berkembangnya teknologi baru yang memanfaatkan teknologi jaringan komputer sebagai media untuk mewujudkan impian manusia akan sebuah aplikasi pengoperasian peralatan dari tempat lain yang sangat jauh tanpa harus berada di tempat tersebut. permasalahan yang sering muncul yaitu perbedaan parameter yang dimiliki (masruroh & prasetyorini, 2015), perbedaan monitoring (pradikta, pradikta, affandi, & setijadi, 2013) kkks termasuk karakter pengisisan data. khusus untuk kkks dengan produk minyak terdapat flushing yang seharusnya tidak dimasukkan sebagai volume lifting. nilai flushing ini berbedabeda untuk tiap kkks sehingga perlu penyamaan persepsi dengan kkks tentang tata cara recording data termasuk waktu pengisian database. masih terdapat perbedaan waktu di titik ctp, waktu di poller migas control center dan waktu di database server sehingga ada sebagian data flowrate yang terisi tetapi belum sempat ditampilkan di web. dalam penelitian ini melakukan riset tentang sistem monitoring volume lifting minyak dan gas bumi berbasis scada (supervisory control and data acquisition) atau biasa dikenal dengan online realtime system merupakan suatu sistem yang dibangun dan diimplementasikan di titik custody transfer point (ctp) dan melakukan akuisisi data secara online realtime dari setiap titik pantau, sehingga data-data tersebut dapat dipantau dan dimonitor secara realtime. tujuan dari penelitian ini untuk peningkatan efektifitas dan efisiensi pengelolaan usaha dan tata niaga minyak dan gas bumi, khususnya dalam hal monitoring volume lifting minyak dan gas bumi. pemasangan sistem monitoring yang merupakan integrasi dari sejumlah aplikasi perangkat lunak, perangkat keras serta sejumlah prosedur yang mampu melakukan verifikasi serta penelusuran terhadap kebenaran laporan volume lifting yang disampaikan oleh pihak kkks. stabilitas akses dan akuisisi data melalui sistem integrasi data produksi dan lifting minyak dan gas bumi secara online realtime. adanya penerapan sistem monitoring volume lifting minyak dan gas bumi secara online dan realtime di 33 ctp (costudy transfer point). memperoleh data atau informasi volume produksi dan volume lifting minyak dan gas serta pembagiannya sesuai dengan masingmasing daerah penghasil secara transparan, akurat dan cepat. bahan dan metode a. topologi jaringan berikut topologi jaringan sistem monitoring lifting minyak dan gas bumi. 2 u dell blade server 1955 internet astinet (isp) internet router cisco 1841 make data 4400 brocade 200e silk worm fiber optic from web database f ib e r o p ti c f ro m g is d a ta b a s e fire wall cisco pix 501 (linux) microtic vpn server patch panel ket : kabel lan utp kabel fo cliet for viewer switch 3com 24 port modem tellabs 8110 sumber : (pt.astron-optima, 2012) gambar 1. topologi jaringan sistem monitoring volume lifting minyak dan gas bumi b. arsitektur jaringan & skema jaringan arsitektur jaringan yang digunakan pada sistem monitoring volume lifting minyak dan gas http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 29 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. bumi adalah operasi jaringan model clinet-server. sistem operasi jaringan client-server memungkinkan jaringan untuk mensentralisasi fungsi dan aplikasi kepada satu atau lebih dedicated file server. internet modem tellabs 1180 router cisco 1800 firewall cisco pix 501 switch 3com printer hp pcl 6 server dell client clientclient clientclient sumber : (pt.astron-optima, 2012) gambar 2. skema jaringan sistem monitoring volume lifting minyak dan gas bumi c. keamanan jaringan keamanan jaringan pada sistem monitoring volume lifting minyak dan gas bumi pada saat ini sudah cukup bagus, selain menggunakan perangkat hardware firewall cisco pix 501 series yang digunakan sebagai internet gateway dan melakukan fungsi nat (network address translation) yang memberikan akses ip private agar dapat masuk ke jaringan internet. pada sistim ini juga tiap pc sudah terpasang antivirus mcafee yang selalu terupdate. d. sistem scada (supervisory control and data acquisition) di dunia industri, sistem otomatis sangat diminati karena dapat menjamin kualitas produk yang dihasilkan, memperpendek waktu produksi dan mengurangi biaya untuk tenaga kerja manusia. salah satu pengendali yang paling popular, khususnya untuk sistem yang bekerja secara sekunsial, ialah programmable logic controller (plc). berikut ini review plc dan otomasi sistem dari kepanjangan plc, kita dapat mengetahui definisi sederhana dari plc itu sendiri. 1. programmable dapat diprogram (software based). 2. logic bekerja berdasar logika yang dibuat, logika disini biasanya menunjuk pada logika boolean yang hanya terdiri dari 2 keadaan, on atau off. 3. controller pengendali (otak) dari suatu sistem. secara umum, cara kerja sistem yang dikendalikan plc cukup sederhana. a. plc mendapatkan sinyal input dari input device. b. akibatnya plc mengerjakan logika program yang ada di dalamnya. c. plc memberikan sinyal output pada output device. sumber: (wicaksono, 2012) gambar 3. diagram hubungan plc dan input/output device dari penjelasan diatas, didapatkan definisi sebagai berikut : 1. plc input device : benda fisik yang memicu eksekusi logika/program pada plc. contoh : saklar dan sensor. 2. plc output device : benda fisik yang diaktifkan oleh plc sebagai hasil eksekusi program. contoh : motor dc, motor ac, solenoid dan lain-lain. pada bagian ini akan dijelaskan tentang definisi plc. menurut nema (national electrical manufacturers association-usa) definisi plc ialah “alat elektronik digital yang menggunakan programmable memory untuk menyimpan intruksi dan untuk menjalankan fungsi-fungsi khusus seperti : logika, sequence (urutan), timing (pewaktuan), penghitungan dan operasi aritmatika untuk mengendalikan mesin dan proses.” definisi lain menyebutkan bahwa plc ialah “komputer industri khusus untuk mengawasi dan mengendalikan proses industri menggunakan bahasa pemrograman khusus untuk kontrol industri (ladder diagram), didesain untuk tahan terhadap lingkungan industri yang banyak gangguan (noise, vibration, shock, temperature, humidity).” plc terbagi dari beberapa komponen utama. untuk memahaminya, perhatikan gambar yang http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 30 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. menampilkan hubungan plc dengan peralatan lain berikut ini : sumber: (wicaksono, 2012) gambar 4. hubungan plc dengan peralatan lain dari gambar 4 di atas nampak bahwa plc memiliki komponen yang terhubung dengan input device dan output device. plc juga terhubung dengan pc untuk kebutuhan pemrograman (umumnya menggunakan rs 232 serial port). secara umum plc terbagi dalam beberapa komponen berikut : 1. power supply 2. processor 3. memory 4. input and output device 5. programming device jika suatu plant atau sistem otomatis masih berukuran kecil, tingkat komplesitas rendah dan tidak memerlukan akurasi yang tinggi maka skema otomasi sistem dengan plc saja sudah cukup. namun, jika kompleksitas plant relative besar dan akurasi yang dibutuhkan dalam sistem relatif tinggi maka sangat diperlukan suatu sistem scada. skema sistem scada sederhana yang diimplementasikan melalui program komputer seperti dibawah ini : sumber: (wicaksono, 2012) gambar 5. skema system scada sederhana dalam pengendalian sistem hasil dan pembahasan a. sistem monitoring volume lifting minyak dan gas bumi berbasis scada (supervisory control and data acqucition). sistem monitoring volume lifting minyak dan gas bumi berbasis scada atau biasa dikenal dengan online realtime system merupakan suatu sistem yang dibangun dan diimplementasikan berbasiskan scada di titik custody transfer point (ctp) dengan melakukan akuisisi data volume secara online realtime dari setiap titik pantau, sehingga data-data volume lifting tersebut dapat dipantau secara realtime melalui migas control center. proses ini dilakukan menggunakan scada sistem, yaitu sistem yang dirancang untuk mengumpulkan data dan menampilkan pergerakan volume lifting secara online realtime di migas control center. data yang dikumpulkan akan disimpan dalam database untuk divisualisasikan kemudian ditransfer ke dalam sistem web. sistem ini dibangun untuk mendukung pengguna sistem (end user) dalam melakukan pengawasan terhadap realisasi volume lifting minyak dan gas bumi di setiap titik custody transfer point (ctp) secara realtime. hasil dari monitoring lifting secara realtime ini akan digunakan sebagai salah satu referensi dalam melakukan monitoring lifting di kkks. scada adalah sebuah akronim untuk supervisory control and data acquisition. a. data acquisition merupakan proses mendapatkan informasi dari proses-proses yang terdistribusi secara luas. b. supervisory control adalah menghitung dan memberikan instruksi-instruksi pengendalian untuk fasilitas-fasilitas proses yang letaknya jauh (remote facilities). sumber : (pt.astron-optima, 2012) gambar 6. rancangan konsep dasar sistem monitoring volume lifting minyak dan gas bumi berbasis scada konsep sistem monitoring lifting pada dasarnya merupakan kegiatan pengawasan terhadap realisasi volume lifting serta perhitungan valve status (open/close) switch position (on/off) pump (start/stop) low tank level alarm high tank level alarm fire alarm pressures flow rates temperatures tank levels p r o c e s s variables alarms device status f ie l d in t e r f a c e http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 31 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. alokasi lifting untuk setiap daerah penghasil. sistem monitoring ini merupakan integrasi dari penggunaan teknologi akuisisi data secara onlinerealtime serta teknologi berbasis web yang memungkinkan untuk mengirim data volume secara online. di samping pemanfaatan berbagai teknologi informasi dan komunikasi, sistem ini juga ditunjang dengan sejumlah pedoman operasional yang meliputi beberapa prosedur pelaksanaan yang terkait langsung dengan kegiatan monitoring. penggunaan teknologi tersebut di atas ditujukan untuk membantu proses akuisisi data, pengolahan data dan proses pelaporan volume produksi dan lifting minyak dan gas bumi kepada semua stakeholder. sedangkan melalui penerapan sejumlah prosedur, maka implementasi sistem ini juga ditunjang dengan beberapa aktifitas berupa kegiatan validasi/verifikasi data serta kegiatan audit lapangan untuk membuktikan kebenaran hasil perhitungan setiap kkks. sumber : (pt.astron-optima, 2012) gambar 7. rancangan alur proses implementasi dari supervisory control implementasi dari supervisory control ditujukan untuk : a. manajemen titik pengaturan (set point) untuk beberapa sistem kendali b. optimalisasi untuk memperoleh titik operasi yang terbaik menggunakan algoritma-algoritma kontrol lanjut. (cascade controller, ratio controller, override control, dan lain-lain). b. data sistem pada gambar di bawah ini terlihat secara lebih rinci data-data volume yang dibutuhkan, meliputi volume produksi dan volume lifting serta metode akuisisi data tersebut. sumber : (pt.astron-optima, 2012) gambar 8. rancangan sistem akusisi data dan integrasi akuisisi dan integrasi data secara efisien memungkinkan untuk peningkatan usaha dan tata niaga migas yang melibatkan banyak stakeholder termasuk pihak kkks dan pihak pemerintah daerah yang memiliki kepentingan dalam pendapatan daerah sebagaimana diatur dalam undang-undang. dengan adanya data akuisisi volume lifting yang dilakukan terus-menerus secara berkesinambungan dan terintegrasi secara nasional, maka pemerintah daerah bersama dengan pemerintah pusat dapat memantau serta mengelola pendapatan daerah serta pusat secara lebih akurat dan dapat membuat perencanaan serta melaksanakan pembangunan dengan lebih baik dan akurat. dari penjelasan konsep sebagaimana dijelaskan di atas, maka dapat disusun usulan platform aplikasi (software) secara umum set point 1 process controller sensoractuator process controller sensoractuator process controller sensoractuator set point 2 set point 3 loop #1 loop #2 loop #3 supervisory control http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 32 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. sebagaimana terlihat pada diagram blok di bawah ini. sumber : (pt.astron-optima, 2012) gambar 9. rancangan alur proses akusisi data dan reporting terlihat jelas pada diagram di atas bahwa melalui kombinasi akuisisi data secara online realtime dengan menggunakan teknologi sistem scada dengan teknologi web akan dapat mengumpulkan data-data yang diperlukan dalam perhitungan volume lifting sebagai dasar dari pengawasan (controlling) terhadap laporan lifting yang disampaikan setiap bulannya oleh pihak kkks. selanjutnya dengan menggunakan angka volume hasil monitoring akan dilakukan validasi terhadap laporan lifting dengan menetapkan nilai ambang batas yang telah disepakati oleh ditjen migas. jika masih dalam ambang batas maka secara otomatis laporan lifting kontraktor dinyatakan valid, jika diluar ambang batas, maka akan dilakukan klarifikasi atau audit untuk memastikan penyebab penyimpangan tersebut. c. proses tapping data kegiatan ini meliputi komunikasi antara migas control center dengan lapangan atau ctp yang di hubungkan dengan sistem komunikasi telkom vsat. adapun mekanisme perolehan data tersebut dapat dilihat seperti gambar dibawah ini : sumber : (pt.astron-optima, 2012) gambar 10. rancangan alur mekanisme perolehan data dari ctp ke migas control center keterangan gambar 10 diatas: a. komputer hmi milik dari kkks di integrasikan dengan komputer hmi migas. b. setelah kedua komputer tersebut terhubung maka proses tapping / capture data setelah kedua komputer tersebut terhubung maka proses tapping/capture data dilakukan dengan cara penyeragaman value tage name dengan name text yang berbeda dengan kkks. hal ini di lakukan untuk mengantisipasi adanya indentifikasi yang double/ganda pada hmi. c. setelah data masuk ke komputer hmi migas, komputer yang telah terhubung denga vsat telkom yang terhubung langsung dengan pusat data yang di migas control center (mcc). d. data dikirim ke mcc yang melewati sentral telekomunikasi jakarta dan di sambungkan ke receiver yang ada di gedung migas dan bermuara pada modem vsat yang berada di ruang server lt. 6. e. data di teruskan ke poller a dan poller b dengan media penyimpanan sql server 2000. tahap display data dan penyesuaian data dengan ctp/lapangan : a. proses ini dimulai dari pengumpulan data hardcopy atau data lifting perhari dari masing-masing ctp. data pembanding yang field device rtu/efm front end interface lifting volume raw data communication flowcal client workstation online field data validation online and manual data importing reporting flowcal server oracle database archiving and storage field validation data web server web access for data online web acsess for reporting online data online well info well test production duration entitas volume transfer volume lifting self assesment reporting online active stakeholder access publication passive stakeholder access report realtime monitoring report web base monitoring report online realtime online realtime web online web online web online http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 33 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. berasal dari lapangan biasanya diperoleh dari bagian finance. data tersebut akan dikirimkan secara terus menerus ke pihak migas control center secara email atau fax. pengiriman dilakukan paling lambat tanggal 15 pada bulan berikutnya. salah satu contoh data adalah sebagai berikut : b. proses penarikan data dari sql server 2000 yang telah diperoleh di migas control center. data yang diperoleh harus terlebih dahulu di pilah-pilah berdasarkan masing-masing ctp dan tanggalsumber : pt. astron optima c. secara umum taping data dilakukan melalui ipc migas atau rtu scadapack. untuk kkks dengan produk oil data yang diambil antara lain flowrate, gross volume dan net volume. sedangkan untuk kkks dengan produk gas, data yang ditaping yaitu flowrate, volume today, volume yesterday dan volume monthly. protokol yang digunakan akan mengikuti ketersediaan port komunikasi yang disyaratkan kkks, misalnya menggunakan tcp/ip atau modbus rs232/485. data tersebut kemudian diteruskan ke migas control center melalui vsat. d. pemeliharaan data data yang telah diambil dari berbagai ctp akan dikumpulkan dan diolah sedemikian rupa mulai dari penyeragaman skala, satuan/unit, nilai maksimum dan nilai minimumnya. selain itu proses rekam data membutuhkan script tersendiri untuk masing-masing ctp yang akan memberikan perintah pencatatan maupun perhitungan. proses ini berguna terutama untuk kkks yang tidak memiliki parameter yang dibutuhkan migas, sehingga dibutuhkan perhitungan terlebih dahulu dari parameter yang ada. seperti contoh untuk kkks dengan produk gas yang tidak memiliki angka volume yesterday, maka data volume totalizer yang diambil harus diolah terlebih dahulu sehingga menghasilkan angka volume yesterday. maka dibuat perintah untuk menghitung volume totalizer sehingga diperoleh nilai volume yesterday sebesar (y-x). e. database untuk penyimpanan database dari wonderware intouch digunakan software microsoft sqlserver 2000 dan insql 9.0 dengan struktur pengisian data seperti terlihat pada gambar 11. wonderware intouch 9.5 insql mssqlserver 2000 tabel : scadametervalue scadameterinfo scadaflowratevalue scadamapping active factory report insert data sumber : (pt.astron-optima, 2012) gambar 11. rancangan alur proses pengisian data dari wonderware intouch ke mssql server data yang diambil dari masing-masing titik ctp dimasukkan ke dalam table scadametervalue, sementara table scadameterinfo berfungsi untuk menyimpan data informasi titik ctp meliputi lokasi dan nama kkks yang bersangkutan. tabel scadamaping dan scadaflowratevalue berfungsi sebagai interface ke sistem web. waktu penyimpanan data diatur dalam perintah wonderware intouch. permasalahan yang muncul biasanya terdapat perbedaan waktu di titik ctp, waktu di poller migas control center dan waktu di database server sehingga ada sebagian data flowrate yang terisi tetapi belum sempat ditampilkan di web. oleh karena itu perlu disesuaikan waktu antara poller dan database server. f. pelaporan (reporting) untuk sistem pelaporan di hmi wonderware terdapat dua jenis pelaporan yaitu laporan harian dan laporan detail masing-masing titik ctp. untuk laporan harian digunakan untuk memantau nilai lifting per hari tiap-tiap ctp. laporan harian mencakup volume lifting semua ctp yang sedianya dicetak ke dalam bentuk hardcopy setiap hari. sedangkan laporan detail digunakan untuk melihat volume lifting secara terperinci dalam batas waktu yang dapat ditentukan oleh pengguna. tampilan laporan detail menggunakan activex histclientactivedatagrid yang menampilkan data dari ms sqlserver melalui insql. permasalahan yang sering muncul yaitu delay antara database server dengan poller yang tidak mungkin dihilangkan melainkan diperkecil. http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 34 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. kesimpulan setelah melakukan pemasangan sistem monitoring volume lifting minyak dan gas bumi berbasis scada (supervisory control and data acqusition) maka dapat diambil kesimpulan sebagai berikut: 1) diperoleh data yang akurat sebagai pembanding antara volume lifting yang dimonitor secara online realtime dengan volume lifting yang dilaporkan kkks. 2) diperoleh informasi volume lifting minyak dan gas bumi yang akurat pada titik-titik pantau secara online realtime. 3) melalui pemanfaatan fungsi system monitoring volume lifting minyak dan gas bumi berbasis scada dapat diperoleh data sebagai dasar bagi perhitungan jumlah dana bagian daerah penghasil migas yang transparan dan sesuai dengan ketentuan. 4) dengan teknologi vsat data yang dikirimkan ke migas control center dari tiap site / ctp akan aman dan cepat. untuk pengiriman data menggunakan teknologi vsat, dimana teknologi ini menggunakan topologi star, sedangkan untuk koneksinya menggunakan jenis koneksi point to multipoint. saran yang bisa diberikan untuk pengembangan sistem monitoring volume lifting minyak dan gas bumi berbasis scada (supervisory control and data acqusition) adalah dengan mengganti teknologi pengiriman data yang menggunakan teknologi vsat dengan teknologi vpn (virtual private network) karena data yang dibutuhkan untuk sistem ini tidak begitu banyak/besar. referensi masruroh, n. a., & prasetyorini, a. v. (2015). model penjadwalan pengiriman pasokan pada strategi multi-supplier dengan variasi harga dan lead time untuk permintaan stokastik. jurnal teknik industri, 17(1), 35– 46. https://doi.org/10.9744/jti.17.1.35-46 pradikta, r., pradikta, r., affandi, a., & setijadi, e. (2013). rancang bangun aplikasi monitoring jaringan dengan menggunakan simple network management protocol. jurnal teknik its, 2(1), a154–a159. https://doi.org/10.12962/j23373539.v2i1.2 265 pt.astron-optima. (2012). lembar kerja pt. astron optima. jakarta. wicaksono, h. (2012). scada software dengan wonderware touch dasar-dasar pemrograman (1st ed.). yogyakarta: graha ilmu. http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 5, no. 2. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.518 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 1 an interactive medium to introduce sasando traditional music using multimedia development life cycle method salam irianto nadeak-1*), yusmar ali-2, djaka suryadi-3 1,2 design grafis politeknik negeri media kreatif https://polimedia.ac.id/ salamirianto66@gmail.com, yusalim@gmail.com 3islamic economics stai asy-syukriyyah https://asy-syukriyyah.ac.id/ djakasuryadi@asy-syukriyyah.ac.id (*) corresponding abstract actionscript-based programming is one of the software which includes applications that teachers widely use to create interactive learning media in the world of education. actionscript-based programming technology is a type of graphic animation software that can create a graphic object that can be animated without using other supporting software. at present, there are many educational circles to expedite the process of learning activities, especially for students. interactive learning media is one means of delivering subject matter that is very important to apply today. in implementing student learning at school, it is necessary to present a practical and theoretical learning system which is the main point in helping to develop student competence. one form of culture in indonesia is the traditional musical instrument sasando. sasando belongs to the chordophone instrument because it is played by picking it. the form of sasando itself is in the form of a guitar, violin or harp. the central part of the sasando is in the form of a long bamboo tube. in the middle, rounded from top to bottom, there is a wedge to stretch the strings. developing interactive learning media requires a software development method; one of the development methods used is the mdlc (multimedia development life cycle) method. making the mdlc has five stages: concept, design, material collecting, assembly, and testing. keywords: adobe flash; interaktive media; sasando; graphic abstrak pemrograman yang berbasis actionscript merupakan salah satu perangkat lunak yang didalamnya termasuk aplikasi yang banyak digunakan para guru untuk membuat media pembelajaran interaktif dalam dunia pendidikan. teknologi pemrograman yang berbasis actionscript ini adalah salah satu jenis software animasi grafis yang dapat membuat objek grafis yang dapat dianimasikan tanpa menggunakan software pendukung lainnya. saat ini banyak kalangan pendidikan untuk memperlancar proses kegiatan pembelajaran, khususnya bagi siswa. media pembelajaran interaktif merupakan salah satu sarana penyampaian materi pelajaran yang sangat penting untuk diterapkan saat ini. dalam pelaksanaan pembelajaran siswa di sekolah, perlu dihadirkan sistem pembelajaran praktis dan teoritis yang menjadi poin utama dalam membantu mengembangkan kompetensi siswa. salah satu bentuk budaya yang ada di indonesia adalah alat musik tradisional sasando. sasando termasuk ke dalam alat musik chordophone karena dimainkan dengan cara dipetik. bentuk sasando sendiri berupa gitar, biola atau kecapi. bagian tengah sasando berbentuk tabung bambu panjang. di bagian tengah, membulat dari atas ke bawah, terdapat baji untuk meregangkan senar. pengembangan media pembelajaran interaktif membutuhkan metode pengembangan perangkat lunak; salah satu metode pengembangan yang digunakan adalah metode mdlc (multimedia development life cycle). dalam pembuatan mdlc terdapat lima tahapan yaitu concept, design, material collecting, assembly, dan testing. kata kunci: adobe flash; media interaktif; sasando; grafis p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.518 jurnal riset informatika vol. 5, no. 2 june 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 2 introduction the indonesian nation has various cultures stretching from sabang to merauke. one of the cultures they have is traditional musical instruments. however, in fact, from time to time, people's interest, one of which is the youth of the current generation, is decreasing towards indonesian culture, especially in traditional arts furthermore, today's younger generation is more interested in learning modern musical instruments than traditional ones (julia et al., 2019). it is not strange if traditional musical instruments are only known by name, but how to play them and what the instrument sounds like is still being determined. the research will convey through interactive learning media about a traditional musical instrument originating from the island of rote, east nusa tenggara, the sasando, using the mdlc method (astuti et al., 2019). sasando has a varied sound, so it can be played in various genres, such as traditional music, pop, and other music that is not electric. in the rote community, sasando is often played to accompany dances, songs, poems, and other entertainment events (francis, 2017). lack of knowledge about regional musical instruments is a problem that is currently being experienced. in reality, not all people have the opportunity to learn and play this instrument due to limited tools and costs. sasando belongs to the chordophone instrument because plucking the strings is how to play it. the form of sasando itself is in the form of a guitar, violin or harp (tukan et al., 2020). the central part of the sasando is in the form of a long bamboo tube. they are rounded from top to bottom in the middle and have wedges for stretching the strings. what these wedges do is give each string a different sound effect. then the sasando tube is placed in a container of woven palm leaves like a fan (magalhaes, 2022). learning media is a tool used to convey teaching material, and learning media has an essential role in supporting the quality of the teaching and learning process (wahid et al., 2020). media is anything that can be used to transmit messages and stimulate the mind, arouse enthusiasm, attention, and willingness of students so that it can encourage the learning process in students. media can also make learning more exciting and fun. actionscript-based programming is specifically designed by programmers and a professional standard authoring tool application program used to create attractive animations and bitmaps to develop interactive and dynamic websites. it is designed with the ability to create reliable and lightweight two-dimensional animations, so actionscript-based is widely used to build and provide animation effects on websites and learning media. in addition, this application can also be used to create animations, logos, movies, games, navigation on websites, animated buttons, banners, interactive menus, form fields, e-cards, screen servers, and other web applications (fadila et al., 2019). in addition to the community, it is necessary to take care of the traditional sasando music tools as part of cultural values through playing them; of course, the community wants the sasando music tool to be widely known throughout the world. through the production of smes, sasando is also sold as a source of income to support the economy of families in the community of east nusa tenggara. promotion efforts carried out massively online have led sasando sales to penetrate the international market, such as germany, australia, and mexico. they were selling sasando musical instruments at varying prices for electric versions with prices above 3,500,000 idr and acoustic versions of around 600,000 1,500,000 idr per unit (muntasir, 2022). the sales value in one booking can penetrate up to tens of millions of rupiah. on various occasions, efforts to promote sasando musical instruments continue to be carried out by displaying them at various events, such as meetings, festivals, and music concerts. based on the description above, the research objective is to increase student interest in learning, especially in schools introducing the sasando musical instrument. research methods the research method created by the author uses a type of qualitative method that tends to be descriptive. the qualitative method is an investigative process that aims to understand a social situation and event (sugiyono, 2022). the following are several stages in collecting data through qualitative methods. the interview was conducted by asking several questions to the relevant informant to obtain information, aiming to obtain data that could explain a research problem. after that, observations were carried out with systematic observation and recording of an object of remote observation using the zoom application through the art teacher at the school for the incident being investigated (creswell et al., 2011). the observation is carried out to know the conditions during the learning process. furthermore, to jurnal riset informatika vol. 5, no. 2. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.518 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 3 complete the data needed, namely conducting a literature study, namely steps taken by searching for data through reading literature and reference sources from journals that support and are related to the application of actionscript-based technology as an interactive medium for the introduction of the traditional sasando musical instrument using the mdlc model in schools that will be made, as a reference in collecting the necessary data in order to obtain a valid theoretical basis (ahmad et al., 2021; riswandari et al., 2021). the software development implemented in this study uses the multimedia development life cycle (mdlc) methodology. the development of multimedia in interactive learning must carry out well-designed design stages and systematic arrangements to be used effectively in learning (astiti et al., 2021; purhita et al., 2021) figure 1. design method mdlc (roedavan et al., 2022) the first stage, namely the concept, is the stage for determining the direction and objectives of the research. in addition, the concept also determines the type of application, such as presentations and other interactive. this aims to create an exciting and modern multimedia learning process by utilizing technology in the current era. it can increase interest in learning, especially cultural arts in indonesia, one of which is to hone students' abilities to learn better to know the traditional musical instrument, the sasando. the second stage, namely designs, is an ongoing phase in developing specifications for program architecture, design, and supporting materials or materials used by the application to be made. the third stage of material collecting is the stage where collecting materials must match what is needed in making interactive media. these materials include images, photos, animation, video, audio, text and other complementary materials. the fourth stage is assembly, which is the stage where all materials or interactive media objects that have been obtained are then assembled and arranged according to the design. this interactive learning media is processed and created using actionscript-based software. the last stage is testing, which is carried out to find out which interactive learning media that is designed has been completed according to the previous stages. then a black box table verification test is carried out. the research was conducted at one of the vocational schools in jakarta by introducing the traditional sasando musical instrument with an application as an interactive learning medium. data and instrument data were obtained from the interviews, with various inputs obtained as material for consideration in the study. in general, using interactive media is constructive for students in introducing traditional sasando music because, with interactive learning media, students understand more than just reading the material in the module. so far, the learning process takes place when conveying the culture of traditional musical instruments using modules and delivery through the powerpoint application as material the teacher presents. it triggers why many students are not interested in learning traditional musical instruments because of the coals of teaching or the way of learning that has been lived. hopefully, this interactive application will further encourage students to understand and know more about traditional musical instruments, especially the sasando musical instrument. results and discussion from the results of interviews and interviews conducted at the school, information is obtained that so far, students can only get information from the teacher about this traditional musical tool from the submitted. this interactive media innovation allows students to understand existing material easily. initialization the flowchart below in figure 1 is the initial concept of interactive media applications that schools will use in introducing traditional musical p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.518 jurnal riset informatika vol. 5, no. 2 june 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 4 instruments. the main menu consists of 4 menus: historical, material, video, and quiz. this menu can be used to see the various overall kinds of traditional music, a traditional sasando instrument, in this study. the application can also be known history and learning about the musical instrument. applications can also play existing videos of how the sound is generated from the music device. the last menu is a quiz to find out how much understanding students are in knowing the sasando music instrument that has been learned. figure 2. flowchart process design method mdlc is not only an evolution in software development but also revolutionizes the old software development methods. the design concept results provide information about the prototype to be developed, which will later become a product used in the school environment. figure 2 above is the flowchart process design of the interactive learning media to introduce the traditional sasando musical instrument. blue print design blueprint design in mdlc refers to the process of designing schematic designs and details related to the multimedia production to be made. at this stage, the multimedia designer will collect information about the needs, goals, and target users, then design the multimedia structure and interface and create a sketch or storyboard about the multimedia content to be produced. in the blueprint design, the multimedia designer will also make visual designs, layouts and layouts that match the themes and multimedia concepts produced. assessment preparation in mdlc, asset preparation is an essential stage in multimedia development because the quality and completeness of multimedia assets will affect the quality of the final product. if multimedia assets are not properly prepared, the final product will not look professional and may not meet user expectations. asset preparation involves collecting, editing and storing all the multimedia assets used in the final product. the multimedia development will also determine each asset's format, size, resolution and quality to ensure that everything conforms to predetermined needs and specifications. product development product development refers to the multimedia product development stage, which is the last stage of the development cycle. at this stage, multimedia products planned, designed, and prepared for assets will be developed into a final product that can be implemented and distributed to users. at the product development stage, the team will integrate all previously prepared multimedia assets into a complete multimedia product. this involves the process of developing an application or website, incorporating audio, video and graphics, as well as the integration of interactive elements such as buttons, menus and animations. a. main menu this design image is the main menu display page from several menu buttons, among others, in the form of history buttons, material, video, and quizzes, as shown in figure 3. figure 3. main menu jurnal riset informatika vol. 5, no. 2. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.518 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 5 b. historical menu figure 4 provides information about the historical page and displays two buttons, section 1 and section 2. the button functions to display the history of the traditional sasando musical instrument figure 4. historical menu c. material menu the material pages are designed neatly and interactively to make it easier for users to get the necessary information. the material display of this menu displays six buttons for discussion of the traditional sasando musical instrument, as shown in figure 5. figure 5. material menu d. menu videos figure 6 is a video page display with two buttons to play educational videos about the traditional sasando musical instrument. button 1 is video 1, a video in .flv, .mkv, .mp4, .m4p, .mpeg format, while the second button is video 2 in .avi, .gif, .wmf, .3gp format. figure 6. video e. quiz menu in the final display design, the quiz will display a main quiz page with the start button to work on the quiz, as shown in figure 7 figure 7. quiz menu the information in the materials related to the subject matter was obtained from interviews with teaching teachers and several related literature and sources regarding the traditional sasando musical instrument. this interactive learning media was made at the assembly stage using action script 3.0 programming on adobe flash professional cs6 software. while making this interactive learning media, the developer makes scene after scene designed attractively to attract students' desires to learn traditional musical instruments. after the assembly stage, the last stage is the testing stage. at the testing stage, the method used for testing is using a black box; this aims to find out whether, functionally, the processes in the application program are running according to purpose so that this interactive learning media can be used properly (joosten, 2021). the overall results of assembly and testing produce application p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.518 jurnal riset informatika vol. 5, no. 2 june 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 6 tools that can be appropriately used in schools in lessons related to the traditional sasando music instrument testing and validation the testing and validation involve testing aspects such as functionality, security, performance and compatibility. the testing will ensure all features and functionality work correctly per the multimedia product's needs and objectives. in addition, the testing will also perform performance tests to ensure that the multimedia product works well on all desired platforms and devices. compatibility testing will also be carried out to ensure that multimedia products can run adequately on all desired operating systems, browsers and devices. table 1. table product testing no test scenario result decision 1 login user fill in the username & password system on dashboard success 2 signout signout button system on dashboard success 3 main menu displays the main menu the system can display the main menu success 4 historical menu displays the historical page the system can display the history page success 5 material menu displays the material page the system can display material page success 6 menu videos displays the videos page the system can display a videos page success 7 menu quiz displays the menu quiz page the system can display a videos page success conclusions and suggestions conclusion based on the results of the research and discussion described above regarding interactive learning media for the introduction of the traditional sasando musical instrument using the mdlc method, it can be concluded that the existence of this interactive learning media can increase understanding and knowledge of culture in indonesia, one of which is the traditional sasando musical instrument. the learning media has history, materials, videos, and quizzes. the test results show that interactive learning media can provide convenience to students in the learning process at school to understand better and know more about the traditional sasando musical instrument. the experience of making this application is also the first step in developing subsequent applications, which can be developed into applications for other types of traditional musical instruments. this hope aligns with the music teacher's desire to continue teaching traditional musical instruments to students so that traditional music remains popular with students. suggestion application-based research will continue to develop in line with technological developments that rotate. this developed application uses adobe flash technology, which will likely be developed using other technologies such as microsoft silverlight, ruffle or photon flash player. developing applications with this technology will increase the user's imagination, providing comfort to students studying it. reference ahmad, i., rahmanto, y., pratama, d., & borman, r. i. (2021). development of augmented reality application for introducing tangible cultural heritages at the lampung museum using the multimedia development life cycle. ilkom jurnal ilmiah, 13(2), 187–194. https://doi.org/10.33096/ilkom.v13i2.859.1 87-194 astiti, s., mooduto, k. r., goran, p. k., & ardilla, y. (2021). designing of 3-d animation videos in arduino assembly learning with the multimedia development life cycle method. jupiter (jurnal penelitian ilmu dan teknik komputer), 13(2), 52–61. https://doi.org/10.5281/3575.jupiter.2021 .10 astuti, d. p., leonard, bhakti, y. b., & astuti, i. a. d. (2019). developing adobe flash-based mathematics learning media for 7th-grade students of junior high school. journal of physics: conference series, 1188(1), 012098. https://doi.org/10.1088/17426596/1188/1/012098 creswell, j. w., luketić sveučilište u zadru, d., & za pedagogiju, o. (2011). research desing: qualitative, quantitative and mixed methods approaches (3 rd edition) (nacrt istraživanja: kvalitativni, kvantitativni i mješoviti pristupi). acta iadertina, 8, 107–110. fadila, a., dasari, r., setiyaningsih, s., septiana, r., sari, r. m., & rosyid, a. (2019). the development of electronic flash worksheet jurnal riset informatika vol. 5, no. 2. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.518 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 7 based on adobe flash cs6 on fraction numbers in the seventh grade of junior high school. journal of physics: conference series, 1155(1), 012019. https://doi.org/10.1088/17426596/1155/1/012019 francis, y. s. (2017). transmisi alat musik sasando sebagai media seni budaya di kabupaten rote ndao provinsi nusa tenggara timur [institut seni indonesia]. http://digilib.isi.ac.id/id/eprint/1745 julia, j., iswara, d., & supriyadi, t. (2019). redesigning and implementing traditional musical instrument in integrated technology… redesigning and implementing traditional musical instrument in integrated technology classroom. international journal of emerging technologies in learning, 14(1), 75–87. https://doi.org/10.3991/ijet.v14i10.10197 magalhaes, a. d. j. (2022). sasando dan kehidupan masyarakat desa oebou kecamatan rote barat daya kabupaten rote ndao. education : jurnal sosial humaniora dan pendidikan, 2(3), 17–30. https://doi.org/10.51903/education.v2i3. 223 muntasir, c. d. h. e. (2022). inovasi alat musik sasando elektrik (1st ed.). rizmedia pustaka indonesia. https://books.google.co.id/books?id=befzea aaqbaj&dq=edon,+c.+d.+h.+(2022).+inovas i+alat+musik+sasando+elektrik:+rizmedia+p ustaka+indonesia.&lr=&source=gbs_navlinks _s purhita, e. j., sediyono, e., & iriani, a. (2021). holistic model for guiding good design quality in learning multimedia design development. proceedings of the 2nd borobudur international symposium on science and technology (bis-ste 2020), 203, 349–353. https://doi.org/10.2991/aer.k.210810.060 riswandari, n., yuwita, n., & setiadi, g. (2021). pengembangan e-learning menggunakan adobe animate creative cloud dengan penerapan metode multimedia development life cycle (mdlc). akademika: jurnal manajemen pendidikan islam, 3(1), 76–92. https://doi.org/10.51339/akademika.v3i1. 310 roedavan, r., pudjoatmodjo, b., & sujana, a. p. (2022). multimedia development life cycle (mdlc) (pp. 1–6). researchgate. sugiyono. (2022). metode penelitian kuantitatif, kualitatif, dan r&d. alfabeta. https://cvalfabeta.com/product/metodepenelitian-kuantitatif-kualitatif-dan-rdmpkk/ tukan, m. k. a. c. s. d., ceunfin, f., & kian, m. (2020). sasando gaya edon: kajian organologi dan penyeteman. resital: jurnal seni pertunjukan, 21(1), 28–40. https://doi.org/10.24821/resital.v21i1.3693 wahid, a. h., najiburrahman, rahman, k., faiz, qodriyah, k., hambali, el iq bali, m. m., baharun, h., & muali, c. (2020). effectiveness of android-based mathematics learning media application on student learning achievement. journal of physics: conference series, 1594(1), 012047. https://doi.org/10.1088/17426596/1594/1/012047 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.518 jurnal riset informatika vol. 5, no. 2 june 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 8 jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.526 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 1 implementation of hybrid method in tourism place recommendation system based on image features steven christ pinantyo arwidarasto-1*), desti fitriati-2 department of informatics engineering universitas pancasila jakarta, indonesia1,2 stevenchristpa2001@gmail.com1, desti.fitriati@univpancasila.ac.id2 (*) corresponding author abstrak pada industri 4.0, terjadinya ledakan data tak terstruktur maupun berstruktur yang menghasilkan informasi pengetahuan yang sangat luas dan variatif. tentunya, manusia tidak dapat mengolah banyak informasi dalam waktu cepat, yang membuat eksistensi sistem rekomendasi menjadi berarti. sistem ini mempelajari informasi yang ada dan memberikan saran yang sesuai dengan apa yang diinginkan oleh pengguna. dewasanya, banyak sistem rekomendasi lebih menitikberatkan pada penggunaan metode content-based filtering dimana hasil rekomendasi didasari berdasarkan kemiripan fitur dari konen yang disukai oleh pengguna. hal ini membatasi variasi informasi yang relevan kepada pengguna. selain itu, dalam konteks tempat wisata, banyak penelitian yang belum menggunakan data gambar yang dapat memuat banyak objek fitur dalam satu frame sebagai faktor penentu dalam memberikan rekomendasi. hal ini membuat, dalam penelitian ini, penulis memproposalkan penambahan fitur gambar sebagai salah satu parameter penentu rekomendasi untuk mengetahui dampak penggunaan gambar pada performa model. adapun performa terbaik yang didapat yaitu 0.364 menggunakan matrik rmse menggunakan metode hybrid image. kata kunci: industri, rekomendasi, kemiripan, gambar, variasi abstract in the industrial 4.0 era, there is an explosion of unstructured and structured data that produces broad and varied knowledge information that humans cannot process quickly. this issue makes the existence of recommendation systems meaningful. this system studies the existing information and provides suggestions according to the user's will. in the past, many recommendation systems have focused more on content-based filtering methods where recommendation results are similar based on the features of the content that match the user's personality. this method limits the variety of information that is relevant to users. in addition, in the context of tourist attractions, many studies have not used image data that can contain many objects in one frame as a determining factor in providing recommendations. therefore, in this study, the authors propose to add image features as one of the parameters of the recommendation system to determine the impact of using image features on the model performance. the best performance obtained is 0.364 rmse metric using the hybrid image method. keywords: industrial, recommendation, similar, image, varied introduction the rapid development of the times has made much information appear to be used as a basis for decision-making (walek & fojtik, 2020). this resulted in a huge amount of information that made the processing stage difficult for decision-makers to process existing information. in this case, the recommendation system exists to provide relevant decision suggestions for its users based on preferences and historical data (geetha et al., 2018; mohammadpour et al., 2019). the use of recommendation systems in everyday life, among others, in the creative economy and tourism industries. in this sector, the recommendation system provides advice and outreach to people who want or like natural, cultural, educational, or religious exploration. for creative economy and tourism industries, a recommendation system requires information such as tourist categories, place names, locations, and descriptions of tourist attractions to be used as features of the content representation, p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.526 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 2 which the majority of the features mentioned are text-based features. there are several approaches widely used to select relevant items, namely collaborative filtering (c.f.) and content-based filtering (cbf), where both approaches have their own merits. for instance, the c.f. approach suggests that content is seen by other users with highly similar preferences based on historical records (geetha et al., 2018; ng, 2020). in contrast, the cbf approach offers content with similar features to the content users prefer (ng, 2020). one of the c.f. algorithms widely used for recommending content is matrix factorization (m.f.) which has proven to be one of the popular models in the netflix competition (koren et al., 2009). the challenges faced include finding the reliability of the ratings given by users to items. this reliability refers to the relevance of the ratings on a user-item transaction based on the difference in ratings of items. several studies conducted experiments to overcome the problem of rating relevance, one of which was to improve m.f. with a bernoulli probability (ortega et al., 2021). this research uses the movielens dataset, which contains user rating data for several films. this method obtains an evaluation score using a pointwise matrix, namely, mean absolute error (m.a.e.) of 0.093 (native) and 0.036 (enforced). another study was conducted to optimize m.f. using benchmark data, namely the movie lens, which uses the rating centrality method to determine the reliability of the ratings given by the user (wu et al., 2018). this method obtains an evaluation score with a pointwise matrix, namely rmse (root mean squared) of 0.898 at an alpha value of 80%. in contrast to the c.f. methods, several studies conducted cbf to recommend items. one of which uses the content-based image retrieval (cbir) method to retrieve relevant image data using v.g.g. 16 deep convolutional network architecture to select the dominant features of an image into vectors which ranked based on the highest score of cosine similarity matrix (rian et al., 2019). the metrics used in this study, namely f1 score and precision, respectively, 73% and 89.6%. looking at the capabilities of each approach, several studies then combined the c.f. and cbf approaches, known as the hybrid method, to help the c.f. method find out the personalization context of the user (context-aware recommendation model). in doing so, the combined effort could result in a more relevant selection of travel recommendations that draw on other users' histories and similar content. an example of the hybrid method combines the deep neural network method and the c.f. method (using the alternating least square (a.l.s.) algorithm) (biswas & liu, 2022). in this study, feature extraction was done using user-place representation to determine the relationship between both parameters and give relevant recommendations. this method obtains an rmse score of 0.0106. another example of research to optimize m.f. using the deep hybrid model architecture is combining m.f. and neural network (n.n.) using categorical and continuous features (çakır et al., 2019). this study used a listwise evaluation matrix, namely normalized discounted cumulative gain (ndcg) and hit ratio (h.r.), was used. the ndcg and h.r. scores obtained were 0.855 and 0.628 for recommendations based on items and 0.795 and 0.581 for user recommendations. based on these studies, the hybrid model uses personalized m.f. methods that utilize features from content aline with users' preferences. in the context of the creative economy and tourism industries, the content feature that is more dominant to attract the attention of its users is information about the sights of these tourist attractions. this opens up opportunities for using data features that dominantly have information related to object sightseeing as a personalization method for its users. regarding information about tourist sights, if the model processes text-based information, the user is limited by the semantic expression of the text. however, the presence of images can provide broader information about the atmosphere and conditions of the tourist destination to be visited. therefore, utilizing images as an information source can be a solution for finding relevant tourist attractions. for example, a study optimized m.f. architecture by combining m.f. with resnet50 to extract information from images (elsayed et al., 2022). this research uses the amazon fashion dataset, which contains products for clothing needs. the model obtained an a.u.c. matrix evaluation with 100 negative samples for each user of 0.8250. based on the literature studies that have been conducted, many recommendation system studies in the tourism sector still use text-based recommendations. examples of research within the scope of indonesia's creative economy and tourism industries use the smart (simple multi-attribute rating technique) method, which utilizes user preferences based on the most relevant attributes to users. this smart method gives weight to each attribute and calculates the relevance score for each jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.526 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 3 sample. the model obtained an average accuracy of 83.3% (sihotang et al., 2021). other studies used the hybrid method by combining c.f. and cbf approaches. the algorithm used for c.f. approaches is k-nearest neighbor (k.n.n.) to predict the rating value given by the user. in the case of the cbf approach, the features of the descriptive text features extracted by the tf-idf method. the model obtained an m.a.e. result of 0.3678 with k neighbors of 25% (lubis et al., 2020). based on several studies, this research aims to find a suitable algorithm using the hybrid method by combining the c.f. approach and image feature extraction from cbir. the c.f. approach with the m.f. algorithm was used to suggest tourist attractions to users from other users with similar preferences. meanwhile, the image feature extraction method performs the feature extraction process of tourist attractions images as additional data. research methods the following figure 1 shows the propose method in this study. figure 1. proposed method in fig. 1, the proposed method has several stages. these stages will be carried out to gain a suitable method for recommending tourism to people. these stages consist of: a. input data, tourism transaction, and tourism image at this stage, user-item transaction data and images of each tourist spot will be input via the input layer. as for image data, the data will be converted into a vector. b. fetch features at this stage, user-item transaction data is processed by selecting only the features needed in the form of user id features, tourist attraction i.d.s, and explicit ratings given by users. c. normalization next, the rating data is normalized to a value range of 0-1. the normalization used is the min-max normalization which uses the most significant value of the rating, which is 5, with the smallest value, 1. d. resize image image data is processed by setting the image's dimension format (length and width) to 100 using the opencv python package. e. color format conversion the image is converted from the blue green red (b.g.r.) color format to red green blue (rgb). this is because the library used to read images uses opencv, which orders b.g.r. f. feature extraction convolutional neural networks (cnn) convolution neural network (cnn) is one of the implementations of artificial neural networks in image processing. cnn consists of several convolution blocks that take image vectors and perform adaptive learning of spatial features from images (yamashita et al., 2018). cnn performs kernel striding operations to extract features from images at the convolution and pooling layers. after feature extraction, these features will be mapped to the fully connected layer as output results. the results of this output can be given to the regressor or classifier for later identifying suitable labels for the data. cnn has several well-known architectural implementations, including resnet-50, vgg-16, vgg-19, inceptionv3, and xception. in this study, the cnn architecture for feature extraction uses the resnet-50 architecture. g. embeddings embeddings are a compression method to map the input feature results into vectors (hrinchuk et al., 2019). in the recommendation system, embeddings are needed to get the latent vector user p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.526 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 4 id and tourism id. the second vector combines the dot product multiplication operation to produce a factorized matrix. h. matrix factorization this method performs user-item object mapping by performing dot product multiplication operations based on the vector values generated by the user and item embeddings (zhang, 2022). the use of matrix factorization also has the ability as dimensionality reduction because the dot product multiplication operation will only use vectors that already have values which can be seen in (1). r ≈ 𝑃𝑇 . q = ȓ ............................................................... (1) (zhang, 2022) equation (1) shows that p is the user-feature matrix, and q is the items-feature matrix. the dot product of two latent factors can predict the r rating of an item, which can be seen in (2). 𝑟𝑖𝑗 = 𝑝𝑖 𝑇 𝑞𝑗 = ∑ 𝑝𝑖𝑘 𝑇 𝑞𝑘𝑗 𝑘 𝑘=1 .......................................... (2) (zhang, 2022) equation (2) shows that r_ij is the predicted result of the dot product operation. the rating prediction results from the dot product operation will be compared with the actual results to obtain the loss value using the m.s.e. matrix, which can be seen in (3) and (4). 𝑒𝑖𝑗 2 = (𝑟𝑖𝑗 − ȓ𝑖𝑗 ) 2 = (𝑟𝑖𝑗 − ∑ 𝑝𝑖𝑘 𝑞𝑗𝑘 𝑘 𝑘=1 ) 2 ............... (3) 𝐿𝑜𝑠𝑠(𝑝, 𝑞) = ∑ 𝑒𝑖𝑗 2 + 𝜆 (||𝑝𝑖𝑘 || 2 + ||𝑞𝑗𝑘 || 2 ) ....... (4) (zhang, 2022) in equation (4), the loss function has λ as regularization, which will be used as a penalty. the loss value will be used by gradient descent to minimize the difference between the predicted and actual values, which can be seen in (5), and (6). 𝜕𝐶 𝜕𝑝𝑖𝑘 = ∑ 2(𝑟𝑖𝑗 − ∑ 𝑝𝑖 𝑞𝑗 𝑘 𝑘=1 )𝑗 (−𝑞𝑗𝑘 ) + 2𝜆𝑝𝑖𝑘 ..... (5) 𝜕𝐶 𝜕𝑞𝑗𝑘 = ∑ 2(𝑟𝑖𝑗 − ∑ 𝑝𝑖 𝑞𝑗 𝑘 𝑘=1 )𝑗 (−𝑞𝑖𝑘 ) + 2𝜆𝑝𝑗𝑘 ..... (6) (zhang, 2022) equations (5) and (6) above will be used by the optimizer for learning to minimize the loss between the predicted results and the actual value. data, instruments, and data collection techniques this study uses secondary data from 2021, namely indonesian tourism dataset data, which has several unique users of 300 accounts, several tourist attractions (tourism sites) 437 spread across five major cities in indonesia, and the total number of reservations along with ratings on a scale of 1-5 is 10,000 samples. this data is taken from a file in .csv format based on literature research. figure 2. distribution of reservations user-based based on figure 2, it can be concluded that the data distribution is not normally distributed. figure 3. distribution of ages based on figure 3, it can be concluded that the majority range of ages is between 27-30 figure 4. distribution of ratings based on figure 4, it also can be concluded that most ratings are above 1. in addition to text data, image data are obtained through google images randomly. the sources of image data were also varied; the majority were obtained from wikipedia, pegipegi, tokopedia, traveloka, and tiket. these images are used as a representation of tourist attractions, with a total of 437 images. results and discussion in this study, several experiments were conducted using several architectures, including; matrix factorization, neural collaborative filtering, hybrid method using text features, hybrid m.f. and n.c.f. methods with image features, and hybrid mfncf method with image features. jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.526 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 5 table 1. algorithm comparison table algoritma metrics ndcg @5 acc@5 mse rmse m.a.e. matrix factorizati on (m.f.) 38.4% 52.7% 0.653 0.808 0.649 neural collaborati ve filtering (n.c.f.) 15.9% 51.8% 0.179 0.423 0.348 hybrid text feature 42.8% 49.9% 0.160 0.400 0.333 neural collaborati ve filtering image 62.8% 52.1% 0.219 0.468 0.376 matrix factorizati on image 28.2% 54.6% 0.158 0.398 0.332 hybrid m.f. image recommen dation (personaliz ed) 71.5% 53.8% 0.133 0.364 0.309 hybrid n.c.f. image recommen dation (personaliz ed) 85.8% 52.7% 0.133 0.364 0.311 hybrid m.f. +ncf image recomme ndation (personali zed) 60.2% 56.2% 0.142 0.376 0.317 based on table i, the results of the evaluation of the highest indonesian tourism dataset data based on the regression matrix were obtained by the hybrid m.f. image recommendation (personalized) and n.c.f. personalized methods, which had the lowest m.s.e., rmse, and m.a.e. values compared to other methods. the regression matrix measures 'how close' the predicted results are to the actual results and becomes the main matrix. table i shows that images as additional parameters for the model have a better average performance than those without image features. furthermore, the additional personalization data from the categories of tourist attractions preferred by users increased model performance, as indicated by a lower average m.a.e. evaluation than the model without personalization. based on the ndcg matrix, which is used to measure the quality of giving recommendations. based on these scores, the highest model is n.c.f. image personalized, with a score of 85.8%. based on the top-k accuracy matrix to get a slice of tourist attractions in the top recommendations for each user using the average value, the combined m.f. and n.c.f. image recommendation personalized model obtained the highest average accuracy value of 56.2% compared to other methods. this result is due to the model's nature which combined the linear and non-linear models, resulting in broader regression for the model. these combinations acted as ensembled learning with the output of mean value between the two algorithms. figure 5. architecture of hybrid models (mf and n.c.f. combined) p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.526 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 6 based on fig. 5, the hybrid models combined m.f. and n.c.f. models and averaged their outputs to gain the most relevant score. for the image feature extractor, the author used resnet50. figure 6. set up personalization when a new user registers for the website, the website will redirect to the personalization setup page, where the user must choose four tourist attractions they like, which can be seen in fig. 6. figure 7. home page after setting up the personalization for a new user, the user will redirect to the home page, where the system provides top-5 recommendations based on the previous personalization setup or users' histories (old users), which can be seen in fig. 7. figure 8. booking page when the user plans to visit a tourist spot, the user can select the visit link to open the tourist place order form, which can be seen in figure 8. conclusions and suggestions conclusion based on the evaluation of the research that has been carried out on the proposed algorithms, the use of the hybrid method with image and personalization features can provide tourist recommendations. although, the evaluation of the m.s.e., rmse, and m.a.e. regression matrices where the prediction results are not very satisfactory due to a significant distance from the actual value. in this case, the use of the hybrid method is carried out by combining two examples of the implementation of the m.f. method, namely gmf and n.c.f., with the resnet50 cnn architecture. in addition, this model is supported by user personalization in the form of tourist categories that each user likes. based on the experimental results above, it was found that the hybrid n.c.f. + m.f. image (personalized) model has an ndcg accuracy of jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.526 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 7 60.2% for the top-5 with an accuracy top-5 of 56.2%. suggestion this recommendation system is not perfect and has room for improvement that can be improved further into a context-awareness based recommendation system where recommendations are made based on users' online patterns, length of interaction with each site that provides information on certain tourist attractions, and also providing a matrix of calculating relevance scores provided by the user. this can positively impact the accuracy of scoring by users for each tourist spot. in addition, based on existing data, descriptions of tourist attractions can be processed by the text sequence learning model to determine a suitable probability relationship between each description of tourist attractions. references biswas, p. k., & liu, s. (2022). a hybrid recommender system for recommending smartphones to prospective customers. expert systems with applications, 208(1). https://doi.org/10.1016/j.eswa.2022.11805 8 çakır, m., öğüdücü, ş. g., & tugay, r. (2019). a deep hybrid model for recommendation systems. ai*ia 2019: ai*ia 2019 – advances in artificial intelligence, 321–335. https://doi.org/10.1007/978-3-030-351663_23 elsayed, s., brinkmeyer, l., & schmidt-thieme, l. (2022). end-to-end image-based fashion recommendation. workshop on recommender systems in fashion and retail, 109–119. https://doi.org/10.1007/978-3-031-221927_7 geetha, g., safa, m., fancy, c., & saranya, d. (2018). a hybrid approach using collaborative filtering and content based filtering for recommender system. journal of physics: conference series, 1000(1). https://doi.org/10.1088/17426596/1000/1/012101 hrinchuk, o., khrulkov, v., mirvakhabova, l., orlova, e., & oseledets, i. (2019). tensorized embedding layers for efficient model compression (pp. 1–13). arxiv. https://doi.org/10.48550/arxiv.1901.10787 koren, y., bell, r., & volinsky, c. (2009). matrix factorization techniques for recommender systems. computer, 42(8), 30–37. https://doi.org/10.1109/mc.2009.263 lubis, y. i., napitupulu, d. j., & dharma, a. s. (2020). implementasi metode hybrid filtering (collaborative dan content-based) untuk sistem rekomendasi pariwisata. 12th conference on information technology and electrical engineering, 28–35. https://citee.ft.ugm.ac.id/2020/download51. php?f=ti-5 implementasi metode hybrid filtering.pdf mohammadpour, t., bidgoli, a. m., enayatifar, r., & javadi, h. h. s. (2019). efficient clustering in collaborative filtering recommender system: hybrid method based on genetic algorithm and gravitational emulation local search algorithm. genomics, 111(6), 1902–1912. https://doi.org/10.1016/j.ygeno.2019.01.0 01 ng, y. k. (2020). cbrec: a book recommendation system for children using the matrix factorisation and content-based filtering approaches. international journal of business intelligence and data mining, 16(2), 129–149. https://doi.org/10.1504/ijbidm.2020.10473 8 ortega, f., lara-cabrera, r., gonzález-prieto, á., & bobadilla, j. (2021). providing reliability in recommender systems through bernoulli matrix factorization. information sciences, 553, 110–128. https://doi.org/10.1016/j.ins.2020.12.001 rian, z., christanti, v., & hendryli, j. (2019). contentbased image retrieval using convolutional neural networks. proceedings 2019 ieee international conference on signals and systems, icsigsys 2019, 1–7. https://doi.org/10.1109/icsigsys.2019.881 1089 walek, b., & fojtik, v. (2020). a hybrid recommender system for recommending relevant movies using an expert system. expert systems with applications, 158, 113452. https://doi.org/10.1016/j.eswa.2020.11345 2 wu, z., tian, h., zhu, x., & wang, s. (2018). optimization matrix factorization recommendation algorithm based on rating centrality (pp. 1–12). arxiv. https://doi.org/10.1007/978-3-319-938035_11 yamashita, r., nishio, m., do, r. k. g., & togashi, k. (2018). convolutional neural networks: an overview and application in radiology. insights into imaging, 9, 611–629. https://doi.org/10.1007/s13244-018-0639 zhang, y. (2022). an introduction to matrix p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.526 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 8 factorization and factorization machines in recommendation system, and beyond (pp. 1– 15). arxiv. https://doi.org/10.48550/arxiv.2203.11026 jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.481 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 529 support vector classification with hyperparameters for analysis of public sentiment on data security in indonesia siti ernawati -1*), risa wati -2, nuzuliarini nuris -3 sistem informasi universitas nusa mandiri jakarta, indonesia www.nusamandiri.ac.id 1*)siti.ste@nusamandiri.ac.id sistem informasi universitas bina sarana informatika jakarta, indonesia www.bsi.ac.id 2risawati.rwx@bsi.ac.id, 3nuzuliarini.nzn@bsi.ac.id (*) corresponding author abstract the development of information technology makes increasing use of the internet. this raises the vulnerability of data security. cyber attacks in indonesia caused many tweets on social media twitter. some are positive, and some are negative. the problem of this study is to determine the public sentiment towards data security in indonesia, while the purpose of this study is how the response or evaluation of the government of indonesia to the many perceptions of people who lack confidence in data security in indonesia. data obtained from twitter with as much as 706 data was processed using python with a percentage of 10% test data and 90% training data. weighting is done using tf-idf, and then the data is processed using the support vector machine algorithm using the svc (support vector classification) library. support vector classification with rbf kernel classifies text well to obtain auc value with good classification category. utilizing one of the hyperparameter techniques, which is a grid search technique that can compare the accuracy of test results. the test results using svc with rbf kernel obtained an accuracy value of 0.87, precision of 0.82, recall of 0.94, and f1_score of 0.87. this study is expected to be used by decision-makers related to public confidence in data security in indonesia. keywords: data security; grid search ; hyperparameter; svc abstrak berkembangnya teknologi informasi membuat meningkatnya penggunaan internet. hal ini menimbulkan rentannya keamaan data. serangan siber di indonesia menimbulkan banyaknya cuitan pada media social twitter, ada yang beropini positif dan ada yang beropini negative. permasalahan dalam penelitian adalah untuk mengetahui sentimen masyarakat terhadap keamanan data di indonesia, sedangkan tujuan dari penelitian ini adalah bagaimana tanggapan atau evaluasi pemerintah indonesia terhadap banyaknya persepsi masyarakat yang kurang percaya terhadap keamanan data di indonesia. data diperoleh dari twitter dengan jumlah data sebanyak 706 data diolah menggunakan python dengan prosentase 10% data test dan 90% data training. dilakukan pembobotan menggunakan tf-idf selanjutnya data diolah menggunakan algoritma support vector machine dengan memanfaatkan library svc (support vector classification). support vector classification dengan kernel rbf mengklasifikasikan teks dengan baik memperoleh nilai auc dengan kategori good classification. memanfaatkan salah satu teknik hyperparameter yaitu teknik grid search yang dapat membandingkan keakuratan hasil uji. hasil uji menggunakan svc dengan kernel rbf didapatkan nilai akurasi sebesar 0.87, precision 0.82, recall 0.94 dan f1_score 0.87. penelitian ini diharapkan dapat dijadikan pengambil keputusan terkait kepercayaan masyarakat terhadap keamanan data di indonesia. kata kunci: grid search; hyperparameter; keamanan data; svc p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.481 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 530 introduction information technology is growing rapidly, causing an impact on many community activities. utilizing information technology resulted in the vulnerability of personal data security. every year internet users in indonesia increase, based on the results of a survey by the asosiasi penyelenggara jasa internet indonesia (apjii) in the 2021-2022 period reaching 210.03 million users (bayu, 2022). increased use of the internet makes the risk of hacking even higher. until april 2022, badan siber dan sandi negara (bssn) recorded cyber attacks in indonesia, reaching 100 million cases (andreya, 2022). the issue of personal data protection is very important. if there is theft of personal data such as names, addresses, emails, telephone numbers, bank account numbers to medical history in the thousands to millions, it can threaten national security (wisnubroto, 2021). regulation of personal data protection is important due to the emergence of various problems as the use of personal data in information technology-based transactions increases (rumlus & hartadi, 2020). kemenkominfo revealed that indonesia was the country that experienced the most cyber attacks (widyanuratikah, 2018). in the last few years, social media, one of which is twitter, has gotten much attention, and users can express their opinions about anything. users generate information that shows the user's views on a particular topic, which is very useful for analyzing public opinion (naz et al., 2018). the number of cyber attacks that occurred in indonesia made people have given opinions on social media such as twitter. various tweets appeared with both positive opinions and negative opinions. therefore, researchers will analyze public perceptions of data security in indonesia. the purpose of this study is to determine the value of performance metrics generated by svc using the hyperparameter grid search technique and is expected to be useful for the government of indonesia in evaluating the perception of people who lack confidence in data security in indonesia. the proposed model will analyze the sentiment of public perception of data security in indonesia using the svm algorithm with svc library and grid-search techniques. with two or more classes, svm is commonly used in classification problems (hsu, chang, & lin, 2010). the svm algorithm will find the best parameters (ahmad, aftab, bashir, hameed, et al., 2018) and compare the accuracy of the results obtained and then choose the best parameters. the most recommended kernel in svm is rbf, and this kernel nonlinearly maps samples into higher dimensional space (hsu et al., 2008). the parameters to be searched are gamma and c. to evaluate the performance of the proposed model using a confusion matrix by calculating the performance metrics of accuracy, precision, recall, and f1-score, also using the roc curve (receiver operator characteristic) and auc value (area under curve). the first related research compares twitter's sentiment classification algorithm to tokopedia's data leak incident. conducted observations of three different classifiers, it was concluded that of the total 494 tweets analyzed, support vector machine is the classifier with the best performance, resulting in the highest f1-score of 0.503583 (wibowo et al., 2021). the next research is the application of svm in various research fields such as text categorization, protein fold, remote homology detection, image classification, bioinformatics, hand-written character recognition, face detection, generalized predictive control, and many more. many researchers have shown that in classification techniques, svm is better than other algorithms (cervantes et al., 2019). research on gopay user sentiment analysis using lexicon based and support vector machine method shows svm classification method by comparing the kernel is quite good, for linear kernel get an accuracy value of 89.17% while the polynomial kernel of 84.38% (mahendrajaya et al., 2019). application of the support vector machine method for sentiment analysis of indihome services based on tweets (tineges et al., 2020) resulted in an accuracy of 87% with accuracy between the predicted results with the actual data (precision) of 86%, the success rate of the system in predicting a data (recall) of 95%, while for the average comparison value of precision and recall (f1-score) of 90%. research conducted on sentiment analysis of gojek on social media using the svm method (fitriyah et al., 2020) has the best overall accuracy rate of 79.19%. the accuracy is obtained from modeling using rbf kernel with cost=1000 and γ=0,00026. research methods the stages of research conducted are: 1. identification of problems and objects of research the problem of this study is to determine people's sentiment about data security in indonesia, while the purpose of this study is how the response or evaluation of the government of indonesia to the many perceptions of people who lack confidence in jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.481 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 531 data security in indonesia. the object of this study is the opinions written by people on social media. this opinion continues to increase over time, becomes a problem, and can be used by researchers to determine public sentiment by analyzing public opinion. figure 1. stages of research 2. data set using public data is data collected from twitter, namely data on public opinion about data security in indonesia. the data used as much as 706, labelled positive and negative and then processed using the python language. the percentage of test data and training data is 10% test data and 90% training data. 3. prepossessing preprocessing converts raw data into data that uses for subsequent data processing. several stages of preprocessing conducted in this study are: a. case folding converts each word in the dataset into lowercase (fikri et al., 2020). b. cleaning text removes unused characters such as double spaces, hashtags, links, retweets, mentions, and punctuation (rahmawati & sukmasetya, 2022). c. tokenization is the process used to divide text into single words (unigrams) or consecutive combinations of words (n-grams) (chiny et al., 2021). d. stopword removes words that have no meaning, such as the, in, and on (fikri et al., 2020). e. stemming is changing a word into a base word by removing affixes (rahmawati & sukmasetya, 2022). 4. weighting tf-idf (term frequency-inverse document frequency) is an algorithm for assigning weight to text (fikri et al., 2020). tf (term frequency) is the frequency of occurrence of a term in the document in question, while the idf is the relationship between the availability of a term in all documents (mahendrajaya et al., 2019). tf-idf is used to find out how often words appear in a document, the following formula in tfidf weighting (liu & yang, 2012). 𝑎𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 ∗ 𝑙𝑜𝑔 ( 𝑁 𝑛𝑗 ) ....................................................... (1) 𝑡𝑓𝑖,𝑗 is term frequency of term j in document i. n represents the total number of documents in the dataset. nj is the number of the emergence of documents in term i. 5. support vector classification implementation with grid search support vector machine is an important and fundamental technique in machine learning (yin & li, 2019). svm is one of the widely used machinelearning techniques to detect the polarity of text (ahmad, aftab, bashir, & hameed, 2018). svm can predict both classification and regression. in implementing the performance model, researchers will use the sklearn svc library, a support vector classification, to implement the libsvm library (chang & lin, 2011). how svm works first, svm looks for a support vector in each class. the support vector is a sample from each class with the closest distance to other class samples. after the support vector obtains, svm then calculates the margin. we can think of margin as the path that separates two classes. margin is created based on the support vector where the support vector works as the edge of the road, or often we know as the shoulder of the road. svm seeks the largest margin or widest path to separate the two classes. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.481 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 532 figure 2. svm working technique (ahmad, aftab, bashir, & hameed, 2018) based on figure 2, svm will select the margin on the right because the 'path 'or margin on the right image is wider than the' path ' on the left. it is why images placed off to the left are said to have a "big margin," while images placed off to the right have a "small margin." 6. evaluation an important step in this evaluation is to measure the performance of the proposed model. this evaluation is used as a consideration to choose the best model. one technique to measure the proposed model's performance is the fusion matrix. the performance metrics calculated in the confusion matrix are accuracy, precision, recall, and f1-score. in addition to the confusion matrix, the researcher used the roc curve (receiver operator characteristic) and auc value (area under curve) in this evaluation stage. this evaluation phase will explain whether proven support vector classification is a good classification model for sentiment analysis of data security in indonesia. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃+𝑇𝑁) (𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁) ........................................... (2) 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝 𝑡𝑝+𝑓𝑝 ............................................................ (3) 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝 𝑡𝑝+𝑓𝑛 .................................................................... (4) 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛) .......................................................................... (5) results and discussion 1. classification of models this study collected data from social media twitter in the form of public opinion about data security in indonesia. the data used as much as 706 data, and then the data was separated manually into positive and negative opinions. with several positive opinions as much as 379 and negative opinions as much as 328 data. data sharing between test data and training data. comparison of data made 10% test data and 90% training data. based on figure 3, the negative words in the opinion include data, private, cyber, bocor, and bjorka. figure 3. word cloud negatif in figure 4, the positive words that appear are data, pribadi, aman, lindung, and undang-undang. positive and negative wordcloud shows the words used in the sentiment, the more words that appear, the larger the size of the word in the image. figure 4. word cloud positif after the data becomes positive and negative opinions, preprocessing the data removes data noise so that the data is used for further data processing. here is the form of data before and after preprocessing. jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.481 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 533 table 1. preprocessing result tweet preprocessing result #kuliahasyik #digitalactivism #bjorka bjorka sosok hero indonesia? bjorka menunjukan bahwa betapa lemahnya sistem perlindungan dan keamanan data indonesia,seharusnya pemerintah kita sadar dengan kebocoran sistem pemerintah dari dulu sampek sekarang. bjorka sosok hero indonesia bjorka tunjuk betapa lemah sistem lindung aman data indonesia perintah sadar bocor sistem perintah sampek di tengah isu privasi dan kebocoran data warga yang gagal diamankan negara, @indihome memperbarui kebijakan. pengguna harus merelakan datanya untuk ???afiliasi telekom dan tujuan-tujuan lain.??? di poin 8, indihome tak bertanggung jawab jika data bocor karena ???gangguan keamanan.??? https://t.co/zmsx5o5l09 privasi bocor data warga gagal aman negara baru bijak guna rela data afiliasi telekom tuju tuju poin indihome tanggung data bocor ganggu aman 2. experiment using the svc model with grid search statistical approaches such as machine learning and deep learning work best when using numerical data. therefore, opinion data is a collection of words converted into numbers or numeric. this process is often called the weighting process. some techniques often used in the weighting process include bag of words, n-grams, word2vec, and tf-idf. this study uses tf-idf (term frequency-inverse document frequency) for weighting in sentiment analysis (chiny et al., 2021). tf-idf is used to find out how often words appear in a document, the following formula in tf-idf weighting (liu & yang, 2012). after the weighting process, the svc library implements on the support vector machine by building a model and utilizing several kernels. there are four kernels, linear, rbf, poly, and sigmoid. one hyperparameter technique will be used based on the four kernels: grid search. one technique to optimize the accuracy value is to use grid search (yan et al., 2022), a grid search technique to determine the result of a combination of parameters that are best for the performance of the proposed model (k et al., 2019). the parameters tested can be seen in table 2. table 2. parameters to be tested parameter description kernel linear, rbf, poly, sigmoid c 1, 100, 1000, 10000 gamma 0.01, 0.1, 1, 10, 100 table 3. svc model accuracy results with grid search kernel c gamma accuracy results linear 1 0.01 precision : [0.94 0.79] accuracy: 0.86 f1_score: 0.86 recall: 0.94 rbf 1 1 precision : [0.94 0.82] accuracy: 0.87 f1_score: 0.87 recall: 0.94 poly 1 1 precision : [0.87 0.85] accuracy: 0.86 f1_score: 0.85 recall: 0.76 sigmoid 100 0.01 precision : [0.94 0.79] accuracy: 0.86 f1_score: 0.86 recall: 0.94 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.481 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 534 table 3 shows the results of the svc model calculation with grid search. from the test results can be seen that the best parameter is c= 1 and gamma = 1, which produces a value of negative precision = 0.94, positive precision = 0.82, accuracy = 0.87, f1_score = 0.87 and recall = 0.94 3. evaluation to evaluate the performance of the proposed model using performance metrics of accuracy, precision, recall, and f1-score. performance metrics are calculated based on the value of the true positive (tp), false positive (fp), true negative (tn), and false negative (fn) class set. at the same time, the precision of the correct prediction is positive compared to the overall predicted outcome. figure 5. confusion matrix obtained a true negative value of 43.66%, false positive of 9.86%, false negative of 2.82%, and true positive of 43.66%. figure 5. confusion matrix 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) = = (43.66+43.66) (43.66+9.86+2.82+43.66) = 0.87 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝 𝑡𝑝+𝑓𝑝 = 43.66 43.66+9.86 = 0.82 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝 𝑡𝑝+𝑓𝑛 = 43.66 43.66+2.82 = 0.94 (8) 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛) = 2 ∗ (0.94 ∗ 0.82)/(0.94 + 0.82) = 0.87 figure 6 illustrates the roc curve. the roc curve shows accuracy and visually compares classifications. the roc curve expresses the confusion matrix. roc is a two-dimensional graph with false positives as horizontal lines and true positives as vertical lines. this study obtained an auc value of 0.89, and the value entered into the category of good classification. figure 6. roc curve conclusions and suggestions conclusion based on the test results for sentiment analysis of indonesian public confidence in data security, svc with rbf kernel can classify text well, as evidenced by the auc value of 0.89. the grid search technique can compare the accuracy of the test results and then choose the best parameters. the test results using svc with rbf kernel obtained an accuracy value of 0.87, precision of 0.82, recall of 0.94, and f1_score of 0.87. this research model can be applied by agencies in decision-making related to public confidence in data security so that the government can evaluate the number of perceptions of people who lack confidence in data security in indonesia. suggestion further research can focus on comparing techniques or other classification methods that can create a new model by combining many classification and selection methods to produce more accurate values. references ahmad, m., aftab, s., bashir, m. s., & hameed, n. (2018). sentiment analysis using svm : a systematic literature review. (ijacsa) jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.481 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 535 international journal of advanced computer science and applications, 9(2), 182–188. https://doi.org/10.14569/ijacsa.2018.0902 26 ahmad, m., aftab, s., bashir, m. s., hameed, n., ali, i., & nawaz, z. (2018). svm optimization for sentiment analysis. international journal of advanced computer science and applications, 9(4), 393–398. https://doi.org/10.14569/ijacsa.2018.0904 55 andreya, e. (2022). antisipasi bersama tingkatkan sistem dan cegah serangan siber. aptika.kominfo.go.id. https://aptika.kominfo.go.id/2022/09/antisi pasi-bersama-tingkatkan-sistem-dan-cegahserangan-siber/ bayu, d. (2022). apjii: pengguna internet indonesia tembus 210 juta pada 2022. dataindonesia.id. https://dataindonesia.id/digital/detail/apjiipengguna-internet-indonesia-tembus-210juta-pada-2022 cervantes, j., garcia-lamont, f., rodríguez-mazahua, l., & lopez, a. (2019). neurocomputing a comprehensive survey on support vector machine classification : applications, challenges and trends. neurocomputing, xxxx. https://doi.org/10.1016/j.neucom.2019.10.1 18 chang, c. c., & lin, c. j. (2011). libsvm: a library for support vector machines. acm transactions on intelligent systems and technology, 2(3), 1– 40. https://doi.org/10.1145/1961189.1961199 chiny, m., chihab, m., chihab, y., & bencharef, o. (2021). lstm, vader and tf-idf based hybrid sentiment analysis model. international journal of advanced computer science and applications, 12(7), 265–275. https://doi.org/10.14569/ijacsa.2021.0120 730 fikri, m. i., sabrila, t. s., & azhar, y. (2020). perbandingan metode naïve bayes dan support vector machine pada analisis sentimen twitter. smatika jurnal, 10(02), 71– 76. https://doi.org/10.32664/smatika.v10i02.45 5 fitriyah, n., warsito, b., & maruddani, d. a. i. (2020). analisis sentimen gojek pada media sosial twitter dengan klasifikasi support vector machine (svm). jurnal gaussian, 9(3), 376– 390. https://doi.org/10.14710/j.gauss.v9i3.28932 hsu, c.-w., chang, c.-c., & lin, c.-j. (2008). a practical guide to support vector classification. bju international, 101(1), 1396–1400. http://www.csie.ntu.edu.tw/%7b~%7dcjlin /papers/guide/guide.pdf k, r. g. s., verma, a. k., & radhika, s. (2019). knearest neighbors and grid search cv based real time fault monitoring system for industries. 2019 5th international conference for convergence in technology (i2ct), 9–13. https://doi.org/10.1109/i2ct45611.2019.90 33691 liu, m., & yang, j. (2012). an improvement of tfidf weighting in text categorization. 2012 international conference on computer technology and science (iccts 2012), 47(iccts), 44–47. https://doi.org/10.7763/ipcsit.2012.v47.9 mahendrajaya, r., buntoro, g. a., & setyawan, m. b. (2019). analisis sentimen pengguna gopay menggunakan metode lexicon based dan support vector machine. komputek, 3(2), 52– 63. https://doi.org/10.24269/jkt.v3i2.270 naz, s., sharan, a., & malik, n. (2018). sentiment classification on twitter data using support vector machine. 2018 ieee/wic/acm international conference on web intelligence (wi), 676–679. https://doi.org/10.1109/wi.2018.00-13 rahmawati, c., & sukmasetya, p. (2022). sentimen analisis opini masyarakat terhadap kebijakan kominfo atas pemblokiran situs non-pse pada media sosial twitter. jurikom (jurnal riset komputer), 9(5), 1393–1400. https://doi.org/10.30865/jurikom.v9i5.4950 rumlus, m. h., & hartadi, h. (2020). kebijakan penanggulangan pencurian data pribadi dalam media elektronik. jurnal ham, 11(2), 285–299. https://doi.org/10.30641/ham.2020.11.285299 tineges, r., triayudi, a., & sholihati, i. d. (2020). analisis sentimen terhadap layanan indihome berdasarkan twitter dengan metode klasifikasi support vector machine (svm). jurnal media informatika budidarma, 4(3), 650. https://doi.org/10.30865/mib.v4i3.2181 wibowo, n. i., maulana, t. a., muhammad, h., & rakhmawati, n. a. (2021). perbandingan algoritma klasifikasi sentimen twitter terhadap insiden kebocoran data tokopedia. jiska (jurnal informatika sunan kalijaga), 6(2), 120–129. https://doi.org/10.14421/jiska.2021.6.2.120 -129 widyanuratikah, i. (2018, october 8). indonesia p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.481 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 536 negara ketiga paling sering terkena serangan siber. republika., nasional. https://www.republika.co.id/berita/pg9slu3 54/indonesia-negara-ketiga-paling-seringterkena-serangan-siber wisnubroto, k. (2021). memastikan data pribadi aman. indonesia.go.id. https://www.indonesia.go.id/kategori/edito rial/3272/memastikan-data-pribadi-aman yan, t., shen, s.-l., zhou, a., & chen, x. (2022). prediction of geological characteristics from shield operational parameters by integrating grid search and k-fold cross validation into stacking classification algorithm. journal of rock mechanics and geotechnical engineering, 14(4), 1292–1303. https://doi.org/10.1016/j.jrmge.2022.03.002 yin, j., & li, q. (2019). a semismooth newton method for support vector classification and regression. computational optimization and applications, 73(2), 477–508. https://doi.org/10.1007/s10589-01900075-z jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.485 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 121 web-based customer services management implementation for the sales division endang sri palupi sistem informasi universitas bina sarana informatika endang.epl@bsi.ac.id abstract with the growing business at pt mastersystem infotama, more and more customers and orders have been obtained. as time goes by, many sales go in and out, and staff change, so the customer database cannot be maintained and updated correctly. all leads and opportunities cannot be monitored and appropriately managed, and the daily activity of the sales division is also not monitored. implementation of customer relationship management (crm) helps maintain customer data and can be continuously updated to maintain good relations with all customers. prospects and opportunities can be managed and monitored, the daily activities of the sales division are neatly scheduled, and customer observations can be gathered, all of which can be done in one application, crm. with this implementation, sales at pt mastersystem infotama experienced a 20% increase in sales in 2018. this research uses the waterfall model, which has the advantage of being a gradual and more detailed method to minimize errors. this crm implementation produces a web-based crm application that can be accessed by all employees wherever they are connected to a lan. employees can access crm according to each division's capacity to make work easier. keywords: customer relationship management, crm implementation, business strategy abstrak dengan semakin berkembangnya bisnis di pt mastersystem infotama, semakin banyak pula pelanggan dan order yang telah didapatkan. seiring berjalannya waktu banyak sales keluar masuk adanya pergantian staff sehingga database pelanggan tidak dapat terpelihara dan terupdate dengan baik. semua leads dan opportunity tidak bisa termonitor dan termanage dengan baik, daily activity divisi penjualan juga tidak termonitor. untuk itu penulis ingin mengimplementasikan customer relationship management (crm) supaya semua database pelanggan dapat terpelihara dengan baik dan bisa terus diupdate sehingga dapat terus menjalin hubungan yang baik dengan semua pelanggan, leads dan opportunity dapat dimanage dan dimonitor,daily activity divisi penjualan terjadwal rapi, dan mendapatkan informasi untuk observasi pelanggan, semua dapat dilakukan dalam satu aplikasi yaitu crm. dengan implementasi ini penjualan di pt mastersystem infotama mengalami kenaikan penjualan 20% pada tahun 2018. penelitian ini menggunakan pemodelan waterfall yang memiliki kelebihan yaitu metodenya yang bertahap dan lebih detail sehingga meminimalisir kesalahan. implementasi crm ini menghasilkan aplikasi crm berbasis web yang dapat diakses seluruh karyawan dimanapun berada yang terhubung lan ataupun tidak. karyawan bisa mengakses crm sesuai kapasitasnya masing – masing divisi untuk mempermudah pekerjaan. kata kunci: customer relationship management, penerapan crm, strategi bisnis introduction with the development of an increasingly significant business at pt mastersystem infotama, the amount of customer data is increasing, and the orders coming in are increasing, thus requiring good data maintenance. coupled with the entry and exit of employees so that there is a change of old and new employees requires a database storage template that is easily accessible and updated by all employees in the system. the crm application does not require additional space to store data, such as saving manually. the data can be accessed in realtime on one platform so that if there is a change of staff, you do not have to look for data information in hundreds of files on the computer. (barantum, 2022) p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.485 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 122 the research entitled implementation of crm in marketing information systems using a framework based on the react.js website uses an agile method that restores readiness to carry out changes in the development stage. while the authors conducted research using the waterfall method, waterfall is the most traditional sdlc development method, while agile is a method that is considered evolved and absorbs speed (agility). (muhammad, fitri, & nuraini, 2022) in the research on electronic customer relationship management (e-crm) design as an information system in improving digital library services for the unsri faculty of computer science, crm is implemented electronically using a web browser, email, call center, sms gateway, and chat. one of the aims of this e-crm is to make it easier for library service users to find information and access e-crm as customers. while this research is a website-based crm that can only be accessed via a browser, and companies only use crm, there is no customer access, so there is no feedback regarding service. (mira afrina, 2013) the research entitled implementation of crm for guest services in the berbah sub-district of sleman yogyakarta is used to provide information and monitor all guests who enter the berbah subdistrict of yogyakarta through the local rt head using an sms gateway. the use of crm in this study uses the sms gateway system. sms gateway is a device or system capable of handling basic sms operations (sending, receiving, reading, and deleting sms) that are outside the standard gsm network. the sms gateway can also add complementary features such as autoreply and sms broadcast. exit and entry of guests are informed and monitored via the sms gateway. in contrast to this study, crm is implemented using a website and helps store customer data and create customer opportunities and orders. (galih pamungkas, 2015) then the following research entitled crm implementation in web-based sales applications pt. buana telekomindo, this descriptive research aims to describe the business processes running at pt. buana telekomindo is then analyzed using the crm concept to see which processes can be removed, added, or modified. action research to improve business processes and design a crmbased information system consists of process design using dfd, database design using erd, and interface design. the similarity with this research is that it can monitor business processes so that they are more effective. the difference is that this research is in the crm application. there is also an updated and real-time customer database, and there are records of all customer purchases that have been made, so the information needed for reports is faster. (simarmata & hasibuan, 2019) it differs from heru saputro and colleagues' research entitled implementation of crm for optimizing web-based rengginang traditional food customer service and tawk because this research builds a rengginang online sales web using the waterfall method based on customer relationship management. so crm here is on the online sales web that customers can access, while the author implements crm that cannot be accessed by customers and only for business processes within the company. (h. saputro, 2018) research methods in this study, the authors used a qualitative descriptive method, a qualitative descriptive analysis method to analyze, describe, and summarize various conditions and situations from various data collected in the form of interviews or observations regarding the problems studied that occurred in the field. (i. made winarta, 2006). the reason for choosing a qualitative descriptive research design is that the researcher wants to describe the conditions observed in the field more precisely, transparently, and in-depth. the researcher formulates the problem, collects data using observation, interview, and literature study techniques, and then finds research conclusions and implements them through web-based crm. crm is a business strategy that integrates processes, people, and technology. help attract sales prospects, convert them into customers, and retain existing, satisfied, loyal customers. figure 1. crm concept the concept of crm is divided into three levels, namely: strategic crm for business jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.485 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 123 development, operational crm, namely business processes, and analytical crm for the utilization of customer data to increase company value. (supandi, yusuf, & fauziah, 2018) customers the customer database is constantly updated and fully maintained. all purchases and activities for customers are also recorded on crm. for example, in 2021, pt abc asked for an hpe product presentation and an antivirus price quote so that the sales division could continue to the next stage to increase sales to these customers. a. key performance indicators to see the achievements of the sales division. with this achievement, a performance evaluation will be carried out to achieve the company's target. b. monitoring to measure the performance of the customer service team and evaluate the quality of services provided to customers. c. technical services there is a contact center that stands by 24/7 hours, and any problems reported by customers will be resolved according to the sla (services level agreement) for each product and the problem. d. promotions schedule of promotional activities to be held by the company. for example, autocad product license flash sales from january 14, 2022, to january 20, 2022, at a 30% discount. e. payment the system will schedule payment due dates for customers who make transactions. if there has been no payment and it is past due, the sales division will help follow up with the customer. you can see records of orderly and disorderly customer payments so that the sales division can make policies for the future. types of research this study used the descriptive qualitative method. the qualitative research method is a research method based on the philosophy of postpositivism, used to examine the condition of natural objects (as opposed to experiments) where the researcher is the key instrument, data collection techniques are carried out by triangulation (combined), data analysis is inductive/qualitative, and the results of qualitative research emphasize the meaning of generalizations. (sugiyono, 2018) researchers use the qualitative descriptive research method to find knowledge or theory of research at a particular time. (mukhtar, 2013). figure 2. research framework time and place of research this research was conducted from june 2022 to august 2022 at pt mastersystem infotama, central jakarta. research target / subject this crm implementation is used internally for pt mastersystem infotama, especially the marketing division, to input customer data, leads, opportunities, quotations, and orders. the purchasing, marketing admin, finance, and warehouse divisions also follow up on orders that the marketing division has made according to their respective job desks, and all can be monitored through crm. all customer databases and marketing division sales data can be seen in one crm application. procedure this model is often called the "classic life cycle" or "waterfall model." this model belonged to the generic software engineering model and was introduced by winston royce around 1970. the linear sequential model is a software development p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.485 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 124 method with a sequential approach with a scope of activities: 1. requirements analysis at this stage, analyze the need to identify the problem to determine the right solution. explore and collect data and information in the company pt mastersystem infotama relating to the scope of work, sales, employees, products, and business processes. after the data is collected, the system requirements can be analyzed. system requirements in developing this application are functional requirements and non-functional requirements. requirements contain what processes can be carried out and what information the system produces. how the system should react to specific inputs and how the system should behave in certain situations. (yanto & asiah, 2021) figure 3. stages of the waterfall model table 1. functional requirements user system capabilities admin the system can log in the system can manage customer information data the system can input data the system can delete data the system can manage sales data the system can manage system user data sales the system can log in the system can input customer data the system can input leads the system can input the opportunity the system can input meeting schedules sales manager the system can log in the system can approve the opportunity the system can approve the opportunity the system can assign leads to other users the system can reject opportunities and orders the system can see the sales results of other users 2. design create a system design based on an analysis of system requirements using the unified modeling language (uml), such as use case diagrams and class diagrams. uml is a standard language widely used in the industrial world to define requirements, analyze and design, and describe architecture in object-directed programming. (rosa, as. salahuddin, 2015) 3. development the programming languages used are php and mysql as the database and dreamweaver 8 for the web display design. 5. testing (testing). after the program code is complete, testing can be carried out. testing focuses on the internal logic of the software's external functions, looks for any possible errors, and checks whether it matches the desired results. testing is done using a black box. black box testing focuses on the functional specifications of the software and a set of input conditions and performs functional testing of the program (mustaqbal, firdaus, & rahmadi, 2015). the results of black box testing can be concluded by calculating the percentage, which is calculated based on the number of questions received divided by the total number of all questions asked, then multiplied by 100%, and the result is a decision, namely whether the application system being tested is feasible to be implemented. (elza fadli hadimulyo, welly purnomo, 2019) table 3. test calculation range criteria score criteria 0,00 36.00 not good 36.01 52.00 not worth it 52.01 68.00 pretty good table 4. black box test results category response frequency tester total question approve 398 10 45 reject 52 10 45 thus the results of web-based crm implementation at pt mastersystem infotama obtained results of 88.44% and are very good and feasible to implement. 6. maintenance (maintenance). the last part of the development cycle is carried out after the software is used. it includes the following activities: a. corrective maintenance: she is correcting errors in software, which are only detected when the software is used. jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.485 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 125 b. adaptive maintenance: adjustment to a new environment, such as an operating system, or as a demand for developing a computer system, such as adding a printer driver. c. perfective maintenance: suppose the user successfully uses the software. maintenance is intended to increase its capabilities by providing additional functions, improving performance, etc (bolung & tampangela, 2017) data, instruments, and data collection techniques the meaning of data collection techniques is the most strategic step in research because the primary purpose of research is to obtain data. (sugiyono, 2018) data collection techniques are data collection methods, namely techniques or methods that researchers can use to collect data. (riduwan, 2010) data collection techniques used in general are using: 1. interview technique according to (sarosa, 2017), interviews are one of the most widely used tools to collect qualitative research data. the researcher interviewed employees of the sales department, the finance department, the purchasing and warehouse division, and the it development and desktop sections to collect data. interviews were conducted face-to-face so researchers could get more detailed answers to the questions. 2. observation technique according to (fuad. anis, 2014), defining observation in qualitative research is a basic technique that can be done. at the beginning of the qualitative research, observations were made during the grand tour observation. the observation method is used in direct observation or sense of an object, condition, situation, process, or behavior. in this study, researchers chose to collect data using participatory observation techniques so that researchers could make observations of events that occurred and involve themselves directly in collecting data and information sought to answer questions that became problems in the study. (zhahara yusra, rufran zulkarnain, 2021) 3. literature study techniques researchers look for literature and references from various books, journals, and internal reports at pt mastersystem infotama that relate to the problems to be solved. a literature study is a data collection technique by reviewing books, literature, notes, and reports related to the problem being solved. (m. nazir, 1988) field notes are important because they are essential for various qualitative data collection techniques. the form of recording in the field, namely: a) fact notes: qualitative data from interviews in the form of descriptions or direct quotes and observations; b) theoretical notes: analysis while in the field to conclude the structure of the community under study, and the formulation of relationships topics. (variable) is essential in inductive research according to field facts; c) notes methodological: the researcher tries to use qualitative methods in the field, taking notes field events there are two notes: main note, second note memo/reflective: contents about constructive descriptive criticism (raya & raya, 2021) results and discussion figure 4. feature crm figure 4 shows the features of crm. on sales, the menu features sales activities such as following up with customers, meetings with customers and visiting customers so that they know more about customer needs. on the services menu, there is a feature account for customer names and customer contacts, where customers who contact the service desk have their data recorded in crm. then there is a marketing menu that contains leads, opportunities, and competitors, aiming to turn potential customers into customers so they can send price offers and get orders from customers. crm elements, namely customer services, are available 24/7 and can be contacted by customers. sales force automation can also be done because each division can see complete and updated customer data so that the product division can update the latest product info to customers. the marketing division can provide information related to promos and marketing activities to customers. the finance and tax divisions can provide information regarding changes in tax regulations and others—campaign management by holding several events in collaboration with principals and distributors. customers are invited based on profiling according to the product of the campaign. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.485 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 126 figure 5. crm login page in figure 5. the display of the login page on the crm user is asked to enter a user name. namely, the email registered with the company and password for the user name and password is the same as those registered in the active directory. figure 6. crm main page display in figure 6, the crm main page displays the menus designed in the class diagram: accounts, contacts, prospects, opportunities, activities, and so on. figure 7. account page display in figure 7, the account page display contains the customer company name data inputted by marketing—customers who have made purchases and potential customers who can be used as prospects. figure 8. account menu sales division users input customer data on the account menu, this data is real-time, and there is information on whom the user inputted it. figure 9. leads page view on the leads page in crm, there are customer data that have needs according to the products offered by sales, and in the future, they can become potential customers to achieve sales targets. jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.485 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 127 figure 10. leads menu on the leads menu, the sales division inputs lead data, namely information regarding more detailed specifications regarding their needs in terms of product, timeline, budget, and pic, to be followed up further so they can generate opportunities and orders. figure 11. activities halaman page display in the activities menu, you can see the user's activities, whether to create a new opportunity, what products, and how much the price is. all reports are also sent to the email of each user who made it and his boss for approval. figure 12. opportunity page view the opportunity page will contain customer needs shortly; in the future, detailed information will be obtained from customers. after the opportunity appears, the salesperson usually makes a price offer. figure 13. sales chart after implementing web-based crm, there was an increase in sales in 2018, as shown in figure 13. conclusions and suggestions conclusion the test results using the black box are 88.44%. thus the system design is perfect and can be implemented. crm implementation at pt mastersystem infotama can make work easier, especially for the sales division, as all work can be done in one crm application. with crm, you can attract and get new customers, maintain existing customers, re-recruit old customers, and save on marketing costs for client services. work becomes more effective and efficient, and the sales division's daily schedule can also be seen as more organized to plan to increase sales and achieve company targets. suggestion p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.485 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 128 for further research, continue the implementation of crm in the order process, delivery, and billing, and all divisions can be integrated to monitor the course of business processes. references barantum. (2022). begini peran penting crm dalam sebuah perusahaan. retrieved from https://www.barantum.com/blog/pengertia n-dan-peran-crm/ bolung, m., & tampangela, h. r. k. (2017). analisa penggunaan metodologi pengembangan perangkat lunak. jurnal eltikom, 1(1), 1–10. https://doi.org/10.31961/eltikom.v1i1.1 elza fadli hadimulyo, welly purnomo, a. a. s. (2019). development customer relationship management (crm) system information ecomplaint city xyz. jurnal pengembangan teknologi informasi dan ilmu komputer, 3(1), 462–471. retrieved from http://jptiik.ub.ac.id fuad.anis, k. s. n. (2014). panduan praktis penelitian kualitatif (yogyakarta, ed.). yogyakarta: graha ilmu. galih pamungkas, i. r. (2015). implementasi (crm) customer relationship management untuk layanan tamu kecamatan berbah sleman yogyakarta. jurnal sarjana teknik informatika, 3, 178–186. retrieved from http://dx.doi.org/10.12928/jstie.v3i1.2936 h. saputro, t. t. (2018). implementasi customer relationship managemtn untuk optimasi pelayanan pelanggan makanan tradisional rengginang berbasis web dan tawk. jurnal sitech, 1, 2622–2973. retrieved from https://doi.org/10.24176/sitech.v1i2.2893 i. made winarta. (2006). metodologi penelitian kuantitatif dan kualitatif. yogyakarta: gaha ilmu. m. nazir. (1988). metode penelitian. jakarta: ghalia indonesia. mira afrina, a. i. (2013). rancang bangun electronic costumer relationship management (e-crm) sebagai sistem informasi dalam peningkatan layanan perpustakaan digital fakultas ilmu komputer unsri. jurnal sistem informasi (jsi), 5 no 2(1), 629–644. https://doi.org/10.35200/explore.v10i1.365 muhammad, f., fitri, i., & nuraini, r. (2022). implementasi customer relationship management (crm) pada sistem informasi pemasaran dengan menggunakan framework react.js berbasis website. jurnal jtik (jurnal teknologi informasi dan komunikasi), 6(1), 93–101. https://doi.org/10.35870/jtik.v6i1.392 mukhtar. (2013). metode praktis penelitian deskriptif kualitatif (gp press group, ed.). jakarta: referensi. mustaqbal, m. s., firdaus, r. f., & rahmadi, h. (2015). pengujian aplikasi menggunakan black box testing boundary aalue analysis (studi kasus: aplikasi prediksi kelulusan smnptn). jurnal ilmiah teknologi informasi terapan (jitter), i(3), 31–36. raya, i. p., & raya, i. p. (2021). memahami teknik pengolahan dan analisis data kualitatif. palangka raya international and national conference on islamic studies, 1, 173–186. riduwan. (2010). skala pengukuran variabelvariabel penelitian (bandung, ed.). alfabeta. rosa, as. salahudin, m. (2015). rekayasa perangkat lunak terstruktur dan berorientasi objek. bandung: informatika bandung. sarosa, s. (2017). metodologi pengembangan sistem informasi (cetakan 1; b. samiaji, ed.). jakarta: jakarta : indeks, 2017. simarmata, e. r., & hasibuan, d. (2019). implementasi customer relationship management (crm) pada aplikasi penjualan berbasis web pt . buana telekomindo. jurnal times, 7(1), 8–14. retrieved from http://ejournal.stmiktime.ac.id/index.php/jurnaltimes/article/vi ew/596 sugiyono. (2018). metode penelitian kuantitatif, kualitatif, dan r&d (cetakan 26). bandung: cv. alfabeta. supandi, i., yusuf, f., & fauziah. (2018). implementasi costumer relationship management (crm) pada sistem informasi penjualan ban di toko lingga ban berbasis web. jurnal nuansa informatika, 12(18583911 ; 2614–5405), 20–28. retrieved from https://journal.uniku.ac.id/index.php/ilkom %0aimplementasi yanto, a., & asiah, n. (2021). customer relationship management (crm) based on web to improve the performance of the company. iaic transactions on sustainable digital innovation (itsdi), 1(1), 32–41. https://doi.org/10.34306/itsdi.v1i1.7 zhahara yusra, rufran zulkarnain, s. (2021). pengelolaan lkp pada masa pandemik covid19. journal of lifelong learning, 4(1), 15–22. https://doi.org/https://doi.org/10.33369/jol l.4.1.15-22 jurnal riset informatika vol. 1, no. 2 maret 2019 p-issn: 2656-1743 e-issn: 2656-1735 97 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional sistem deteksi wajah untuk identifikasi kehadiran mahasiswa dengan menggunakan metode eigenface pca husni sulaiman1, zahir zainuddin2, supriadi sahibu3 1 sistem informasi stmik bina adinata husninevergiveup@gmail.com 2 teknik informatika universitas hasanuddin makassar zainuddinzahir@gmail.com 3 pascasarjana sistem komputer stmik handayani makassar supriadi.dit@gmail.com abstrak pengenalan wajah merupakan salah satu cara pengenalan untuk keperluan identifikasi seseorang selain pengenalan sidik jari, suara, tanda tangan, retina mata dan sebagainya. teknik identifikasi kehadiran mahasiswa di stmik bina adinata masih bersifat konvensional, yaitu setiap mahasiswa hanya mengisi atau menandatangani absensi pada saat mengikuti perkuliahan, hal ini tentunya kurang efektif karena biasanya ada mahasiswa yang tidak mengikuti perkuliahan tapi tetap tercatat hadir di absen dikarenakan adanya seorang mahasiswa yang menandatangani absensi mahasiwa yang tidak sempat hadir pada saat perkuliahan, atau yang lebih sering disebut titip absen. tujuan dari penelitian ini adalah untuk membangun sebuah sistem deteksi wajah untuk identifikasi kehadiran mahasiswa dengan menggunakan metode eigenface pca dan open cv library. penelitian ini dilaksanakan di kampus stmik bina adinata. sistem ini dapat bekerja secara realtime dengan menggunakan metode eigenface pca (priciple component analysis). hasil penelitian yang diperoleh menunjukkan bahwa sistem dapat bekerja secara realtime atau secara langsung, jadi sistem dapat mendeteksi wajah mahasiswa yang sedang mengikuti perkuliahan sistem ini dapat mengenali citra wajah baik dalam posisi lurus maupun menyamping. sistem dapat mendeteksi bukan cuma 1 wajah saja, tetapi sistem dapat mendeteksi semua wajah yang tertangkap kamera. tingkat keberhasilan akurasi sangat dipengaruhi oleh pencahayaan, semakin terang pencahayaan maka tingkat keberhasilan akurasi juga semakin tingggi. total akurasi keseluruhan dari segi pencahayaan adalah 90 % dan total akurasi keseluruhan dari segi posisi wajah adalah 86,6 % kata kunci : deteksi wajah, metode eigenface pca, open cv. abstract identifying face recognition is one of the introductory approaches for the purpose of someone besides other biometric approaches such as fingerprint recognition, voice, signature, identifying eyes and so on. face recognition system which is included with the field of image processing can be combined with the attendance system so that it becomes one of the interesting things to do, the attendance system it can be applied with the way of identification face. purpose of this research is to build a face detection system to identify student attendance with eigenface pca method and open cv library. this research was carried out at the stmik bina adinata its a one of university, this system work in realtime using the eigenface pca (primary component analysis) method. the research results obtained indicate that the system work in realtime or directly, so the system detect the faces of students who are attending lectures. this system can recognize facial images both in a straight and sideways position. the system can detect not only one face, but the system can detect all faces caught on camera. the success rate accuracy very influenced by the lighting, the lighting that more brighter will make success of accuracy increasingly high. keywords: face detection, method of eigenface pca, open cv. http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 2 maret 2019 98 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional pendahuluan secara garis besar metode yang digunakan dalam proses pengenalan wajah ada 3 macam, yaitu metode holistik, metode berdasarkan ciri dan metode hybrid. pendeteksian wajah merupakan tahap awal yang penting dalam sistem pengenalanan wajah otomatis. dalam suatu citra tunggal, tujuan dari pendeteksian wajah adalah mengidentifikasi semua area yang ada dalam citra untuk menemukan area wajah dan area bukan wajah. (yang, kriegman, & ahuja, 2002) dalam pendeteksian citra, warna memiliki kepekaan yang tinggi terhadap perubahan cahaya, maka untuk mengatasinya dilakukan transformasi citra rgb ke dalam sebuah ruang warna yang komponen luminasi dan kromatiknya dipisahkan sehingga cukup digunakan kromatik saja untuk proses deteksi warna kulit (chang & robles, 2000). salah satu contoh pendeteksian citra yang bisa diterapkan adalah identifikasi kehadiran atau absesnsi berdasarkan wajah yang bisa digunakan untuk mengidentifikasi kehadiran mahasiswa (yusuf, ginardi, & ahmadiyah, 2016). teknik identifikasi kehadiran mahasiswa di stmik bina adinata masih bersifat konvensional (purnia & sumitro, 2015), yaitu setiap mahasiswa hanya mengisi atau menandatangani absensi pada saat mengikuti perkuliahan, hal ini tentunya kurang efektif (suhery & ruslianto, 2017) karena biasanya ada mahasiswa yang tidak mengikuti perkuliahan tapi tetap tercatat hadir di absen dikarenakan adanya seorang mahasiswa yang menandatangani absensi mahasiwa yang tidak sempat hadir pada saat perkuliahan, atau yang lebih sering disebut titip absen (hertyana, 2016). berdasarkan permasalahan tesebut maka diperlukan sebuah sistem deteksi wajah untuk identifikasi kehadiran mahasiswa, dengan adanya aplikasi detekasi wajah ini diharapkan dapat memberikan informasi yang lebih akurat tentang kehadiran mahasiswa pada saat mengikuti perkuliahan. wajah merupakan bagian dari tubuh manusia yang menjadi fokus perhatian di dalam interaksi sosial, wajah memainkan peranan vital dengan menunjukan identitas dan emosi. kemampuan manusia untuk mengetahui seseorang dari wajahnya sangat luar biasa. kita dapat mengenali ribuan wajah karena frekuensi interaksi yang sangat sering ataupun hanya sekilas bahkan dalam rentang waktu yang sangat lama. bahkan kita mampu mengenali seseorang walaupun terjadi perubahan pada orang tersebut karena bertambahnya usia atau pemakaian kacamata atau perubahan gaya rambut. oleh karena itu wajah digunakan sebagai organ dari tubuh manusia yang dijadikan indikasi pengenalan seseorang atau face recognition. face recognition atau pengenalan wajah merupakan salah satu teknologi biometrik yang banyak diaplikasikan khususnya dalam sistem security. sistem absensi dengan wajah, mengenali pelaku tindak kriminal dengan cctv adalah beberapa aplikasi dari pengenalan wajah, efisiensi dan akurasi menjadi faktor utama mengapa pengenalan wajah banyak diaplikasikan khususnya dalam sistem security tahapan pengenalan wajah : 1) pengenalan wajah (face recognition) yaitu membandingkan citra wajah masukan dengan suatu database wajah dan menemukan wajah yang paling cocok dengan citra masukan tersebut. 2) autentikasi wajah (face authentication) yaitu menguji keaslian/kesamaan suatu wajah dengan data wajah yang telah diinputkan sebelumnya. 3) lokalisasi wajah (face localization) yaitu pendeteksian wajah namun asumsi hanya ada satu wajah di dalam citra 4) penjejakan wajah (face tracking) yaitu memperkirakan lokasi suatu wajah di dalam video secara real time. 5) pengenalan ekspresi wajah (facial expression recognition) untuk mengenali kondisi emosi manusia. metode penelitian rancangan sistem berikut ini adalah gambaran tentang perancangan sistem deteksi wajah untuk identifikasi kehadiran mahasiswa dengan menggunakan metode eigenface pca di stmik bina adinata secara keseluruhan. gambar 1 : perancangan sistem http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 2 maret 2019 p-issn: 2656-1743 e-issn: 2656-1735 99 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional cara kerja sistem : tahap pertama yang harus dilakukan adalah, menginput biodata mahasiswa dan mengcapture wajah mahasiswa sebagai data latih dimana nantinya data ini akan di olah dan di cocokkan dengan data uji, data latih ini kemudian akan disimpan kedalam database. selanjutnya sistem akan melakukan proses perhitungan eigenface pca, setelah proses perhitungan selesai, selanjutnya sistem akan menyimpan hasil perhitungan tersebut kedalam bentuk file *xml. berdasarkan dari hasil perhitungan tersebut selanjutnya sistem akan mengidentivikasi atau memverifikasi wajah dari data latih dengan data uji, setelah di verifikasi sistem akan menampilkan hasil pengenalan wajah tersebut, kemudian menyimpannya lagi kedalam database. penyimpanan data dalam sistem ini penyimpanan data dapat disimpan dalam database dan juga dataset. database pada program ini menggunakan sqlitestudio. adapun rancangan database nya dapat dilihat pada tabel dibawah ini. tabel 1 : rancangan database name date type mahasiswa id integer nama lengkap text nim text jenis kelamin text kelas text absen text tanggal varchart jam time sedangkan untuk menyimpan citra wajah tiap mahasiswa penulis menggunakan data set. untuk menghubungkan citra wajah dengan database sistem harus di generate terlebih dahulu agar data yang ada di database dapat disesuaikan atau di cocokkan dengan data di dataset. jenis penelitian untuk menyempurnakan data – data yang dibutuhkan dalam penyusunan penelitian ini, maka penulis akan melakukan pengumpulan data dengan menggunakan 2 cara yaitu : 1) penelitian kepustakaan (library research), yaitu pengumpulan data dengan cara membaca buku melalui literature, tutorial – tutorial maupun artikel dari internet yang bersifat ilmiah yang ada hipotesisnya dengan materi pembahasan. 2) penelitian lapangan (field research),yaitu dilakukan dengan cara mengumpulkan data secara langsung kepada objek penelitian yaitu pada stmik bina adinata. waktu dan tempat penelitian penelitian ini akan dilaksanakan selama 5 bulan, mulai februari sampai juni 2018 di stmik bina adinata. target/subjek penelitian target penelitian ini adalah mahasiswa stmik bina adinata prosedur renacana kegiatan 1. pengumpulan data pada tahap ini merupakan tahap dimana penulis mengumpulkan data megenai obyek yang akan diteliti dengan cara melakukan observaasi langsung ke lapangan. 2. analisis dan desain sistem pada tahap ini peneliti akan melakukan perancangan sistem yang akan dibuat pada penelitian ini. 3. pembuatan aplikasi pada tahap ini peneliti akan mulai melakukan pembuatan aplikasi sistem deteksi wajah. 4. pengujian pada tahap ini peneliti akan mulai melakukan pengujian terhadap aplikasi yang telah dibuat. 5. implementasi tahap ini merupakan tahap penerapan aplikasi yang telah dibuat oleh peneliti. data, intrumen, dan teknik pengumpulan data adapun teknik pengumpulan data yang dilakukan oleh penulis yaitu dengan cara observasi, yaitu mengamati secara langsung pada saat proses perkuliahan berlangsung, dan meperhatikan pola perilaku dari mahasiswa pada saat perkuliahan. hasil penelitian dan pembahasan implementasi sistem aplikasi ini dibuat dengan bahasa pemrograman python dan dikombinasikan dengan menggunakan opencv library. sistem yang dibuat ini merupakan sistem yang berbasis desktop, dimana proses – proses dalam menjalankan sistem dibuat secara realtime dan mudah dipahami dalam penggunaannya. tahapan – tahapan algoritma eigenface perhitungan eigenface untuk gambar training 1) penyusunan flatvector matriks citra http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 2 maret 2019 100 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional dari data training image ( г )yang tersediah langkah selanjutnya adalah menyusun seluruh data training menjadi satu matriks tunggal. representasikan semua matriks training menjadi matriks linier nx1 atau flatvector seperti gambar 3, 4 dan 5. gambar 2 : training 1 г1 = [ 3 5 1 3 4 2 0 3 4 ] → [ 3 5 1 3 4 2 0 3 4] gambar 3 : training 2 г2 = [ 3 2 3 0 2 2 2 0 2 ] → [ 3 2 3 0 2 2 2 0 2] gambar 4 : training 3 г3 = [ 3 2 2 3 0 2 4 3 0 ] → [ 3 2 2 3 0 2 4 3 0] menghitung nilai tengah atau mean (ψ) ψ = 1 3 ∑ гn3𝑛=1 ψ = 1 3 [ 3 5 1 3 4 2 0 3 4] + [ 3 2 3 0 2 2 0 0 2] + [ 3 2 2 3 0 2 4 3 0] = [ 3 3 2 2 2 2 2 2 2] menghitung nilai selisih antara training image ( г ) dengan nilai mean (ψ) ø1 = [ 3 5 1 3 4 2 0 3 4] [ 3 3 2 2 2 2 2 2 2] = [ 0 2 −1 1 2 0 −2 1 2 ] ø2 = [ 3 2 3 0 2 2 2 0 2] [ 3 3 2 2 2 2 2 2 2] = [ 0 −1 1 −2 0 0 0 −2 0 ] ø3 = [ 3 2 2 3 0 2 4 3 0] [ 3 3 2 2 2 2 2 2 2] = [ 0 −1 0 1 −2 2 2 1 −2] menghitung nilai matriks kovarian l=[ 0 2 − 1 1 2 0 − 2 1 2 0 − 1 1 − 2 0 0 0 − 2 0 0 − 1 0 1 − 2 2 2 1 − 2 ] [ 0 0 0 2 − 1 − 1 −1 1 0 1 − 2 1 2 0 − 2 0 0 2 −2 0 2 1 − 2 1 2 0 − 2] l [ 19 − 7 − 12 −7 10 − 3 −12 − 3 19 ] hitung nilai eigen value (λ) dan eigen vector (υ) dari matriks kovarian 0 = 𝜆 [ 1 0 0 0 1 0 0 0 1 ] [ 19 − 7 − 12 −7 10 − 3 −12 − 3 19 ] 0 = [ 𝜆 − 19 7 12 7 𝜆 − 10 3 12 3 𝜆 − 19 ] nilai eigen vector diperoleh dengan cara mensubtitusi eigen value kedalam persamaan (𝜆𝐼 − 𝐿) υ = 0 . eigen vector masing – masing eigen http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 2 maret 2019 p-issn: 2656-1743 e-issn: 2656-1735 101 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional value didapat berdasarkan masing – masing kolom eigen value dan kemudian dihimpun kembali menjadi satu matriks. untuk 𝜆1 = 1.1641 [ 𝜆 − 19 7 12 7 𝜆 − 10 3 12 3 𝜆 − 19 ] [ υ1 υ2 υ3 ] = [ 0 0 0 ] υ1 = [ −0.5870 −0.6354 −0.5018 ] untuk 𝜆2 = 15.4227 [ 𝜆 − 19 7 12 7 𝜆 − 10 3 12 3 𝜆 − 19 ] [ υ1 υ2 υ3 ] = [ 0 0 0 ] υ2= [ 0.3529 −0.7586 0.5477 ] untuk 𝜆3 = 31.4131 [ 𝜆 − 19 7 12 7 𝜆 − 10 3 12 3 𝜆 − 19 ] [ υ1 υ2 υ3 ] = [ 0 0 0 ] υ3 = [ −0.7286 0.1444 0.6695 ] maka c = [ −0.5870 0.3529 − 0.7286 −0.6354 − 0.7586 0.1444 −0.5018 0.5477 0.6695 ] menghitung nilai eigenface (µ) µ1 = υ 𝑥 ø1 µ1 = [ −0.5870 0.3529 − 0.7286 −0.6354 − 0.7586 0.1444 −0.5018 0.5477 0.6695 ] 𝑥 [ 0 2 − 1 1 2 0 −2 1 2 ] µ1 = [ 1.8102 − 1.1967 − 0.8703 −1.0474 − 2.6435 0.9242 −0.7913 0.7614 1.8404 ] µ2 = [ −0.5870 0.3529 − 0.7286 −0.6354 − 0.7586 0.1444 −0.5018 0.5477 0.6695 ] 𝑥 [ 0 − 1 1 −2 0 0 0 − 2 0 ] µ2 = [ −0.7058 2.0442 − 0.5870 1.5172 0.3466 − 0.6354 −1.0954 − 0.8372 − 0.5018 ] µ3 = [ −0.5870 0.3529 − 0.7286 −0.6354 − 0.7586 0.1444 −0.5018 0.5477 0.6695 ] 𝑥 [ 0 − 1 0 1 − 2 2 2 1 − 2 ] µ3 = [ −1.1044 − 0.8475 2.1631 −0.4698 2.2969 − 1.8060 1.8867 0.0758 − 0.2436 ] 2) proses pengenalan wajah proses pengenalan wajah dilakukan dengan cara mengenali gambar tes, kemudian mencocokkan dengan training image yang telah telah tersimpan. tahap pertama dimulai dari mengubah matriks persegi menjadi flatvector hingga memperoleh nilai eigenface (µ) seperti gambar dibawah ini gambar 5 : gambar test г new = [ 3 2 2 3 0 2 4 3 0 ] → [ 3 2 2 3 0 2 4 3 0] setelah merepresentasikan gambar test ke flatvector, kemudian mencari selisi (ø) antara gambar test dengan nilai mean (ψ). ø new = [ 3 2 2 3 0 2 4 3 0] [ 3 3 2 2 2 2 2 2 2] = [ 0 2 −2 1 2 0 −2 1 3 ] dari nilai selisih, maka nilai eigenface dapat dihitung. µ new = [ −0.5870 0.3529 − 0.7286 −0.6354 − 0.7586 0.1444 −0.5018 0.5477 0.6695 ] 𝑥 [ 0 2 − 2 1 2 0 −2 1 3 ] µ new = [ 1.8102 − 1.1967 − 1.0120 −1.0474 − 2.6435 1.7039 −0.7913 0.7614 3.0120 ] setelah nilai eigenface untuk gambar test diperoleh maka kita bisa melakukan identifikasi dengan menentukan jarak terpendek (ecludian distance) dengan eigenface dari eigenvector training image. ε1 = [ −0.5870 0.3529 − 0.7286 −0.6354 − 0.7586 0.1444 −0.5018 0.5477 0.6695 ] [ −0.5870 0.3529 − 0.7286 −0.6354 − 0.7586 0.1444 −0.5018 0.5477 0.6695 ] ε1 = √ (0)2 + (0)2 + (−0.1417)2 + (0)2+(0)2 + (0.7797)2+(0)2+(0)2 + (1.1712)2 ε1 = √1.9997 = 1.4141 ε2 = [ 1.8102 − 1.1967 − 1.0120 −1.047 − 2.6435 1.7039 −0.791 0.7614 3.0120 ] [ −0.7058 2.0442 − 0.5870 1.5172 0.3466 − 0.6354 −1.09 − 0.8372 − 0.5018 ] ε2 = √ (1.2197)2 + (10.5034)2 + (0.1806)2 + (6.5772)2+(4.3685)2 + (5.4723)2 + (0.0924)2+(2.5555)2+(12.4171)2 ε2 = √43.386 = 6.5868 ε3 = [ 1.8102 − 1.1967 − 1.0120 −1.047 − 2.6435 1.7039 −0.791 0.7614 3.0120 ] [ −1.1044 − 0.8475 2.1631 −0.4698 2.2969 − 1.8060 1.8867 0.0758 − 0.2436 ] ε3 = √ (2.9146)2 + (0.3492)2 + (−3.1751)2 + (−0.5776)2+(−4.9404)2 + (3.5099)2 + (−2.678)2+(0.6856)2+(3.2556)2 ε3 = √73.999 = 8.6022 dari hasil perhitungan nilai ecludian distance gambar training 1, training 2 dan training 3 terhadap gambar test, maka nilai jarak eigenface http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 2 maret 2019 102 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional yang terkecil di identifikasikan lebih mirip antara training 1 dengan gambar tes, dibandingakan dengan training 2 dan training 3. pengujian black box setelah aplikasi ini dibuat maka tahap selanjutnya adalah tahap uji coba dari tampilan aplikasi. tahap uji coba ini dimulai dari memasukkan citra wajah sebagai data set, dimana data citra ini nantinya akan di cocokkan dengan data citra wajah yang dilakukan secara real time. untuk lebih jelaskan perhatikan gambar dibawah ini : pengujian menu inputan data mahasiswa tabel 2 : pengujian menu inputan data mahasiswa test factor hasil keterangan menu inputan data mahasiswa √ dosen dapat melakukan penginputan data mahasiswa yang mengikuti mata kuliah pengujian pengambilan citra wajah tabel 3 : pengujian pengambilan citra wajah test factor hasil keterangan proses pengambilan citra wajah √ semua mahasiswa yang mengikuti perkuliahan harus di data terlebih dahulu, bukan cuma data identitas tapi juga data mengenai citra wajah tiap mahasiswa. tabel 4 : pengujian pendeteksian 1 citra wajah test factor hasil keterangan proses pendeteksian 1 citra wajah √ pada tampilan ini sitem dapat mengenali 1 citra wajah secara real time dalam satu kali pendeteksian. pengujian pendeteksian 2 citra wajah tabel 5 : pengujian pendeteksian 2 citra wajah test factor hasil keterangan proses pendeteksian 2 citra wajah √ pada tampilan ini sitem dapat mengenali 2 citra wajah sekaligus secara real time dalam satu kali pendeteksian. pendeteksian 3 citra wajah http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 2 maret 2019 p-issn: 2656-1743 e-issn: 2656-1735 103 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional tabel 6 : pengujian pendeteksian 3 citra wajah test factor hasil keterangan proses pendeteksian 3 citra wajah √ pada tampilan ini sitem dapat mengenali 3 citra wajah sekaligus secara real time dalam satu kali pendeteksian. pendeteksian ketika proses pembelajaran tabel 7 : pengujian pendeteksian ketika proses pembelajaran test factor hasil keterangan proses pendeteksia n ketika proses pembelajara n √ pada tampilan ini sitem dapat mengenali banyak citra wajah sekaligus secara real time dalam satu kali pendeteksian. pengujian laporan hasil absensi mahasiswa tabel 8 : pengujian laporan hasil absensi mahasiswa test factor hasil keterangan laporan hasil absesnsi √ pada tampilan ini sitem dapat menampilan laporan hasil absensi mahasiswa mahasiswa. tingkat persentase absensi pengenalan wajah untuk tingkat persentase hasil absensi pada pengenalan wajah ini dilakukan dengan uji coba terhadap 10 wajah, dimana tiap wajah tersebut memiliki 100 data set. untuk lebih jelasnya perhatikan tabel pengujian di bawah ini. pengujian citra wajah berdasarkan dari segi pencahayaan tabel 9 : pengujian citra wajah berdasarkan dari segi pencahayaan citra wajah yang diuji pencahayaan citra wajah pencarian terang terdeteksi normal terdeteksi redup terdeteksi terang terdeteksi normal terdetekasi redup terdeteksi terang terdeteksi normal terdeteksi redup terdeteksi terang terdeteksi normal terdeteksi redup tidak terdeteksi terang terdeteksi normal terdeteksi redup terdeteksi http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 2 maret 2019 104 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional citra wajah yang diuji pencahayaan citra wajah pencarian terang terdeteksi normal terdeteksi redup tidak terdeteksi terang terdeteksi normal terdeteksi redup tidak terdeteksi terang terdeteksi normal terdeteksi redup terdeteksi terang terdeteksi normal terdeteksi redup terdeteksi terang terdeteksi berdasarkan hasil pengujian yang telah dilakukan, maka diperoleh tingkat keberhasilan akurasi citra wajah berdasarkan dari segi pencahayaan terang, normal, dan redup adalah sebagai berikut : terang : 10 10 x 100 % = 100 % normal : 10 10 x 100 % = 100 % redup : 7 10 x 100 % = 70 % total akurasi keseluruhan dari segi pencahayaan adalah 27 30 x 100 % = 90 % pengujian citra wajah berdasarkan dari segi posisi wajah tabel 10 : pengujian citra ajah berdasarkan dari segi posisi wajah citra wajah yang diuji posisi citra wajah pencarian depan terdeteksi depan terdeteksi samping kiri terdeteksi samping kanan terdeteksi depan terdeteksi samping kiri tidak terdeteksi samping kanan terdeteksi depan terdeteksi samping kiri terdeteksi samping kanan tidak terdeteksi depan terdeteksi samping kiri terdeteksi samping kanan terdeteksi depan terdeteksi samping kiri tidak terdeteksi samping kanan terdeteksi depan terdeteksi samping kiri terdeteksi samping kanan tidak terdeteksi depan terdeteksi samping kiri terdeteksi samping kanan terdeteksi depan terdeteksi samping kiri terdeteksi samping kanan terdeteksi depan terdeteksi samping kiri terdeteksi samping kanan terdeteksi berdasarkan hasil pengujian yang telah dilakukan, maka diperoleh tingkat keberhasilan akurasi citra wajah berdasarkan dari segi posisi wajah depan, samping kiri, dan samping kanan adalah sebagai berikut : depan : 10 10 x 100 % = 100 % samping kiri : 8 10 x 100 % = 80 % samping kanan : 8 10 x 100 % = 80 % http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 2 maret 2019 p-issn: 2656-1743 e-issn: 2656-1735 105 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional total akurasi keseluruhan dari segi posisi wajah adalah 26 30 x 100 % = 86,6 % pengujian citra wajah berdasarkan banyaknya wajah yang terdeteksi tabel 11 : pengujian citra wajah berdasarkan banyaknya wajah yang terdeteksi citra wajah yang diuji citra wajah pencarian 1 wajah terdeteksi 2 wajah terdeteksi 3 wajah terdeteksi banyak wajah terdeteksi aplikasi ini dapat mengenali bukan cuma 1 wajah, tetapi dia bisa mengenali banyak wajah selama wajah tersebut masih bisa terjangkau oleh kamera yang digunakan. simpulan dan saran simpulan berdasarkan dari uji coba sistem yang telah dibuat maka dapat di simpulkan sebagai berikut: sistem absensi yang telah dibuat mampu melakukan proses absensi secara realtime dengan mendeteksi wajah melalui metode pengenalan wajah yaitu eigenface pca (priciple component analysis) dengan tingkat total akurasi keseluruhan dari segi pencahayaan adalah 90 % dan total akurasi keseluruhan dari segi posisi wajah adalah 86,6 %. sistem ini dapat mengenali citra wajah baik dalam posisi lurus maupun menyamping. sistem dapat mendeteksi bukan cuma 1 wajah saja, tetapi sistem dapat mendeteksi semua wajah yang tertangkap kamera. tingkat keberhasilan akurasi sangat dipengaruhi oleh pencahayaan, semakin terang pencahayaan maka tingkat keberhasilan akurasi juga semakin tingggi. dan proses pendeteksian citra wajah juga berpengaruh terhadap jarak citra dengan kamera yang digunakan. saran pencahayaan dan jarak saat pengambilan citra wajah dan pengenalan wajah merupakan faktor yang sangat penting yang akan memepengaruhi keberhasilan akurasi pendeteksian citra. oleh karena itu ketika ingin menggunakan sistem ini dibutuhkan pencahayaan yang baik agar dapat mencapai akurasi yang lebih tinggi, dan juga untuk hasil maksimal sebaiknya menggunakan kamera dengan spesifikasi yang tinggi atau menggunakan kamera cctv. daftar referensi chang, h., & robles, u. (2000). ee368 final project report spring 2000: face detection. stanford. hertyana, h. (2016). pengaruh sistem absensi fingerprint terhadap kinerja karyawan pada pt. deltacomsel indonesia. jurnal teknik komputer, 2(2), 42–48. https://doi.org/10.31294/jtk.v2i2.1614 purnia, d. s., & sumitro, a. (2015). perancangan program absensi siswa realtime menggunakan sms gateway pada sma negeri 69 jakarta. seminar nasional ilmu http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 2 maret 2019 106 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional pengetahuan dan teknologi komputer, 71inf.76. suhery, c., & ruslianto, i. (2017). identifikasi wajah manusia untuk sistem monitoring kehadiran perkuliahan menggunakan ekstraksi fitur principal component analysis (pca). jurnal edukasi dan penelitian informatika (jepin), 3(1), 9. https://doi.org/10.26418/jp.v3i1.19792 yang, m.-h., kriegman, d. j., & ahuja, n. (2002). detecting faces in images: a survey. ieee transactions on pattern analysis and machine intelligence, 24(1), 34–58. https://doi.org/10.1109/34.982883 yusuf, m., ginardi, r. v. h., & ahmadiyah, a. s. (2016). rancang bangun aplikasi absensi perkuliaha n mahasiswa dengan pengenalan wajah. jurnal teknik its, 5(2), a766–a770. https://doi.org/10.12962/j23373539.v5i2.1 7518 http://creativecommons.org/licenses/by-nc/4.0/ microsoft word 1015949202316419916_553-jri-53_379-386_tyas.docx jurnal riset informatika vol. 5, no. 3 june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.553 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 379 covid-19 social aid admission selection using simple additive weighting method as decision support tyas setiyorini, frieyadie*), aditiya yoga pratama informatika, sistem informasi universitas nusa mandiri jakarta, indonesia tyas.tys@nusamandiri.ac.id, frieyadie@nusamandiri.ac.id, aditiyayogapratama@gmail.com (*) corresponding author abstract the process of receiving covid-19 social assistance to residents who are recorded as social aid recipients in the rt.07 rw.10 kp. sukapura jaya area is still uneven. the second problem is that there is no particular mathematical calculation to determine the value of the weight of the criteria, especially for residents who are recorded as receiving covid-19 social aid in the rt.007 rw.10 kp. sukapura jaya area. the gradual decline in social aid programs so that the number that falls does not match the data of social aid recipients. this caused a polemic for rt administrators in distributing social aid programs. the decline in social aid programs does not match the number of citizens recorded. it overcomes citizens who cause social jealousy—analyzing the problems experienced by the rt management in the distribution of covid-19 social assistance, especially the rt.07 rw.10 kp. sukapura jaya area to residents who are recorded as recipients. selecting covid-19 social assistance recipients, especially in the rt.07 rw.10 kp. sukapura jaya area. so the application of methods as decision support is needed, and it is needed to help determine the weight of particular criteria for citizens who are recorded as more in need. this study proposes a decision support method using the simple additive weighting (saw) method, which is expected to help decision-making in solving problems for selecting covid-19 social aid recipients in the rt.07 rw.10 kp. sukapura jaya community. the purpose of the study is to select residents who are recorded to receive social aid who are more in need first will get covid-19 social aid. keywords: simple additive weighting method; covid-19; social assistance abstrak proses penerimaan bantuan sosial covid-19 kepada khususnya warga yang terdata penerima bansos di wilayah rt.07 rw.10 kp. sukapura jaya masih tidak merata. masalah kedua belum adanya perhitungan matematika khusus untuk menentukan nilai bobot kriteria khususnya warga yang terdata penerimaan bansos covid-19 yang ada di wilayah rt.007 rw.10 kp. sukapura jaya. turunnya bansos secara bertahap sehingga jumlah yang turun tidak sesuai dengan data penerima bansos. sehingga menimbulkan polemik buat pengurus rt dalam mendistribusikan bansos. turunnya bansos tidak sesuai dengan jumlah warga yang terdata dan mengatasi terjadi nya warga yang menimbulkan kecemburuan sosial. menganalisis permasalahan yang dialami pihak pengurus rt dalam pembagian bansos covid-19 khususnya wilayah rt.07 rw.10 kp. sukapura jaya terhadap warga yang terdata penerima. dengan adanya masalah terhadap penyeleksian penerima bantuan sosial covid-19 khususnya di wilayah rt.07 rw.10 kp. sukapura jaya. maka dibutuhkannya penerapan metode sebagai pendukung keputusan dan diperlukannya untuk bisa membantu dalam menentukan bobot kriteria khusus nya para warga yang terdata lebih menbutuhkan. pada penelitian ini mengusulkan metode pendukung keputusan menggunakan metode simple additive weighting (saw), yang diharapkan membantu pengambilan keputusan dalam memecahkan masalah untuk seleksi penerima bansos covid-19 pada masyarakat rt.07 rw.10 kp. sukapura jaya. tujuan penelitian untuk menyeleksian terhadap warga yang terdata menerima bansos yang lebih membutuhkan dahulu akan mendapatkan bansos covid-19. kata kunci: metode simple additive weighting; covid-19; bantuan sosial p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.553 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 380 introduction in indonesia, precisely in the capital city of dki jakarta, many companies laid off workers or worked at home while also being laid off due to the company experiencing a decline, not just workers in the company, but small traders, farmers, online motorcycle taxis and so on also experienced an economic crisis due to lack of income generation. many complain that necessities for daily life are getting more expensive (maleha et al., 2021) than the necessities of life caused by the covid-19 pandemic. for this reason, the dki jakarta provincial government helps its people who are struggling in their economy, so the dki jakarta provincial government distributes covid-19 social assistance consisting of various necessities. this is stated in law no. 1 of 2020, explaining the policy system and economic handling during the covid-19 pandemic (einstein et al., 2020). target bantuan sosial ini, kepada masyarakat yang berekonomi rendah hingga menengah yang mayoritas tinggal diperkampungan contohnya di wilayah rt.07 rw.10 kp. sukapura jaya jakarta utara. in the rt.07 rw.10 kp. area, sukapura jaya is an area consisting of the majority of people with low and medium economies. currently, the process of receiving covid-19 social assistance to especially residents who are recorded as social aid recipients in the rt.07 rw.10 kp. sukapura jaya area is still uneven. so that the receipt of covid-19 social assistance in the region caused a polemic of social jealousy because it was not correctly on target (santoso & suparmadi, 2019). the second problem is that there is no mathematical calculation to determine the weight value, especially for residents who are recorded as receiving covid-19 social aid in the rt.007 rw.10 kp. sukapura jaya area to assess who is more entitled to the assistance first. it is necessary to apply decision support methods to analyze criteria, especially citizens listed as recipients, to assess who is more entitled to the assistance. the goal is to help facilitate the rt management in their duties, select residents who are recorded as needing to get covid-19 social assistance, overcome the occurrence of residents who cause social jealousy, and help research accuracy in selection (jurnal et al., 2018). moreover, the third problem is the gradual decline in social aid programs so that the number that falls does not match the data of social aid recipients (aprilia et al., 2022). so that caused a polemic among rt managers. the simple additive weighting (saw) method determines the weight value of particular criteria and continues the ranking process that will select particular social aid recipients (astika et al., 2018). it is hoped that applying decision support methods with the saw method can help problems or solve problems in selecting social aid recipients so that there is no wrong target, overcome social jealousy (jayawardani & maryam, 2022; rizaldy, 2022), and selecting social aid recipients who need it first in the rt.07 rw.10 kp. sukapura jaya area. the previous research conducted by falentino sembiring et al. (fauzan et al., 2018), discussing the covid-19 social aid system, is still used manually in sundawenang village. this is in the provision of covid-19 social aid is still mistargeted at covid-19 social aid recipients. for this reason, the right solution is to develop a decision support system with the saw method that refers to relevant criteria. similarly, according to joni riadi et al. (rohmatin et al., 2020). discusses the system. the recipients of "raskin" in the alalak sub-district still use subjective assessments or estimates and assumptions. it is feared that this will cause inaccuracy in judging so that raskin does not reach people who need it. therefore, applying decision support using the saw method to solve personal assessment problems with the condition that the criteria for recipients of social assistance (bansos) are determined is the right solution. the saw method can also determine the weight value of specific criteria and continue the ranking process, which will select specific social assistance recipients. this will help overcome the problem of the uneven distribution of covid-19 social assistance in the rt.07 rw.10 kp area. sukapura jaya. this decision support system is expected to help determine raskin beneficiaries so that distribution is not on target. the aims of this research are as follows 1) to help facilitate the task of the rt manager in selecting residents who need covid-19 social assistance and to get the social assistance first. 2) to overcome the emergence of citizen social dissatisfaction caused by the uneven distribution of covid-19 social assistance in the area of rt.07 rw.10 kp. sukapura jaya. 3) to help improve accuracy in selecting recipients of covid-19 social assistance, especially in determining the priority of receiving social assistance for needy residents. materials and methods stages of research the preparation of this research required process steps to achieve the goals that have been set. these steps are depicted in figure 1. jurnal riset informatika vol. 5, no. 3 june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.553 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 381 figure 1. research steps diagram the following is an explanation of the research steps in figure 1. a. problem identification identifying a persistent problem is the initial stage of the research process. this stage builds on several underlying issues on the background of the problem. b. interview the second step is an interview. the interview stage is carried out face-to-face directly with the parties involved and has a role in providing the information needed. c. questionnaire dissemination the third step is the distribution of questionnaires. the distribution of questionnaires is carried out so that the process of the problem under study provides reciprocity in the form of data filled in by social aid recipients to be examined by the author. d. data collection the fourth step is data collection. in this process, data collection is carried out by filling out questionnaires from parties who receive and filling out questionnaires for data preparation at the next stage. e. data analysis the fifth step is data analysis, and this stage is the process of analyzing data for the needs of the following process in the data processing. f. data processing with the saw method the sixth step is processing, and with the simple additive weighting method, the data processing process is to apply calculations to the saw method to produce calculation data output to determine the ranking under study with the expected results. g. calculation results of the saw method the seventh step is a result of calculating data obtained from the research process that has been carried out. population and research sample the population of residents receiving covid-19 social aid in rt.07 rw.10 kp. sukapura jaya has filled out a selection criteria questionnaire for 150 heads of families who are recorded as recipients and select who gets social aid first. in determining the sample size of the population, the author used the slovin formula with a critical value of 5% and obtained a sample of 110 heads of families (kk) residents receiving social assistance. simple additive weighting (saw) saw is a weighted addition method (much ibnu subroto & kurniadi, 2022; putera et al., 2020). the basis of the concept of this method is to find the sum of the weights of the performance branch on each alternative in all attributes (habibur rahman arjuni & arif senja fitrani, 2022; hutahaean et al., 2022). this method also requires normalizing the decision matrix (x) (marpaung, 2018; pratama & yunita, 2022) to a scale that can be compared with all alternative ratings on each criterion. this method requires the decision maker to determine the weight of each tribute or criterion. the alternative management stages used (in this case, determine the selection of social aid recipients who first covid-19 in rt.07 rw.10 kp. sukapura jaya residents), namely: a. setting an alternative is aᵢ. b. determine the criteria used as a reference in decision-making, namely cⱼ. c. determine each criterion's preference weight or level of importance (w). d. determine the value of the matching branch for each alternative on each criterion. e. make a decision matrix (x) from the table of match branches of each alternative on each criterion. the x value of each alternative (aᵢ) on each criterion (cⱼ) has been determined. f. carry out the process of normalizing the decision matrix (x) to a scale that can be compared with all existing alternative branches on each criterion. g. the result of matrix normalization (rᵢⱼ) forms a normalized matrix (r). h. the final result of the preference value (vᵢ) is obtained from the sum of the multiplication of the normalized matrix row elements (r) with p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.553 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 382 the preference weight (w) corresponding to the matrix column elements (r). i. the ranking process is obtained based on the alternative with the largest to lowest total value to determine the selection of beneficiaries who first received the covid-19 social assistance at rt.07 rw.10 kp.sukapura jaya. because the saw method is one of the methods of the fmadm model, the determination of weights and variable values on each criterion must use fuzzy numbers. the criteria that have been determined are as table 1. table 1. criteria criterion (c) description c₁ age c₂ home ownership status c₃ number of family members c₄ status/type of work c₅ for c₆ deposit savings c₇ expenditure these criteria then determine the importance of the value criteria based on the weight values applied to the fuzzy numbers. table 2 below is the suitability rating for each alternative for each criterion. table 2 fuzzy numbers fuzzy numbers value low 1 currently 2 tall 3 table 2 displays the criteria based on the suitability of each alternative for each predetermined criterion, then the weight of each criterion has been converted to a fuzzy number. age table 3 shows the age criteria are the requirements needed for decision making, based on age. the description of the age value has been converted to fuzzy numbers. table 3 age value age fuzzy numbers value 25 – 30 years low 1 30 – 40 years currently 2 40> tall 3 home ownership status table 4 shows the criteria for home ownership status, which are the requirements for decision-making based on home ownership status. the description of the value of house ownership status has been converted to fuzzy numbers. table 4 assess home ownership status home ownership status fuzzy numbers value private house low 1 contracted currently 2 number of family members table 6 displays the criteria for the number of family members, which are the requirements for decision-making based on the type of work. the description of the value of the number of family members has been converted to fuzzy numbers. table 6. assess the number of family members number of family members fuzzy numbers grade 2-3 person low 1 3-5 people currently 2 five> tall 3 job status/type table 7 displays the criteria for status/type of work is a requirement needed for decision making, based on the type of work. the description of the job type value has been converted to fuzzy numbers. table 7 job type values type of work fuzzy numbers value unemployed/laid off tall 3 farmer/odd worker/trader/driver/security currently 2 private sector employee low 1 income table 8 shows the income criteria are the requirements for decision-making based on income. the description of earnings has been converted to fuzzy numbers. table 8 income value income fuzzy numbers value do not settle low 1 rp. 1.000.000 rp. 2.000.000 currently 2 rp. 2.000.000 rp. 3.000.000 tall 3 deposit savings table 9 displays the criteria for savings deposits which are the requirements for decisionmaking based on savings. the description of savings accounts has been converted to fuzzy numbers. table 9. value of deposit savings income fuzzy numbers value < rp. 1.000.000 low 1 rp. 1.000.000 rp. 2.000.000 currently 2 rp. 3.000.000 rp. 4.500.000 tall 3 jurnal riset informatika vol. 5, no. 3 june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.553 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 383 expenditure table 10 displays the criteria for expenditure requirements needed for decisionmaking by expenditure. the expenditure description has been converted to fuzzy numbers. table 10 expenditure value income fuzzy numbers value rp. 500.000 – rp. 1.000.000 low 1 rp. 1.000.000 rp. 1.500.000 currently 2 > rp. 2.000.000 tall 3 table 11 shows some of the criteria above, so the decision maker gives a weight value based on the level of importance of the required criteria. the weight value of each criterion is as follows: table 11. criteria importance level criteria ( c ) information c₁ 3 c₂ 2 c₃ 3 c₄ 3 c₅ 3 c₆ 3 c₇ 2 results and discussion result compatibility rating value of each alternative on each criterion table 12 determines the suitability rating of each alternative on each predetermined criterion. table 12. alternative compatibility ratings n am e a ge p o ss es si o n n u m b er o f f am il y t y p es o f jo b s in co m e sa v in gs e xp en se s a1 3 1 2 2 2 2 2 a2 3 1 2 2 2 2 2 a3 3 1 2 2 2 2 2 a4 3 1 1 2 2 2 2 a5 3 2 2 2 2 2 2 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... a106 3 1 1 1 3 3 1 a107 2 1 2 2 1 1 2 a108 2 1 2 2 2 2 3 a109 3 2 2 2 3 2 2 a110 3 1 2 2 3 2 3 decision matrix normalization (x) table 13 presents the results of the decision matrix normalization process (x) to a scale that can be compared with all alternative ratings in each criterion. ��� = ��� ��� ��� = if j is the profit attribute zᵢⱼ = ai and cj match twig values \]z zᵢ = largest of all rating values largest of all matching twig scores on each criterion. table 13. decision matrix normalization value name age possession number of family members types of jobs income savings expenditure needs a1 1 0,5 0,666666667 0,666666667 0,666666667 0,666666667 0,666666667 a2 1 0,5 0,666666667 0,666666667 0,666666667 0,666666667 0,666666667 a3 1 0,5 0,666666667 0,666666667 0,666666667 0,666666667 0,666666667 a4 1 0,5 0,333333333 0,666666667 0,666666667 0,666666667 0,666666667 a5 1 1 0,666666667 0,666666667 0,666666667 0,666666667 0,666666667 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... a106 1 0,5 0,333333333 1 1 1 0,333333333 a107 0,666666667 0,5 0,666666667 0,333333333 0,333333333 0,333333333 0,666666667 a108 0,666666667 0,5 0,666666667 0,666666667 0,666666667 0,666666667 1 a109 1 1 0,666666667 1 1 0,666666667 0,666666667 a110 1 0,5 0,666666667 1 1 0,666666667 1 preference value (vᵢ) table 14 shows the final results of the preference values obtained from the sum of the multiplication of the normalized matrix row elements (r) with the preference weights (w) corresponding to the matrix column elements (r). preference weight: 3, 2, 3, 3, 3, 3, 2. (c1 x 3) + (c2 x 2) + (c3 x 3) + (c4 x 3) + (c4 x 3) + (c5 x 3) + (c5 x 2) p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.553 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 384 table 14. test result name age ownership number of family members type of work income deposit savings expenditure needs total a1 3 1 2 2 2 2 1,333333 13,33333 a2 3 1 2 2 2 2 1,333333 13,33333 a3 3 1 2 2 2 2 1,333333 13,33333 a4 3 1 1 2 2 2 1,333333 12,33333 a5 3 2 2 2 2 2 1,333333 14,33333 … … … … … … … … … … … … … … … … … … 108 a108 2 1 2 2 2 2 2 109 a109 3 2 2 3 3 2 1,333333 110 a110 3 1 2 3 3 2 2 based on the calculation results in table 14, we get the ranking results. here is table 15, showing 20 covid-19 social assistance receipts. table 15. data ranking results of recipients of covid-19 social assistance rank no. total 1 46 18 2 47 18 3 79 18 4 84 18 5 8 17,333 6 28 17,33333 7 36 17 8 56 17 9 101 16,33333 10 109 16,33333 11 21 16 12 38 16 13 45 16 14 48 16 15 110 16 16 102 15,33333 17 104 15,33333 18 15 15 19 20 15 20 30 15 … … … … … … 106 44 9 107 73 9 108 97 9 109 86 8 110 92 8 table 15 displays ranking calculation results where each sequence has the same score. even though it has the same score using the saw method, the committee gets priority results for covid-19 social assistance recipients. discussion by highlighting the strengths and advantages of the saw method and carefully evaluating its accuracy, reliability, and validity, the conclusions can show the effectiveness of the saw method as a reliable tool for selecting recipients of covid-19 social assistance in rt.07 rw.10 kp. sukapura jaya. in this respect, the discussion of the effectiveness of the saw method provides a more detailed understanding of the performance and reliability of the method and provides strong support for the research conclusions. conclusion berdasarkan uraian pembahasan penelitian yang telah dilakukan, maka kesimpulan yang dapat ditarik antara lain dengan metode simple additive weighting (saw) dapat melengkapi keputusan dalam penentuan khususnya bagi warga rt.07 rw.10 kp. sukapura jaya, yang tercatat menerima kebutuhan lebih dulu. proses pemilihan penerima bansos covid-19 dilakukan dengan metode ini, dimulai dengan penilaian kriteria kuesioner, pembobotan, pencocokan rating, normalisasi, dan ranking untuk menghasilkan skor dari setiap kriteria bagi warga rt.07 rw.10 kp—sukapura jaya, yang tercatat lebih dulu. hasil perhitungan penerapan metode tersebut adalah peringkat tertinggi hingga terendah yang merupakan hasil akhir pertimbangan pihak tertentu untuk memilih penerima bansos covid-19 yang membutuhkan terlebih dahulu. beberapa saran terkait penerapan metode saw ini dapat dikembangkan seiring dengan perkembangan teknologi yang merinci kebutuhan yang sangat dibutuhkan. pengembangan jurnal riset informatika vol. 5, no. 3 june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.553 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 385 lanjutan mungkin melibatkan penjelajahan teknik dan algoritme yang lebih canggih. misalnya, pendekatan hybrid yang menggabungkan saw dengan metode lain seperti analytical hierarchy process (ahp) atau technique for order of preference by similarity to the ideal solution (topsis) dapat meningkatkan akurasi dan reliabilitas hasil pengambilan keputusan. dengan menerapkan kombinasi yang tepat dari teknikteknik tersebut, diharapkan hasil seleksi penerima bansos covid-19 akan lebih optimal. reference aprilia, y., latifah, l., & ritonga, i. (2022). systematic literature review: kebijakan pemerintah terhadap penyaluran dana bantuan sosial bagi pelaku umkm di indonesia. jurnal kebijakan pembangunan, 17(1), 59–74. https://doi.org/10.47441/jkp.v17i1.241 astika, d. a., nugroho, d., & irawati, t. (2018). sistem pendukung keputusan penerimaan beras untuk keluarga miskin menggunakan metode simple additive weighting di kantor kepala desa gumpang. jurnal teknologi informasi dan komunikasi (tikomsin), 6(1), 50–57. https://doi.org/10.30646/tikomsin.v6i1.351 einstein, t., helmi, m. i., & ramzy, a. (2020). kedudukan peraturan pemerintah pengganti undang-undang nomor 1 tahun 2020 perspektif ilmu perundang-undangan. salam: jurnal sosial dan budaya syar-i, 7(7), 595–612. https://doi.org/10.15408/sjsbs.v7i7.15826 fauzan, r., indrasary, y., & muthia, n. (2018). sistem pendukung keputusan penerimaan beasiswa bidik misi di poliban dengan metode saw berbasis web. jurnal online informatika, 2(2), 79. https://doi.org/10.15575/join.v2i2.101 habibur rahman arjuni, & arif senja fitrani. (2022). sistem pendukung keputusan peserta lomba desain logo menggunakan metode simple additive weighting (saw) berbasis website. explorer, 2(2), 71–78. https://doi.org/10.47065/explorer.v2i2.310 hutahaean, j., ramdhan, w., & sartini, s. (2022). penerapan metode saw untuk pemberian bonus tahunan berdasarkan kinerja karyawan. jurikom (jurnal riset komputer), 9(6), 1825. https://doi.org/10.30865/jurikom.v9i6.4999 jayawardani, w. r. k., & maryam, m. (2022). sistem pendukung keputusan seleksi penerima program keluarga harapan dengan implementasi metode saw dan pembobotan roc. emitor: jurnal teknik elektro, 22(2), 99– 109. https://doi.org/10.23917/emitor.v22i2.1841 1 jurnal, h., rizky, r., husaini, n., & purwidayanta, s. (2018). jurnal manajemen dan teknik informatika sistem pendukung keputusan seleksi penerima bantuan pangan non tunai dengan metode simple addictive weighting (saw). jumantaka, 02(1), 1. https://jurnal.stmikdci.ac.id/index.php/jumantaka/article/view/ 354 maleha, n., saluza, i., islam, b. s.-j. i. e., & 2021, undefined. (2021). dampak covid-19 terhadap pendapatan pedagang kecil di desa sugih waras kec. teluk gelam kab. oki. jurnal.stie-aas.ac.id, 7(03), 1441–1448. https://doi.org/10.29040/jiei.v7i3.3476 marpaung, n. (2018). penerapan metode simple additive weighting pada sistem pendukung keputusan untuk menentukan kenaikan gaji karyawan. jurteksi, 4(2), 171–178. https://doi.org/10.33330/jurteksi.v4i2.58 much ibnu subroto, i., & kurniadi, d. (2022). seleksi calon siswa baru pada sekolah menengah atas (sma) menggunakan metode simple additive weighting (saw). jurnal transistor elektro dan informatika (transistor ei, 4(1), 49–56. https://doi.org/10.30659/ei.4.1.49-56 pratama, a. y., & yunita, s. (2022). komparasi metode weighted product (wp) dan simple additive weighting (saw) pada sistem pendukung keputusan dalam menentukan pemberian beasiswa. jurnal sistem komputer dan informatika (json), 4(1), 12. https://doi.org/10.30865/json.v4i1.4593 putera, a. w., mukhayaroh, a., & samudi. (2020). metode simple additive weighting (saw) dalam pemilihan sim card provider. journal of students‘ research in computer science, 1(2), 97–108. https://doi.org/10.31599/jsrcs.v1i2.382 rizaldy, a. (2022). designing a decision support system for social assistance recipients using the simple additive weighting (saw) method web-based. oktal : jurnal ilmu komputer dan sains, 1(04), 362–372. https://journal.mediapublikasi.id/index.php/ oktal/article/view/106 rohmatin, y., kusrini, w., noor, a., & fathurrahmani, f. (2020). sistem pendukung keputusan penentuan calon penerima beasiswa menggunakan metode simple p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.553 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 386 additive weighting (saw) berbasis web. jurnal sains dan informatika, 6(1), 102–111. https://doi.org/10.34128/jsi.v6i1.219 santoso, & suparmadi. (2019). sosial untuk keluarga miskin dengan metoda simple additve weighting (saw). 2019, 4307(february), 21–28. https://doi.org/10.54314/jssr.v2i1.387 jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.472 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 507 the implementation of moora methods to support refinement decision priority system in information technology fanni rahmah tsani-1*), umi chotijah-2 teknik informatika universitas muhammadiyah gresik kabupaten gresik, indonesia https://umg.ac.id/ fanirahmatsani039@gmail.com-1*), umi.chotijah@umg.ac.id-2 (*) corresponding author abstract maintenance of information and communications technology scoped on the lamongan regency government is the responsibility of the lamongan regency communications and information department. the application of information technology is closely related to the problems that appear, such as communication network interruption/damage. in this case, the report is provided by the user via whatsapp message, and no single point of contact is used for delivery, retard the refinement process and making it difficult for technicians to prioritize refinement. in this study, the authors built a decisionsupporting in order to assist technicians in making priority refinement. the multi-objective optimization based ratio analysis (moora) method is the appropriate method to apply for this study as it allows us to perform the ranking process based on different weighting attributes. the calculation process of the moora method is based on specified criteria and weightings. criteria are the type of damage, risk of a complaint, duration of the claim, and type of service. in one day, the three regional apparatuses with the highest scores are selected and recommendations for prioritized refinement are provided. in this study, we found that samples with high criterion weights and high criterion scores tended to be prioritized over other samples. the results moora calculated show the library service to be the best alternative with a value of 0.396 on ten regional apparatus tested. keywords: decision support system; repair priority; multi-objective optimization based on ratio analysis (moora); information technology abstrak pemeliharaan teknologi informasi dan komunikasi dilingkup pemerintahan kabupaten lamongan merupakan tanggung jawab dinas komunikasi dan informatika kabupaten lamongan. penerapan teknologi informasi tidak terlepas dari permasalahan yang timbul seperti adanya gangguan/kerusakan jaringan komunikasi. dalam hal ini teknisi kesulitan dalam menentukan prioritas perbaikan dikarenakan pelaporan yang diberikan pengguna melalui pesan whattsapp dan tidak digunakan kontak tunggal dalam penyampaiannya, sehingga memperlambat proses penyelesaian perbaikan. pada penelitian ini, penulis membangun suatu sistem pendukung keputusan yang bertujuan untuk membantu teknisi dalam menghasilkan suatu keputusan prioritas perbaikan. metode multi-objective optimization based ratio analysis (moora) adalah metode yang tepat diterapkan pada penelitian ini karena mampu melakukan proses perangkingan berdasarkan atribut bobot yang berbeda. proses perhitungan metode moora berdasakan kriteria dan bobot yang telah ditentukan. kriteria penilaian yang digunakan adalah jenis kerusakan, resiko komplain, lama permintaan, dan jenis pelayanan. dalam satu hari akan dipilih tiga perangkat daerah dengan nilai tertinggi untuk dilakukan rekomendasi prioritas perbaikan. dalam penelitian ini ditemukan bahwa sample dengan nilai kriteria yang tinggi dengan bobot kriteria yang tinggi cenderung mendapatkan prioritas yang lebih dibandingkan sample yang lain. hasil perhitungan moora menunjukkan dinas perpustakaan sebagai alternative tertinggi dengan nilai 0,396 pada sepuluh perangkat daerah yang diuji coba. kata kunci: sistem pendukung keputusan; prioritas perbaikan; multi-objective optimization based on ratio analysis (moora); teknologi informasi p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.472 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 508 introduction communication and informatics department of lamongan regency, is the regional apparatus which responsible for the maintenance of information and communication technology device for all regional apparatus that use communication networks and data exchange in carrying out their duties. the application of information technology cannot be separated from the problems that arise from disruption to information technology service resulting in service interruptions that could be affecting the performance of lamongan regency government. when performing their duties, technicians have faced problems in determining the priority of each issue in regional apparatus. furthermore, repair requests are not handled by a single contact person. therefore, it makes the data collection unorganized and slowing down response time (santoso, wijaya, & nugraha, 2019). to fulfill that needs, a decision support system is recommended to assist decision maker for prioritizing requests from the regional apparatus. a decision support system is defined as a computerized system that used to facilitate decision making (risykiyana, rosyid, chotijah, & mar’i, 2022). using a decision support system helps user make decisions (yunus & senung, 2021). currently, the lamongan department communications and information department needs an effective and efficient decision support system to expedite repairs. this study uses one of the multi-criteria decision making (mcdm) methods, namely the multi-objective optimization based on ratio analysis (moora) with the consideration of being able to carry out the process simultaneously optimizing two or more conflicting attributes (maharrani & somantri, 2020) where the attributes can be profitable (benefit) or unprofitable (cost) (fadli & imtihan, 2019) and can provide a better alternative assessment than other methods and carry out an easy and fast ranking process (pane & erwansyah, 2020). several studies applying the moora method were conducted in pt. indonesia comnets plus sbu regional sumbagsel that determining the level of urgency to improve the damaged towers is still being done manually. to determine the severe damage using moora (abdurrasyid, nugroho, dakhlan, arman, & mahayana, 2022), the same thing is applied to the priority of selecting tower construction areas because the high cost of building a tower is the reason for providers to be selective and right on target in determining the location of tower construction using the ahp method and moora (pane & erwansyah, 2020). from several studies that have been carried out, the data used is data that no longer has been updated, so the data cannot experience re-versioning of the running time series. this research provides objective, fast, and transparent input or recommendations in determining priorities for improving information technology so that the decisions to be taken will be effective and appropriate (pane & erwansyah, 2020). research methods types of research this research belongs to qualitative research. time and place of research this research was carried out from march 2022 to april 2022. the research was carried out at the lamongan regency communication and informatics department in the informatics application field, which is located on jalan kh. ahmad dahlan, lamongan regency. research target / subject this research targeted the efficiency of decision priority making. procedure 1. identification of problem often technicians have difficulty in determining refinement priorities due to the reporting that users provide via whatsapp messages and not using a single contact in their delivery, thus slowing down the refinement completion process. in this study, the authors built a decision support system that aims to assist technicians in making a priority refinement decision. the multiobjective optimization based on ratio analysis (moora) method is the right method to be applied to this study because it is able to carry out a ranking process based on different weight attributes so that the improvement priority results obtained are optimally and appropriate. 2. data, instruments, and data collection techniques this study used repair submission data from regional apparatus at the lamongan district communication and information department. in one day, 3 local officials will be selected for repairs. priority improvement activities need to be carried jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.472 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 509 out within regional apparatus so that decisions to be taken are more effective and optimal. the criteria used in carrying out priority repairs are the type of damage, the risk of complaints, the length of request, and the type of service. the followings are the techniques used for data collection: a) field research the research was carried out by direct observation of the problem to be studied and taking the data needed for research at the lamongan regency communication and information service. b) literature research previous research related to journal topics and used as a reference source. research conducted by (abdurrasyid et al., 2022) at pt. indonesia comnets plus sbu regional sumbagsel determines the level of urgency of repairs in towers using the moora method with 100% accuracy results, the same is also applied (pane & erwansyah, 2020) by applying the ahp and moora methods as determining the weight of the criteria and the best alternative to be selected in the selection of tower construction sites that have a level of accuracy at the seven locations tested. other research was also conducted by (akmaludin, sihombing, dewi, rinawati, & arisawati, 2021) testing conducted with the moora method in collaboration with the price-quality ratio approach, the results obtained were the selection of objectbased software applications. which can be done optimally and provide efficiency in the benefits and costs incurred. from the many studies used as reference sources, no decision support system has been found using versioning-type data. 3. data processing from filling out the repair form, the following sample data is obtained: table 1. the repair data regional apparatus type of damage the risk of complain demand hour type of services kec. maduran local network level 2 1 day public services kec. sekaran local network level2 10 minute public services gedung pkk internet network level 5 >24 our management kec. pucuk software level 2 2 our public services kec. brondong hardware level 2 1,5 our public services bakesbangpol internet network level 4 24 our management gedung dprd internet network level 3 1 our management dinas perpustakaan local network level 1 12 our public services dispora internet network level 3 1 our management inspektorat pc level 3 4 our management 4. data analysis the multi-objective optimization method based on ratio analysis (moora) is an algorithm that optimizes two or more conflicting attributes simultaneously (sunardi, fadlil, & fitrian pahlevi, 2021) as well as a method used to optimize the ranking of a number of alternatives with several stages based on ratio analysis (akmaludin, sihombing, dewi, rinawati, & arisawati, 2021). the first algorithm is to input the value of the criteria where the value of the criteria in an alternative is the value that will later be processed and the result becomes a decision. the criteria values are then converted into a decision matrix that defines the rows of data. the form of the matrix in question can be seen in equation 1. 𝑋 = 𝑥𝑖𝑗 = [ 𝑥𝑖𝑗 ⋯ 𝑥𝑖𝑛 ⋮ ⋮ ⋮ 𝑥𝑚1 ⋯ 𝑥𝑚𝑛 ] ............................................... (1) in this equation, the data takes the form of rows and columns. in equation (1) 'i' represents the number of rows and 'j' represents the number of columns. 'm' is the alternative and the 'n' is the number of attributes. the next process is normalization in the moora algorithm to unite each element of the matrix so that the elements on the matrix have a uniform value. normalization of the matrix can be seen in equation 2. 𝑋𝑖𝑗 ∗ = 𝑥 √∑ 𝑥𝑖𝑗 2∗ 𝑖=1 ...................................................................... (2) p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.472 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 510 equation (2) is obtained by dividing alternative values by square roots and alternate quadratic quantities the normalization that has been carried out is then continued by reducing the values of max and min-max to indicate that an attribute is more important multiplied by the corresponding weight, as depicted in equation 3. 𝑌𝑖 ∗ = ∑ 𝑤𝑗𝑋𝑖𝑗 ∗𝑔 𝑗=1 −∑ 𝑤𝑗𝑋𝑖𝑗 ∗𝑛 𝑗=𝑔+1 .................................. (3) equation (3) aims the summary of benefit attribute 'j' to 'g' and then reduces the cost attribute iteratively 'g+1' until 'n' for each alternative 'i'. yi is the preference value and w is the weight. the final value of the calculation uses equation 3 to determine the ranking of the moora calculation results with the highest ranking value being the highest preference value. results and discussion in determining the selection of priorities for information technology improvements, a method was needed to assist in the determination of the regional apparatus whose damage was repaired, a decision support system was needed to find out which regional apparatus was prioritized for repairs. the method used in the improvement priority is the multi-objective optimization based on ratio analysis (moora) method. the algorithm to be used in the process of prioritizing information technology improvements can be seen in figure 1. figure 1. pseudocode calculation moora the process of calculating the moora method began by giving weight to each criterion, then a suitability rating was generated to form a decision matrix and carried out normalization of the decision matrix. after normalization, attribute optimization was performed by including weights. benefit optimization value (max) minus cost optimization value (min). the biggest optimization result showed that the alternative was prioritized. in the moora method, there were criteria as an assessment process to determine priority improvements. the criteria used in the repair priority were the type of damage (c1), the risk of complaints (c2), the time of request (c3), and the type of service (c4). the alternative selection is shown in table 2. jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.472 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 511 table 2. alternative selection alternative criteria c1 c2 c3 c4 kec. maduran local network level 2 1 day public services kec. sekaran local network level2 10 minute public services alternative criteria c1 c2 c3 c4 gedung pkk internet network level 5 >24 our management kec. pucuk software level 2 2 our public services kec. brondong hardware level 2 1,5 our public services bakesbangpol internet network level 4 24 our management gedung dprd internet network level 3 1 our management dinas perpustakaan local network level 1 12 our public services dispora internet network level 3 1 our management inspektorat pc level 3 4 our management furthermore, the determination of criteria and weights in accordance with predetermined qualifications is indicated in table 3. table 3. criteria and quality criteria description quality type c1 type of damage 0,14 benefit c2 the risk of complain 0,29 benefit c3 demand hour 0,21 benefit c4 type of services 0,36 benefit after knowing the alternative determination, then determine the quantitative value of the criteria on each alternative. the weight of the criteria uses the proposed approach (annisaa, anugrah, & devi, 2022). the criteria used are as follows ; the type of malfunction (c1) is data sourced from the request. with the type of criteria that are of the benefit type, where if the vulnerability or damage is higher, it has a high level of assessment. the rating is in table 4. table 4. value of the risk of damage type of damage description value internet network very high 5 local network high 4 hardware enough 3 pc low 2 software very low 1 the risk of complaint (c2) is the risk of complaints coming from the user. the criteria are of the benefit type, where if the risk of the complaint is high, it has a high level of assessment. the rating is in table 5. table 5. the value of risk complain the risk of complaint description value level 1 very high 5 level 2 high 4 level 3 enough 3 level 4 low 2 level 5 very low 1 the request hour (c3) in this case is the time it takes to make repairs. the criteria are of the benefit type, where if the time required is a lot, the assessment given is high. the rating is in table 6. table 6. the value of demand hour demand hour description value >24 hour very high 5 10 24 hour high 4 3-10 hour enough 3 30 minutes – 3 hours low 2 0 – 30 minutes very low 1 type of service (c4) is a service contained in the regional apparatus with the type of benefit criteria, where if the type of public service there is damaged, the value provided is high from management services. the rating is in table 7. table 7. type of service value demand hour description value public service high 2 management moderate 1 if the value of each criterion has been determined, then create a matching rating table as in table 8. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.472 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 512 table 8. the alternate match rating alternative criteria c1 c2 c3 c4 kec. maduran 4 4 5 2 kec. sekaran 4 4 1 2 gedung pkk 5 1 5 1 kec. pucuk 1 4 2 2 kec. brondong 3 4 1 2 bakesbangpol 5 2 4 1 gedung dprd 5 3 2 1 dinas perpustakaan 4 5 4 2 dispora 5 3 2 1 inspektorat 2 3 3 1 furthermore, the application of the moora method was carried out in selecting improvement priorities so as to produce the best alternative that could be chosen and recommended (hendrayana & mahendra, 2019) to prioritize the improvement. after the results of the suitability rating in table 8 are transformed into the x matrix as follows: 𝐗 = ( 𝟒 𝟒 𝟒 𝟒 𝟓 𝟏 𝟏 𝟒 𝟑 𝟒 𝟓 𝟐 𝟓 𝟑 𝟒 𝟓 𝟓 𝟐 𝟑 𝟑 𝟓 𝟐 𝟏 𝟐 𝟓 𝟏 𝟐 𝟐 𝟏 𝟐 𝟒 𝟏 𝟐 𝟏 𝟒 𝟐 𝟐 𝟑 𝟏 𝟏) the approach taken to the moora method in the matrix normalization process is obtained from the denominator, the best choice is the square root of the sum of the squares and each alternative per attribute (agustina & sutinah, 2022), matrix normalization is used to calculate the number of alternatives and the number of criteria (wardani, parlina, & revi, 2018). the calculation of normalization is by dividing each alternative by the root value of the sum of the alternative values for each criterion that has been raised to the first power. the following is an example of calculating matrix normalization: 𝐴11 = 4 √42 + 42 + 52 +12 + 32 + 52 +52 + 42 + 52 +22 = 0,314 𝐴21 = 4 √42 + 42 + 52 +12 + 32 + 52 +52 + 42 + 52 +22 = 0,314 in the same way, do it for all alternative c1 and other criteria so that the results are obtained as in table 9. table 9. normalization results alternative criteria c1 c2 c3 c4 kec. maduran 0,314 0,364 0,488 0,400 kec. sekaran 0,314 0,364 0,098 0,400 gedung pkk 0,393 0,091 0,488 0,200 alternative criteria c1 c2 c3 c4 kec. pucuk 0,079 0,364 0,195 0,400 kec. brondong 0,236 0,364 0,098 0,400 bakesbangpol 0,393 0,182 0,390 0,200 gedung dprd 0,393 0,273 0,195 0,200 dinas perpustakaan 0,314 0,455 0,390 0,400 dispora 0,393 0,273 0,195 0,200 inspektorat 0,157 0,273 0,293 0,200 optimizing the criteria for each alternative is given an importance value, provided that the maximum criteria type weight value is greater than the minimum criteria quality (ferdian & chotijah, 2022). to get the results of the optimization calculations, it was done by means of the results of the matrix normalization multiplied by the weights that had been determined for each criterion (siregar, poningsih, & safii, 2018). the results of optimization calculations can be seen in table 10. table 10. the result of optimization alternative criteria c1 c2 c3 c4 kec. maduran 0,044 0,105 0,102 0,144 kec. sekaran 0,044 0,105 0,020 0,144 gedung pkk 0,055 0,026 0,102 0,072 kec. pucuk 0,011 0,105 0,041 0,144 kec. brondong 0,033 0,105 0,020 0,144 bakesbangpol 0,055 0,053 0,082 0,072 gedung dprd 0,055 0,079 0,041 0,072 dinas perpustakaan 0,044 0,132 0,082 0,144 dispora 0,055 0,079 0,041 0,072 inspektorat 0,022 0,079 0,061 0,072 jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.472 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 513 the preference value is obtained by calculating the maximum and minimum values, namely by adding up the value of the benefit and cost criteria. max is the criterion for the type of benefit and min is the criterion for the type of cost (alisia, ginting, & syari, 2021). in this study there are only types of benefit criteria, the calculation results can be seen in table 11. table 11. rankings alternative max min yi kec. maduran 0,396 0 0,396 kec. sekaran 0,314 0 0,314 gedung pkk 0,256 0 0,256 alternative max min yi kec. pucuk 0,301 0 0,301 kec. brondong 0,303 0 0,303 bakesbangpol 0,262 0 0,262 gedung dprd 0,247 0 0,247 dinas perpustakaan 0,402 0 0,402 dispora 0,247 0 0,247 inspektorat 0,235 0 0,235 after calculating the preference value, the result of the highest preference value is the best alternative. the results of the ranking can be seen in table 12. tabel 12. rankings alternative result ranking dinas perpustakaan 0,396 1 kecamatan maduran 0,314 2 kecamatan sekaran 0,256 3 kecamatan brondong 0,301 4 kecamatan pucuk 0,303 5 bakesangpol 0,262 6 gedung pkk 0,247 7 gedung dprd 0,402 8 dispora 0,247 9 inspektorat 0,235 10 based on the analysis that has been carried out using the moora method, the highest value calculation results are shown in table 12, rank 1 is obtained at the library service alternative with the type of damage to the internet network, the level of damage is 1, with a request time of 12 hours, and the type of service is public service. conclusions and suggestions conclusion prioritization of information technology improvement using the moora method can be applied properly and optimally because it produces index values on all alternatives. of the ten regional devices tested by the library service showed the highest priority results with a value of 0.396. the results are used by technicians to prioritize information technology repairs within the lamongan regency by grouping damage types based on service type. suggestion it is recommended to add the number of criteria and category variations using cost-benefit analysis; so that, the differences in the use of the types of criteria can be seen to affect the results of alternative priority values. references abdurrasyid, a., nugroho, t. a., dakhlan, d. f., arman, a. a., & mahayana, d. (2022). model penentuan urgensi perbaikan tower menggunakan metode moora. jika (jurnal informatika), 6(1), 70. https://doi.org/10.31000/jika.v6i1.5496 agustina, n., & sutinah, e. (2022). penerapan metode moora pada sistem pendukung keputusan pemilihan aplikasi dompet digital. 6(2), 25407597 |. https://doi.org/10.30743/infotekjar.v6i2.503 3 akmaludin, a., sihombing, e. g., dewi, l. s., rinawati, r., & arisawati, e. (2021). the moora method for selecting software app: price-quality ratio approach. sinkron, 5(2), 192–198. https://doi.org/10.33395/sinkron.v5i2.10789 alisia, m., ginting, b. s., & syari, m. a. (2021). sistem pendukung keputusan menentukan prioritas perbaikan sarana dan prasarana sekolah dasar di kota binjai menggunakan metode moora. jurnal teknik informatika unika santo thomas, 79–90. https://doi.org/10.54367/jtiust.v6i1.1143 annisaa, t., anugrah, i. g., & devi, p. a. r. (2022). sistem pendukung keputusan dalam pemilihan subkon jasa kontruksi dengan metode waspas. ilkomnika: journal of computer science and applied informatics, 4(1), 67–76. https://doi.org/10.28926/ilkomnika.v4i1.450 fadli, s., & imtihan, k. (2019). penerapan multiobjective optimization on the basis of ratio analysis (moora) method dalam mengevaluasi kinerja guru honorer. jurnal informatika dan rekayasa elektronik, 2(2), 10. https://doi.org/10.36595/jire.v2i2.109 ferdian, f., & chotijah, u. (2022). sistem pendukung keputusan rekomendasi beasiswa dengan metode moora studi kasus: mts muhammadiyah 1 kec. dukun. jurnal teknika, 14(2), 67. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.472 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 514 https://doi.org/10.30736/jt.v14i2.794 hendrayana, i. g., & mahendra, g. s. (2019). perancangan metode ahp-moora pada sistem pendukung keputusan pemilihan paket wisata. jl. udayana kampus tengah, (10), 143–149. retrieved from http://pti.undiksha.ac.id/senapati maharrani, r. h., & somantri, o. (2020). grouping seleksi penempatan kelas industri untuk siswa menggunakan moora. 4(2), 237–242. pane, d. h., & erwansyah, k. (2020). model prioritas pemilihan daerah pembangunan tower telekomunikasi berbasis kombinasi metode ahp dan metode moora. 9(2), 11–22. risykiyana, d., rosyid, h., chotijah, u., & mar’i, f. (2022). sistem pendukung keputusan penentuan murid teladan menggunakan metode moora. j-sisko tech (jurnal teknologi sistem informasi dan sistem komputer tgd), 5(2), 237. https://doi.org/10.53513/jsk.v5i2.5802 santoso, h., wijaya, c., & nugraha, f. a. (2019). penerapan best practice it service management dalam perbaikan it service desk: studi kasus pt. xxx. explore: jurnal sistem informasi dan telematika, 10(2), 514– 526. https://doi.org/10.36448/jsit.v10i2.1319 siregar, a. z., poningsih, p., & safii, m. (2018). penentuan kelayakan penerimaan bantuan raskin dengan metode moora pada kelurahan martoba pematangsiantar. komik (konferensi nasional teknologi informasi dan komputer), 2(1). https://doi.org/10.30865/komik.v2i1.937 sunardi, fadlil, a., & fitrian pahlevi, r. (2021). pengambilan keputusan sistem penjaminan mutu perguruan tinggi menggunakan moora, saw, wp, dan wsm. jurnal resti (rekayasa sistem dan teknologi informasi), 5(2), 350– 358. https://doi.org/10.29207/resti.v5i2.2977 wardani, s., parlina, i., & revi, a. (2018). analisis perhitungan metode moora dalam pemilihan supplier bahan bangunan di toko megah gracindo jaya. infotekjar (jurnal nasional informatika dan teknologi jaringan), 3(1), 95– 99. https://doi.org/10.30743/infotekjar.v3i1.524 yunus, y., & senung, b. (2021). sistem pendukung keputusan seleksi penerimaan bantuan koperasi dengan penerapan metode moora berbasis android pada dinas tenaga kerja, koperasi dan ukm kota gorontalo. prosiding semmau 2021, 186–195. jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.471 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 111 implementation of the fuzzy tsukamoto method for office stationery estimation stock system tedy rukmana-1*), hersanto fajri-2, dahlia widhyaestoeti-3 fakultas teknik & sains, program studi teknik informatika, konsetrasi sistem informasi, universitas ibn khaldun bogor, indonesia https://uika-bogor.ac.id/ tedyrukmana1502@gmail.com-1*), hersanto.fajri@gmail.com-2, dahlia@uika-bogor.ac.id-3 (*) corresponding author abstract information technology supports the company's operational activities in recording incoming goods, outgoing goods, and existing inventory. pt. mitraniaga distribusindo is a company engaged in food distribution, which includes supporting aspects for smooth operations, such as stock availability of office stationery. the tsukamoto fuzzy method aims to calculate the estimated stock of office stationery needed to provide recommendations for deciding the estimated stock. the estimated target variable is more numerical, with models built using complete records providing the variable value of the target as a predictive value. testing the accuracy of the calculation results of the office stationery stock estimation system was conducted using the root mean squared error (rmse) to get a value of 5.9 to make the decisions more precise. in application development, using the waterfall model, which provides a sequential or sequential software life flow approach starting from design analysis, coding, and up to application testing using black box testing that is produced, each test form produces an appropriate status, according to the expected results. keywords: fuzzy tsukamoto; root mean squared error; estimation stock system abstrak teknologi informasi mempunyai peranan penting untuk menunjang seluruh aktifitas operasional perusahaan dalam mencatat barang masuk, barang keluar serta persediaan barang yang ada. pt. mitraniaga distribusindo merupakan salah satu perusahan yang bergerak dibidang distribusi makanan yang tentu didalamnya terdapat aspek pendukung untuk kelancaran operasional seperti ketersediaan stok alat tulis kantor. metode fuzzy tsukamoto bertujuan untuk melakukan perhitungan estimasi stok alat tulis kantor yang dibutuhkan mendatang sehingga mampu memberikan rekomendasi dalam memutuskan jumlah estimasi stock alat tulis kantor. variabel target estimasi lebih kearah numerik dengan model yang dibangun menggunakan record lengkap menyediakan nilai variabel dari target sebagai nilai prediksi. uji keakuratan hasil perhitungan sistem estimasi stok alat tulis kantor dilakukan menggunakan root mean squared error (rmse) mendapatkan nilai 5,9 sehingga keputusan yang diperoleh lebih tepat. dalam pengembangan aplikasi menggunakan model waterfall yang menyediakan pendekatan alur hidup perangkat lunak secara sekuensial atau terurut dimulai dari analisis desain , pengkodean dan sampai pengujian aplikasi menggunakan blackbox testing yang dihasilkan setiap form uji menghasilkan status sesuai, sesuai dengan hasil yang di harapkan. kata kunci: fuzzy tsukamoto; root mean squared error; sistem estimasi stok introduction science and technology are currently developing very rapidly, especially in the field of information technology, and the development of information technology is very beneficial for developments, one of which is in the field of trade (haryati, 2012). information technology is important in supporting all company operations to record incoming, outgoing, and inventory of goods such as pt. mitraniaga distribusindo is a company engaged in the food distribution sector, which mailto:tedyrukmana1502@gmail.com-1 mailto:hersanto.fajri@gmail.com p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.471 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 112 includes aspects that support smooth operations, such as the availability of stationery stock. the importance of stock availability is one factor that affects the smooth operation of a company in which administrative needs need special attention, as is the case in determining the need for office stationery stock. the estimation system can provide recommendations for deciding the number of stock receipts using the tsukamoto fuzzy method to make decisionsore precise and computerized and prevent subjective decisionmaking (novianti puspitasari, andi tejawati, & friendy prakoso, 2019). tsukamoto's fuzzy logic reasoning provides a way to understand system performance by assessing system input and output from observations. the research (hendi setiawan, 2020) explains that fuzzy logic is a technique/method used to deal with uncertainties in problems with many answers. if you look at fuzzy logic, it is easy to understand, and fuzzy logic uses basic set theory. fuzzy logic is a group set representing a certain state in a variable. an application is needed that can simplify performance and solve problems related to inventory processing, and also the method used is the fuzzy logic method. in research conducted by (prayogi & santoso, 2018), the tsukamoto method is an extension of monotone reasoning. in the tsukamoto method, each consequence of a rule in if-then must be represented by a fuzzy set with a monotonous membership function. as a result, the output of the inference results from each rule is given strictly (crisp) based on the α predicate (fire strength). the final result is obtained by using a weighted average. based on the accuracy test results, the error value obtained from the small forecasting results is 0.0607%. in other research (huda, 2018), controlling raw material stocks is an activity that a company or agency always carries out with the constraint that often occurs in raw material stocks. when the demand for raw material quantities is not correct, it can result in running out of raw materials, impacting cafe operations. the implementation of fuzzy tsukamoto is widely used to predict or predict the future, such as the use of fuzzy tsukamoto in predicting the availability of teak wood based on the variables that affect it. the application of fuzzy tsukamoto in controlling warehouse stock recommends purchasing goods based on consumer needs using the tsukamoto method. office stationery is a supporting factor for smooth operational activities. office stationery is objected that is used up in the daily work of administrative employees. (m. ramaddan julianti, muhammad iqbal dzulhaq, & ahmad subroto, 2019) the waterfall model is a system development model for this research. the waterfall model provides a sequential or sequential software life-flow approach starting from analysis, design, coding, and testing. the tsukamoto fuzzy method aims to calculate the estimated stock needed in the future to provide recommendations for the estimated amount of office stationery stock. the estimated target variable is more numerical, with models built using complete records providing the variable value of the target as a predictive value. building a webbased estimation system helps determine the estimated amount of office stationery stock needed by implementing the tsukamoto fuzzy method. the accuracy of the calculation results of the office stationery stock estimation system is tested using root mean squared error (rmse). in application development, the waterfall model provides a sequential or sequential software life flow approach starting from design analysis and coding until the application testing using black box testing. research (huda, 2018) shows that requests for the wrong amount of raw materials can result in running out of raw materials, impacting operational disruptions. there needs to be an appropriate raw material management system to fulfil stock availability in the warehouse. the system to be designed uses the tsukamoto fuzzy method. in testing the accuracy of the system also uses rmse (root mean square error). the results of the tsukamoto fuzzy test on 25 training data with sales parameters, expiration date, demand, and yield 0.78%. research on implementation of fuzzy tsukamoto method for office stationery estimation stock system. designed to calculate the estimated stock needed for the future so that it can provide advice when determining the estimated amount of office stationery stock. research methods this study uses a qualitative method approach. to obtain data by interviewing parties related to this research. describe the meaning of research facts through the interview and observation stages of participation and explain the facts that occur in the field (muhammad rijal fadli, 2021). the research methodology can be seen in figure 1. jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.471 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 113 figure 1. research methods time and place of research this research was conducted at pt. mitraniaga distribusindo starts from august 2022 to october 2022. research target / subject in this research, the target/subject is the admin head, who acts as the person in charge of the operational office stationery stock, and then the interview stages are carried out in the formation of data, variables, and criteria. procedure based on the research method described in figure 1, where the initial stage is analysis. analysis of business processes begins with observation, interview stages, and the application of literature studies resulting in output in the form of variable data, criterion data, and alternative data, which is then carried out by the fuzzy tsukamoto algorithm to produce recommendation values. in the next stage, the results of tsukamoto's fuzzy calculations built a program with the application of object-oriented programming through the unified modeling language (uml) design process to produce use cases, activities, sequences, classes, and deployment diagrams. the next stage is coding in implementing web-based programs using the php programming language, writing code using visual studio, databases using mysql, and web browsers using chrome. furthermore, at the testing stage, testing the results of estimation calculations uses the tsukamoto fuzzy method to find out how accurate the stock inventory estimation is. carried out by root mean squared error (rmse) and black box testing provides test results for the suitability of the application with the function or functional capability of the system. this testing phase is carried out to find out how the results of the system design are to be able to find out deficiencies and what things need to be fixed for further development. data, instruments, and data collection techniques in this study, the data formed will then be processed for tsukamoto fuzzy calculations, for the p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.471 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 114 criteria can be seen in table 1. the formation of fuzzy sets can be seen in table 2. table 1. kriteria data no variable statement 1 permintaan office stationery expenditure data 2 stock office stationery inventory data 3 estimasi office stationery stock estimation data table 2 fuzzy function function variable fuzzy set universal set domain input permintaan sedikit 10-80 10 s/d 40 banyak 40 s/d 80 stock sedikit 10-80 10 s/d 40 banyak 40 s/d 80 output estimasi berkurang 10-80 10 s/d 40 bertambah 40 s/d 80 alternative data is office stationery data contained in pt. mitraniaga distribusindo. the instrument is to interview the admin head, who is in charge of office stationery operations. in order to obtain data on the criteria variable for implementing fuzzy through the stages of fuzzification, fuzzy inference, and defuzzification. data analysis technique with fuzzy tsukamoto the tsukamoto fuzzy algorithm then processes the data obtained by forming variables and fuzzy sets beforehand. as an example of the office stationery stock data that will be processed in this case, the variable values obtained consist of requests 60 and stock 47 and the estimated value to be searched for 1. fuzzification after obtaining the next variable is the fuzzification process of forming curves, sets, and membership functions for each variable. a. permintaan there are 2 sets : sedikit and banyak figure 2 permintaan curve figure 2 is a process of fuzzification of the permintaan variable, which consists of sets of sedikit and banyak, showing the degree of membership value resulting from the calculation as follows: the membership function : 𝜇𝑃𝑒𝑟𝑚𝑖𝑛𝑡𝑎𝑎𝑛𝑆𝑒𝑑𝑖𝑘𝑖𝑡 [𝑥] = { 1, 𝑥 ≤ 10 80−𝑥 70 , 10 ≤ 𝑥 ≤ 80 0, 𝑥 ≥ 80 .................................................................................................. (1) 𝜇𝑃𝑒𝑟𝑚𝑖𝑛𝑡𝑎𝑎𝑛𝐵𝑎𝑛𝑦𝑎𝑘 [𝑥] = { 0, 𝑥 ≤ 10 𝑋−10 70 , 10 ≤ 𝑥 ≤ 80 1, 𝑥 ≥ 80 .................................................................................................. (2) the value of the degree of membership is obtained : 𝜇𝑃𝑒𝑟𝑚𝑖𝑛𝑡𝑎𝑎𝑛𝑆𝑒𝑑𝑖𝑘𝑖𝑡 [60] = 80−60 70 = 20 70 = 0,285714286 𝜇𝑃𝑒𝑟𝑚𝑖𝑛𝑡𝑎𝑎𝑛𝐵𝑎𝑛𝑦𝑎𝑘 [60] = 60−10 70 = 50 70 = 0,714285714 b. stock there are 2 sets : sedikit and banyak figure 3 stock curve jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.471 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 115 figure 3 is a process of fuzzification of the stock variable, which consists of sets of sedikit and banyak, showing the degree of membership value resulting from the following calculations : the membership function : 𝜇𝑆𝑡𝑜𝑐𝑘𝑆𝑒𝑑𝑖𝑘𝑖𝑡 [𝑦] = { 1, 𝑦 ≤ 10 80−𝑦 70 , 10 ≤ 𝑦 ≤ 80 0, 𝑦 ≥ 80 (3) 𝜇𝑆𝑡𝑜𝑐𝑘𝐵𝑎𝑛𝑦𝑎𝑘 [𝑦] = { 0, 𝑦 ≤ 10 𝑦−10 70 , 10 ≤ 𝑦 ≤ 80 1, 𝑦 ≥ 80 ...... (4) the value of the degree of membership is obtained : 𝜇𝑆𝑡𝑜𝑐𝑘𝑆𝑒𝑑𝑖𝑘𝑖𝑡 [47] = 80−47 70 = 33 70 = 0,471428571 𝜇𝑆𝑡𝑜𝑐𝑘𝐵𝑎𝑛𝑦𝑎𝑘 [47] = 47−10 70 = 37 70 = 0,528571429 c. estimasi there are 2 sets : berkurang and bertambah figure 4 estimasi curve figure 4 is a process of fuzzification of the estimated variable. the value to be searched for consists of a "berkurang" and "bertambah" set; the final value will show the value that will enter the "berkurang" or "bertambah" set, and the resulting degree of membership value in figure 4 is generated from the following calculations : 𝜇𝐸𝑠𝑡𝑖𝑚𝑎𝑠𝑖𝐵𝑒𝑟𝑘𝑢𝑟𝑎𝑛𝑔 [𝑧] = { 1, 𝑧 ≤ 10 80−𝑧 70 , 10 ≤ 𝑧 ≤ 80 0, 𝑧 ≥ 80 ...................................... (5) 𝜇𝐸𝑠𝑡𝑖𝑚𝑎𝑠𝑖𝐵𝑒𝑟𝑡𝑎𝑚𝑏𝑎ℎ [𝑧] = { 0, 𝑧 ≤ 10 𝑧−10 70 , 10 ≤ 𝑧 ≤ 80 1, 𝑧 ≥ 80 ...................................... (6) 2. fuzzy inference this stage is the process of forming the rules (rules) that will be used, and the following are the rules in this case : a. [r1] if permintaan sedikit and stock banyak then estimasi berkurang. b. [r2] if permintaan sedikit and stock sedikit then estimasi berkurang. c. [r3] if permintaan banyak and stock sedikit then estimasi bertambah. d. [r4] if permintaan banyak and stock banyak then estimasi bertambah. the value obtained in the rule ; [r1] if permintaan sedikit and stock banyak then estimasi berkurang. 𝛼 − 𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡1 = 𝜇𝑃𝑒𝑟𝑚𝑖𝑛𝑡𝑎𝑎𝑛𝑆𝑒𝑑𝑖𝑘𝑡 ∩ 𝜇𝑆𝑡𝑜𝑐𝑘𝐵𝑎𝑛𝑦𝑎𝑘 = 𝑚𝑖𝑛 (0,285714286; 0,714285714) = (0,285714286) 80 −𝑍 70 = 0,285714 𝑍1 = 60 [r2] if permintaan sedikit and stock sedikit then estimasi berkurang. 𝛼 − 𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡2 = 𝜇𝑃𝑒𝑟𝑚𝑖𝑛𝑡𝑎𝑎𝑛𝑆𝑒𝑑𝑖𝑘𝑡 ∩ 𝜇𝑆𝑡𝑜𝑐𝑘𝑆𝑒𝑑𝑖𝑘𝑖𝑡 = 𝑚𝑖𝑛 (0,285714286 ; 0,471428571) = (0,285714286) 80 − 𝑍 70 = 0,285714286 𝑍2 = 60 [r3] if permintaan banyak and stock sedikit then estimasi bertambah. 𝛼 − 𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡3 = 𝜇𝑃𝑒𝑟𝑚𝑖𝑛𝑡𝑎𝑎𝑛𝐵𝑎𝑛𝑦𝑎𝑘 ∩ 𝜇𝑆𝑡𝑜𝑐𝑘𝑆𝑒𝑑𝑖𝑘𝑖𝑡 = 𝑚𝑖𝑛 (0,714285714 ; 0,471428571) = (0,471428571) 𝑍 −10 70 = 0,471428571 𝑍3 = 43 [r4] if permintaan banyak and stock banyak then estimasi bertambah. 𝛼 − 𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡4 = 𝜇𝑃𝑒𝑟𝑚𝑖𝑛𝑡𝑎𝑎𝑛𝐵𝑎𝑛𝑦𝑎𝑘 ∩ 𝜇𝑆𝑡𝑜𝑐𝑘𝐵𝑎𝑛𝑦𝑎𝑘 = 𝑚𝑖𝑛 (0,714285714 ; 0,528571429) = (0,528571429) 𝑍 −10 70 = 0,528571429 𝑍4 = 47 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.471 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 116 3. defuzzification defuzzification is the final stage of calculation using a weighted average. so that the following values are obtained : 𝑧 = 𝛼𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡 1 ∗𝑧1+𝛼𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡 2 ∗𝑧2+𝛼𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡 3 ∗𝑧3+𝛼𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡 4 ∗𝑧4 𝛼𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡 1 +𝛼𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡 2 +𝛼𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡 3 +𝛼𝑝𝑟𝑒𝑑𝑖𝑘𝑎𝑡 4 𝑧 = 79,4 1.57142857 = 50,5272728 the result of the tsukamoto fuzzy calculation is 50.5272728, rounded up to 51 with additional estimation information. next, an accuracy test using the rmse is carried out. the following is a table of the results of the rmse test on the results of accuracy of the results of the calculation of the office stationery stock estimation system using the root mean squared error method. table 3 root mean squared error no nama alternatif manual sistem error square of error n i yi' yi yi'-yi ( yi' -yi)^2 1 amplop coklat f4 50,9615 42,45 8,5 72,4 2 bantex besar 30 30 0,0 0,0 3 bantex kecil 30 30 0,0 0,0 4 binder clip no. 200 47,7344 44,655 3,1 9,5 5 binder clip no. 155 57,7556 70 -12,2 149,9 6 binder clip no. 105 39,0909 33,333 5,8 33,2 7 binder clip no. 107 47,6923 46,667 1,0 1,1 8 binder clip no. 220 49,8983 46,833 3,1 9,4 9 double tape 46,2727 47 -0,7 0,5 10 ballpoint biru 41,1818 39,333 1,8 3,4 11 ballpoint hitam 45,9706 43,515 2,5 6,0 12 ballpoint merah 33,3333 30 3,3 11,1 13 box file (bindex/gema) 16 10 6,0 36,0 14 buku besar 35,6889 36,8 -1,1 1,2 15 buku kecil 37,451 35,385 2,1 4,3 16 buku pencatatan ekspedisi 54,5455 70 -15,5 238,8 17 buku pencatatan km 53,2727 58 -4,7 22,3 18 business file 47,5455 46 1,5 2,4 19 cutter kecil 10 10 0,0 0,0 20 dudukan lakban 28 28 0,0 0,0 21 isi cutter kecil 15 10 5,0 25,0 22 isi cutter besar 30 30 0,0 0,0 23 isi straples kecil 78 70 8,0 64,0 24 isi straples besar 40,0862 35,625 4,5 19,9 25 isolatip 12mm x 72 18,9744 10 9,0 80,5 26 kertas 3 play full 25,1136 10 15,1 228,4 27 kertas 3 play prs 33,1 30,4 2,7 7,3 28 kertas 4 play 48,8871 47,074 1,8 3,3 29 kertas a4 49,8983 46,833 3,1 9,4 30 kertas karbon 38 36 2,0 4,0 total 1043,462465 n 30 rmse 5,897633607 dibulatkan 5,9 the table presents a process for calculating the root mean squared error (rmse) where a comparison is made where manual calculations with system calculations are tested so that the total rmse obtained in the calculation of the office stationery stock estimation system is 5.897633607 rounded up to 5.9. jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.471 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 117 results and discussion tsukamoto fuzzy calculations produce a recommendation value from the process that starts with strict numbers as input. fuzzy numbers are formed through fuzzification, and then fuzzy sets are grouped through an inference process. from the inference results, a defuzzification process is to confirm numbers as output. then the rmse accuracy test results get a value of 5.9. rmse can be negatively oriented, where a lower value indicates a better value. the system development resulted in a business process implemented with the tsukamoto fuzzy method, as seen in figure 5. figure 5 business process there is an admin actor in the implementation of office stationery stock estimation with a system that has been built, which starts with inputting stock data, and then the system performs input tasks. then the admin inputs the value to be estimated, and the system performs the task of inputting value data, then the system performs the tsukamoto fuzzy algorithm then all the tasks that have been carried out are recorded in the system database. in the next stage, the admin can print the system calculation results. in the system, development use uml so that class diagram diagrams are formed describing the system's structure in terms of defining the classes that will be made to build the system. the following is a class diagram which can be seen in figure 6. figure 6 class diagram next, the use case diagram is obtained. use case diagrams are used to find out what functions are contained in the system and who has the right to perform these functions. this system has login functions, alternative data management, data management criteria, data management rules, calculations, and data management passwords. the following is a use case for the office stationery stock estimation system depicted in figure 7. figure 7 use case diagram p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.471 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 118 in building this system, it is necessary to have a database design to find out how the system processes and records data in the database, the database used is mysql. figure 8 database relationship in figure 8. shows a relational database consisting of the following: 1. table tb_alternatif contains office stationery stock item data consisting of kode_alternatif, nama_alternatif, and keterangan. next, kode_alternatif is the primary key connected to the tb_rel_alternatif table. 2. table tb_rel_alternatif the stock value of office stationery consists of id, kode_alternatif, and kode_kriteria. next, kode_kriteria is the primary key connected to the tb_kriteria table. 3. table tb_kriteria contains variable criteria for office stationery stock that will be used to form a set consisting of kode_kriteria, nama_kriteria, batas_bawah, and batas_atas. next, kode_kriteria is the primary key connected to the tb_aturan table. 4. table tb_aturan contains variable rules for the fuzzy inference process consisting of id_atuan, no_aturan, kode_kriteria, operator, and kode_himpunan. next, kode_himpunan is the primary key connected to the tb_himpunan table. 5. table tb_himpunan contains variable set consisting of kode_himpunan,kode_kriteria,nama_himpunan. 6. table tb_user contains user data variables consisting of user and pass. system implementation the implementation process into program code uses the php programming language. this stage is converting system specifications into an executable system to produce a system view that makes it easier for users to access each feature. 1. dashboard page the page displays the main page after logging in and presents the features of the office stationery stock estimation system. the following is the dashboard display which is seen in figure 9. figure 9. dashboard page 2. nilai page this page functions to add valuable data that will be estimated based on alternative data, criteria data, and rule data used. the following is a display of the value page, which can be seen in figure 10. figure 10. nilai page 3. perhitungan page this page shows the results of estimation calculations using the tsukamoto fuzzy method. the following displays the calculation page, which can be seen in figure 11. figure 11. perhitungan page jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.471 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 119 conclusions and suggestions conclusion based on the author's description regarding the implementation of the tsukamoto fuzzy method of office stationery, a stock estimation system has been prepared. office stationery stock estimation system performs the calculation process using the tsukamoto fuzzy method where through the process of fuzzification stages, fuzzy inference, then defuzzification, testing the accuracy of the calculation results of the office stationery stock estimation system is carried out using the root mean squared error (rmse) to get a value 5,9. if the rmse value is smaller, the predicted value is close to the observed value, and the rmse can range from 0 to ∞. rmse can be negatively oriented, where a lower value indicates a better value. office stationery stock estimation system has been implemented using the waterfall method, which goes through the stages of analysis, uml diagram design, database design, and coding using visual code. the php programming language has been successfully tested using black box testing so that this system makes it easier for the admin head to estimate the office stationery stock that will be needed. suggestion it is suggested that for future research development, it is expected to develop a desktopbased estimation system using other fuzzy methods such as the mamdani and sugeno methods. references agus prayogi, edy santoso, & sutrisno. (2018). sistem pendukung keputusan untuk penentuan jumlah produksi nanas menggunakan metode fuzzy tsukamoto (studi kasus pt.great giant pineapple) (vol. 2). retrieved 29 december 2022 from https://jptiik.ub.ac.id/index.php/jptiik/article/view/1596/540. budi santosa. (2007). data mining : teknik pemanfaatan data untuk keperluan bisnis (ed. 1, cet. 1). yogyakarta: graha ilmu. didik setiawan, s. a. (2017). buku sakti pemrograman web : html, css, php, mysql & javascript / didik setiawan ; penyunting, sony adams. yogyakarta: start up. haryati. (2012). pemanfaatan teknologi informasi dan komunikasi (tik) dalam meningkatkan nilai tambah pelayanan publik guna mewujudkan masyarakat berbasis informasi. retrieved from https://balitbangsdm.kominfo.go.id/upt/ban dung/?mod=publikasi&action=dl&cid=10&p ub_id=5. hendi setiawan. (2020). prediksi kebutuhan alat tulis kantor dengan metode fuzzy logic tsukamoto di bpr dana mulia sejahtera. bangkit indonesia, ix(01), 1–5. retrieved 29 december 2022 from https://doi.org/https://doi.org/10.52771/ba ngkitindonesia.v9i1.105. kusrini, e. t. l. (2009). algoritma data mining. yogyakarta: andi yogyakarta. m. ramaddan julianti, muhammad iqbal dzulhaq, & ahmad subroto. (2019). sistem informasi pendataan alat tulis kantor berbasis web pada pt astari niagara internasional. jurnal sisfotek global, 9(2088 – 1762). retrieved 12 december 2022 from https://doi.org/http://dx.doi.org/10.38101/ sisfotek.v9i2.254. m. shalahuddin, & rosa a.s. (2014). rekayasa perangkat lunak : terstruktur dan berorientasi objek. bandung: informatika bandung. miftahul huda, k. h. (2018). model prediksi kebutuhan bahanbakupada cafe menggunakan algoritma fuzzy tsukamoto. retrieved 15 december 2022 from pangkalpinang: http://jurnal.atmaluhur.ac.id/index.php/knsi 2018/article/view/408. yudantoro, t., triyono, l., suyanto, b., sulistyo, w., mardiyono, m., sakinah, a., & handoko, s. (2018). sistem informasi monitoring tugas akhir mahasiswa prodi teknik informatika polines. sintak, 2. retrieved from https://unisbank.ac.id/ojs/index.php/sintak /article/view/6604. muhammad rijal fadli. (2021). memahami desain metode penelitian kualitatif. humanika, 21(1), 33–54. retrieved 29 december 2022 from https://doi.org/10.21831/hum.v21i1. muhammad robith adani. (2018). jenis aplikasi berbasis web beserta contoh penerapannya. retrieved 29 december 2022, from https://www.sekawanmedia.co.id/blog/aplik asi-berbasis-web/. novianti puspitasari, andi tejawati, & friendy prakoso. (2019). estimasi stok penerimaan bahan bakar minyak menggunakan metode fuzzy tsukamoto. jrst (jurnal riset sains dan teknologi), 3(1), 9. retrieved from https://doi.org/10.30595/jrst.v3i1.3112. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1596/540 https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1596/540 https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1596/540 https://balitbangsdm.kominfo.go.id/upt/bandung/?mod=publikasi&action=dl&cid=10&pub_id=5 https://balitbangsdm.kominfo.go.id/upt/bandung/?mod=publikasi&action=dl&cid=10&pub_id=5 https://balitbangsdm.kominfo.go.id/upt/bandung/?mod=publikasi&action=dl&cid=10&pub_id=5 https://doi.org/https:/doi.org/10.52771/bangkitindonesia.v9i1.105 https://doi.org/https:/doi.org/10.52771/bangkitindonesia.v9i1.105 https://doi.org/http:/dx.doi.org/10.38101/sisfotek.v9i2.254 https://doi.org/http:/dx.doi.org/10.38101/sisfotek.v9i2.254 http://jurnal.atmaluhur.ac.id/index.php/knsi2018/article/view/408 http://jurnal.atmaluhur.ac.id/index.php/knsi2018/article/view/408 https://doi.org/10.21831/hum.v21i1 https://www.sekawanmedia.co.id/blog/aplikasi-berbasis-web/ https://www.sekawanmedia.co.id/blog/aplikasi-berbasis-web/ https://doi.org/10.30595/jrst.v3i1.3112 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.471 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 120 sri kusumadewi, & hari purnomo. (2013). aplikasi logika fuzzy untuk pendukung keputusan (2nd ed.). yogyakarta: graha ilmu. suardika, k. w., gandhiadi, g. k., & harini, l. p. i. (2018). perbandingan metode tsukamoto, metode mamdani dan metode sugeno untuk menentukan produksi dupa (studi kasus : cv. dewi bulan). e-jurnal matematika, 7(2), 180. retrieved from https://doi.org/10.24843/mtk.2018.v07.i02. p201. supono. (2016). buku pemrograman web dengan menggunakan php dan framework codeignite. yogyakarta: deepublish. widhyaestoeti, d., iqram, s., mutiyah, s. n., & khairunnisa, y. (2021). black box testing equivalence partitions for front-end testing on academic systems sitoda. jurnal ilmiah teknologi infomasi terapan, 7(3), 211–216. https://doi.org/10.33197/jitter.vol7.iss3.202 1.626 https://doi.org/10.24843/mtk.2018.v07.i02.p201 https://doi.org/10.24843/mtk.2018.v07.i02.p201 jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.475 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 499 implementation of the k-means clustering for teacher performance assessment grouping (pkg) at mi bani hasyim cerme bagus firmansyah-1*, umi chotijah-2 informatics engineering, engineering university of muhammadiyah gresik gresik, indonesia bagusfirman860@gmail.com-1*, umi.chotijah@umg.ac.id-2 (*) correponding author abstract evaluation of teacher performance at mi bani hasyim cerme still uses the manual method. using office applications such as excel and word results in a significant accumulation of data that makes it difficult for school principals to calculate scores and evaluate the results of clustering or teacher performance scores, so it is wasteful of energy, time, and cost. the k-means clustering method is expected to facilitate the clustering process of teacher performance values as a source of information and make it easy for school principals to classify teacher performance results. this research aims to obtain clustering values on teacher performance assessment data and to replace the teacher performance assessment system at mi bani hasyim, which was previously carried out conventionally into a web-based system. the results of this study are the clustering values of teacher performance assessment and a web-based teacher performance appraisal system. it is expected to facilitate the process of evaluating teacher performance in the bani hasyim primary school in the future. keywords: teacher, teacher performance assessment, k-means clustering, mi bani hasyim, web system abstrak penilaian kinerja guru di mi bani hasyim cerme masih menggunakan cara manual. menggunakan aplikasi perkantoran seperti excel dan word yang berakibat penumpukan data yang sangat banyak sehingga menyulitkan kepala sekolah dalam menentukan skor penilaian dan mengevaluasi pengelompokan atau nilai kinerja guru dengan cara yang boros tenaga, waktu dan uang. metode k-means clustering diharapkan dapat mempermudah proses clustering nilai kinerja guru sebagai sumber informasi dan memudahkan kepala sekolah dalam mengklasifikasikan hasil kinerja guru. penelitian ini bertujuan untuk mendapatkan nilai klusterisasi pada data penilaian kinerja guru serta menggantikan sistem penilaian kinerja guru pada mi bani hasyim yang sebelumnya dilakukan secara konvensional menjadi sistem berbasis web. hasil dari penelitian ini adalah nilai clastering penilaian kinerja guru dan sistem penilaian kinerja guru berbasis web sehingga diharapkan dapat mempermudah proses penilaian kinerja guru pada mi bani hasyim kedepannya. kata kunci: guru, penilaian kinerja guru, k-means clustering, mi bani hasyim, sistem web introduction measuring an educational institution's performance is critical. performance measurement is carried out to evaluate and plan future education appropriately, especially on teachers' performance as executors and even as spearheads of education. various types of information are required to ensure that education and learning services are delivered effectively, efficiently, and accountable. improving educational quality must always measure its performance through various information, task control, funding reports, and the, most important, teacher performance reports because teachers play a very strategic role in determining educational quality, which necessitates legal personality and professional ability requirements and can be held accountable (muhiddinur, 2019). data mining is a method of data processing used to discover hidden patterns in data. this data mining method's data processing results can be used to make future decisions. data mining entails, in essence, data collection and selection, data preprocessing, data analysis (including visualization of results), interpretation of findings, and knowledge application. data mining is the process of extracting p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.475 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 500 patterns from data using specific algorithms. the process uses detailed analysis, automatically looking for simple patterns in large amounts of data (ndehedehe et al., 2013; ong, 2013; schuh et al., 2019). clustering is the process of grouping objects with similar properties into object classes. k-means is one of the clustering methods that can be used in this problem. as a method of nonhierarchical data clustering that groups data into one or more clusters. data with the same characteristics are grouped in one cluster, while data with different characteristics are grouped in another. this method is used to categorize teachers and employees based on data from student, teacher, and employee questionnaires. this method is used because it is an interactive method that is simple to interpret, apply, and dynamic on scattered data (han et al., 2012; hughes, 2012; ong, 2013). the manhattan distance is commonly used for measurement because it is simple to calculate and understand and more appropriate for some problems, such as calculating the absolute difference between the coordinates of two objects (pribadi et al., 2022; yaniar, 2011). david l. davies and donald w. bouldin invented the davies bouldin index (dbi) in 1979. the davies-bouldin index maximizes inter-cluster distance while attempting to minimize the distance between points within a cluster. if the maximum inter-cluster distance exists, it indicates that the similarities between each cluster have increased slightly, making the differences between clusters more visible. if the minimal intra-cluster distance indicates that each object in the cluster has level similarity, then the characteristics of the high level (bates & kalita, 2016; sartika & jumadi, 2019). teacher performance is still evaluated manually at bani hasyim primary school, using office applications such as excel and word. the results of the performance appraisal instrument generate a large number of documents for each teacher. thus, even during the storage process, teachers and school principals will struggle to determine the results of calculating scores and evaluating the results of clustering or teacher performance scores, wasting time and money (faisal et al., 2020; lopis, 2016). in previous research by (panjaitan et al., 2015) and (sukrianto, 2016), a study was conducted on teacher performance clustering using the kmeans clustering method, which resulted in the classification of teacher performance into five clusters: bad cluster, poor cluster, moderate cluster, poor cluster well, and perfect cluster. in previous research by (imantika et al., 2019), the k-means clustering method has been described as being used to divide teachers and employees into groups based on the value of the questionnaire results. the analytical hierarchy process (ahp) method is then used to prioritize teachers' and employees' choices from various alternatives. related research was also carried out by (nurzahputra et al., 2017). this paper, titled application of the k-means algorithm for lecturer assessment clustering based on the student satisfaction index, used the results of 146 student satisfaction questionnaires for all lecturers in the study program totaling 12 lecturers. the k-means clustering method was used in this study, with good and poor clusters. the total centroid score for the excellent cluster is 17,099 (5 good lecturers), and the total centroid score for the poor cluster is 15,874. (7 bad lecturers). previous research differs from this research in that the authors used the k-means clustering method to classify teacher performance scores at mi bani hasyim over the last five years, then added a graph to monitor the development of teacher performance scores over the last five years so that it can be seen whether the teacher is improving or deteriorating. k-means clustering is expected to facilitate the clustering process of teacher performance values as a source of information and make it easy for school principals to classify teacher performance results (faisal et al., 2020). research methods types of research this research uses a quantitative method that is systematic and uses mathematical models. time and place of research this research was conducted at bani hasyim primary school, and the time of research was from august 2022 to november 2022. research target / subject the target of this research is the performance value of teachers at bani hasyim primary school. procedure 1. problem identification problem identification is the first step in applying the k-means clustering method. problem identification aims to determine the appropriate data be analyzed using the k-means clustering jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.475 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 501 method to classify teachers based on performance scores. 2. data, instruments, and data collection techniques the data used in this study is the bani hasyim primary school teachers, the techniques used for data collection include the following: a) field research in field research, researchers directly visit research sites and collect data needed for research. field research was conducted directly by interviewing the bani hasyim primary school principal to obtain the required teacher information. b) literature research literature research is carried out by collecting references from journals or academic books related to the issues discussed. 3. data processing this stage is carried out to create raw data that will be processed into quality data. this is done in order to obtain more accurate results with the use of the k-means clustering method. 4. data analysis this stage is carried out based on the results of observations and data collection carried out. system requirements analysis is carried out to determine the features to be used in the system. results and discussion the k-means algorithm is one of the partitional algorithms since it is based on defining the initial centroid value, allowing the initial number of groups to be determined (madhulatha, 2012). the k-means algorithm uses an iterative procedure to create database clusters. after receiving the desired number of initial clusters as input, it generates the final centroid point as output. the centroid's starting point will be chosen randomly by the k-means method's pattern k. the initial cluster centroid candidates can influence the total number of iterations needed to find the cluster centroid. in order to design the algorithm in a way that will produce higher performance, we must identify the centroid cluster, which can be seen from the high initial data density (eltibi & ashour, 2011; hung et al., 2005; saranya & punithavalli, 2011). the k-means algorithm's final output will be a centroid point, which is what it is intended to do. each dataset object joins a cluster once the kmeans iteration is complete. the cluster value is calculated by looking through all the items to locate the cluster closest to the object. based on the shortest distance, the k-means algorithm will cluster data points in a dataset (bangoria et al., 2013). the distance to all of the data from the original centroid value, which was randomly selected as the starting point, was determined using the euclidean distance calculation. data that are close to the centroid will group. this process is repeated until no change exists in any group(chaturvedi et al., 2013). according to this study, the authors grouped by using four variables shown in table 1. table 1. criteria data code criteria k1 pedagogic k2 personality k3 social k4 professional this calculation uses the performance values of 8 teachers, which are initialized with the letters a to h. then, for the year of performance evaluation, it is initialized with one as 2018 and 5 as 2022. for example, data a1 was mrs. istianah's performance value in 2018, data a2 was mrs. istianah's performance value in 2019, and so on, until data h5. table 2 shows the initialization of the teacher code, and table 3 shows the data for teacher performance scores calculated using the k-means clustering method. table 2. teacher data code teacher name a istianah, s.pd.i b dwi yuniartiningtyas w, s.pd c muslimah, s.pd.i d mar’atus sholihah, s.ag e siti qoniah, s.pd.i f ni’matul karimah, s.pd.i g winanto, s.pd h muhammad irwan, s.pd.i table 3. teacher performance assessment data code k1 k2 k3 k4 a1 3,3 4 3,5 2,5 a2 3,1 3,3 4 3,5 a3 3,3 3 4 3,5 a4 3,4 3 4 3,5 a5 3,6 3,7 3,5 3 … … … … … … … … … … h1 3 4 3,5 1,5 h2 3,1 3 3 3 h3 3,4 3,3 4 3,5 h4 3,4 3,7 3,5 3,5 h5 3,7 3,7 3 3,5 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.475 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 502 teacher performance appraisal data is processed using the k-means clustering method, which will then be grouped into 4 clusters, namely "very good," "good," "enough," and "poor," which is shown in table 4. table 4. score score very good good enough poor 1. determine the number of k clusters according to this study, 4 clusters were selected randomly with pedagogic, personality, social, and professional variables. 2. determine the initial value of the midpoint (centroid) randomly based on this, the authors determine that the initial centroid is done randomly, as seen in table 5. table 5. initial centroids initial centroid cluster k1 k2 k3 k4 c1 3,7 3 3 3 c2 3,7 3,3 4 3 c3 3,9 4 4 3,5 c4 2,7 3,7 4 3 3. calculate each data's distance to the centroid with the manhattan distance formula shown in formula 1. 𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑥,𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖| 𝑛 𝑖=1 ……………………(1) the following example is calculated from a1 data to 4 centroids with manhattan distance. where data a1 was obtained previously through initialization in table 2 in the calculation becomes x1 and four centroids consisting of c1, c2, c3, and c4. a) calculation of data a1 against centroid 1 𝑑(𝑥1,𝑐1) = ∑|𝑥1𝑖 − 𝑐1𝑖| 𝑟 𝑖=1 = |3,3 − 3,7| + |4 − 3| + |3,5 − 3| + |2,5 − 3| = 2,4 b) calculation of data a1 against centroid 2 𝑑(𝑥1,𝑐2) = ∑|𝑥1𝑖 − 𝑐2𝑖| 𝑟 𝑖=1 = |3,3 − 3,7| + |4 − 3,3| + |3,5 − 4| + |2,5 − 3| = 2,1 c) calculation of data a1 against centroid 3 𝑑(𝑥1,𝑐3) = ∑|𝑥1𝑖 − 𝑐3𝑖| 𝑟 𝑖=1 = |3,3 − 3,9| + |4 − 4| + |3,5 − 4| + |2,5 − 3,5| =2,1 d) calculation of data a1 against centroid 4 𝑑(𝑥1,𝑐4) = ∑|𝑥1𝑖 − 𝑐4𝑖| 𝑟 𝑖=1 = |3,3 − 2,7| + |4 − 3,7| + |3,5 − 4| + |2,5 − 3| =1,9 the calculation of a1 data for the centroid above obtained the lowest value in the calculation of a1 data for the fourth centroid, which is equal to 1.9, so that a1 data will be entered into the fourth cluster, and so on for a2 data to h5 data. 4. assigns each data to the nearest cluster the following is the result of calculating the iteration distance; the shortest distance for each data to the centroid is shown in the table in yellow, and the closest centroid is the cluster that the data follows, which can be seen in table 6. table 6. iteration 1 distance calculation results code iteration 1 c1 c2 c3 c4 a1 2,4 2,1 2,1 1,9 a2 2,43333 1,1 1,46667 1,2 a3 1,9 1,2 1,6 1,8 a4 1,8 1,1 1,5 1,9 a5 1,26667 0,9 1,63333 1,4 … … … … … … … … … … h1 3,7 3,4 3,4 2,6 h2 0,6 1,9 3,3 2,1 h3 2,13333 0,8 1,16667 1,5 h4 1,96667 1,6 1,33333 1,7 h5 1,16667 1,8 1,53333 2,5 5. defining a new centroid the average value of each variable in each cluster can be used to calculate the new centroid shown in table 7. table 7. new centroid new centroid cluster k1 k2 k3 k4 c1 3,48 3,26 3,06 3,06 c2 3,51 3,47 3,79 3,17 c3 3,49 3,85 3,82 3,73 c4 3,11 3,88 3,44 2,69 the objective function change value is still over the threshold in the first iteration. thus the jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.475 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 503 calculation will continue until the objective function change value is below the threshold in the following phase, which involves lowering the initial objective function value. the results of the objective function computation and variations in the objective function's value for each completed iteration are displayed in table 8. table 8. objective function change iteration objective function objective function change 1 14,277 985,723 2 10,638 3,639 3 10,638 0 the calculation halts at the third iteration in line with the results' goal function change value in table 8. the third-iteration change in the goal function, which has a value of 0, is significant enough to surpass the threshold. the outcome of the third iteration calculation is shown in table 9. table 9. iteration 3 distance calculation results code iteration 3 c1 c2 c3 c4 a1 2,00 1,77 1,98 0,16 a2 1,70 0,84 1,29 2,45 a3 1,61 0,97 1,42 2,59 a4 1,60 0,87 1,32 2,55 a5 1,36 1,00 1,32 1,09 … … … … … … … … … … h1 3,30 3,07 3,28 1,46 h2 0,64 1,77 2,79 2,17 h3 1,49 0,54 0,99 2,22 h4 1,32 0,94 0,82 1,39 h5 1,12 1,70 1,42 2,07 the cluster center or centroid obtained is the centroid in the last iteration, namely the centroid in the 3rd iteration. the final centroid is shown in table 10. table 10. last centroid last centroid cluster k1 k2 k3 k4 c1 3,36 3,22 3 3,17 c2 3,42 3,4 3,85 3,2 c3 3,5 3,81 3,83 3,75 c4 3,37 3,96 3,44 2,5 in this study, researchers have determined four criteria for evaluating teacher performance, as shown in table 4. the four criteria are initialized into 4 clusters by sorting the average of each cluster on the last centroid shown in table 11, followed by the clustering results in table 12. table 11. score initialization score initialization very good c3 good c2 enough c4 poor c1 table 12. results of teacher performance assessment clustering code cluster score a1 c4 enough a2 c2 good a3 c2 good a4 c2 good a5 c2 good … … … … … … h1 c4 enough h2 c1 poor h3 c2 good h4 c3 very good h5 c1 poor table 12 shows that teachers have very good, good, enough, and poor scores. furthermore, teachers with low scores will be included in the training for improving teacher performance assessments at bani hasyim primary school. davies-bouldin index validity the davies-bouldin index seeks to minimize distances between cluster points while maximizing distances between clusters (dense). the davies-bouldin index's lowest value will indicate the ideal number of clusters, which falls within the range of (0, 1). the distance of each data point from the centroid and the mean value is calculated to provide calculations for the ssw in the first stage. the results of estimating the ssw value using the kmeans computations are shown in table 13. table 13. ssw calculation results cluster ssw c1 0,52 c2 0,52 c3 0,46 c4 0,42 the next step is calculating the ssb (sum of square between cluster) values to gauge how far clusters are from one another apart. to do this, p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.475 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 504 measure the distance between a cluster's centroids. the results of estimating the ssb value are shown in table 14. table 14. ssb calculation results ssb cluster 1 2 3 4 1 0,00 0,87 1,18 1,09 2 0,87 0,00 0,69 0,99 3 1,18 0,69 0,00 1,32 4 1,09 0,99 1,32 0,00 evaluation of the ratio (rij), which seeks to determine the dbi value for each cluster, comes next. each cluster's ratio value (dbi) is used to evaluate the dbi of the entire cluster. a good cluster has the smallest density value and the highest possible separation value. the results of estimating the dbi value using the k-means computations are shown in table 15. table 15. dbi calculation result r cluster r max dbi 1 2 3 4 1 0,00 1,19 0,84 0,86 1,19 1,24 2 1,19 0,00 1,42 0,94 1,42 3 0,84 1,42 0,00 0,66 1,42 4 0,86 0,94 0,66 0,00 0,94 the ratio with the most significant value is chosen to find the average, resulting in a dbi value of 1.24235. system implementation 1. system login page when the user enters the system, he or she will see the display shown in figure 1. the user is asked to log in using the email and password previously created. if the user has not registered, he will not be able to enter the system. figure 1. login page 2. teachers data page after the user logs into the system, the teacher data page will appear. users can add, edit and delete teacher data through the teacher data page shown in figure 2. figure 2. teachers data page 3. teachers score page on this teacher's score page shown in figure 3, there are teacher performance scores from year to year for the last five years which include pedagogic, personality, social, and professional. figure 3. teachers score page 4. clustering page furthermore, on the clustering page shown in figure 4, there are several features, such as the range of years that will be calculated with k-means clustering, then the user can choose which centroid will be used to perform the calculation. figure 4. clustering page 5. calculation process page after selecting the year range and centroid, the user will be directed to the calculation process jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.475 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 505 page shown in figure 5. here, the user can see kmeans calculations starting from the first iteration to the last iteration. figure 5. calculation process page 6. clustering results page the clustering results page shown in figure 6 contains the clustering results from each teacher over five years. on this page, the user can get conclusions about which teachers get good grades and which teachers get poor grades so that training and workshops can be conducted for teachers who get poor grades to improve teacher performance appraisal. figure 6. clustering results page 7. monitoring page the monitoring page shown in figure 7 contains a graph of each teacher's performance calculation score in the last five years. here, users can monitor the progress of each teacher's performance. figure 7. monitoring page conclusion and suggestion conclusion the authors' conclusions from the research include classifying teacher performance evaluations at mi bani hasyim based on four assessment categories, pedagogic, personality, social, and professional. teachers' performance assessments are grouped into very good, good, enough, and poor. the iteration process carried out in this study obtained three iterations and the results of the tests that were carried out, then formed teacher group data with excellent ratings consisting of 12 (twelve) teacher data, teacher group data with good ratings consisting of 10 (ten) teacher data, teacher group data with enough assessment consisting of 9 (nine) teacher data, and teacher group data with poor assessment consisting of 9 (nine) teacher data. suggestion the k-means method should also be compared with other approaches to make more accurate clustering. references bangoria, b., mankad, n., & pambhar, v. (2013). a survey on efficient enhanced k-means clustering algorithm. ijsrd -international journal for scientific research & development|, 1(9online), 2321–2613. bates, a., & kalita, j. (2016). counting clusters in twitter posts. acm international conference proceeding series, 04-05-marc. https://doi.org/10.1145/2905055.2905295 chaturvedi, n., & rajavat, a. (2013). an improvement in k-mean clustering algorithm using better time and accuracy. international journal of programming languages and applications, 3(4), 13–19. https://doi.org/10.5121/ijpla.2013.3402 eltibi, m. f., & ashour, w. m. (2011). initializing kmeans clustering algorithm using statistical information. international journal of computer applications, 29(7), 51–55. faisal, a., basri, b., & sari, c. r. (2020). sistem informasi pengklasifikasian hasil belajar peserta didik dengan teknik data mining metode k-nearest neighbor (k-nn). journal peqguruang: conference series, 2(1), 79. https://doi.org/10.35329/jp.v2i1.1386 han, j., kamber, m., & pei, j. (2012). data mining concepts and techniques. 3rd ed. morgan kaufmann publishers. hughes, a. (2012). strategic database marketing. 4th ed. mcgraw hill professional. https://doi.org/10.1145/2905055.2905295 https://doi.org/10.5121/ijpla.2013.3402 https://doi.org/10.35329/jp.v2i1.1386 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.475 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 506 hung, m. c., wu, j., chang, j. h., & yang, d. l. (2005). an efficient k-means clustering algorithm using simple partitioning. journal of information science and engineering, 21(6), 1157–1177. imantika, d., bachtiar, f. a., & rokhmawati, r. i. (2019). penerapan metode k-means clustering dan analytical hierarchy process (ahp) untuk pengelompokan kinerja guru dan karyawan pada sma brawijaya smart school. jurnal pengembangan teknologi informasi dan ilmu komputer j-ptiik, 3(8), 7382–7390. http://j-ptiik.ub.ac.id/index.php/jptiik/article/view/5958 lopis, m. y. (2016). rancang bangun sistem penilaian kinerja guru studi kasus : smk n 1 bancak peneliti : program studi pendidikan teknik informatika dan komputer fakultas teknologi informasi universitas kristen satya wacana. 702011057. madhulatha, s. (2012). an overview of clustering methods. in iosr journal of engineering (vol. 2, issue 4, pp. 719–725). https://doi.org/https://doi.org/10.48550/ar xiv.1205.1117 muhiddinur, k. (2019). guru : suatu kajian teoritis dan praktis (viii). aura. http://repo.iainbukittinggi.ac.id/id/eprint/1 31 ndehedehe, c., simeon, o., & ekpa, a. (2013). spatial image data mining using k-means analysis: a case study of uyo capital city, nigeria. international journal of advanced research, 1(8), 1–6. nurzahputra, a., muslim, m. a., & khusniati, m. (2017). penerapan algoritma k-means untuk clustering penilaian dosen berdasarkan indeks kepuasan mahasiswa. techno.com, 16(1), 17–24. https://doi.org/10.33633/tc.v16i1.1284 ong, j. o. (2013). implementasi algotritma k-means clustering untuk menentukan strategi marketing president university. jurnal ilmiah teknik industri, vol.12, no(juni), 10–20. https://doi.org/https://doi.org/10.23917/jit i.v12i1.651 panjaitan, m., & sitompul, d. (2015). implementasi algoritma k-means dan analytic hierarchy process ( ahp ) untuk klasterisasi guru dan memilih guru terbaik ( studi kasus : sma santo yoseph medan ). fasilkom-ti usu, 1–13. pribadi, w. w., yunus, a., & sartika wiguna, a. (2022). perbandingan metode k-means euclidean distance dan manhattan distance pada penentuan zonasi covid-19 di kabupaten malang. jurnal mahasiswa teknik informatika), 6(2), 493–500. saranya, & punithavalli. (2011). an efficient centroid selection algorithm for k-means clustering. international journal of management, it and engineering, 130–140. sartika, d., & jumadi, j. (2019). seminar nasional teknologi komputer & sains (sainteks) clustering penilaian kinerja dosen menggunakan algoritma k-means (studi kasus: universitas dehasen bengkulu). 703– 709. https://seminar-id.com/semnassainteks2019.html schuh, g., reinhart, g., prote, j. p., sauermann, f., horsthofer, j., oppolzer, f., & knoll, d. (2019). data mining definitions and applications for the management of production complexity. procedia cirp, 81, 874–879. https://doi.org/10.1016/j.procir.2019.03.21 7 sukrianto, d. (2016). penerapan data mining untuk kinerja dosen menggunakan metode k–means clustering (studi kasus di amik mahaputra riau). jurnal pi-cache, 5, no 1(dm), 54–63. yaniar, n. s. (2011). perbandingan ukuran jarak pada proses pengenalan wajah berbasis principal component analysis ( pca ). proceeding seminar tugas akhir jurusan teknik elektro fti‐its, 1–6. http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5958 http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5958 https://doi.org/https:/doi.org/10.48550/arxiv.1205.1117 https://doi.org/https:/doi.org/10.48550/arxiv.1205.1117 http://repo.iainbukittinggi.ac.id/id/eprint/131 http://repo.iainbukittinggi.ac.id/id/eprint/131 https://doi.org/10.33633/tc.v16i1.1284 https://doi.org/https:/doi.org/10.23917/jiti.v12i1.651 https://doi.org/https:/doi.org/10.23917/jiti.v12i1.651 https://seminar-id.com/semnas-sainteks2019.html https://seminar-id.com/semnas-sainteks2019.html https://doi.org/10.1016/j.procir.2019.03.217 https://doi.org/10.1016/j.procir.2019.03.217 jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.470 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 521 masked face detection automation system using mask threshold and viola jones method aminurachma aisyah nilatika1, khoerul anwar*2, eka yuniar3 1,2 teknologi informasi, 3 sistem informasi stmik ppkia pradnya paramita malang, indonesia https://stimata.ac.id/ 1aminurachmaaisyahnilatika@gmail.com, 2*)alqhoir@stimata.ac.id, 3eka@stimata.ac.id (*)corresponding author abstract reducing or even breaking the chain of covid-19 virus infections during a pandemic is important. the techniques encouraged are mandatory hand washing, social distancing, and wearing masks. wearing masks is urgent. therefore, requiring people to wear masks is the right policy. this study aims to detect people who use or do not use masks by applying the viola-jones method. this study modified the threshold algorithm by applying a masking threshold to optimize facial segmentation. meanwhile, viola jones was built by combining several concepts of haar feature, integral image, adaboost, and classifier cascade into the main method for detecting objects. the performance of the proposed method for face detection has an accuracy of 95%, a precision of 94.73%, and a recall of 100%. 5. the masked face detection test has an accuracy of 94%, a precision of 100%, and a recall of 90.90% keywords: segmentation; face detection; masks; viola jones;mask tresholder abstrak mengurangi atau bahkan memutus rantai infeksi virus covid-19 dimasa pandemi menjadi hal yang peting. teknik yang digalakkan adalah wajib cuci tangan, social distancing, dan wajib memakai masker. memakai masker menjadi urgen, oleh karena itu mewajibkan masyarakat untuk memakai masker adalah kebijakan yang tepat. penelitian ini bertujuan untuk pendeteksian wajah manusia yang menggunakan masker atau tidak menggunakan masker dengan menerapkan metode mask tresholder dan viola jones. mask tresholder diterapkan pada proses segmentasi wajah untuk mereduksi gangguan pada proses segmentasi wajah. sementara itu viola jones dibangun dengan menggabungkan beberapa konsep fitur haar, citra integral, adaboost, cascade pengklasifikasi menjadi sebuah metode utama untuk mendeteksi objek. kinerja metode yang diusulkan pada deteksi wajah mempunyai akurasi sebesar 95%, presisi 94.73%, dan recall 100%. 5. pada pengujian deteksi wajah bermasker mempunyai akurasi sebesar 94%, presisi 100% , dan recall 90,90% kata kunci: deteksi wajah; segmentatsi;masker;mask tresholder;viola jones introduction the coronavirus that hit various countries began in wuhan, hubei, china in 2019, later called coronavirus disease-2019 (hui et al., 2020)]. the world health organization or world health organization (who) officially declared the coronavirus as a pandemic on march 9, 2020. this means that this virus has spread widely throughout the world. the indonesian government has also issued a disaster emergency status from february 29 to may 29, 2020, regarding this virus pandemic for 91 days. in this regard, until november 1, 2021, the government of the republic of indonesia recorded 4,244,761 people were detected positive for covid-19 while a total of 143,423 deaths (cfr: 3.4%) and a total of 4,089,419 patients had been declared cured from contracting covid. until 2022 this virus has not completely disappeared. therefore, the public's vigilance against it is maintained. the spread of the covid-19 virus is indicated to mostly occur when someone is symptomatic or symptomatic to others using communication at very close distances and not wearing the perfect ppe equipment. moreover, another transmission may occur because the infected person transmits the virus but has not experienced transmission symptoms. this transmission is called presymptomatic transmission. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.470 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 522 the government has taken many steps to overcome this pandemic, one of which is by socializing the mandatory hand washing movement, social distancing movement, and the mandatory movement to wear masks to reduce or even break the chain of infection with the covid-19 virus. the mandatory mask movement is a movement that requires all people to wear masks. several masks are recommended by the government to be used. among them are cloth masks, which can be used for four hours and then be washed again. the surgical masks and n-95 masks are only reserved for health workers. in indonesia, many people still ignore warnings and regulations regarding the use of masks whenever they are outside the home, and many are unaware of the importance of carrying out this prevention. most indonesians know that wearing a mask is a positive step to reduce the spread of covid-19, but less than 50% are obedient to follow it. detecting people wearing masks is easy to do with the human eye, but for computer-based intelligent systems, this is a challenge. there are two main problem s, namely how the computer can detect human faces, and the next problem is how the detected faces can be identified using masks or not wearing masks directly without requiring data training but with high accuracy through photo and video images. many studies have been conducted to detect faces using various techniques and algorithms to be implemented on devices with limited resources (wihandika, 2021). research (suharso, 2017) to detect facial images conducted several experiments with pixel value thresholds and obtained the best value of 70. then this image was used to obtain haar features and obtained face detection accuracy of 90.90%. it is different from (kirana & isnanto, 2016), which uses pca for image segmentation to obtain haar features, and the result of face detection is 90.90%. likewise (suhery & ruslianto, 2017) use pca for facial image segmentation, and the accuracy of the face detection model is 90%. in addition to the several methods that have been presented, the face detection method with haar cascade is quite popular, including those used by (budiman, 2021); formatting citation; nono heryana, rini mayasari, 2020; abidin, 2018; utaminingrum et al., 2017; javed mehedi shamrat et al., 2021; padilla et al., 2012; minu et al., 2020; poorvi taunk, g. vani jayasri, padma priya j, 2020; braganza et al., 2020). almost all of these studies use binary images obtained by applying a certain threshold value with an accuracy rate of 90% (kirana & isnanto, 2016; suharso, 2017; suhery & ruslianto, 2017). research on masked faces has been carried out using various methods, including using cnn (sakshi et al., 2021; vu et al., 2022), deep learning (monica m, 2021; yadav, 2020),(mufid naufal baay, astria nur irfansyah, 2021) with an accuracy of 82%, while (öztürk et al., 2021) with an accuracy of 85%. several studies used the jones viola (suharso, 2017) with 88% accuracy researchers (putri et al., 2019) with 90% accuracy. another researcher who used viola jones for face detection was (hassan & dawood, 2022)(florestiyanto et al., 2020; pratama, 2022; suharso, 2017) for real-time with 67.6% accuracy. research by (fendi et al., 2020) has 90.9% accuracy (karim sujon et al., 2022). therefore, it is possible to develop a threshold method that can detect faces to increase the accuracy of face detection this study aims to detect human faces with masks or not. this article applies the jones viola and threshold mask. mask threshold to reduce interference from segmentation results. meanwhile, viola jones is built to detect masked faces. research methods the research framework developed to achieve the objectives consists of three stages. the first stage is preprocessing the input image by converting the color and size dimensions. the flow of the research framework is shown in figure 1. figure 1. workflow of the masked face detection system the output of the process is a grey-level image. the second stage is face detection by applying the haar feature, integral image, adaboost, and cascade jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.470 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 523 classifier methods. the output of the second stage is the face-detected image. the third or final stage is detecting the face image with a mask or not. the development of the proposed threshold is discussed at this stage. preprocessing the input data is obtained from two sources, namely from the webcam and downloaded from the internet. data in the form of images or videos. at this stage, two initial treatments are carried out on the image: color conversion and image size changes. the color conversion process is carried out from three rgb color spaces into one grey-level space. the grey level was chosen because it supports the next process. the grey level has one value component, making it easier to perform pixel computations (suhery & ruslianto, 2017). three color spaces, r (red), g (green), and b (blue), into the grey level image that is accommodated in the variable s, then the conversion takes the average of r, g, and b as written in equation 1 𝑠 = ( 𝑟+𝑔+𝑏 3 ) ........................................................................ (1) image size change is a change in image resolution. the process is done by reducing the image's dimensions for the number of pixels to be less by sampling distanced pixels. this process is carried out because the images obtained from the webcam used have a resolution of 480x640 pixels, and the images downloaded from the internet have different resolutions, affecting the speed of calculating the next process. therefore, uniform image dimensions are needed. at this stage, the process of changing the size to 340x240 pixels for the image obtained from the webcam, while the image obtained from the process file changes the size to 50% of the original resolution. data processing the first step is to determine the unique haar features as the key to the image. haar has the advantage of a fast computing process. the haar features (poorvi taunk,g. vani jayasri,padma priya j, 2020; vaibhav, 2020)used are shown in figure 2. figure 2. features of haar this can happen because the computation is calculated based on the features contained in the grid frame and not for all pixels in an image. in order to obtain the desired haar features, several main parts of the human face are selected. the parts that are haar features in this article are eye features, nose features, and mouth features. these three sections were chosen because they indicated that each face has a different geometry. the feature selection process can be seen in figure 3. figure 3. eye, nose, and mouth features the process after feature selection is continued in the image integration process. in this step, the pixels in the area read as haar features are summed. this method uses four specific sub-areas of a larger whole area. therefore, this method is considered capable of using features efficiently. the pixel values of the integral image are shown as subimages, as shown in figure 4 figure 4. integral image section l1, l2, l3, and l4 are sub-images of the input. the number of pixels for a is calculated(jones, 2004) using equation 2. l1, l2, l3, and l4 are sub-images of the input. the number of pixels for a is calculated[20] using equation 2. 𝐴 = 𝐿4 + 𝐿1 − (𝐿2 + 𝐿3) ..................................... (2) meanwhile, the change in value from the input image to the integral image is calculated using equation 3. 𝑠(𝑥, 𝑦) = 𝑖(𝑥, 𝑦) + 𝑠(𝑥, 𝑦 − 1) + 𝑠(𝑥 − 1, 𝑦) − 𝑠(𝑥 − 1, 𝑦 − 1) .................................................... (3) p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.470 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 524 for s(x,y) is the cumulative sum for the integral image. the next process is to determine certain features used to set the threshold value using the adaboost method. when managing a strong classifier, weight is added to the weak classifier, which is then integrated into one to analyze whether the image contains an object. the weak classifier is the prediction result with an inaccurate level of truth. meanwhile, the steps taken by adaboost to establish a strong classifier are: normalizing the weights to obtain a probability distribution value or a candidate for a weak classifier, evaluating each candidate for a weak classifier, selecting a candidate for a weak classifier with the smallest error rate, and then selecting it as a weak classifier. classify all training data using the previously obtained weak classifier and re-weight the data. increase the weight of each misclassified data, and then reduce the weight (return to the initial weight) of all data appropriately. it is hoped that any misclassification can be monitored and corrected by the weak classifier at the next stage. the final classifier is obtained by combining all weak classifiers from each step increase. graded classification using the cascade classifier method. the cascade classifier has three levels of classification (suharso, 2017). the process flow to determine the presence or absence of facial features in the image is shown in figure 5. figure 5. graded classification flow segmentation the process begins with an edge detection process at the end of the color gradation that limits two homogeneous images that show different brightnesses. this study was conducted to determine the difference in intensity between the background and the face area for the entire specified digital image. what is desired from this process is to obtain a clear boundary line between one area and another in the image (anwar & setyowibowo, 2021). then proceed with assigning a threshold value to emphasize the image of objects and non-objects by changing the grey-level image into two colors, black and white. in this research, the threshold value process is done by filtering the pixel value. values that are less than the benchmark will be presented in black. at the same time, the pixel value above the benchmark is presented in a light or white color. the threshold value is calculated on the average value of the sum of the maximum value of fmask and the minimum value of fmin, and the calculation formula is used based on equation 4. 𝑇 = 𝑓𝑚𝑎𝑘𝑠+𝑓𝑚𝑖𝑛 2 ......................................................... (4) the explanation of the variables in equation (4)t is the threshold value, fmax is the highest pixel value, and fmin is the minimum pixel value. this segmentation process is a type of operation that aims to break up an image into several segments with certain criteria (anwar et al., 2021). this type of operation is closely related to pattern identification. in this study, segmentation is carried out based on the facial texture area because, in the initial image processing, we only want to focus on the core facial composition from the eyes to the chin, as well as the location of the mask that should be. the results of facial image segmentation identify whether there are faces with masks. the system works to separate images identified as having the characteristics of the eyes, nose, and mouth objects inserted into a marker box frame. the pixel value of this rectangular box is stored in a variable used to disguise this segmentation. however, the segmentation results have problems, especially when operated on video. the disturbance occurs in the background of the object. there are many white spots. therefore, this study improved the segmentation results by applying convolution to the background. convolution in this study is used to reduce the disturbances after object segmentation. the essence of the convolution method is to multiply two matrices. in this article, the two matrices used are binary image matrices from segments with thresholding using equation 4, while the second matrix is the rgb image matrix. the method used is a segmented binary image edge detected as a mask. the process is done by multiplying each rgb component with a mask image in f(x,y) binary format. the process formulation is written in equation 5 (anwar et al., 2021). the r(), g(), and b() matrices have pixel values from 0 to 255, (xi,yj) = 0…255. at the same time, f(xi,yj) is a binary image with value [0 1]. rf(xi,yj) = r (xi,yj) * f (xi,yj) gf(xi,yj) = g (xi,yj) * f (xi,yj) ........................................... (5) bf(xi,yj) = b (xi,yj) * f (xi,yj) jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.470 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 525 the flow of the segmentation on the face without a mask can be seen in figure 6, and the segmentation on the face with a mask can be seen in figure 7. figure 6. unmasked face image method figure 7. masked face image method dataset retrieval of image data was used to test the study results with 20 images obtained consisting of 10 real-time webcam images and ten downloaded images. the image specifications are: webcam images with a resolution of 480 x 640 pixels, images from uploaded files with different resolutions placed in the program folder, images containing more than one face using masks, images containing more than one face not wearing masks, the image contains a face that uses a cloth mask, a medical mask and does not use a mask, an image contains a face using a face shield. using the diverse nature of the data, it is hoped that information about the proposed method's ability can be obtained properly. data analysis technique the output of this process is to display the detected image as a face or part of the face detected with rgb color and the background to be black. tests on the proposed method are mapped using a confusion matrix in table 1, consisting of precision, recall, and system accuracy in detecting the input image. each calculation for each parameter is 1. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃+𝐹𝑃) .................................................... (6) 2. 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃+𝐹𝑁) ............................................................. (7) 3. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁 (𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁) ................................ (8) results and discussion face detection the stages of facial segmentation with the proposed method are shown in figure 8. the character of the image from the face segmentation is shown in figure 8.a. is the input image without a binary mask using equation 4, which shows the segmentation results are not perfect in figure 8. b. in this study, the mask threshold method was added by applying equation 5 to obtain better results with the background. the method has been tested with five real-time images (webcam) and five downloaded images. the proposed method can segment 10 test images correctly (100%). the results obtained are shown in figure 8. c. figure 8. face detection application of the algorithm used in the masked image segmentation process, as shown in figure 9 figure 9. masked face image the result of masked image segmentation is shown in figure 9. b. binary image segmentation using equation 4 showed that the desired object still has much interference. to get better results, the mask transcoder convolution method is applied. the proposed method has been tested with five real-time images (webcams) and five downloaded images. the method can correctly segment 10 test images. examples of performance, image 9a is the input image, image 9b is the result of the old method, and image 9c is the result of the proposed method. tests on the face detection method with the viola-jones and mask tresholder methods were conducted on real-time webcam images and offline images (upload files). an example of correct detection is shown in table 1. table 1. the results of the masked face detection test p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.470 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 526 the webcam image comprises a single unmasked image and an unmasked multiple-face image with 5 test images. meanwhile, the system was tested with webcam images for face detection with masks for single and multiple-face images. tests for face detection without masks with real-time images with two single images and multiple face images totaling five tests. the system performance detected five tests correctly. examples of performance as shown in table 1 no. 1 and no. 2. testing with two uploaded images consisting of a single face image and multiple face images. the system performance can detect two tests correctly. in the uploaded image in table 1 no. 4, there is a face mask, but it does not cover the haar features (mouth, nose, and eyes) used in the proposed system, but the mask is attached to the neck. therefore the system detects it as an unmasked face. tests for masked face detection were carried out with four real-time images. the performance of the proposed system can detect four tests correctly. an example of system performance in detecting masked faces is shown in table 1, no 3. then the system is tested with six uploaded images. the test results showed that five images were correctly detected as a masked face and 1 test image failed to be detected correctly. the system's failure in detecting this is caused by the inability to segment the facial area. testing the model with a real-time image containing both masked and unmasked faces. in testing with this image data type, the performance of the proposed system can detect faces with masks on the test image correctly. however, the system did not properly detect the unmasked face because it recognized it as a masked face. the results of the system performance as shown in table 1 no. 4. conclusions and suggestions conclusion based on the test results of the experiments, it can be concluded that the masking threshold and viola jones methods can be implemented properly to detect facial images. the threshold mask applied for segmentation can reduce the disruption of the segmentation process. the proposed model has an accuracy of 95%. while the accuracy obtained for detecting masked faces is 94%. this threshold mask method can be applied for various purposes of color image segmentation. suggestion the object in this article is a stationary person. therefore it can be developed for masked face detection in moving humans in complex open spaces or indoors. references abidin, s. (2018). deteksi wajah menggunakan metode haar cascade classifier berbasis webcam pada matlab. jurnal teknologi elekterika, 15(1), 21. https://doi.org/10.31963/elekterika.v15i1.2 102 anwar, k., & setyowibowo, s. (2021). segmentasi kerusakan daun padi pada citra digital. jurnal edukasi dan penelitian informatika (jepin), 7(1), 39. https://doi.org/10.26418/jp.v7i1.42331 anwar, k., yunus, m., & sujito, s. (2021). segmentasi citra warna otomatis rambu lalu lintas dengan penerapan mask thresholder. jurnal edukasi dan penelitian informatika (jepin), 7(3), 481. https://doi.org/10.26418/jp.v7i3.49969 budiman, b., lubis, c., & perdana, n. j. (2021). pendeteksian penggunaan masker wajah dengan metode convolutional neural network. jurnal ilmu komputer dan sistem informasi, 9(1), 40–47. https://doi.org/10.24912/jiksi.v9i1.11556 fendi, s., triyanto, a., hidayati, n., & p, d. e. (2020). face detection dengan menggunakan no detection result webcam file upload 1 2. 3. 4. jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.470 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 527 algoritma viola joness. stmik amikom, january. https://doi.org/10.13140/rg.2.2.35193.216 06 florestiyanto, m. y., pratomo, a. h., & sari, n. i. (2020). penguatan ketepatan pengenalan wajah viola-jones dengan pelacakan. teknika, 9(1), 31–37. https://doi.org/10.34148/teknika.v9i1.241 hassan, b. a., & dawood, f. a. a. (2022). facial image detection based on the viola-jones algorithm for gender recognition. international journal of nonlinear analysis and applications, 6822(november), 1–7. https://doi.org/10.22075/ijnaa.2022.7130 hui, d. s., i azhar, e., madani, t. a., ntoumi, f., kock, r., dar, o., ippolito, g., mchugh, t. d., memish, z. a., drosten, c., zumla, a., & petersen, e. (2020). the continuing 2019-ncov epidemic threat of novel coronaviruses to global health — the latest 2019 novel coronavirus outbreak in wuhan, china. international journal of infectious diseases, 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009 javed mehedi shamrat, f. m., majumder, a., antu, p. r., barmon, s. k., nowrin, i., & ranjan, r. (2021). human face recognition applying haar cascade classifier. human face recognition applying haar cascade classifier," in lecture notes in networks and systems, (march), 1–15. https://doi.org/10.1007/978981-16-5640-8_12 jones, m. (2004). robust real-time object detection. international journal of computer vision, 57(2), 137–154. https://doi.org/10.1023/b:visi.0000013087. 49260.fb karim sujon, m. r., hossain, m. r., al amin, m. j., bepery, c., & rahman, m. m. (2022). real-time face mask detection for covid-19 prevention. 2022 ieee 12th annual computing and communication workshop and conference, ccwc 2022, november, 341–346. https://doi.org/10.1109/ccwc54503.2022.9 720764 kirana, c., & isnanto, b. (2016). face identification for presence applications using violajones and eigenface algorithm. jurnal sisfokom (sistem informasi dan komputer), 5(2), 7–14. https://doi.org/10.32736/sisfokom.v5i2.189 minu, m. s., arun, k., tiwari, a., & rampuria, p. (2020). face recognition system based on haar cascade classifier. international journal of advanced science and technology, 29(5), 3799–3805. monica m, k. r. s. (2021). irjetdeep learning technique to detect face mask in the covid19 pandemic period. irjet, 8(8). mufid naufal baay, astria nur irfansyah, m. a. (2021). sistem otomatis pendeteksi wajah bermasker menggunakan deep learning. jurnal teknik its, 10(1), 64–70. nono heryana,rini mayasari, k. a. b. (2020). penerapan haar cascade classification model untuk deteksi wajah , hidung , mulut , dan mata menggunakan algoritma viola-jones. jurnal ilmu komputer dan teknologi informasi, 5(1), 21–25. öztürk, g., eldoğan, o., karayel, d., & atali, g. (2021). face mask detection on labview. artificial intelligence theory and applications, 1(2), 9– 18. https://dergipark.org.tr/en/pub/aita/issue/ 70791/1137977 padilla, r., ferreira, c., & filho, f. c. (2012). evaluation of haar cascade classifiers for face detection optimum baseline wander removal in ecg signals view project. international journal of computer, electrical, automation, control and information engineering, 6(4), 466–469. palli, g. h., shah, a. a., chowdhry, b. s., hussain, t., ur rehman, u., & mirza, g. f. (2021). recognition of train driver's attention using haar cascade. honet 2021 ieee 18th international conference on smart communities: improving quality of life using ict, iot and ai, december, 132–136. https://doi.org/10.1109/honet53078.2021 .9615452 poorvi taunk, g. vani jayasri,padma priya j, n. s. k. (2020). face detection using viola jones with haar cascade. test engineering and management ·, 83(11), 131–134. https://doi.org/10.46501/ijmtst061124 pratama, m. a. h. p. (2022). alat pendeteksi wajah mahasiswa universitas trunojoyo madura (utm) menggunakan metode viola-jones. alinier: journal of artificial intelligence & applications, 2(2), 50–60. https://doi.org/10.36040/alinier.v2i2.4290 putri, r. e., matulatan, t., & hayaty, n. (2019). sistem deteksi wajah pada kamera realtime dengan menggunakan metode viola jones. jurnal sustainable: jurnal hasil penelitian dan industri terapan, 8(1), 30–37. https://doi.org/10.31629/sustainable.v8i1.5 26 sakshi, s., gupta, a. k., singh yadav, s., & kumar, u. (2021). face mask detection system using cnn. 2021 international conference on advance computing and innovative p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.470 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 528 technologies in engineering, icacite 2021, march 212–216. https://doi.org/10.1109/icacite51222.202 1.9404731 suharso, a. (2017). pengenalan wajah menggunakan metode viola-jones dan eigenface dengan variasi posisi wajah berbasis webcam. techno xplore : jurnal ilmu komputer dan teknologi informasi, 1(2). https://doi.org/10.36805/technoxplore.v1i2. 107 suhery, c., & ruslianto, i. (2017). identifikasi wajah manusia untuk sistem monitoring kehadiran perkuliahan menggunakan ekstraksi fitur principal component analysis (pca). jurnal edukasi dan penelitian informatika (jepin), 3(1), 9. https://doi.org/10.26418/jp.v3i1.19792 utaminingrum, f., primaswara, r., & arum sari, y. (2017). image processing for rapidly eye detection based on robust haar sliding window. international journal of electrical and computer engineering, 7(2), 823–830. https://doi.org/10.11591/ijece.v7i2.pp823830 vaibhav, h. (2020). face identification using haar cascade classifier. medium, 8(5), 1–5. https://medium.com/geeky-bawa/faceidentification-using-haar-cascade-classifieraf3468a44814 vu, h. n., nguyen, m. h., & pham, c. (2022). masked face recognition with convolutional neural networks and local binary patterns. applied intelligence, 52(5), 5497–5512. https://doi.org/10.1007/s10489-02102728-1 wihandika, r. (2021). deteksi masker wajah menggunakan metode adjacent evaluation local binary patterns. jurnal resti (rekayasa sistem dan teknologi informasi), 5(4), 705– 712. https://doi.org/10.29207/resti.v5i4.3094 yadav, s. (2020). deep learning based safe social distancing and face mask detection in public areas for covid-19 safety guidelines adherence. international journal for research in applied science and engineering technology, 8(7), 1368–1375. https://doi.org/10.22214/ijraset.2020.3056 0 jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.558 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 439 prediction of rainfall and water discharge in the jagir river surabaya with long-short-term memory (lstm) retzi yosia lewu-1, slamet-2, sri wulandari-3, widdi djatmiko-4, kusrini-5, mulia sulistiyono-6*) magister of informatics engineering universitas amikom yogyakarta yogyakarta, indonesia 1retzi.lewu@students.amikom.ac.id, 2slametmieno@students.amikom.ac.id, 3sriwulandari@students.amikom.ac.id, 4widdi.dj@students.amikom.ac.id, 5kusrini@amikom.ac.id, 6*) muliasulistiyono@amikom.ac.id (*) corresponding author abstract floods can occur at any time if the amount of river water discharge and rainfall intensity tends to be high, so preparations and ways of handling are needed to anticipate flooding quickly, precisely, and accurately for the surabaya city public works service. one of the steps to predict and analyze the status of the flood disaster alert level is to calculate predictions based on rainfall and the amount of river water discharge. this study uses the long-short term memory (lstm) algorithm to predict using a time series dataset of rainfall and river water discharge in the jagir river, surabaya. this data is used to make predictions with the proportion of 70% training data and 30% testing data. data normalization is performed in intervals of 0 and 1 using a min-max scaler and activated using relu (rectified linear unit) and adam optimizer. the process continues by repeating the process to enter iterations, or epochs, until it reaches the specified epoch (n). the data is then normalized to their original values and visualized. the model was evaluated and produced acceptable performance evaluation results for the rainfall variable, namely at epoch (n) = 75 for training data, namely a score of 0.054 for mae and 0.099 for rmse. in contrast, data testing was given a score of 0.041 for mae and 0.091 for rmse. as for the water discharge variable, the performance evaluation shows the difference between the training and testing data. results of training data mae = 11.10 and rmse=18rmse =18.61.61 at epoch (n) = 150. results of data testing mae = 11.37 and rmse = 21.08 at epoch (n) = 100. these results indicate an anomaly that needs to be discussed in further research. keywords: rainfall; water discharge; prediction; flood; long short term memory (lstm) abstrak banjir dapat terjadi sewaktu-waktu apabila faktor jumlah debit air sungai dan intensitas curah hujan cenderung tinggi, sehingga diperlukan persiapan dan cara penanganan untuk mengantisipasi banjir secara cepat, tepat, dan akurat bagi dinas pekerjaan umum kota surabaya. salah satu langkah untuk memprediksi dan menganalisis status tingkat siaga bencana banjir adalah dengan menghitung prediksi berdasarkan curah hujan dan jumlah debit air sungai. penelitian ini menggunakan algoritma long-short term memory (lstm) untuk memprediksi dengan menggunakan dataset time series curah hujan dan debit air sungai di sungai jagir surabaya. data ini digunakan untuk membuat prediksi dengan proporsi 70% data training dan 30% data testing. normalisasi data dilakukan dalam interval 0 dan 1 menggunakan minmax scaler dan diaktifkan menggunakan relu (rectified linear unit) dan adam optimizer. proses dilanjutkan dengan mengulang proses untuk memasukkan iterasi, atau epoch, hingga mencapai epoch (n) yang ditentukan. data kemudian didenormalisasi ke nilai aslinya dan divisualisasikan. model dievaluasi dan menghasilkan nilai hasil evaluasi kinerja yang dapat diterima untuk variabel curah hujan yaitu pada epoch (n) = 75 untuk data training yaitu skor 0,054 untuk mae dan skor 0,099 untuk rmse, seta data testing diberi skor 0,041 untuk mae dan 0,091 untuk rmse. sedangkan untuk variabel debit air, evaluasi kinerja menunjukkan perbedaan antara data training dan data testing. hasil data training mae = 11.10 dan rmse = 18.61 pada epoch (n) = 150. hasil data testing mae = 11.37 dan rmse = 21.08 pada epoch (n) = 100. hasil ini menunjukkan adanya anomali sehingga perlu dibahas pada penelitian selanjutnya. kata kunci: curah hujan; debit air; prediksi; banjir; long short term memory (lstm) mailto:2xxxxxxxx@students.amikom.ac.id p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.558 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 440 introduction as an archipelagic country close to the equator, indonesia has an excellent opportunity to experience flooding. the monitoring results of the national disaster management agency (bnpb) stated that since 2018 floods have become a disaster with the most significant impact, according to the available data (https://bnpb.go.id/infographics). the flood disaster occurred evenly in indonesia, including in surabaya. there are several large rivers in surabaya, one of them is the jagir river, which needs to be examined for its flood alert status, considering that the river is an artificial river located in a densely populated area. several factors, including rainfall and water discharge, can cause floods. these two factors can be used to determine flood alert status. in hydrology, it is explained that river water discharge is a measure of the amount of water flowing out of a watershed (das) in volume units per second. the river water discharge unit is cubic meters per second (m3/second) (asdak, 2023). every river in surabaya has an essential role in accommodating and storing water which will then flow into the major rivers in surabaya and empty into the sea. an excessive river water discharge will result in a flood disaster that can damage or cause property loss and even claim lives. flood disasters can indeed occur when there is instability in the river's flow, and it comes relatively quickly. so preparation and handling methods are also needed to quickly, precisely, and accurately anticipate floods for the dinas pekerjaan umum pengairan provinsi jawa timur upt pengelolaan sumber daya air surabaya. one of the steps to anticipate a flood disaster is calculating the predicted amount of river water discharge. the term prediction is similar to classification and estimation, in which prediction results lie in the future (larose, 2005). predictions can be made using several algorithms, including machine learning, artificial neural networks (ann), and lstm (long et al.). the lstm algorithm was first introduced in 1997 by hochreiter and schmidhuber (hochreiter & schmidhuber, 1997). lstm consists of several layers that can be repeated and has several basic variable calculation processes, including addition, multiplication, and other mathematical functions. so in this study, the prediction will be held by using the existing periodic time series data of the amount of river water discharge in recent years, and a predictive result of the river water discharge will be obtained for some time to come using lstm as a method. therefore, it will explain the use of lstm for predicting rainfall and water discharge by analyzing data obtained from the past to obtain projections of future data. furthermore, to determine the performance of the lstm algorithm model, a testing process will be carried out using mae (mean absolute error) (bouktif, fiaz, ouni, & serhani, 2018) and mean squared error (mse) (shetty, padmashree, sagar, & cauvery, 2021), in this case, rmse (root mean squared error) (elizabeth michael, mishra, hasan, & al-durra, 2022; kouadri, pande, panneerselvam, moharir, & elbeltagi., 2022), to test the prediction results on actual data. mae is the absolute change between the original and prediction values (wang & lu, 2018) and the average for all the values. in contrast, it is explained as the square root of mse (mean square error), which is the square of change between the original and prediction values and the average for all the values (navlan, fandango, & idris, 2021). using the lstm algorithm model, this study is expected to produce an acceptable score (near zero) for both mae and rmse. it is an understandable reason so that it can provide knowledge to increase information for upt pengelolaan sumber daya air surabaya in anticipating/managing floods in the surabaya area, especially those caused by the jagir river. research methods types of research this study uses a quantitative approach. using the method of literature study and observation is as follows: literature study much research has been conducted on flood prediction using lstm (long short term memory) and other methods. literature study related to lstm: rizki et al., in 2022, researched rainfall prediction for the city of malang and found that the application successfully processed rainfall predictions for malang with rainfall parameters (rizki, basuki, & azhar, 2020). the number of hidden layer neurons with the most optimal results is 256 hidden layer neurons. this is because the 256 hidden layer neurons have the lowest error rate, 12,247 on the train data and 11,481 on the test data. the number of epochs with the most optimal results is 150 epochs. this is because the number of 150 jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.558 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 441 epochs has the lowest error rate, namely on the train data of 12,079 and the test data of 11,288. the composition of data train and data test with the most optimal results is the composition of 50% train data and 50% test data. this is because the composition of 50% train data and 50% test data has the lowest error rate; namely, the train data is 12,079, and the test data is 11,288. this research is considered not too significant because it only uses one variable, namely rainfall; devi et al., in 2022, conducted a dasarian rainfall prediction using the vanilla rnn and lstm methods to determine the beginning of the rainy and dry seasons. they obtained the best features: humidity, pressure, and visibility (devi, bayupati, & wirdiani, 2022). models with features that have been selected using the backward elimination method obtain more optimal performance compared to models that use all data features. each model using the vanilla rnn and lstm methods obtained poor results at a learning rate of 0.0001. this study's learning rate of 0.0001 requires a more significant epoch to obtain optimal results. the best model is obtained by the vanilla rnn method with feature selection. the rmse obtained was 28.4308, and r2 was 0.6139. the r2 value of 0.6139 is included in the strong category, where this model is suitable for predicting primary rainfall data. the information obtained from the results of the 2021 rainfall prediction is that june will enter the dry season in june, and 1 december will enter the rainy season. kardhana et al. 2022 improved the flood prediction method using the lstm-rnn and sadewa satellite data (kardhana, valerian, rohmat, & kusuma, 2022). the lstm-rnn is used to predict the water level (sudriani, ridwansyah, & a rustini, 2019) in the katulampa dam using sadewa satellite data. the results show that the model can accurately predict the katulampa water level and provides a potential for implementing and improving lead time for flood mitigation. using the lstm-rnn, the model can accurately predict the water level in katulampa with repeated data t − 24 hours, with r2 above 0.82. the model can maintain r2 above 0.80 for the next 24 hours in the prediction. literature study related flood prediction using other methods: supatmi et al. 2019 proposed a hybrid approach based on a neural network and a fuzzy inference system for flood vulnerability, namely the hybrid neuro-fuzzy inference system (hn-fis). hnfis is a model that can automatically learn and obtain output that can present the essence of fuzzy logic 2 computational intelligence and neuroscience (supatmi, hou, & sumitra, 2019). the system is implemented in 31 districts in the city of bandung. flood prediction relies on several variable inputs: population density, area elevation, and rainfall in a time series from 2008 to 2012. the main contribution of this paper is to provide a hybrid prediction for flood susceptibility based on neural networks and a fuzzy inference system for accurate flood prediction. it used data variables that utilized the bandung database for flood hazard prediction and developed a practical hybrid prediction approach for flood susceptibility with higher accuracy. noymanee & theeramunkong conducted research in which machine learning techniques were developed to predict errors in rainfall simulations. a hybrid model based on mike11 and machine learning techniques will provide better predictive results than only one mike11 model (noymanee & theeramunkong, 2019). using the variant inflation factor, sampurno et al. conducted a statistical analysis to analyze the multicollinearity between the predictor variables (sampurno, vallaeys, ardianto, & hanert, 2022). the researcher tested four kernels, namely linear, polynomial, radial basis, and sigmoid, and found that the radial kernel had the best performance in the svm algorithm. b. observation observations were made on the data available at the dinas pekerjaan umum pengairan provinsi jawa timur upt pengelolaan sumber daya air surabaya. the observation results in the form of a dataset are then processed in the following manner: figure 1. research flowchart p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.558 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 442 time and place of research the research was conducted from 29 may 2023 to 10 july 2023 with the details as shown in figure 2 below: figure 2. research schedule research took place at dinas pekerjaan umum pengairan provinsi jawa timur upt pengelolaan sumber daya air surabaya. research target/subject the subject is dinas pekerjaan umum pengairan provinsi jawa timur upt pengelolaan sumber daya air surabaya, where we derive the population of data. the data population is a dataset of rainfall and water discharge, and the data samples are those captured from 2020 to 2022, with as many as 1096 rows. the data sample uses rainfall and water discharge as they are being used as the variables within the research. data, instruments, and data collection techniques the data used in this study is a dataset from the irrigation public works office of east java province upt water resources management surabaya captured the raw data using provided devices : rainfall data is recorded based on the output of a device called the automatic rainfall recorder (arr) through the wonokromo station, and water discharge data is recorded based on the output of a device called awlr (automatic water level recorder) through the jagir river floodgates in surabaya. these data will be used for future prediction calculations using the lstm method, focusing on the following rainfall and water discharge as research variables. data analysis technique the dataset is analyzed using some steps, as shown in figure 1. they are: 1. wrangling and preprocessing, in which the attributes are checked whether each variable column has the potential to have anomalous attributes or columns with the potential to have no value (null). 2. splitting the data into training and testing data with a composition of 70:30. 3. lstm modelling. this is the primary process of the study. python is being used to model the prediction. each variable is analyzed using lstm by processing into several layers during some iterations (named epoch) through these actions: a) normalization. scaling is applied for the data in a specific interval of 0 and 1. so it is said that the value on the dataset is normalized into ≤1 using the min-max scaler. b) activation. this study uses relu (rectified linear unit) to activate the output. the output of the activation function is expressed as 0 (zero) if the input is negative. however, if the input is positive, the output will equal the input value of the activation function (szandala, 2021). adam optimizer is also used to iteratively update the weighted network based on training data in this step. c) input epoch. this is the part to input how many iterations through the codes. epoch is defined from a certain number of iterations (n) during several basic variable calculation processes, including addition, multiplication, and other mathematical functions regards to lstm until it is completed (reach the defined epoch). d) denormalization is when a scaler puts the result back into a normal form. inverse e) data visualization is visualized into a plot diagram for each variable. 4. evaluation is the next step, where the model is evaluated using some formula to measure the performance of each result. in this study, mae (mean absolute error) and rmse (root mean square error) are used to show the performance of each variable. 5. the last step is to conclude the result and derive recommendations and suggestions for future works. results and discussion the dataset which is collected from the dinas pekerjaan umum pengairan provinsi jawa timur upt pengelolaan sumber daya air surabaya will be used for future prediction calculations using the lstm method, focusing on the following data variables: jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.558 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 443 1. rainfall data is recorded based on the automatic rainfall recorder (arr) output through the wonokromo station. there are guidelines for determining average level status, namely a rainfall value of less than 100 mm. in contrast, the alert status will apply if the rainfall value exceeds 100 mm. the data used is from january 2020 to december 2022. the sample rainfall dataset is listed in table 1. table 1. rainfall datasets. date rainfall 01/01/2020 85 02/01/2020 0 03/01/2020 0 … … 30/12/2022 1 31/12/2022 1.4 2. water discharge data is recorded based on the output of a device called awlr (automatic water level recorder) through the jagir river floodgates in surabaya. the data used is from january 2020 to december 2022. there are guidelines for determining the status of the green level if the water debit value is more than or equal to 180 m3/second and the yellow level if the water debit value is more than or equal to 200 m3/second. the level was red if the water debit value was more than or equal to 220m3/second. the data used is from january 2020 to december 2022. the sample rainfall dataset is listed in table 2. table 2. water discharge dataset date water discharge 01/01/2020 44.04 02/01/2020 26.18 03/01/2020 19.63 … … 30/12/2022 117.8 31/12/2022 125.4 preprocessing the number of datasets collected from january 2020 to december 2022 is 1,096 data consisting of date, rainfall, and water discharge variables. the data will then go through an analysis process before making predictions by selecting data and checking the attributes of each variable column with the potential to have anomalous attributes and columns with the potential to have no value (null). to be useful for data mining, the databases must undergo preprocessing in the form of data cleaning and data transformation(larose, 2005). data splitting preprocessing will then be divided into two parts, with a ratio of 70% as training data and 30% as testing data. this split data process aims to train past data to predict future data. based on the data sharing ratio above, out of 1074 data, 756 training data were obtained and 318 testing data. the datasharing process in python can be seen more clearly in figure 3. figure 3. splitting data lstm modelling the modelling process steps are: 1) normalization. scaling is applied for the data in a certain interval of 0 and 1. so it is said that the value on the dataset is normalized into ≤1 using the mimmaxscaler function as figure 4, and 5 follows. figure 4. normalization for rainfall variable figure 5. normalization for water discharge variable 2) activation. this study uses relu (rectified linear unit) to activate the output. the output of p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.558 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 444 the activation function is expressed as 0 (zero) if the input is negative. however, if the input is positive, the output will equal the input value of the activation function (szandała, 2020). the activation process for each variable is shown by the codes below: model = sequential() model.add(convlstm2d(filters=64, kernel_size=(1,1), activation='relu', input_shape=(1, 1, 1, seq_size))) model.add(flatten()) model.add(dense(32)) model.add(dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') model.summary() note that the adam optimizer is also used to optimize, to update the weighted network based on training data iteratively. the codes yield: figure 6. activation result input epoch. epoch is defined from a certain number of iterations (n) during several basic variable calculation processes, including addition, multiplication, and other mathematical functions regards to lstm until it is completed (reach the defined epoch). several epochs, namely 10, 50, 75, 100, and 150, were run in this study. the variations will also occur for each n (50, 75, 100 and 150) provided as input. figure 6. the result is different for each ten iterations. 3) denormalization. this is a step in which a scaler returns the result to a standard form.inverse function: 4) data visualization is the last step in which the model is visualized into a plot diagram in which each variable is presented. note that the visualization may vary for each epoch and variable. a. rainfall data visualization calculations using the adam optimization model on the rainfall variable with a variation of 10 epoch values are presented in the graphical visualization in figure 7. figure 7. adam epoch rainfall graph epoch 10 b. water discharge data visualization calculations using the adam optimization model on the water discharge variable with a variation of 75 epoch values are presented in the graphical visualization in figure 8. figure 8. adam epoch water discharge graph epoch 75 performance evaluation based on the calculation of the epoch variations, an evaluation will be carried out using the mean absolute error (mae) and root mean square error ( rmse). jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.558 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 445 the formula for each of them is as follows: mae(𝑦,𝑦 ^ ) = ∑ |𝑁−1𝑖=0 𝑦𝑖−𝑦 ^ 𝑖| 𝑁 ................................................. (1) rmse(𝑦,𝑦 ^ ) = √∑ (𝑦𝑖−𝑦 ^ 𝑖) 2 𝑁−1 𝑖=0 𝑁 .................................... (2) the documentation on both training data and testing data for the rainfall variable results of the mean absolute error (mae) and the root mean square error (rmse) for each epoch is presented in table 3 below: table 3. rainfall evaluation results no epoch training testing mae rmse mae rmse 1 10 5.73 9.40 5.95 11.12 2 50 7.31 11.72 6.05 10.62 3 75 0.054 0.099 0.041 0.091 4 100 7.73 10.77 7.65 11.10 5 150 6.43 9.56 7.00 12.11 table 3 shows the acceptable value of performance evaluation results for the rainfall variable on epoch = 75 for both training, which scored 0.054 for mae, 0.099 for rmse, and testing data, 0.041 for mae and 0.091 for rmse. in the same way as the previous variable, the following documentation on both training data and testing data for the water discharge variable results of the mean absolute error (mae) and the root mean square error (rmse) for each epoch is presented: table 4. water discharge evaluation results no epoch training testing mae rmse mae rmse 1 10 15.96 25.13 13.95 22.06 2 50 13,11 22.85 11.91 21.33 3 75 13.93 21.53 12.87 21.08 4 100 12.43 21.82 11.37 21.08 5 150 11.10 18.61 12.07 21.28 the result shows that the minor performance and water discharge evaluation scores differ for training and testing data. training data results mae = 11.10 and rmse = 18.61 in epoch (n) = 150. testing data results mae = 11.37 and rmse = 21.08 in epoch (n) = 100. this result shows two anomalies: a) for both training and testing data results, a high value of mae and rmse, which are far from 0 (zero); b) the lowest score of both mae and rmse in training and testing data lies on different epochs. training data is on epoch (n) = 150, while testing data is on epoch (n) = 100. the dataset shows no zero value for the water discharge column (which means it is impossible to find the river dry). conclusions and suggestions conclusion implementing the lstm method on the variables of rainfall and water discharge in certain epochs variations result in calculations of future data projections with certain conditions. based on the research results, it can be concluded that the rainfall variable reached an acceptable accuracy on epoch 75 with a mean absolute error (mae) of 0.054 and the root mean square error (rmse) of 0.099 for the training data. also, it has acceptable accuracy on epoch 75 with a mean absolute error (mae) of 0.041 and the root mean square error (rmse) of 0.091 for the testing data. the water discharge variable had anomalies, as the minor score was too far from the acceptable training and testing data score. training data results mae = 11.10 and rmse = 18.61 in epoch (n) = 150, while testing data results mae = 11.37 and rmse = 21.08 in epoch (n) 100. future work and recommendation since this study only compares two variables, namely rainfall and water discharge, it is recommended for further research to use more variables or other neural network methods (algorithms) and a comparative analysis process using several methods at once so that it can be seen that the performance results can be better than this study. the anomalies found in water discharge performance evaluation should be verified from another perspective as several reasons may cause the high score on mae and rmse. it is the modelling scheme that might not support non-zero datasets. references asdak, c. (2023). hidrologi dan pengelolaan daerah aliran sungai. yogjakarta: ugm press. bouktif, s., fiaz, a., ouni, a., & serhani, m. a. (2018). optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches. energies, 11(7). https://doi.org/10.3390/en11071636 devi, n. m. m. c., bayupati, i. p. a., & wirdiani, n. k. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.558 jurnal riset informatika vol. 5, no. 3. june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 446 a. (2022). prediksi curah hujan dasarian dengan metode vanilla rnn dan lstm untuk menentukan awal musim hujan dan kemarau. jepin, 8(3), 405–411. retrieved from https://jurnal.untan.ac.id/index.php/jepin/a rticle/view/56606 elizabeth michael, n., mishra, m., hasan, s., & aldurra, a. (2022). short-term solar power predicting model based on multi-step cnn stacked lstm technique. energies, 15(6). https://doi.org/10.3390/en15062150 hochreiter, s., & schmidhuber, j. (1997). long short-term memory. neural computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 kardhana, h., valerian, j. r., rohmat, f. i. w., & kusuma, m. s. b. (2022). improving jakarta’s katulampa barrage extreme water level prediction using satellite-based long shortterm memory (lstm) neural networks. water, 14(9), 1–17. https://doi.org/10.3390/w14091469 kouadri, s., pande, c. b., panneerselvam, b., moharir, k. n., & elbeltagi., a. (2022). prediction of irrigation groundwater quality parameters using ann, lstm, and mlr models. environmental science and pollution research, 29, 21067–21091. https://doi.org/10.1007/s11356-02117084-3 larose, d. t. (2005). discovering knowledge in data: an introduction to data mining. discovering knowledge in data: an introduction to data mining, 2nd ed., pp. 1– 222. new jersey: john willey & sons inc. https://doi.org/10.1002/0471687545 navlan, a., fandango, a., & idris, i. (2021). python data analysis: perform data collection, data processing, wrangling, visualization, and model building using python. birmingham, united kingdom: packt publishing ltd. noymanee, j., & theeramunkong, t. (2019). flood forecasting with machine learning technique on hydrological modeling. procedia computer science, 156, 377–386. https://doi.org/10.1016/j.procs.2019.08.214 rizki, m., basuki, s., & azhar, y. (2020). implementasi deep learning menggunakan arsitektur long short term memory(lstm) untuk prediksi curah hujan kota malang. jurnal repositor, 2(3), 331–338. https://doi.org/10.22219/repositor.v2i3.470 sampurno, j., vallaeys, v., ardianto, r., & hanert, e. (2022). integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta. nonlinear processes in geophysics, 29(3), 301–315. https://doi.org/10.5194/npg-29301-2022 shetty, s. a., padmashree, t., sagar, b. m., & cauvery, n. k. (2021). performance analysis on machine learning algorithms with deep learning model for crop yield prediction. data intelligence and cognitive informatics, 739– 750. springer, singapore. https://doi.org/10.1007/978-981-15-85302_58 sudriani, y., ridwansyah, i., & a rustini, h. (2019). long short term memory (lstm) recurrent neural network (rnn) for discharge level prediction and forecast in cimandiri river, indonesia. iop conference series: earth and environmental science, 299(1). https://doi.org/10.1088/17551315/299/1/012037 supatmi, s., hou, r., & sumitra, i. d. (2019). study of hybrid neurofuzzy inference system for forecasting flood event vulnerability in indonesia. computational intelligence and neuroscience, 2019, 1–12. https://doi.org/10.1155/2019/6203510 szandała, t. (2020). review and comparison of commonly used activation functions for deep neural networks. in bio-inspired neurocomputing (pp. 203–224). springer, singapore. https://doi.org/10.1007/978-98115-5495-7_11 wang, w., & lu, y. (2018). analysis of the mean absolute error (mae) and the root mean square error (rmse) in assessing rounding model. iop conference series: materials science and engineering, 324(1). https://doi.org/10.1088/1757899x/324/1/012049 jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.469 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 481 classification of batu bara songket using gray-level co-occurrence matrix and support vector machine sriani-1, muhammad siddik hasibuan-2, rizkika ananda-3 department of computer science, faculty of science and technology universitas islam negeri (uin) sumatera utara medan, indonesia https://ilkomp.uinsu.ac.id/ sriani@uinsu.ac.id, muhammadsiddik@uinsu.ac.id, rizkika.ananda@uinsu.ac.id (*) corresponding author abstract songket is a traditional woven cloth from the malay and minangkabau tribes. songket can also be classified from the brocade woven family and woven with gold or silver thread. songket cloth's beauty is the indonesian people's wealth and preservation. batu bara regency is one of indonesia's regions with several songket motifs characteristics. public knowledge of batu bara songket motifs is still minimal, and the differences between one motif and another are still unknown. this research provides information about the variety of songket fabrics by classifying six types of batu bara songket motifs, namely the bunga tanjung motif, pucuk betikam motif, pucuk cempaka motif, pucuk pandan motif, tampuk manggis motif and tolab berantai motif based on the extraction of the gray level texture feature. the co-occurrence matrix includes four parameters: contrast, correlation, energy, and homogeneity, as well as a classification method with a support vector machine. the feature extraction values process as input for classification using a support vector machine. the highest accuracy achieved in this study was 57%, using 60 training data and 30 test data. keywords: classification; batu bara songket motif; gray level co-occurrence matri; support vector machine abstrak songket merupakan jenis kain tenunan tradisional yang berasal dari suku melayu dan minangkabau. songket juga dapat digolongkan dari keluarga tenunan brokat dan dapat ditenun dengan benang emas dan perak. keindahan kain songket merupakan kekayaan masyarakat indonesia yang harus terus dilestarikan. kabupaten batu bara merupakan salah satu wilayah di indonesia yang memiliki beberapa ciri khas motif kain songket. pengetahuan masyarakat akan motif-motif songket batu bara masih minim dan perbedaan antara motif yang satu dengan motif yang lain masih belum diketahui. penelitian ini dibuat dengan tujuan untuk memberikan informasi tentang ragam kain songket dengan mengklasifikasi enam jenis motif songket batu bara yakni motif bunga tanjung, motif pucuk betikam, motif pucuk cempaka, motif pucuk pandan, motif tampuk manggis dan motif tolab berantai berdasarkan ekstraksi ciri tekstur grey level co-occurrence matrix meliputi empat parameter yakni contrast, correlation, energy, dan homogeneity, serta metode klasifikasi dengan support vector machine. nilai ektraksi ciri tersebut selanjutnya akan diproses menjadi masukan untuk klasifikasi menggunakan support vector machine. akurasi tertinggi yang dicapai dalam penelitian ini sebesar 57 %, dengan menggunakan 60 data latih dan 30 data uji. kata kunci: klasifikasi; motif songket batu bara; grey level co-occurrence; support vector machine introduction indonesia is a country that is rich in unique and distinctive cultural heritage diversity. every nation or tribe has a culture (tahrir et al., 2017). a diverse cultural heritage can become essential for indonesia, and its preservation is mandatory. one manifestation of the results of this cultural process is the creation of works of art that all indonesian ethnic groups own. indonesia's diverse traditional fabrics result from cultural processes, geographical differences, flora, fauna, lifestyle differences, and livelihoods producing various traditional fabrics. indonesian traditional fabrics are in great demand p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.469 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 482 in national and international markets (johan wahyudi & ihdahubbi maulida, 2019). one of the ethnic cultures in indonesia is malay, especially in north sumatra (rigitta, 2021). songket is a traditional malay and minangkabau woven fabric in indonesia, malaysia, and brunei (nurhalimah et al., 2020). songket belongs to the brocade woven family. weaving songket cloth by hand using gold and silver threads is generally worn on formal occasions. the beauty of songket can attract domestic and foreign tourists who like indonesian traditional cloth art (salamah & kusumanto, 2017). batu bara regency has a type of songket with its characteristics (abdiansyah, 2018), public knowledge of the batu bara songket motifs is still minimal, and the difference between one motif and another is still unknown. the lack of automated data collection is the cause of this, and no application can analyze the types of batu bara songket motifs, which can help the community to provide knowledge to the public about the batu bara songket motif and is no longer wrong in recognizing the batu bara songket motif. several studies regarding the classification of songket motifs based on texture have several times in previous studies, such as the feature extraction study using the grey-level co-occurrence matrix (glcm) method. the gabor filter for image classification of pekalongan batik (surya et al., 2017), other studies on the classification of songket cloth in lombok use glcm and moment invariant as well as linear discriminant analysis (lda) (nurhalimah, 2020), feature extraction of songket images based on texture using the grey level cooccurrence matrix (glcm) method (amalia, 2018), application of a speeded-up robust feature on the random forest for classification of palembang songket motifs (yohannes et al., 2020). this study has advantages over previous research, namely using grounded theory through qualitative analysis using songket cloth objects that are observed and interacted with based on the participants' views. this research was made to provide information about the various types of coal songket cloth that previous researchers have not studied by classifying six types of batu bara songket motifs, namely six types of batu bara songket motifs namely bunga tanjung motif, pucuk betikam motif, pucuk cempaka motif, pucuk pandan motif, tampuk manggis motif, and tolab berantai motif. gray level co-occurrence matrix (glcm) method is a method for extracting image textures. texture extraction to retrieve essential information from an image before it is used for the following process, using feature extraction methods considered optimal in research (ramadhani & bethaningtyas dyah, 2018). the gray level cooccurrence matrix (glcm) method is an adequate texture descriptor and has better accuracy and computation time than other texture extraction methods (widodo et al., 2018). the support vector machine (svm) method is a machine learning technique. they learn by using a pair of input and output data as the desired target. it is called supervised learning, and the advantages of the support vector machine (svm) method are in recognizing and classifying an object (anggraini, 2017). support vector machine (svm) is a classification method with high generalizability and input space dimensions (neneng et al., 2016). research methods types of research the author's research is a type of grounded theory through the analysis of qualitative and quantitative methods. time and place of research this research was conducted precisely at the "yusra" craftsmen of batu bara woven cloth. padang genting village no. 6 district talawi and the place for system design in the computer laboratory of the faculty of science and technology, state islamic university of north sumatra. research time in november 2021 to march 2022. research target / subject the research target in this study is the batu bara community, who do not know much about the types of batu bara songket motifs. procedure the process carried out to research the classification of batu bara songket motifs based on texture with the gray level co-occurrence matrix (glcm) and support vector machine (svm) methods, namely through several stages of designing the analytical method. jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.469 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 483 songket motif rgb image da ta shar ing training data test data greysca le greysca le glcm feature extraction glcm feature extraction classification result analysis svm learnin g outcomes svm learnin g hyperplane search training figure 1. songket motif classification system planning diagram figure 1 shows that the diagram uses input as an rgb songket motif image. the image is divided into two parts: the training and test data images. then the training and test data images are changed from rgb to grayscale. after that, the glcm feature extraction is sought, which consists of contrast, entropy, energy, and homogeneity features. for training data, multiclass svm learning is used in the hyperplane separator of the six types of songket motifs. the last stage is to test the system on the test data images and analyze the results of image classification on the hyperplane function that has been obtained. the steps taken in the glcm calculation are as follows the formation of the initial glcm matrix from pairs of two parallel pixels corresponding to the directions 0°, 45°, 90°, and 135°. the following form a symmetrical matrix by adding the initial matrix glcm with its transpose values, normalizing the glcm matrix by dividing each matrix element by the number of pixel pairs, and then feature extraction, namely contrast, homogeneity, energy, correlation (widodo et al., 2018). contrast = ∑ ∑ (𝑖1 − 𝑖2) 2𝑝(𝑖1, 𝑖2)𝑖2𝑖1 ................................ (1) homogeneity = ∑ ∑ 𝑝(𝑖1,𝑖2) 1+|𝑖1−𝑖2| 𝑖2𝑖1 ..................................................... (2) energy = ∑ ∑ 𝑝2(𝑖1, 𝑖2)𝑖2𝑖1 ....................................... (3) correlation = ∑ ∑ (𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑝(𝑖,𝑗) 𝜎𝑖 𝜎𝑗𝑗𝑖 ......................................... (4) in the process of classifying songket motifs using svm, in research, in this case, the svm multiclass approach that it uses is a classification method “one against all.” in this method, k binary svm models are built, with k being multiple classes. each classification of the model it wants to use uses total data to find solutions to problems. svm classifies two classes between one class and others seen as one class. the class for a data sample is directly determined by this method. when the data sample is not included in the group containing the set class but in a specific class, then that class is a class from the sample data in question (pitoyo, 2020). table 1. svm classification with one-agains-all method yi = 1 yi=-1 kernel hypothesis class 1 not class 1 f1(x)=(w1)x+b1 class 2 not class 2 f2(x)=(w2)x+b2 .................................................................................................. (5) table 1 shows test results on test data that produce a decision function with the maximum value given a value of y_i=1 (true), while other decision functions give a value of y_i=-1 (false). accuracy : accuracy = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 × 100 % ................. (6) data, instruments, and data collection techniques songket motif image data collection is divided into training and test data. the training data consists of 60 samples of songket motif image data, and the test data consists of 30 samples of songket motifs. the total sample data is 90 images of the songket motif. the data collection technique used in this study is : 1. interview figure 2. is an interview technique that was conducted by seeking information and knowledge sourced from experts engaged in fields related to this research, namely with mrs. hj. ratna, one of the craftsmen who also opened a songket business in the batubara district, so the author gets relevant data references and knows the names of the batu bara songket motifs. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.469 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 484 figure 2. interview with mrs. hj. ratna 2. observation the technique is an observation of data collection techniques by observing directly an object to seek information and knowledge related to research. image motif bunga tanjung pucuk betikam pucuk cempaka image motif pucuk pandan tampuk manggis tolab berantai figure 3. sample image of batu bara songket in figure 3. it is an example of a sample of batu bara songket images, where each songket sample shown in figure 3. has 30 image data. the six types of songket motifs are tanjung flowers, betikam shoots, cempaka shoots, pandan shoots, tampuk manggis, and tolab berantai. 3. library studies, namely in this study also used literature studies taken from scientific articles, books, and others. data analysis technique this analysis is needed to determine what kind of software will be produced. the needs analysis in this study is as follows: start rgb image input rgb image input image transformation extraction value extraction metho d glcm end figure 4. glcm feature extraction flowchart from the flowchart figure 4. the above explains the stages in the glcm feature extraction method, namely as follows : a. input the rgb image of the batu bara songket motif. b. then the image is changed from rgb to grayscale. c. after that, look for the glcm feature extraction, which consists of contrast, homogeneity, energy, and entropy features. d. generates image extraction values from the glcm method. start extraction value data normalization results data normalization results of determining output value y determination of output value y end determination of w eight (w) and bias (b) values result values ​​(w) and (b) finding h yperplane as a classification function classification results figure 5. svm classification method flowchart jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.469 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 485 from the flowchart figure 5. above explains the stages in the support vector machine (svm) classification method, namely as follows: a. after getting the value from feature extraction from the glcm method, input the glcm feature data. b. data normalization was using the equation formula attached to the svm theory. c. after normalization, can pay, pay output value (y). d. then the value of weight (w) and bias (b). e. after all, can be seen, the system looks for hyperplane as a decision function. f. so the classification uses the svm method. output in the batu bara songket motif classification system based on texture using the gray level co-occurrence matrix (glcm) method and support vector machine (svm), namely the results of the classification of songket motif types through a feature extraction process using the gray level co-occurrence method matrix (glcm) and the classification process uses the support vector machine (svm) method. results and discussion testing based on the existing image samples, a testing process on these images. at the testing stage, the digital image is in (*.jpg) format with a size of 512x512 pixels. the system testing process using the matlab application see in the process below: 1. application initial screen figure 6. initial display form figure 6. is the initial form, which is the main page for running the program to be worked on. 2. image input display figure 7. image input display form figure 7. in this form, the image input is by pressing the image input button, and then the system will direct it to select the data to be tested, and then the system will automatically display the inputted image and the image file name. 3. grayscale display figure 8. rgb display form to grayscale in figure 8. this form will be processed using a grayscale. by pressing the grayscale button, the system will process the rgb file to grayscale and display the resulting grayscale image on axes2. 4. gray level co-occurrence matrix (glcm) feature extraction display figure 9. gray level co-occurrence matrix feature extract display form figure 9. this form will perform feature extraction on the image by pressing the feature extract button. the table will display the feature extraction value of the gray level co-occurrence matrix (glcm). p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.469 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 486 5. classification result display figure 10. image classification results display form of batu bara songket motifs example 10 the supplied image's classification results show on this form's display. clicking the classification button will cause the system to display the supplied image's classification findings automatically. system test results based on test data on the image of the type of songket batu bara motif that has been, if there is, in this case, a testing process will be carried out on the motif image songket batu bara with format (*.jpg). in the process of testing the motif classification songket below, there are 30 test data with 5 data from each type of songket motif, 5 test data for bunga tanjung, 5 test data for pucuk betikam, 5 test data for pucuk cempaka, 5 test data for pucuk pandan, 5 test data for tampuk manggis, and 5 test data for tolab berantai. from the result testing of as many as 30 test data. the following are the results of system testing of each image of the songket motif tested to obtain a classification of the type of coal songket motif, see table 2 below: table 2. data testing no. decision function svm multiclass one against all score yi types of batu bara songket classification result information 1. f1(x)=sign(w1.x1+ w2.x2+ w3.x3+ w4.x4+b) 1 bunga tanjung 'motif bunga tanjung' true 2. f1(x)=sign(w1.x1+ w2.x2+ w3.x3+ w4.x4+b) 1 bunga tanjung 'motif bunga tanjung' true 3. f1(x)=sign(w1.x1+ w2.x2+ w3.x3+ w4.x4+b) 1 bunga tanjung 'motif bunga tanjung' true 4. f1(x)=sign(w1.x1+ w2.x2+ w3.x3+ w4.x4+b) 1 bunga tanjung 'motif bunga tanjung' true 5. f1(x)=sign(w1.x1+ w2.x2+ w3.x3+ w4.x4+b) 1 bunga tanjung 'motif bunga tanjung' true 6. f2(x)=sign(w1.x1+ w2.x2+ w3.x3+ w4.x4+b) -1 pucuk betikam 'motif pucuk pandan' false 7. f2(x)=sign(w1.x1+ w2.x2+ w3.x3+ w4.x4+b) 1 pucuk betikam 'motif pucuk betikam' true 8. f2(x)=sign(w1.x1+ w2.x2+ w3.x3+ w4.x4+b) 1 pucuk betikam 'motif pucuk betikam' true …. …………… …. ……….. ……… 30. f6(x)=sign(w1.x1+ w2.x2+ w3.x3+ w4.x4+b) 1 tolab berantai 'motif tolab berantai' true jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.469 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 487 table 2 shows 30 test data with 5 data from each type of songket motif. each test data has a one against all svm decision functions according to each class. entering the yi value shows the classification results and the types of songket motifs. if the yi value is one, then the classification results are declared correct by the type of songket motif being tested. conversely, if the yi value is -1, then the classification results are declared wrong and do not produce output that matches the type of songket motif in table 3. table 3. classification test results no image file classification result average extraction result 1. bunga tanjung 01.jpg ‘motif bunga tanjung’ contrast = 0.055182 correlation = 0.89292 energy = 0.80746 homogeneity = 0.97932 2. bunga tanjung 02.jpg ‘motif bunga tanjung’ contrast = 0.054825 correlation = 0.90229 energy = 0.89758 homogeneity = 0.98303 3. bunga tanjung 03.jpg 'motif bunga tanjung' contrast = 0.044537 correlation = 0.9417 energy = 0.79726 homogeneity = 0.98128 4. bunga tanjung 04.jpg 'motif bunga tanjung' contrast = 0.081439 correlation = 0.81279 energy = 0.91401 homogeneity = 0.98792 5. bunga tanjung 05.jpg 'motif bunga tanjung' contrast = 0.029251 correlation = 0.91165 energy = 0.76756 homogeneity = 0.98585 6. pucuk betikam 01 .jpg 'motif pucuk pandan' contrast = 0.59997 correlation = 0.82928 energy = 0.091888 homogeneity = 0.77182 7. pucuk betikam 02.jpg 'motif pucuk betikam' contrast = 0.45013 correlation = 0.75828 energy = 0.14618 homogeneity = 0.81243 8. pucuk betikam 03.jpg 'motif pucuk betikam' contrast = 1.4175 correlation = 0.67485 energy = 0.097793 homogeneity = 0.70073 9. pucuk betikam 04.jpg 'motif pucuk pandan' contrast = 0.4908 correlation = 0.91867 energy = 0.10273 homogeneity = 0.80891 10. pucuk betikam 05.jpg 'motif pucuk pandan' contrast = 0.40894 correlation = 0.85346 energy = 0.11702 homogeneity = 0.82458 11. pucuk cempaka 01.jpg 'motif pucuk pandan' contrast = 0.27883 correlation = 0.92845 energy = 0.12754 homogeneity = 0.86776 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.469 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 488 continue table 3. classification test results no image file classification result average extraction result 12. pucuk cempaka 02.jpg 'motif pucuk pandan' contrast = 0.53642 correlation = 0.92068 energy = 0.070588 homogeneity = 0.79759 13. pucuk cempaka 03.jpg 'motif pucuk pandan' contrast = 0.47518 correlation = 0.93722 energy = 0.087429 homogeneity = 0.81312 14. pucuk cempaka 04.jpg 'motif pucuk betikam' contrast = 2.06 correlation = 0.78755 energy = 0.060153 homogeneity = 0.64077 15. pucuk cempaka 05.jpg 'motif pucuk pandan' contrast = 0.26947 correlation = 0.9625 energy = 0.13427 homogeneity = 0.89281 16. pucuk pandan 01.jpg 'motif pucuk pandan' contrast = 0.20786 correlation = 0.98435 energy = 0.20333 homogeneity = 0.91465 17. pucuk pandan 02.jpg 'motif tolab berantai' contrast = 0.7327 correlation = 0.9424 energy = 0.32664 homogeneity = 0.85992 18. pucuk pandan 03.jpg 'motif pucuk pandan' contrast = 0.2666 correlation = 0.97432 energy = 0.30293 homogeneity = 0.90128 19. pucuk pandan 04.jpg 'motif pucuk pandan' contrast = 0.27675 correlation = 0.97278 energy = 0.19923 homogeneity = 0.89126 20. pucuk pandan 05.jpg 'motif pucuk pandan' contrast = 0.21481 correlation = 0.98068 energy = 0.25459 homogeneity = 0.91031 21. tampuk manggis 01.jpg 'motif tampuk manggis' contrast = 0.52105 correlation = 0.94653 energy = 0.14224 homogeneity = 0.85553 22. tampuk manggis 02.jpg 'motif pucuk pandan' contrast = 0.29603 correlation = 0.95872 energy = 0.13533 homogeneity = 0.88979 23. tampuk manggis 03.jpg 'motif pucuk pandan' contrast = 0.56491 correlation = 0.9307 energy = 0.28442 homogeneity = 0.87347 24. tampuk manggis 04.jpg 'motif pucuk pandan' contrast = 0.81957 correlation = 0.88644 energy = 0.085617 homogeneity = 0.7813 jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.469 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 489 continue table 3. classification test results table 3 shows 30 test data with 5 data from each type of songket motif. there is a songket image file with the file name according to the name of the songket motif. the classification results are found in the system according to the class of songket motifs tested. the system's average classification results are obtained according to the class of songket motifs tested. from the test results of all 30 test data, there are 13 types of songket motifs that are wrong in the placement of songket motifs according to their class, so from the results of the classification of songket motifs, the accuracy results are obtained with a value of 57% with a description of 17 test data that are correct for class placement and 13 incorrect test data in class placement. conclusions and suggestions conclusion based on the results of tests carried out by classifying the batu bara songket motif based on the image of the songket motif using the gray level co-occurrence matrix (glcm) and support vector machine (svm) methods, the following conclusions were drawn: in the manual calculation of the support vector machine (svm) classification using the one againstall decision function equation with class = sign(f(x)). the function sign is used to check the results of the calculations performed on the test data. the test results on the test data produce the decision with the maximum value given a value of y_i=1, while the other decision functions are given a value of y_i=-1. from the results of testing all test data, which are 30 test data, from the results of the classification of the type of songket motif, the accuracy results with a value of 57% with a description of 17 test data that is correct in class placement and 13 test data are wrong in class placement. extraction of gray level co-occurrence matrix (glcm) features of batu bara songket motif images used to classify types of batu bara songket motifs. the distance of neighboring pixels (distance) is one and in the direction of 0°, 45°, 90°, and 135°. the resulting feature of the gray level cooccurrence matrix (glcm) represents the texture value of the songket motif image. so that these values are used to classify the types of batu bara no image file classification result average extraction result 25. tampuk manggis 05.jpg 'motif pucuk cempaka' contrast = 1.7677 correlation = 0.86206 energy = 0.064323 homogeneity = 0.69035 26. tolab berantai 01.jpg 'motif tolab berantai' contrast = 0.33832 correlation = 0.96599 energy = 0.46026 homogeneity = 0.90777 27. tolab berantai 02.jpg 'motif tolab berantai' contrast = 0.82393 correlation = 0.88715 energy = 0.46915 homogeneity = 0.86199 28. tolab berantai 03.jpg 'motif tolab berantai' contrast = 0.62157 correlation = 0.88225 energy = 0.46947 homogeneity = 0.90785 29. tolab berantai 04.jpg 'motif tolab berantai' contrast = 0.24126 correlation = 0.96976 energy = 0.47912 homogeneity = 0.92227 30. tolab berantai 05.jpg 'motif tolab berantai' contrast = 0.37501 correlation = 0.97167 energy = 0.46261 homogeneity = 0.90785 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.469 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 490 songket motifs using the support vector machine (svm) method, conclusions should be in the form of paragraphs that answer the research objectives. it tells how the researcher’s work can advance current knowledge but does not seem to discuss it. suggestion the addition of the type of songket motif studied is universal. the use of different methods as a comparison of this study. it expanded using other feature extraction methods, such as color or shape extraction. image capture of songket motifs is idealized in terms of lighting. moreover, it can be developed into a mobile-based application or website so the wider community can use it. references abdiansyah, m. (2018). peran dinas pendidikan dan kebudayaan dalam mempromosikan budaya kain tenun songket di desa padang genting kabupaten batubara. 82. amalia, i. (2018). ekstraksi fitur citra songket berdasarkan tekstur menggunakan metode gray level co-occurrence matrix (glcm). jurnal infomedia, 3(2), 64–68. https://doi.org/10.30811/jim.v3i2.715 anggraini, r. (2017). klasifikasi jenis kualitas keju dengan menggunakan metode gray level cooccurrence matrix (glcm) dan support vector machine (svm) pada citra digital. eproceeding of engineering, 4(2), 2035–2042. johan wahyudi, & ihdahubbi maulida. (2019). pengenalan pola citra kain tradisional menggunakan glcm dan knn. jurnal teknologi informasi universitas lambung mangkurat (jtiulm), 4(2), 43–48. https://doi.org/10.20527/jtiulm.v4i2.37 neneng, n., adi, k., & isnanto, r. (2016). support vector machine untuk klasifikasi citra jenis daging berdasarkan tekstur menggunakan ekstraksi ciri gray level co-occurrence matrices (glcm). jurnal sistem informasi bisnis, 6(1), 1. https://doi.org/10.21456/vol6iss1pp1-10 nurhalimah. (2020). klasifikasi kain songket lombok menggunakan glcm dan moment invariant serta linear discriminant analysis (lda). nurhalimah, n., suta wijaya, i. g. p., & bimantoro, f. (2020). klasifikasi kain songket lombok berdasarkan fitur glcm dan moment invariant dengan teknik pengklasifikasian linear discriminant analysis (lda). jurnal teknologi informasi, komputer, dan aplikasinya (jtika ), 2(2), 173–183. https://doi.org/10.29303/jtika.v2i2.98 pitoyo, h. a. (2020). implementasi metode support vector. ramadhani, m., & bethaningtyas dyah, h. k. (2018). klasifikasi jenis jerawat berdasarkan tekstur dengan menggunakan metode glcm acne classification based on texture using glcm method. e-proceeding of engineering, 5(1), 870–876. rigitta, p. (2021). makna tradisi lisan dalam motif songket melayu langkat. desember, 14(2), 1979–5408. salamah, i.-, & kusumanto, r. (2017). faktor-faktor pemanfaatan teknologi informasi ukm kain tenun songket palembang. jurnal resti (rekayasa sistem dan teknologi informasi), 1(3), 177–182. https://doi.org/10.29207/resti.v1i3.71 surya, r. a., fadlil, a., & yudhana, a. (2017). ekstraksi ciri metode gray level cooccurrence matrix ( glcm ) dan filter gabor untuk klasifikasi citra batik pekalongan. jurnal informatika:jurnal pengembangan it (jpit , vol. 02, no. 02, juli 2017, 02(02), 23–26. tahrir, r., rohidi, t. r. &, & iswidayati, s. (2017). makna simbolis dan fungsi tenun songket bermotif naga pada masyaratakat melayu di palembang sumatera selatan. catharsis: journal of arts education, 6(1), 9–18. widodo, r., widodo, a. w., & supriyanto, a. (2018). pemanfaatan ciri gray level co-occurrence matrix (glcm) citra buah jeruk keprok (citrus reticulata blanco) untuk klasifikasi mutu. jurnal pengembangan teknologi informasi dan ilmu komputer, 2(11), 5769– 5776. https://j-ptiik.ub.ac.id/index.php/jptiik/article/view/3420 yohannes, y., devella, s., & pandrean, a. h. (2020). penerapan speeded-up robust feature pada random forest untuk klasifikasi motif songket palembang. jurnal teknik informatika dan sistem informasi, 5(3), 360– 369. https://doi.org/10.28932/jutisi.v5i3.1978 jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 17 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. analisis kepuasan pelanggan terhadap kualitas pelayanan jasa logistik pt. cipta krida bahari maria sitorus sistem informasi stmik nusa mandiri jakarta maria.sitorus8@gmail.com abstract the number of ckb logistics customers is 2133 in the year. this company sometimes can not be served perfectly, such as the relative consumers who feel that the quality of service provided by ckb logistics does not match the price paid (junedi, 2014. some consumers experience shipments that are sent often arrive not on time. purpose of analysis review this is to identify the level of ckb logistics service quality for customer satisfaction.testing the dimensions of service quality that affect customer satisfaction.determining the dimensions of service quality that are more dominant in influencing customer satisfaction.the results obtained are known that the csi value is based on the importance of 0.86 where the customer is "very satisfied "with ckb service and csi value based on the performance level of 0.74, which means customers feel" satisfied "with the service performance carried out by the ckb. keywords: logistics services, important performance analysis methods, cronbach's apha method. abstrak jumlah pelanggan ckb logistics sebanyak 2133 pada tahun. hal ini perusahaan terkadang tidak dapat terlayani dengan sempurna, seperti relatif konsumen yang merasa bahwa kualitas pelayanan yang diberikan oleh ckb logistics tidak sesuai dengan harga yang dibayarkan (junedi, 2014. sebagian konsumen mengalami barang kiriman yang dikirimkan sering tiba tidak tepat waktu. tujuan kajian analisis ini untuk mengidentifikasi tingkat kualitas pelayanan ckb logistics untuk kepuasan pelanggan. menguji dimensi kualitas pelayanan yang mempengaruhi kepuasan pelanggan. menentukan dimensi kualitas pelayanan yang lebih dominan dalam mempengaruhi kepuasan pelanggan. hasil yang didapat diketahui bahwa nilai csi berdasarkan tingkat kepentingan sebesar 0.86 dimana pelanggan "sangat puas" dengan pelayanan ckb dan nilai csi berdasarkan tingkat kinerja sebesar 0.74 yang berarti pelanggan merasa “puas” terhadap kinerja pelayanan yang dilakukan oleh ckb. kata kunci: jasa logistik, metode important performance analysis, metode apha cronbach. pendahuluan masyarakat yang bertempat tinggal di kota-kota besar, kebutuhan akan jasa akan semakin meningkat, seperti kebutuhan akan sarana angkutan, fast food café, dan sarana tempat hiburan akhir pekan. hal ini sejalan dengan dalil ekonomi, bahwa trend kebutuhan terhadap ragam dan mutu jasa adalah searah dengan perkembangan kualitas hidup dan pendapatan masyarakat. adanya kecenderungan ini maka masyarakat akan lebih menuntut pelayanan yang lebih baik (supriyanto & soesanto, 2012) dan sesuai dengan kebutuhannya, sehingga mereka lebih teliti dan kritis (wijayanti & seminari, 2013)dalam memilih segala sesuatu yang dapat digunakan untuk memenuhi kebutuhannya. sebagian besar sektor publik menyadari pentingnya kepuasan konsumen dan mempunyai batasan anggaran untuk pelayanan konsumen. meskipun terdapat kendala, pemimpin dalam organisasi sektor publik harus secara terusmenerus meningkatkan kualitas pelayanan. hal ini juga dilakukan oleh pt. cipta krida bahari (ckb) sebagai salah satu penyedia jasa logistik terpadu yang berfokus pada jasa pengiriman barang. faktor objektifnya adalah sejumlah keunggulan kompetentif yang dimiliki oleh ckb logistics, antara lain: layanan logistik terpadu, proyek logistik, manajemen gudang, manajemen shorebase, pengiriman industri, dan http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 18 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. logistik batubara serta berfokus untuk mendukung industri energi terkait seperti minyak dan gas, pertambangan, alat berat, pembangkit listrik, dan konstruksi. perusahaan ini menawarkan solusi logistik terbaik dengan keahlian dan jaringan di lebih 35 gateway di seluruh indonesia, dipimpin oleh oleh tim manajemen yang berpengalaman dan professional dengan pengalaman bertahuntahun dalam bidang logistik, terhubung dengan sistem online sehingga pelanggan akan mendapatkan informasi yang akurat dan dapat di andalkan tentang pengiriman mereka kapan saja, dimana saja. jumlah pelanggan ckb logistics sebanyak 2133 pada tahun. hal ini perusahaan terkadang tidak dapat terlayani dengan sempurna, seperti relatif konsumen yang merasa bahwa kualitas pelayanan yang diberikan oleh ckb logistics tidak sesuai dengan harga yang dibayarkan (junedi, 2014. sebagian konsumen mengalami barang kiriman yang dikirimkan sering tiba tidak tepat waktu (sari, 2014) seperti yang dijanjikan pada jasa pelayanan yang dipakai, walaupun saat sudah berusaha memberikan yang terbaik kepada pelanggan. demi terwujudnya maksud tersebut, maka ckb logistics diharapkan mampu menjaga perilaku yang ramah, efsien dan efektif dalam menyajikan produk dan jasanya, sehingga dapat menumbuhkan kepercayaan dan kenyamanan dari pihak pelanggan. ckb logistics di harapkan dapat lebih mengetahui faktor-faktor apa sajakah yang dapat meningkatkan kepuasan pelanggan dan juga mengevaluasi dan memperbaiki faktor-faktor yang dapat menurunkan tingkat kepuasan pelanggan. kinerja dari ckb logistics akan menjadi penilaian pelanggan dalam mempersepsikan pelayanan yang diberikan. persepsi pelanggan sendiri dipengaruhi oleh kinerja serta kualitas produk dan jasa (kurniasih, 2015) yang seharusnya diberikan secara maksimal kepada pelanggan, karena pelanggan merupakan prioritas utama perusahaan dalam mempertahankan kelangsungan hidup perusahaan. secara tidak langsung kritikan dari pelanggan yang ditujukan kepada pelayanan ckb logistics merupakan suatu masukan yang berguna untuk meningkatkan kinerja ckb logistics. tujuan penelitian ini untuk mengidentifikasi tingkat kualitas pelayanan ckb logistics untuk kepuasan pelanggan. menguji dimensi kualitas pelayanan yang mempengaruhi kepuasan pelanggan. menentukan dimensi kualitas pelayanan yang lebih dominan dalam mempengaruhi kepuasan pelanggan. bahan dan metode a. metode pengumpulan data, populasi dan sample penelitian teknik pengambilan data dilakukan dengan cara observasi langsung, wawancara, penyebaran kuesioner untuk mendapatkan data primer, sedangkan untuk data sekunder berasal dari studi pustaka. metode pemilihan sampel yang digunakan yaitu metode non probability sampling dengan menggunakan teknik convenience sampling. responden tersebut adalah pelanggan ckb. jumlah responden dalam penelitian ini ditentukan dengan rumus slovin (n. p. a. p. sari, 2014) yaitu: 𝑛 = 𝑁 (1+𝑁∙𝑒 2) ………………………………………….. (1) n = jumalah sampel n = ukuran populasi e = persentase kelongaran ketidak telitian karena kesalahan sampel yang masih bias di tolelir 10%. diketahui jumlah pelanggan ckb sebanyak 2133 pada tahun 2013 pelanggan , sehingga di peroleh sampel sejumlah : 𝑛 = 2133 (1 + 2133 ∙ 10%2) 𝑛 = 2133 (22,33) = 96 b. metode analisis data 1. uji validitas penggujian validitas dimaksudkan untuk mengetahui sejauh mana alat pengukur (instrument) mengukur apa yang ingin diukur. uji validitas digunakan untuk menghitung nilai korelasi (r) antara data masing-masing pertanyaan dengan skor total. teknik yang dipakai untuk menguji validitas kuesioner adalah teknik korelasi product moment person. uji validitas dalam penelitian ini dilakukan dengan menggunakan bantuan microsoft excel 2007 dan spss versi 22.0. 2. uji reliabilitas reliabilitas adalah nilai yang menunjukkan konsistensi suatu alat ukur didalam mengukur gejala yang sama. uji reliabilitas dalam penelitian ini menggunakan teknik apha cronbach. hasil uji yang dilakukan dengan menggunakan bantuan software spss versi 22.0 for windows menunjukkan bahwa peubah tersebut bersifat sangat reliabel. 3. important performace analysis http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 19 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. metode important performance analysis digunakan untuk mendapatkan informasi tentang tingkat kepuasan pelanggan terhadap suatu pelayanan dengan cara mengukur tingakat kepentingan dan tingakat pelaksanaannya. tingkat kepentingan dari kualitas pelayanan adalah seberapa penting suatu peubah pelayanan bagi pelanggan terhadap kinerja pelayanan. skala likert 4 tingkat digunakan untuk mengukur tingkat kepentingan yaitu sangat penting, penting, kurang penting, kurang penting, sangat tidak penting. ke empat tingkat tersebut diberi skor sebagai berikut: a. jawban sangat penting diberi skor 4 b. jawaban penting diberi skor 3 c. jawaban kurang penting diberi skor 2 d. jawaban sangat tidak penting diberi skor 1 tingkat pelaksanaan adalah kinerja aktual dari mutu pelayanan diberikan oleh ckb logistics, yang dirasakan oleh pelanggannya. skala likert 4 digunakan untuk mengukur tingkat pelaksanaan yaitu sangat penting, penting, kurang penting, sangat tidak penting. ke empat tingkat tersebut diberi skor sebagai berikut : a. jawban sangat penting diberi skor 4 b. jawaban penting diberi skor 3 c. jawaban kurang penting diberi skor 2 d. jawaban sangat tidak penting diberi skor 1 dalam analisis data ini terdapat dua buah variabel yang diwakili oleh huruf x dan y, dimana x adalah tingkat kinerja suatu produk konsumen sementara y adalah tingkat kepentingan konsumen (supranto, 1998) 𝑇𝐾𝑖 = 𝑋𝑖 𝑌𝑖 𝑥 100% ……………………………………….. (2) tki : tingkat kesesuain responden xi : bobot penilaian pelanggan terhadap kinerja pt.ckb yi : bobot penilaian pelanggan terhadap tingkat kepentingan atribut pt. ckb bobot penilaian kinerja atribut produk adalah bobot tangapan atau penilaian responden terhadap kinerja atribut-atribut yang telah dilakukan atau dirasakan oleh responden. kinerja pt. ckb dianggap telah memenuhi kepuasan pelanggan jika tki >100%. dan sebaliknya, jika besar tki<100% maka kinerja pt. ckb dianggap belum dapat memenuhi kepuasan pelanggan. setelah diketahui tingkat kepentingan dan tingkat pelaksanaan setiap peubah untuk seluruh responden, selanjutnya adalah memetakan hasil perhitungan yang telah didapat kedalam diagram kartesius. masing-masing atribut diposisikan dalam sebuah diagram, dimana skor rata-rata penilaian terhadap tingkat kinerja ( x ) menunjukkan posisi suatu atribut pada sumbu x, sementara posisi atribut pada sumbu y, ditunjukkan oleh skor rata-rata tingkat kepentingan terhadap atribut ( y ). (supranto, 1998) 𝑋1̅̅ ̅̅ = ∑ 𝑋𝑖 𝑛 ………………………………………………. (3) 𝑌1̅̅̅̅ = ∑ 𝑌𝑖 𝑛 …………..…………………………….…….. (4) 𝑋1̅̅ ̅̅ : skor rataan setiap peubah i pada tingkat kinerja 𝑌1̅̅̅̅ : skor rataan setiap peubah i pada tingkat kepentingan ∑ 𝑋𝑖 : total skor setiap peubah i pada tingkat pelaksanaan dari seluruh responden ∑ 𝑌𝑖 : total sekor setiap peubah i pada tingkat kepentingan dari seluruh responden. n = total responden diagram kartesius adalah diagram yang terdiri dari empat bagian yang dibatasi oleh dua buah bagian garis yang berpotongan tegak lurus pada titik x dan y, dimana x adalah rata-rata dari bobot tingkat kinerja atribut produk, sedangkan y merupakan rata-rata dari tingkat kepentingan seluruh faktor yang mempengaruhi kepuasan pelanggan, rumusnya adalah (supranto, 1998) �̅� = ∑ 𝑛=1 𝑥𝑖𝑖 𝑘 ………………………………………………… (5) �̅� = ∑ 𝑛=1 𝑦𝑖𝑖 𝑘 ………………………………………………… (6) �̅� : rataan dari total rataan bobot tingkat pelaksanaan �̅� : rataan dari total rataan bobot tingkat kepentingan k = jumlah peubah yang ditetapkan nilai x dan nilai y digunakan sebagai pasangan koordinat titik-titik atribut yang memposisikan suatu atribut terletak dimana pada diagram kartesius. penjabarannya dari diagram kartesius adalah sebagai berikut: http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 20 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. sumber: (supranto, 1998) gambar 1. diagram tingkat kinerja dan tingkat kepentingan a. kuadran a ( prioritas utama ) kuadaran ini merupakan wilayah yang membuat peubah dengan tingkat kepentingan tertinggi, tetapi memiliki tingkat kinerja rendah. peubah –peubah yang masuk pada kuadran ini harus ditingkatkan kinerjanya. perusahaan harus secara terus –menerus melaksanakan perbaikan. b. kuadran b ( pertahankan prestasi ) faktor-faktor yang dianggap penting oleh pelanggan dari faktor-faktor yang dianggap pelanggan telah sesuai dengan apa yang dirasakannya, sehingga tingkat kepuasannya relatif lebih tinggi. peubah –peubah yang masuk pada kuadaran ini harus tetap dipertahankan dan harus terus dikelola dengan baik, hal ini dikarenakan semua peubah ini menjadikan produk atau jasa tersebut unggul dimata pelanggan. c. kuadran c ( prioritas rendah ) kuadaran ini merupakan wilayah yang membuat peubah dengan tingkat kepentingan dan tingkat kinerja rendah. peubah – peubah mutu pelayanan yang termasuk dalam kuadran ini dirasakan tidak terlalu penting oleh pelanggan dan pihak perusahaan hanya melaksanakan dengan biasa saja. pihak perusahaan belum merasa terlalu perlu mengalokasikan biaya dan investasi untuk memperbaiki kinerjanya ( prioritas rendah ). namun perusahaan juga perlu mewaspadai, mencermati, dan mengontrol setiap peubah pada kuadran ini, karena tingkat kepentingan pelanggan dapat berubah seiring meningkatnya kebutuhan. d. kuadran d ( berlebihan ) faktor-faktor yang dianggap kurang penting oleh pelanggan dan dirasakan terlalu berlebihan. peubah-peubah yang termasuk dalam kuadran ini dapat dikurangi agar perusahaan dapat menghemat biaya. c. indeks kepuasan pelanggan ( customer satisfaction index ) pengukuran terhadap indeks kepuasan pelanggan (customer satisfaction index) di perlukan karena hasil dari pengukuran tersebut dapat digunakan sebagai acuan untuk menentukan sasaran–sasaran ditahun –tahun mendatang. tanpa adanya indeks kepuasan pelanggan tidak mungkin top management dapat menentukan target dalam peningkatan kepuasan pelanggan.selain itu indeks juga diperlukan karena proses pengukuran kepuasan pelanggan bersifat kontinu. cara menghitung indeks kepuasan pelanggan adalah: 1. menghitung weighting factors (wf) yaitu fungsi dari median importance score atau skor median tingkat kepentingan masingmasing atribut dalam 10% dari total median importance score atau skor median tingkat kepentingan untuk seluruh atribut yang diuji. 2. menghitung weighted score (ws) yaitu fungsi dari median satisfaction score atau skor median tingkat kepuasan masing-masing atribut dikalikan dengan weighting factors (wf) masing-masing atribut. 3. menghitung wighted median total (wmt) yaitu total dari nilai weighted score (ws) keseluruhan 4. indeks kepuasan pelanggan yaitu perhitungan dari weighted median total (wmt) dibagi skala maksimum atau hightest scale dikali 100%. tingkat kepuasan responden secara menyeluruh dapat dilihat dari kriteria tingkat kepuasan pelanggan atau konsumen, dengan kriteria sebagai berikut: a. 0,81 – 1,00 sangat puas b. 0,66 – 0,80 puas c. 0,51 – 0,65 cukup puas d. 0,00 – 0,35 tidak puas hasil dan pembahasan a. perhitungan uji vadilitas dan uji reliabiltas uji validitas dalam penelitian ini menggunakan metode product moment, sedangkan uji reliabilitas menggunakan cronbach alpha dengan alat bantu statistikprogram spss versi 22.0. 1. uji vadilitas a. dasar pengambilan keputusan berdasarkan tingkat kinerja http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 21 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. rhitung > rtabel = valid rhitung< rtabel = tidak valid rtabel = n= 100 = 0,195 (berdasarkan tabel distribusi nilai 5%) berdasarkan hasil uji vadilitas berdasarkan tingkat kepentingan dibawah maka dapat disimpulkan rhitung 0,452 dan rtabel 0,195 maka data dapat dikatakan valid. b. dasar pengambilan keputusan berdasarkan tingkat kepentingan rhitung > rtabel = valid rhitung< rtabel = tidak valid rtabel = n= 100 = 0,195 ( berdasarkan tabel distribusi nilai 5% ) berdasarkanhasil uji vadilitas berdasarkan tingkat kepentingan dibawah maka dapat disimpulkan rhitung 0,524 dan rtabel 0,195 maka data dapat dikatakan valid. tabel 1. case processing summary n % cases valid 100 100.0 excludeda 0 .0 total 100 100.0 a. listwise deletion based on all variables in the procedure. sumber: (sitorus, 2014) tabel 2. reliability statistics cronbach's alpha n of items .929 15 sumber: (sitorus, 2014) 2. uji reliabilitas a. dasar pengambilan keputusan berdasarkan tingkat kinerja alpha > rtabel = reliabel alpha < rtabel = tidak reliabel rtabel = n= 100 = 0,195 ( berdasarkan tabel distribusi nilai 5% ) berdasarkan hasil uji vadilitas berdasarkan tingkat kepentingan dibawah maka dapat disimpulkan alpha 0,929 dan rtabel 0,195 maka data dapat dikatakan reliabel. b. dasar pengambilan keputusan berdasarkan tingkat kepentingan alpha > rtabel = reliabel alpha < rtabel = tidak reliabel rtabel = n= 100 = 0,195 ( berdasarkan tabel distribusi nilai 5% ) berdasarkan hasil uji vadilitas berdasarkan tingkat kepentingan dibawah maka dapat disimpulkan alpha 0,946 dan rtabel 0,195 maka data dapat dikatakan reliabel. case processing summary n % cases valid 100 100.0 excludeda 0 .0 total 100 100.0 a. listwise deletion based on all variables in the procedure. sumber: (sitorus, 2014) reliability statistics cronbach's alpha n of items .946 15 sumber: (sitorus, 2014) b. perhitungan customer satisfaction index (csi) pengukuran customer satisfaction index (csi) dilakukan untuk mengetahui kepuasan pelanggan dan dijadikan acuan dalam menentukan sasaran – sasaran di masa yang akan datang. tanpa adanya csi, kecil kemungkinan top manager dapat menetukan goal dalam peningkatan kepuasan pelanggan. hasil perhitungan csi dapat dilihat pada tabel 1, dibawah ini: berikut adalah perhitungan csi berdasarkan tingkat kepentingan: a. skor median di dapat dari total perhitungan jawaban kuesioner b. average di dapat dari skor median dibagi dengan jumlah responden ( 355/ 100= 3.55). c. index didapat dari average dibagi skala likert dimana dalam penelitian ini skala yang dipakai empat dikali 10 ( 3.55/4) x 10 = 8.875 menjadi 8.88). d. importance weighting factor atau di sebut juga wf didapat dari average dibagi total average (3.55/ 51.67 = 0.068 menjadi 0.07 ). e. importance weighting score atau di sebut juga ws didapat dari wf dikali average ( 0.07 x 3.55 = 0.24 ). f. customer satisfaction index( csi ) di dapat dari total ws dibagi dengan skala likert yaitu 4 ( 3.45/4 = 0.86 ). berikut adalah perhitungan csi berdasarkan tingkat kinerja: a. skor median di dapat dari total perhitungan jawaban kuesioner b. average di dapat dari skor median dibagi dengan jumlah responden ( 302/ 100=3.02). http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 22 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. c. index didapat dari average dibagi skala likert dimana dalam penelitian ini skala yang dipakai empat dikali 10 ( 3.02/4) x 10 = 87.55 ). d. importance weightingfactor atau di sebut juga wf didapat dari average dibagi total average ( 3.02/ 44.40 = 0.068 menjadi 0.07 ). e. importance weighting score atau di sebut juga ws didapat dari wf dikali average ( 0.07 x 3.02 = 0.21 ). f. customer satisfaction index ( csi ) di dapat dari total ws dibagi dengan skala likert yaitu 4 ( 2.97/4 = 0.74 ). hasil diatas menunjukkan nilai csi berdasarkan tingkat kepentingan dan tingkat kinerja sebesar 0,86 dan 0,74, yang mana hasil dari perhitungan tersebut di dapat bahwa tingkat kepentingan lebih tinggi nilainya dibandingkan dengan tingkat kinerja, ini menunjukkan bahwa tingkat kinerja dari pt. ckb belum maksimal diberikan. jika dilihat dari intervalnya berdasarkan tingkat kepentingan 0.81 – 1.00 berarti pelanggan “sangat puas” sedangkan berdasarkan tingkat kinerja 0.66 – 0.80 berarti pelanggan “puas”. dengan ini pt. ckb di harapkan harus bisa memberikan pelayanan lebih baik khususnya dari segi kinerja agar kedepannya pelanggan akan sangat puas dengan pelayanan yang berikan. c. analisa strategi untuk meningkatkan kepuasan pelanggan dengan menggunakan importance performance analysis pengukuran ipa dijabarkan kedalam diagram kartesius yang tersaji pada gambar menunjukkan bahwa sumbu x dan y . sumbu x merupakan nilai rataan tingkat kinerja dan sumbu y merupakan nilai rataan kepentingan. untuk mengetahui secara jelas penempatan dari 15 atribut kualitas jasa yang telah dianalisa tersebut , maka 15 atribut tersebut akan dikelompokan menjadi empat kuadran. sumber: (sitorus, 2014) gambar 2. diagram kartesius importance performance analysis keterangan : 1. kuadran i a. ketersediaan armada yang sudah uji emisi ( atribut 15 ) b. kecepatan dan kesiapan dalam merespon permintaan pelanggan (atribut 12 ) c. pemahaman karyawan terhadap kebutuhan logistik pelanggan (atribut 7) d. kompensasi yang ditawarkan jika terjadi kerusakan atau kehilangan barang (atribut 10) e. pengiriman tepat waktu dan barang diterima dengan lengkap (atribut 4) 2. 2. kuadran ii 1. pengetahuan karyawan mengenai produk layanan logistik (atribut 1) 2. kemudahan dalam pengurusan dokumen pengiriman barang (atribut 2) 3. kemudahan dalam memperoleh informasi status pengiriman barang di situs ckb logistics (atribut 3) 4. ketersediaan jenis produk layanan dan cakupan wilayah layanan (atribut11) 5. kebersihan gudang yang disewakan (atribut 14) 3. c. kuadran iii a. perlakuan dan kecepatan dalam penyelesaian complain atau klaim (atribut 5 ) 4. kuadran iv a. harga yang diberikan dapat diterima oleh pelanggan (atribut 6) http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 23 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. b. kualitas layanan yang diberikan sesuai dengan uang yang dikeluarkan oleh pelanggan (atribut 8) c. sikap dan tingkah laku karyawan terhadap pelanggan (atribut 9) d. proaktif menginformasikan status pengiriman kepada pelanggan (atribut 13) kuadran pertama terletak di sebelah kiri atas, kuadran kedua berada di sebelah kanan atas, kuadran tiga berada di sebelah kiri bawah , dan kuadran ke empat berada di sebelah kanan bawah. posisi masing –masing atribut pada keempat kuadran tersebut dijadikan sebagai alternatif strategi untuk meningkatkan kepuasan pelanggan ckb. gambar juga menunjukkan posisi masing– masing atribut yang mempengaruhi kepuasan pelanggan ckb dalam kuadrannya masing–masing. interprestasi dari importance and performance analysis dapat dilihat pada kuadran–kuadran dibawah ini : 1. kuadran i ( prioritas pertama ) atribut – atribut yang berada dalam kuadran ini harus lebih di prioritaskan dan di perbaiki, sehingga tingkat kinerja semakin meningkat dan menjadi lebih baik lagi, karena atribut-atribut ini memiliki nilai kepentingan yang tinggi bagi konsumen , namun kinerjanya masih kurang memuaskan. atribut–atribut yang berada pada kuadran ini adalah: a. pengiriman tepat waktu dan barang diterima dengan lengkap ( atribut 4 ) ketepatan antara jadwal yang telah diberikan dengan kenyataan dilapangan merupakan atribut yang memiliki nilai tingkat kepentingan paling tinggi dan juga menjadi atribut yang memiliki nilai kinerja paling rendah. hal tersebut menunjukkan adanya kesenjangan atau gap yang cukup besar antara harapan dan kinerja yang dirasakan oleh pelanggan ckb. pt. ckb sebagai penyelenggaran tunggal pelayanan jasa logistik dalam hal ini ckb perlu melakukan evaluasi sehingga dapat diketahui faktor –faktor yang menyebabkan rendahnya tingkat kinerja yang dimiliki oleh atribut diatas sehingga dapat ditemukan atau diambil langkah penyelesaian dan perbaikan yang tepat dan cepat. evaluasi secara rutin atau berkala adalah langkah baik yang penting untuk dilakukan oleh perusahaan untuk segera mengetahui dan melakukan tindakan penyelesaian terhadap permasalahan yang muncul. mengingat ketepatan jadwal dalam hal ini menyangkut tepat waktu, konsisten dan kecepatan pelayanan merupakan hal penting dalam pelayanan jasa logistik. b. pemahaman karyawan terhadap kebutuhan logistik pelanggan (atribut 7) pemahaman karyawan dalam memberikan informasi yang dibutuhkan pelanggan merupakan salah satu bentuk pelayanan yang penting untuk dilakukan , karena sangat membantu pelanggan dalam mengambil keputusan terutama dalam kondisi darurat. c. kompensasi yang ditawarkan jika terjadi kerusakan atau kehilangan barang (atribut 10) respon yang cepat terhadap terjadinya kerusakan dan kehilangan barang yang disampaikan oleh pelanggan menunjukkan adanya tanggung jawab yang besar dari perusahaan kepada pelanggannya. setiap permasalahan yang diantisipasi dengan baik dan cepat oleh perusahaan dapat memberikan suatu kesan yang baik kepada pelanggan ,dan pelanggan tidak akan menjadi terlalu kecewa dan terus mengingat kejadian itu. e. kecepatan dan kesiapan dalam merespon permintaan pelanggan (atribut 12) kecepatan dan kesiapan dalam merespon permintaan pelanggan dapat dilihat dari pelaksanaan pelayanan yang dilakukan kepada pelanggan. jika pelanggan merasa kurang puas dengan pelayanan yang didapat maka dapat diartikan bahwa kinerja petugas atau kemampuan karyawan dalam melaksanakan pekerjaannya belum maksimal. karyawan –karyawan yang bertugas memberikan pelayanan langsung kepada pelanggan memiliki tanggung jawab yang besar terhadap kepuasan pelanggan itu sendiri, karena karyawan – karyawan inilah yang berhadapan langsung dengan pelanggan. dengan kata lain baik atau buruknya citra dari pelayanan perusahaan sebagian besar berada di tangan mereka. oleh karena itu manajemen perusahaan dalam hal ini ckb perlu mengambil langkah – langkah perbaikan guna peningkatan kinerja dimasa yang akandatang. langkah-langkah tersebut antara lainsebagai berikut: 1) evaluasi kinerja internal dimana evaluasi ini dilakukan dengan melibatkan seluruh karyawan terutama yang bertugas dilapangan secara rutin. 2) pelatihan dan pengarahan diberikan kepada petugas dan berkaitan dengan tugas serta tanggung jawab masing – masing. f. ketersediaan armada yang memadai ( atribut 15 ) ketersedian armada akan sangat berpengaruh terhadap ketepatan pengiriman barang, dikarenakan jika armada tidak memandai http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 24 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. akan menimbulkan barang – barang yang seharusnya dikirimkan secara tepat waktu menjadi terhalang. dengan demikian ketersedian armada sangat penting dan sangat berpengaruh dalam kegiatan proses pengambilan dan pengiriman barang. 2. kuadran ii ( pertahankan prestasi ) atribut –atribut yang temasuk ke dalam kuadran ini merupakan atribut –atribut yang dianggap penting oleh pelanggan dan kinerja dari pihak perusahaan pada atribut ini juga sudah sangat baik, sehingga pelanggan merasa puas. atribut –atribut yang termasuk kedalam kuadran kedua adalah: a. pengetahuan karyawan mengenai produk layanan logistik (atribut 1) setiap karyawan sudah dibekali pengetahuan produk layanan logistik yang ada di perusahaan sehingga karyawan sudah mengerti akan produk layanan yang ditawarkan. b. kemudahan dalam pengurusan dokumen pengiriman barang (atribut 2) dalam pengurusan dokumen pengiriman barang tidak sulit dikarenakan ckb sudah mempunyai sertifikat dan pengakuan baik pengiriman melalui udara, darat maupun laut. c. kemudahan dalam memperoleh informasi status pengiriman barang di situs ckb logistics ( atribut 3) pelanggan tidak akan merasa bingung akan status barang mereka, dikarenakan setiap pelanggan dapat melihat status barangnya dengan cara mengakses situs ckb dan status setiap pengiriman akan selalu terupdate. d. ketersediaan jenis produk layanan dan cakupan wilayah layanan ( atribut 11 ) jenis produk layanan dan cakupan wilayah sangat luas, dimana jenis layanan produk yang ditawarkan bisa melalui udara, darat, laut maupun penyewaan gudang. sedangkan untuk cakupan wilayah layanan tidak terbatas. 5. kebersihan gudang yang disewakan ( atribut 14 ) gudang yang ditawarkan sangat bersih dikarenakan barang –barang yang disimpan di dalam gudang harus terjaga , baik dari sirkulasi udara, rak –rak penyimpanan barang, dan kebersihan gudang dari debu. 3. kuadran iii (prioritas rendah) atribut yang masuk ke dalam kuadran ini merupakan atribut –atribut yang dianggap kurang penting oleh pelanggan dan kinerjanya pada atribut ini juga kurang begitu diperhatikan karena atribut –atribut pada kuadran tiga merupakan atribut –atribut yang kurang berpengaruh terhadap kepuasan pelanggan.atribut –atribut yang termasuk kedalam kuadran tiga adalah: 1. perlakuan dan kecepatan dalam penyelesaian complain atau klaim (atribut 5) walaupun keberadaan atribut –atribut diatas dianggap kurang berpengaruh terhadap pelanggan namun dalam pelaksanaan dilapangan harus tetap di perhatikan sesuai dengan tingkat kebutuhan dan kepentingan dari ketersediaan pelayanan itu sndiri. karena jika tidak diperhatikan dan kinerjanya menjadi memburuk maka akan dapat berpengaruh pada keseluruhan pelayanan yang diberikan kepada pelanggan. 4. kuadran iv ( berlebihan ) atribut ini menunjukkan atribut yang dirasa kurang penting oleh pelanggan, tetapi kinerjanya dilakukan dengan baik sehingga pelanggan menilai kinerja tersebut dirasakan berlebihan. atribut – atribut yang termasuk kuadran empat adalah : a. harga yang diberikan dapat diterima oleh pelanggan ( atribut 6 ) b. kualitas layanan yang diberikan sesuai dengan uang yang dikeluarkan oleh pelanggan (atribut 8 ) c. sikap dan tingkah laku karyawan terhadap pelanggan (atribut 9) d. proaktif menginformasikan status pengiriman kepada pelanggan (atribut 13) sebagian besar pelanggan menilai bahwa atribut ini sudah dilaksanakan dengan baik oleh ckb , namun karena atribut dianggap kurang penting oleh pelanggan, maka pelayanan yang berlebihan sebaiknya dikurangi agar lebih hemat biaya atau dapat juga dialokasikan pada atribut – atribut lain yang dianggap lebih penting oleh pelanggan tanpa menghilangkan atribut –atribut diatas. atribut –atribut diatas tetap dilaksanakan pelayanannya namun harus dilihat dan sesuai dengan porsi dan tingkat kepentingannya sehingga tidak menimbulkan efek berlebihan. secara umum penelitian ini menujukkan hasil yang memuaskan. hasil analisis menggunakan importance performance analysis dan customer satisfaction index menunjukkan bahwa variable-variabel yang berpengaruh pada kepuasan pelanggan secara umum cukup baik. hal tersebut ditunjukkan dari tingginya tanggapan puas dari responden terhadap kondisi dari masing-masing variable penelitian. dari hasil analisis dengan importance performance analysis dan customer satisfaction index menunjukkan menunjukkan bahwa variable-variabel kualitas layanan memiliki pengaruh yang signifikan terhadap kepuasan pelanggan. hal ini http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 25 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. menunjukkan bahwa peningkatan kepuasan pelanggan akan terkait dengan kualitas layanan. responsiveness berpengaruh terhadap kepuasan pelanggan artinya apabila responsiveness yang dipersepsikan dengan perlakuan dan kecepatan dalam penyelesaian komplain, harga yang diberikan dapat diterima oleh pelanggan, dan pemahaman karyawan terhadap kebutuhan logistik pelanggan, maka kepuasan pelanggan akan meningkat. reliability berpengaruh terhadap kepuasan pelanggan artinya apabila reliability yang dipersepsikan dengan pengetahuan karyawan mengenai produk layanan logistik, kemudahan dalam pengurusan dokumen pengiriman barang, kemudahan dalam memperoleh informasi status pengiriman barang di situs ckb logistics, dan pengiriman tepat waktu dan barang diterima dengan lengkap maka kepuasan pelanggan akan meningkat. reliability merupakan kemampuan memberikan layanan yang diharapkan dengan segera, akurat dan memuaskan sehingga masalah yang dilaporkan cepat diatasi dan selesai pada waktu yang sesuai dengan harapan pelanggan. apabila perusahan memiliki kualitas layanan yang handal, maka kepuasan pelanggan akan semakin meningkat. sebaliknya apabila layanan semakin tidak handal, maka kepuasan pelanggan akan semakin menurun. tangible berpengaruh terhadap kepuasan pelanggan apabila fasilitas yang diberikan perusahaan sesuai dengan dengan harapan pelanggan, maka kepuasan pelanggan akan meningkat. assurance berpengaruh terhadap kepuasan pelanggan apabila karyawan memiliki pengetahuan dan kemampuan yang baik tentang produk jasa yang dijualnya, maka pelanggan akan merasa puas. sebaliknya apabila karyawan tidak memiliki pengetahuan yang baik tentang prosuk jasa yang dijualnya, pelanggan tidak mendapat rasa aman sesuai ekspektasinya dari suatu produk jasa yang di terimanya. harapan yang tidak tercapai akan menimbulkan kekecewaan dan ketidak puasan pelanggan. emphaty berpengaruh terhadap kepuasan pelanggan jika karyawan dalam melakukan layanan perusahaan kurang perhatian terhadap pelanggan seperti tidak melakukan komunikasi dan perhatian kepada pelanggan, tidak memahami kebutuhan dari pelangga, maka konsumen akan merasa kecewa dan merasa tidak puas atas layanan yang telah diberikan. kesimpulan berdasarkan hasil analisi data pembahasan pada bagian sebelumnya yang dilakukan mengenai faktor-faktor yang mempengaruhi kepuasan, maka dapat ditarik kesimpulan sebagai berikut: 1) variabel bukti fisik (tangible) terbukti mempunyai pengaruh terhadap kepuasan pelanggan ckb. 2) variabel keandalan (reliability) terbukti mempunyai pengaruh terhadap kepuasan pelanggan ckb. 3) variabel daya tanggap (responsiveness) terbukti mempunyai pengaruh terhadap kepuasan pelanggan ckb. 4) variabel jaminan (assurance) terbukti mempunyai pengaruh terhadap kepuasan pelanggan ckb. 5) variabel empati (emphaty) terbukti mempunyai pengaruh terhadap kepuasan pelanggan ckb. kinerja ckb terhadap atribut kualitas pelayanan yang menentukan kepuasan pelanggan ckb masih kurang memuaskan. hal ini berdasarkan hasil dari importance performance analysis yang menunjukkan bahwa terdapat lima atribut yang berada dalam kuadran pertama (prioritas pertama) yang mana atribut –atribut yang terdapat pada kuadran ini merupakan atributatribut yang memiliki nilai kepentingan yang tinggi bagi konsumen, namun kinerjanya masih kurang memuaskan. berdasarkan customer satisfaction indeks , diketahui bahwa nilai csi berdasarkan tingkat kepentingan sebesar 0.86 dimana pelanggan "sangat puas" dengan pelayanan ckb dan nilai csi berdasarkan tingkat kinerja sebesar 0.74 yang berarti pelanggan merasa “puas” terhadap kinerja pelayanan yang dilakukan oleh ckb. bisa dikatakan bahwa berdasarkan kepentingan dengan kinerja mengalami perbedaan dimana kepentingan lebih besar dibandingkan dengan kinerja. dengan ini ckb harus bisa melakukan perubahan yang lebih baik lagi khususnya di tingkat kinerja. referensi kurniasih, i. d. (2015). pengaruh harga dan kualitas pelayanan terhadap loyalitas pelanggan melalui variabel kepuasan (studi pada bengkel ahass 0002-astra motor siliwangi semarang). jurnal administrasi bisnis, 1(1), 37–45. retrieved from https://ejournal.undip.ac.id/index.php/janis /article/view/4316 sari, n. p. a. p. (2014). faktor – faktor yang memengaruhi struktur modal pada perusahaan non keuangan yang terdaftar di bursa efek indonesia tahun 2008-2012. e-jurnal akuntansi, 7(1), http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 26 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. 33–47. retrieved from https://ojs.unud.ac.id/index.php/akuntansi /article/view/8639 sari, y. u. (2014). penanganan export import cargo maskapai garuda indonesia di pt gapura angkasa bandar udara ahmad yani semarang. jurnal ground handling, 1(2). retrieved from http://jurnal.sttkd.ac.id/index.php/jgh/arti cle/view/125 sitorus, m. (2014). laporan akhir penelitian analisis kepuasan pelanggan terhadap kualitas pelayanan jasa logistik pt. cipta krida bahari. jakarta. supranto, j. (1998). statistik teori dan aplikasi (1st ed.). jakarta: erlangga. supriyanto, y., & soesanto, h. (2012). analisis pengaruh kualitaspelayanan, harga, dan fasilitas terhadap kepuasan pasien rawat jalandi rumah sakit kariadi semarang. universitas diponegoro. retrieved from http://eprints.undip.ac.id/37113/ wijayanti, i. a. h., & seminari, n. k. (2013). pengaruh gaya hidup terhadap perilaku pembelian handphone blackberry dengan merek sebagai pemoderasi. jurnal manajemen, 2(6), 639– 653. retrieved from https://ojs.unud.ac.id/index.php/manajeme n/article/view/5219 http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.542 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 285 website evaluation of the faculty of industrial technology universitas islam indonesia using the system usability scale method rafi arribaath alfaresy-1, chanifah indah ratnasari-2*) informatika universitas islam indonesia yogyakarta, indonesia 19523160@students.uii.ac.id, chanifah.indah@uii.ac.id (*) corresponding author abstract to maintain and improve the quality of the website of the faculty of industrial technology (fti), universitas islam indonesia (uii), usability testing is performed on the website using the system usability scale (sus). this study aims to evaluate usability and analyze the user experience on the fti uii website so that the faculty can follow up on it. respondents consisted of 41 active fti uii students. respondents were asked to complete scenarios on the fti website while being watched by examiners. they then filled out the sus questionnaire with ten statements and a likert scale for answers. using the sus method, the test scores were 69.32. based on these results, the acceptability of the fti web is in the marginal high range, the adjective rating is at an ok level close to good, the grade scale is in class c, and the net promoter score (nps) could be passive on website users. based on these results, it can be concluded that the usability of the fti uii website is acceptable to users but has not yet attained a maximum score; therefore, a user has not yet recommended the site to other users. this confirms that the fti website requires additional enhancements. keywords: usability; user experience; website; system usability scale; sus abstrak dalam rangka menjaga dan meningkatkan kualitas website fakultas teknologi industri (fti), universitas islam indonesia (uii), perlu dilakukan usability testing terhadap website tersebut menggunakan system usability scale (sus). tujuan dari penelitian ini adalah untuk mengevaluasi usability dan menganalisis user experience pada website fti uii, sehingga dapat dilakukan tindak lanjut oleh pihak fakultas. responden terdiri dari 41 mahasiswa aktif fti uii. pengujian dilakukan dengan meminta responden untuk melakukan skenario pada website fti yang diamati langsung oleh penguji, kemudian responden mengisi kuesioner yang berisi 10 pernyataan dengan skala likert untuk jawabannya. hasil testing dengan me withetende sus diperoleh hasil sebesar 69,32. berdasarkan hasil tersebut, acceptability web fti berada pada rentang marginal high, adjective rating pada tingkat ok mendekati good, grade scale pada kelas c, dan net promoter score (nps) berpotensi pasif pada penguna website. berdasarkan hasil tersebut dapat disimpulkan bahwa website fti uii memiliki usability yang sudah dapat diterima pengguna, namun belum mencapai skor maksimal, sehingga pada kondisi ini seorang pengguna belum merekomendasikannya kepada pengguna lain. hal ini menegaskan bahwa pada website fti masih perlu dilakukan perbaikan dan peningkatan lebih lanjut. kata kunci: usabilitas; pengalaman pengguna; website; system usability scale; sus introduction the internet plays an essential role in the rapid development of technology (ferdiansyah et al., 2022). utilization of the website is something that is commonly used in the internet era as it is today. the website is used as a medium for delivering information to visitors. smartphone users, computers, or laptops connected to the internet network can surf (browse) to find the desired information (setiawan & widyanto, 2018). in 2011, the directorate general of informatics applications, ministry of communication and informatics of the republic of indonesia, stated that the website is one of the most visited information services by internet users in the world (mz, 2016). p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.542 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 286 so many uses of the website, one of which is in the field of education. the website is used in colleges, schools, non-formal educational institutions, and other institutions. the purpose of its use also varies, ranging from a medium for conveying institutional profiles, supporting academic activities, promotional media, and many more. the faculty of industrial technology (fti), universitas islam indonesia (uii), is an educational institution that also uses the website to convey information to the general public, the academic community, and prospective new students. the faculty website with the address https://fit.uii.ac.id/ conveys academic information, news, services, facilities, study programs offered, accreditation, and much more. websites must have good usability so that interactions between visitors and the website can be as spontaneous and natural as possible (ananda yul et al., 2020). a website must also have service standards that ensure smooth access and easy search for information users need (aji & dpa, s.t, m.kom, 2020). an evaluation of the website is required to maintain and improve the quality of the fti uii website. in this study, an evaluation was carried out from the usability side of the fti uii website. according to nielson (2003), the definition of usability is a quality indicator that measures how easy the interface is to use (nielson, 2003). a wellstructured system design creates an interface that users can easily interact with. a good interface can also make visitors return to the site and increase visitor satisfaction. conversely, if the user interface is not designed correctly, it can cause visitor dissatisfaction and frustration and make as many as 40% of visitors reluctant to return (s.minocha, 2005), (aprilia et al., 2015). evaluation of a website can use several methods, such as user experience questionnaire (ueq), system usability scale (sus), and heuristic evaluation (he). the evaluation of sus has been done a lot before. like the evaluation of pondok pesantren qodratullah website, banyu asin regency, south sumatra, involving ten respondents with heterogeneous criteria from the level of devotees, sus score 88-grade scale is b, with excellent adjective ratings as well as acceptability including acceptable (purwaningtias & ependi, 2020). meanwhile, intyanto et al. (2021) conducted a test using the sus method on the campus website of the pacitan state community academy, with 34 respondents scoring 60.75, with a grade d position, an adjective ok rating, and a marginally low acceptance level. a similar test on the usability of the time excelindo website on 40 respondents was conducted by ramadhan et al. (2019). the test obtained a sus score of 70.13 before the improvement recommendation. however, after receiving the sus score recommendation, it increased by 80.3, so the grade b category, adjective ratings are excellent, and the acceptability is acceptable. the sus method was used in this study, and the respondents were current students at fti uii. the goal of this study is to figure out how usable the fti uii website is so that its level of usefulness can be determined and follow-up can be done in the future to make the fti uii website even better. research methods the study is done in six stages, as shown in figure 1. the first stage is a literature review that continues determining respondents and conducting scenario testing. the next stage is testing the website, the questionnaire spread, processing and analyzing data, and then making conclusions and suggestions. figure 1. research stage https://fit.uii.ac.id/ jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.542 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 287 literature review a literature review is conducted to gather various previous research that has been done and various sources of scientific theory as a basis for evaluating user experience (ux) uii fti at the website. a literature review collected the relevant usability testing, user experience testing, system usability scale, and other literature studies. determination of respondents respondents in this study were active students of the faculty of industrial technology at the indonesian islamic university. according to roscoe in sugiyono's research (sugiyono, n.d.), the number of samples suitable (required) for research is 30-500. in this study, it was determined that the number of respondents required was 30-50 people. the criteria for respondents in this study are: a. active student of fti uii, b. i have used the website https://fit.uii.ac.id/. testing scenario at this stage, scenarios will be tested on respondents regarding several things or features found on the fti uii website. the test scenario is as follows: • how do i download the academic calendar on the fti uii website? (results shown in figure 2) • how to access/download uts/uas schedule? (results shown in figure 3) • how to make a letter of good behavior from the faculty? (results shown in figure 4) respondents were asked to find out about these things on the fti uii website by being directly observed by the examiner to see whether the respondent could work on these scenarios smoothly or if there were any problems/confusion. figure 2. the page showing the academic calendar of uii the page displayed in figure 2 shows one of the pages available on the fti uii website where users can access or download the 2022-2023 academic calendar. if the user can access or download the academic calendar without anyone's assistance, it is considered that he is already fluent in working on scenario 1. figure 3. uts information page the page displayed in figure 3 shows one of the other pages available on the fti uii website in the form of information about midterm or semester exams that will take place in the odd or even semester of the current school year. if users can access or download the info menu without anyone's help, they are fluent in working on scenario two. figure 4. siso page for writing letters of good behavior meanwhile, the system display in figure 4 shows one of the systems used in fti uii, where users can access and create letters online and independently. if the user can access and use the available system without anyone's help, they are p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.542 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 288 fluent in working on scenario three and exploring information on the fti website. questionnaire testing and filling measuring usability on a website or application with the sus method is based on the subjective point of view of the user/respondent. the use of sus has several advantages, including:  test results from sus are expressed in the form of a scale with a score range of 0-100 so that this can be applied easily (brooke, 1996), (brooke, 2013), (bangor et al., 2009).  ependi says the sus method calculation process is easy to understand and not complicated d (ependi et al., 2019).  according to gardner, sus can be used at no additional cost and is also free of charge (macklin, chris, 2020).  according to john brooke, sus is generally used with a small respondent/sample size but has proven valid, consistent, or reliable (brooke, 2013) research on usability testing/ evaluation using the system usability scale method is often used because it has characteristics/properties that differ from other questionnaires, especially those that have been validated and tested with small respondent scores (brooke, 2013). questionnaires with the sus method still provide satisfactory results after considering the use of time, costs, and even in small samples. the test scenario and sus questionnaire in this study are shown in figure 5. this questionnaire consists of 10 statements adapted from john brooke's research (brooke, 2013). each statement has 5 likert scale options to measure respondents' responses, (1) strongly disagree, (2) disagree, (3) normal, (4) agree, (5) strongly agree. processing and analysis of data the completed questionnaire was converted into a number from 1 to 100 using the sus method. this number will determine whether the product, in this case, the fti uii website, is appropriate or not for use (dusea et al., 2015), (pudjoatmodjo & wijaya, 2016). the bigger the number generated, the better the usability. the method for assessing sus is as follows: statement on odd numbers: (𝑛 − 1) ................................................................................ (1) statement on even numbers: (5 − 𝑛) ............................................................................... (2) where n is the value of each question given by the respondent. the results of these calculations are then added up, then multiplied by the result with a value of 2.5 (dusea et al., 2015). the calculation formula above is shown in equation (3) (pudjoatmodjo & wijaya, 2016). score s = (((n1 – 1) + (5 – n2) + (n3 – 1) + (5 – n4) + (n5 – 1) + (5 – n6) + (n7 – 1) + (5 – n8) + (n9 – 1) + (5 – n10) ∗ 2.5) ........ (3) information: score s = total score of all respondents, n1 s.d. n10 = statement likert value from 1 to 10 given by respondents next, the average calculation is carried out, whose formula is shown in equation (4). average score of sus = ∑ score𝑛 𝑛 0 .......................... (4) based on the average score obtained, there are three perspectives or points of view in sus when formulating evaluation results (ependi et al., 2019), which are also shown in figure 5: • acceptability consists of three levels: unacceptable, marginal (low and high), and acceptable. acceptability is used to check the level of user acceptance of the website. • grade scale (rating scale) consisting of a, b, c, d, and f is used to determine the level (grade) of the website/application. • adjective rating is a hierarchy (level) of best imaginable, good, ok, poor, and worst imaginable. adjective rating is used to determine the ranking of the website. figure 5. sus score (ependi et al., 2019) in addition, another perspective or point of view in formulating the sus evaluation results is the sus score percentage (sus score percentile rank). this score contains conditions (ependi et al., 2019): jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.542 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 289 a) grade a = score >= 80,4 b) grade b = score >= 74 and < 80,4 c) grade c = score >= 68 and < 74 d) grade d = score >= 51 and < 68 e) grade f = score < 51 results and discussion the fti uii website was tested with test scenarios and the sus method from march 14 to april 4, 2023. respondents who carried out the test were a total of 41 people, who were active students of fti uii consisting of 6 majors, as shown in table 1. table 1. respondents per departement no departement number of responden 1 industrial engineering 8 industrial engineering (ip) 5 2 chemical engineering 12 chemical engineering (ip) 0 3 informatics 9 informatics(ip) 0 4 electrical engineering 5 5 machine engineering 1 6 textile engineering 1 total 41 based on testing using scenarios where respondents were asked to carry out commands in that scenario, a summary of the results is shown in table 2. meanwhile, the results of usability testing using sus are shown in table 3. table 2. recap test results with scenarios results of examiners' observation of scenario work by respondents scenario s1 s2 s3 smoothly 13 28 7 be constrained 11 5 10 controlled but able to reach the goal 6 3 4 controlled and unable to reach the goal 11 5 20 total 41 41 41 based on table 2, the scenarios in which respondents could not reach their goals were sorted from the highest in scenario 3, 1, and the lowest in scenario 2. while the sequence of scenarios, both smooth and constrained but respondents still able to achieve their goals, is sorted from the highest is scenario 2 (as many as 36 respondents managed to achieve the goal), the following sequence is scenario 1 (as many as 30 respondents), and the lowest is scenario 3 (as many as 21 respondents). table 3. fti uii website sus score respondent score sus respondent score sus r1 55 r22 70 r2 57,5 r23 70 r3 67,5 r24 80 r4 75 r25 67,5 r5 77,5 r26 70 r6 57,5 r27 77,5 r7 67,5 r28 70 r8 75 r29 87,5 r9 77,5 r30 67,5 r10 67,5 r31 87,5 r11 82,5 r32 65 r12 62,5 r33 80 r13 75 r34 67,5 r14 60 r35 72,5 r15 87,5 r36 77,5 r16 45 r37 45 r17 70 r38 77,5 r18 70 r39 50 r19 65 r40 52,5 r20 67,5 r41 70 r21 75 average score 69,32 based on table 3, it can be seen that the sus calculation obtains an average score of 69.32. these results are then formulated for the level of acceptability, grade scale, and adjective rating and correlate with the net promoter score (nps), as shown in figure 7. figure 6. fti website sus score (nps, acceptability, adjective, grade scale) based on the results of the formulation of the sus score from the point of view of p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.542 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 290 acceptability, adjective rating, grade scale, and also nps, it can be concluded that the fti uii website for acceptability is in the marginal high range for adjective ratings is at the ok level (close to good), and for the grade scale is at level c. meanwhile, based on nps, it can be passive on website users. the results of the formulation of the sus score are shown in table 4. table 4. sus test results description result sus total score 69,32 grade scale c adjective rating ok (approaching good) acceptability marginal high nps passive to get a grade "a" from a website, the sus score must be >= 80.4, while for the grade below, namely b, the sus score is >= 74 and < 80.4. while the fti website's sus score based on the usability testing results obtained a score of 69.32, indicating it is in grade c. the fti website score has usability that is acceptable to users but has yet to reach a maximum score, so in this condition, a user has not recommended it to other users. this confirms that the fti website still needs further improvement and improvement. an analysis is carried out on each statement point on the sus questionnaire to know the steps that can be taken. this is intended to produce recommendations to improve the sus score. in the sus questionnaire, odd statements are positive statements. this means that respondents give opinions that agree or strongly agree if they support the statement. odd statements 1, 3, 5, 7, and 9 are shown in figures 7, 8, 9, 10, and 11. figure 7. results of statement 1 based on figure 7, as many as 51% of respondents agree, and 17% strongly agree, that respondents are familiar with the information and features on the fti website. figure 8. results of statement 3 figure 8 shows that most respondents feel familiar with the information and features on the fti uii web. not much different: in statement 3, shown in figure 8, as many as 59% of respondents agree, and 2% strongly agree that the fti web is easy to navigate. figure 9. results of statement 5 figure 9 shows that 46% agree and 41% strongly agree that the fti website is helpful for respondents. this figure differs quite drastically from the two previous statements (statements 1 and 3), which agree and strongly agree at around 60%; statement 5 is in the 80s. 0 5 10 15 20 25 0 1 2 3 4 0 6 7 21 7 0% 15% 17% 51% 17% i'm familiar with the info and also the features on the fti web site. 0 20 40 0 1 2 3 4 0 2 14 24 10% 5% 34% 59% 2% i think the fti web is easy to explore. 0 5 10 15 20 0 1 2 3 4 0 0 5 19 17 0% 0% 12% 46% 41% i think this fti website is useful to me 0 10 20 0 1 2 3 4 0 0 10 19 12 0% 0% 24% 46% 29% i assess the functionality or features provided on this website are well designed and prepared jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.542 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 291 figure 10. results of statement 7 the results of statement 7 are shown in figure 10. as many as 46% of respondents agree, and 29% strongly agree, that the functions or features on the fti web are well-designed and prepared. figure 11. results of statement 9 figure 11 shows the results of statement 9. as many as 44% of respondents agreed, and 15% strongly agreed, that the fti web interface was attractive and user-friendly. in contrast to odd statements, which indicate positive statements, even numbered statements indicate negative statements. this means that if the respondent gives an opinion that agrees or strongly agrees, this is a negative value or something that needs to be fixed from the fti website. even statements 2, 4, 6, 8, and 10 are shown in figures 12, 13, 14, 15, and 16. figure 12. results of statement 2 the results of statement 2 are shown in figure 12, which shows that 66% of respondents agree and 10% strongly agree that respondents find it challenging to search for the desired information on the fti web. figure 13. results of statement 4 figure 13, the result of statement 4, shows that as many as 66% of respondents agree and 20% strongly agree that respondents need technical assistance to use or browse the fti web. figure 14. results of statement 6 figure 14 shows the results of statement 6, where 61% agree and 7% strongly agree that the fti web is too complex. figure 15. results of statement 8 0 5 10 15 20 0 1 2 3 4 0 0 17 18 6 0% 0% 41% 44% 15% i find this website interesting and user-friendly. 0 5 10 15 20 25 30 0 1 2 3 4 0 0 11 27 4 0% 0% 27% 66% 10% i find it difficult to do information retrieval on the fti web 0 5 10 15 20 25 30 0 1 2 3 4 0 2 4 27 8 0% 5% 10% 66% 20% i need technical assistance to use or browse the fti website 0 5 10 15 20 25 0 1 2 3 4 1 1 11 25 3 2% 2% 27% 61% 7% i think this website is too complex (loading a lot of unnecessary things) 0 5 10 15 20 25 0 1 2 3 4 0 8 7 22 4 0% 20% 17% 54% 10% i need to learn a lot before i can browse the fti website well. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.542 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 292 the results of statement 8 are shown in figure 15, with 54% of respondents agreeing and 10% strongly agreeing that respondents exploring this website must learn many things first. figure 16. results of statement 10 figure 16 shows the results of statement 10, where 51% of respondents agree and 2% strongly agree that the fti website needs to be improved to make it even better. based on the ten statements in the sus questionnaire, if sorted by statements with the most positive and most negative results are shown in table 5 and table 6. table 5. statement sequence with most positive results sequence statement a b total 1 5 46% 41% 87% 2 7 46% 29% 75% 3 1 51% 17% 68% 4 3 59% 2% 61% 5 9 44% 15% 59% 6 10 20% 5% 25% 7 8 20% 0% 20% 8 4 5% 0% 5% 9 6 2% 2% 4% 10 2 0% 0% 0% information: a = agree (for negative statements), disagree (for positive statements) b = strongly agree (for negative statements), strongly disagree (for positive statements) table 6. statement sequence with most negative results sequence statement a b total 1 4 66% 20% 86% 2 2 66% 10% 76% 3 6 61% 7% 68% 4 8 54% 10% 64% 5 10 51% 2% 53% 6 1 15% 0% 15% 7 3 5% 0% 5% 8 5 0% 0% 0% 9 7 0% 0% 0% 10 9 0% 0% 0% information: a = agree (for negative statements), disagree (for positive statements) b = strongly agree (for negative statements), strongly disagree (for positive statements) when seen from table 6, the order of the top five points that need special attention is that respondents need technical assistance to browse the website, have difficulty searching for information, the website is too complex, need to learn many things before browsing the website, and the web needs improvement. based on the results of this study, the uii faculty of industrial technology can decide which points are the priority for improvement. conclusions and suggestions conclusion the results of the usability/usability evaluation on the fti uii website using the system usability scale (sus) questionnaire method obtained a score of 69.32. this figure is from the view of acceptability, adjective rating, grade scale, and net promoter score (nps). it is known that the fti website for acceptability is in the marginal high range, the adjective rating is close to good, the grade scale is in class c, and the nps has the potential to be passive to website users. this result shows that the usability of the fti website is still acceptable, but for the usability of the fti website to be even better, periodic improvements are still needed. suggestion to maintain quality and improve the website's usability to make it even better, the fti website should make periodic improvements, significantly reducing or eliminating unnecessary parts of the content. in addition, it is necessary to carry out further similar research using different 0 5 10 15 20 25 0 1 2 3 4 2 8 9 21 1 5% 20% 22% 51% 2% i feel like this website needs to be fixed. jurnal riset informatika vol. 5, no. 3. june 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.542 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 293 methods such as; usability testing, heuristic evaluation, ueq (user experience questionnaire), and others. further research is also recommended using a more significant number of respondents to obtain primary data that is accurate, valid, and reliable. references aji, h. p., & dpa, , s.t, m.kom, n. r. (2020). analisis perbandingan website digilib dengan metode penghitungan usability menggunakan kuesioner sus. jurnal buana informatika, 11(1), 63–73. https://doi.org/10.24002/jbi.v11i1.2502 ananda yul, f., jannah, m., tuanku tambusai ujung, j., tampan, k., delima, k., & pekanbaru, k. (2020). analisis usabilitas website siam umri menggunakan metode usability testing. jurnal surya teknika, 7(1), 86–95. https://doi.org/10.37859/jst.v7i1.2355 aprilia, i. h. ., santoso, p. i., ferdiana, r., elektro, t., informatika, t., gadjah, u., & yogyakarta, m. (2015). pengujian usability website menggunakan system usability scale. jurnal ilmu pengetahuan dan teknologi komunikasi, 17(1), 31–38. retrieved from https://www.neliti.com/id/publications/22 8045/ bangor, a., kortum, p., & miller, j. (2009). determining what individual sus scores mean; adding an adjective rating. journal of usability studies, 4(3), 114–123. retrieved from https://www.researchgate.net/publication/ 228368593_determining_what_individual_s us_scores_mean_adding_an_adjective_rating _scale brooke, j. (1996). sus: a “quick and dirty” usability scale. usability evaluation in industry, november 1996, 207–212. https://doi.org/10.1201/978149871041135 brooke, j. (2013). sus : a retrospective. 8(2), 29–40. retrieved from https://www.researchgate.net/publication/ 285811057 dusea, m. a., andriyanto, e., ramadhan, d. w., & saputra, m. a. (2015). evaluasi usability untuk mengukur penggunaan website event organizer. nasional informatika, 1(1), 428– 434. retrieved from http://e-journal.potensiutama.ac.id/ojs/index.php/snif/article/view /302 ependi, u., kurniawan, t. b., & panjaitan, f. (2019). system usability scale vs heuristic evaluation: a review. simetris: jurnal teknik mesin, elektro dan ilmu komputer, 10(1), 65– 74. https://doi.org/10.24176/simet.v10i1.2725 ferdiansyah, f., heryana, n., & solehudin, a. (2022). analisis user experience (ux) pada website universitas singaperbangsa karawang menggunakan metode system usability scale (sus). jurnal pendidikan dan konseling (jpdk), 4(4), 6457–6465. https://doi.org/10.31004/jpdk.v4i4.6505 intyanto, g. w., ranggianto, n. a., & octaviani, v. (2021). pengukuran usability pada website kampus akademi komunitas negeri pacitan menggunakan system usability scale (sus). walisongo journal of information technology, 3(2), 59–68. https://doi.org/http://dx.doi.org/10.21580/ wjit.2021.3.2.9549 macklin, chris, g. j. . (2020). uc berkeley uc berkeley electronic theses and dissertations. dna mediated assembly of protein heterodimers on membrane surfaces, 67. retrieved from https://escholarship.org/uc/item/98384265 mz, y. (2016). evaluasi penggunaan website universitas janabadra dengan menggunakan metode usability testing. jurnal informasi interaktif, 1(1), 34–43. retrieved from http://www.ejournal.janabadra.ac.id/index.php/informasii nteraktif/article/view/345 nielson, j. (2003). usability 101: introduction to usability. retrieved may 21, 2023, from https://www.nngroup.com/articles/usabilit y-101-introduction-to-usability/ pudjoatmodjo, b., & wijaya, r. (2016). tes kegunaan (usability testing) pada aplikasi kepegawaian dengan menggunakan system usability scale. seminar nasional teknologi informasi dan multimedia 2016, 4(1), 37–42. retrieved from https://ojs.amikom.ac.id/index.php/semnast eknomedia/article/view/1302 purwaningtias, f., & ependi, u. (2020). pengujian usability website pondok pesantren qodratullah menggunakan system usability scale. jurnal sains dan informatika, 6(1), 34– 43. https://doi.org/https://doi.org/10.34128/js i.v6i1.220 ramadhan, d. w., soedijono, b., & pramono, e. (2019). pengujian usability website time excelindo menggunakan system usability scale (sus) (studi kasus: website time excelindo). jipi (jurnal ilmiah penelitian dan p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i3.542 jurnal riset informatika vol. 5, no. 3 june 2023 accredited rank 4 (sinta 4), excerpts from the decision of the ditjen diktiristek no. 230/e/kpt/2023 294 pembelajaran informatika), 4(2), 139–147. https://doi.org/https://doi.org/10.29100/ji pi.v4i2.977 stone, d., jarrett, c., woodroffe, m., & minocha, s. (2005). user interface design and evaluation, 1-14. retrieved may 21, 2023, from https://www.researchgate.net/publication/ 43642930_user_interface_design_and_evalu ation setiawan, a., & widyanto, r. a. (2018). evaluasi website perguruan tinggi menggunakan metode usability testing. jurnal informatika: jurnal pengembangan it (jpit), 03(03), 295– 299. https://doi.org/10.30591/jpit.v3i3.912 sugiyono. (2014). metode penelitian kuantitatif kualitatif dan r dan d. perpustakaan uin sultan syarif kasim riau. jurnal riset informatika vol. 4, no. 2. march 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i2.349 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 165 implementation of the trend moment method in estimating bread sales wahyuni sirgar1*), arridah zikra syah2, indra ramadona harahap3 sistem informasi1,2 , manajemen informatika3 sekolah tinggi manajemen informatika dan komputer royal kisaran, indonesia1,2,3 www.stmikroyal.ac.id siregarwahyuni834@gmail.com1*), azsyra@gmail.com2, ir.harahapma@gmail.com3 (*) corresponding author abstrak metode trend moment adalah suatu peramalan untuk menghasilkan angka perkiraan persediaan roti pada masa yang akan datang, sehingga tidak terjadinya kelebihan maupun kekurangan stok persediaan roti di bulan yang akan datang. di dalam penelitian ini menggunakan data penjualan roti setiap bulan, dari mulai bulan januari sampai desember 2021. catatan penjualan pada setiap bulan tersebut berguna untuk melihat gambaran apakah mengalami kenaikan atau mengalami penurunan. adapun hasil dari penelitian ini yaitu terciptanya sistem yang sudah terkomputerisasi dan mampu menghasilkan angka perkiraan dalam memprediksi penjualan untuk bulan berikutnya. sehingga mempermudah dalam mengetahui berapa banyak roti yang akan terjual dan mempertimbangkan stok barang dan berapa banyak yang akan diproduksi pada bulan berikutnya sehingga tidak mengalami kekurangan ataupun kelebihan stok roti. hasil dari prediksi penjualan selama 12 bulan pada tahun 2021, menghasilkan prediksi pada tahun 2022 bulan januari, pada periode ke-13 dengan hasil mad (mean absolute deviation) 40,08% dan tingkat mse (mean squared error) 27,64%. kata kunci: peramalan, prediksi, penjualan roti, trend moment. abstract the second strategy's pattern is a gauging technique for delivering an expected number of future bread supplies so there is no abundance or lack of stock in the upcoming month. information on bread deals is utilized in this concentration consistently from january to december 2021. every month's deals records are valuable for deciding if sales have expanded or diminished. the review's discoveries incorporate the improvement of an electronic framework that can create rough numbers in anticipating bargains for the next month, simplifying it to decide how much bread will be sold while considering the supply of products and how much will be delivered before very long. the following month with the objective that there is no need or overflow of bread stock. the consequences of deals forecasts for a very long time in 2021 produce expectations in january 2022, in the thirteenth period with mad (mean absolute deviation) aftereffects of 40.08% and mse (mean squared error) paces of 27.64%. keywords: forecasting, prediction, bread sales, trend moment. introduction one methodology in computerized reasoning that can be used for expectation is the pattern second strategy (trend et al., 2021). determining procedures with the pattern second is utilized to determine the number of future sales using sales data for one year or equal to 12 months (yulian, anggraeni, & aini, 2020). the trend moment utilizes quantifiable, numerical assessment procedures to track down the limit of a straight line rather than a turbulent line moulded by ongoing corporate information (andriano frans, orisa, & adi wibowo, 2020). estimating is the work and investigation of expecting future open doors (sohrabpour et al., 2021). a production head makes bread production data per month manually and then submitted to the admin section for approval by the manager. then after it is approved, the admin section will print it. after the bread production data is published, the production head will distribute it to the respective section heads. the month-to-month bread creation information utilized as a source of perspective only mailto:siregarwahyuni834@gmail.com1* mailto:azsyra@gmail.com mailto:ir.harahapma@gmail.com p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i2.349 jurnal riset informatika vol. 4, no. 2 march 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 166 uses uncertain estimates or just guessing, and the process of calculating the data on the amount of bread per month is still manual and does not use a computerized system. in this condition, the company will suffer losses (sutriadi, 2021). in determining a forecast, it is better to use specific forecasting methods so that the influence of subjective elements in choosing a forecasting decision. many forecasting methods can be utilized to decide figures, one of which is the trend moment strategy (iqbal & nugroho, 2021). in general, the problem of lack of stock of goods often arises in the trading business sector where calculations or estimates that are still being carried out do not use forecasting methods, so actions without planning are considered ineffective, difficulties in predicting the stock that must be prepared for businesses engaged in that field. the mining sector often overwhelms corporate actors if an order is not available with all the demands, which can threaten business actors. (heriansa & supratman, 2021). an improvement that will by and large form (create) or (decline) over the long haul is acquired from ordinary changes over the long haul, and the worth is exceptionally level or (smooth). at last, a period series is said to have an example assuming its not unexpected worth changes after some time, with the goal that it very well may be depended on to increment or diminish over the period for an optimal gauge. the powers that can impact designs are populace change, cost, advancement, and convenience (konsumsi et al., 2021). the structure comes from latin (systema), and greek (sustema) is a unit that includes parts associated together to work with the movement of information, matter, and energy. this term is routinely used to portray the presence of components that communicate with one another in another sense. the framework is characterized as an assortment or set of features, parts, or factors that are coordinated, associated, related to one another generally, a framework is a bunch of substances (equipment, brainware, programming) that interface, participate and team up to accomplish specific objectives (tahmasebi, borin, jatowt, xu, & hengchen, 2021). a framework is many interrelated parts that cooperate to accomplish some objective. moreover, one more comprehension of the framework comprises components and information (input), (handling), and result (yield) accordingly, in a straightforward framework can be deciphered as an assortment or set of components or components that work together and are coordinated. what's more, rely upon one another. the framework is intended to improve or upgrade data handling (sudiatmo, 2021). from the data on the number of bread sales for 12 months starting from january to september in 2021, then with the trend moment prediction of the optimal sales of bread production in hoya for january to december 2021 can be seen in figure 1. figure 1. bread sales data based on the sales data table above, for 12 months, the number of sales in january-december 2021 has a monthly recap from the sales results will be analyzed appropriately to predict future sales to increase profits and minimize losses or production shortages due to lack of forecasting or preparation of goods for the next month. in deciding on a check, it should be tackled utilizing specific assessment strategies so the effect of theoretical parts in determining a decision of a review can be avoided by the different estimation procedures that can be used to select, one of which is the pattern second technique. research methods research framework prepare for this research, and it is necessary to have a clear research framework structure in stages. the system is the means that will be taken in taking care of the issue, so the last objective in anticipating the deals of hoya can be executed. the exploration structure utilized is: there should be a defined course of action for arranging this exploration to evaluate the stages' architecture. the system is the means that will be done in settling the issue, with the goal that the last objective in foreseeing the offer of hoya can be executed. the exploration system utilized is seen in figure 2. jan febr mare apri mai juni juli agus sep okto nove dese total roti-1000 blueberry 5500 6500 4500 5000 2300 4400 3200 6500 3200 2000 4500 3200 50800 roti-1000 coklat 6800 5200 5000 4500 7000 6500 2000 5000 5500 7000 4500 6500 65500 roti-1000 durian 4000 5500 4500 8000 5600 2800 3900 4800 6000 3500 9000 4500 62100 roti-1000 kelapa 4000 3500 4000 2500 2500 3000 3500 4800 2800 4000 3900 3500 42000 roti-1000 pandan 4800 2000 5500 6800 4800 3000 3000 5500 4200 3600 1200 4800 49200 roti-1000 mocca 1500 5900 4500 3000 3000 3300 5600 2800 5900 3200 2000 2500 43200 roti-1000 srikaya 3200 3300 4000 2000 3300 1500 4000 3500 4000 3800 1800 3000 37400 roti-1000 strawberry 5200 4000 3500 3000 4700 1800 3600 4500 5500 4000 3500 1200 44500 roti isi 8 manis kosong 800 650 480 880 500 500 800 680 580 700 550 400 7520 roti tawar tawar 1500 950 1500 900 1500 1500 1500 950 950 880 800 150 13080 roti kasur kasur mises 700 700 700 600 650 500 500 650 650 700 700 700 7750 roti sobek sobek coklat 500 500 500 500 400 400 350 400 400 350 350 350 5000 penjualan roti bulan januari desember 2021 jumlah penjualan/bulan nama jenis jurnal riset informatika vol. 4, no. 2. march 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i2.349 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 167 figure 2. research framework forecasting systems determining frameworks are a significant device for settling on informed business choices. despite organization size and profile, estimating assists authoritative administration by demonstrating assumptions in procedures fundamental exchanging presumptions exchanging or purchaser conduct. estimating is a significant resource yet requires extraordinary abilities and the correct information. a method for forming informed expectations that use factual knowledge to determine future heading patterns. businesses use gauging for various purposes, including forecasting future expenditures and selecting how to allocate their spending plans. method trend moment pattern second is a development that will, in general, build (growth) or decline (decrease) in the long haul acquired from the average change after some time, and the worth is very level or (smooth). a period series is said to have a pattern assuming its regular worth changes every once in a while, so it is customary to increment or decline during the period for the ideal conjecture. the powers that can impact patterns are changes in the populace, costs, innovation, and usefulness. the second pattern is one of the strategies in estimating, which has one advantage: how to know the projected benefit and loss of deals of an object of merchandise that will happen in the next year (ilyas, marisa, & purnomo, 2018). the trend moment uses mathematical and statistical calculations to determine a straight line function such as a line dotted formed by a company's historical data. only in this way can the influence factors be avoided. the trend moment method is a technical pattern that varies from strategies, determining that information x verifiable should even be odd or even because the worth of x generally begins with 0 request first the design. the system has a blend of measurable as examination techniques, practices, and time. in utilizing the pattern technique, this should be possible utilizing the authentic information of the variable while the recipe is used to plan. condition 1 is used to ascertain the pattern or change in esteem. the condition is used to work out the incline or coefficient of a trend line. condition 3 is utilized to work out the consistent (fernández-naranjo et al., 2021). procedure there is a mix of factual investigation right now as pattern examination and second techniques. in the use of the pattern second strategy, it tends to be finished utilizing chronicled information from one variable, while the recipe utilized in the arrangement of the pattern condition method with the moment method is as follows, description: y = value to be predicted. a = constant number. b = slope or coefficient of inclination of the trend line. x = time index, starting from 0, 1, 2, and so on. to find the values of a and b from the above formula, you can use the substitution and elimination method mathematically, namely: description: y = total sales data x = total time xy = total sales data times time n = total data after getting the value from the forecast obtained from the aftereffects of anticipating the pattern, the second strategy will be corrected aided by the consequences of estimating with the pattern second technique will be adjusted again against the effect of using seasonal sales. the calculation of the seasonal sales index is: to get the final forecast results after being influenced by the sales index, the following calculation will be used: y* = sales index × y p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i2.349 jurnal riset informatika vol. 4, no. 2 march 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 168 where: y* = the forecast results using the trend moment method are influenced by the season index. y* = prediction results using the trending moment. the accuracy of the forecasting measurement results measures the error level of the difference between the forecasting results and the actual demand. three commonly used steps are referred to in (yulian et al., 2020), namely: 1. average absolute deviation (mean absolute deviation = mad) mean absolute deviation (mad) is a method for testing or evaluating forecasting methods that use the total number of errors. mad is the first stage of the overall model estimation error. the formula used to calculate mad is: mad = σ(absolut dari errors) n .............................................. (1) where: xt = actual demand in t-period. ft = forecasting demand in period t. n = number of forecasting periods involved. 2. msemean square error (mse) is a method with another technique to test the error rate of the forecasting method. each error is squared. this approach technique determines the significant forecast error due to the squared error. mse is the second way to measure the magnitude of the overall forecast error. mse is the average squared differences between the predicted and actual values. the formula used to calculate mse is: mse = σ(xt − ft)² n where: xt = actual demand in t-period. f = forecasting demand in period t. n = number of forecasting periods involved. 3. average absolute percentage error (mean absolute percentage error = mape) mean absolute percentage error (mape) measures the error in the forecasting method with the absolute error technique in each period divided by the real observed value for that period. then the result is calculated as the average value of the fundamental percentage error. mape is an error test that looks for the percentage difference between the actual and estimated data. the formula used to calculate mape is: mape = (100/n) xt ft/at where: xt = actual demand in t-period. ft = forecast of demand (forecast) in period-t. n = number of forecasting periods involved. bread sales prediction the forecast is a course of deliberately assessing something probably going to occur later on in light of various data, with the goal that blunders are limited. while the strategy used to quantify a variable in what's to come depends on instinctual reflection from the past time (iqbal & nugroho, 2021). 1. emotional estimation depends on the individual's instincts that shape it. 2. forecasting objective will anticipate depending on important information in the past by utilizing procedures and strategies in checking information (sari, 2017). 3. long-term guess. 4. medium-term guess. 5. provisional estimates. system development live cycle (sdlc) as per krismiaji, sdlc (systems development life cycle) is one of the most widely recognized when a new evolution is completed by experts and software engineers to fabricate data frameworks. this is an image of sdlc (muhammad & raharja, 2022). sdlc (systems development life cycle) is software design, processes development, and trying. this technique depicts the general programming advancement cycle to create quality programming and measure up to clients' assumptions. (hidayat, 2021). system analysis and planning aids. there must be a system design tool that the author has implemented to achieve optimal analysis results in designing information systems. the creator's information system design tools are uml (unified modeling language), movement charts, class graphs, arrangement outlines, use case graphs, and flowcharts. jurnal riset informatika vol. 4, no. 2. march 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i2.349 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 169 figure 3. unified modeling language figure 3 explains several activities that run this system, namely the login process, item data, sales data, transaction data, calculate predictions, and sales transactions to predict sales. a. scenario use case login name use case : login actor : admin purpose : gaining access to use the system description : use case is used for the login process b. scenario use case goods data name use : goods data actor : admin purpose : entering goods data and attributes predicting sales description : admin uses this use case to input goods data and goods attribute data for the process of predicting sales. c. scenario use case sales data name use : sales data actor : admin purpose : enter sales data and predict sales attributes. description : the admin uses the case to input sales data and sales data attributes to predict sales. d. scenarios use case transaction data name use case : transaction data actor : admin purpose : entering transaction data and attributes predicting sales description : case is used by admin to input data and attributes of transaction data to predict sales. e. scenario use case data calculate prediction name use case : prediction count data actor : admin purpose : entering predictive count data and predicting sales attribute description : case is used by admin to input predictive count data and attribute data for the sales predicting process. uml (unified modeling language) is a visual language for displaying and imparting a framework by utilizing graphs and supporting texts that function to perform modelling. uml (unified modeling language) can picture, characterize, develop, and record a product's concentrated framework's antiquities (abdalazeim and meziane, 2021). p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i2.349 jurnal riset informatika vol. 4, no. 2 march 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 170 results and discussion this stage is the stage for analyzing the data needed in system design, as for the data required for input, namely the data on the number of sales of bread each week, even though production is weekly, but the stock carried out by the hoya factory is monthly, so it is done sales predictions perpetual, as for the number of sales of bread for a week, among others: table 1. sales data month weekly sales october 9625 november 9675 december 9670 january 9420 february 9062 march 7300 april 7987 mey 10020 june 9920 july 8432 agusty 8200 september 7700 analysis of the calculation process of the trend moment method the second strategy's pattern is one of the techniques utilized in determining deals. in making deals gauging utilizing the pattern second strategy, we take the example of bread forecasting using sales data for the last year, namely sales data for 12 months in 2021 from january to december. the calculation should be possible with the accompanying advances: 1. calculating the total sales data (y) in 2021 for 12 months which we call y. y = 428050. 2. determine the value of the parameter (y), where (x) is a time index starting from zero (0), so the sum of the time index (∑ x) is 66 3. determine the value (xy) and x², step. it is necessary to determine the value of "a" and "b" used in the trend moment equation. 4. determining the value (xy) is done by multiplying the historical data (y) and the time index (x). then xy = 2280170 5. the subsequent stage is to decide the worth of x² by squaring the time index (x). x² is 506 6. the results of calculating the values of y, x, xy, x² can be seen in table 4.2, entering the step of determining the importance of "a" and "b" in the following table. table 2. criteria month year sales x x² x*y october 2021 38500 0 0 38500 november 2021 38700 1 1 38700 december 2021 38680 2 4 77360 january 2021 37680 3 9 113040 february 2021 36250 4 16 145000 march 2021 29200 5 25 146000 april 2021 31950 6 36 191700 mey 2021 40080 7 49 280560 june 2021 39680 8 64 317440 july 2021 33730 9 81 303570 agusty 2021 32800 10 100 328000 september 2021 30800 11 121 338800 total 428050 66 506 2280170 1. the formula used in the preparation of this method. to find the values of a and b from the above formula, use a mathematical way with the solution using the substitution method and the elimination. the equations are. based on the data in calculation of trend moment, using the following equation: multiplied elimination y = na + b.∑ x 428050 = 12. a + b. 66 x 66 428050 = 12 a + 66 b x 12 xy = a. x + b. x² 2280170 = a. 66 + b.506 2280170 = 66 a + 506 b solution: method substitution and elimination: 28251300 = 428458 a + 396 b 27362040 = 428458 a + 27363 b 889260 = 26967 b b = 889260/26967 b = 32,97585 the equation describes the elimination to get value b. it is known that y = 428050, then n is the number of sales data, namely 12 data, and ex = 66 of the total number of time indexes. likewise with the value of y xy = 2280170 which is the sum of the sales data times the time index. after knowing the values of the equations, then the elimination by multiplying 66 in equation one and multiplying by 12 in the second equation. the result of the elimination is to get a b value of 32,97585, which can then be used to obtain the a value with equation one changing the b value to 32,97585 as follows: y = na + b.∑x 428050 = 12 a + 66 b 428050 = 12 a + 66 (32,97585) 428050 = 12 a + 105.84 12 a = 1176.40 a = 98.03 jurnal riset informatika vol. 4, no. 2. march 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i2.349 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 171 2. after the values of a and b are known, the next step is to enter the process of determining the value of y or trend with the equation: y = a + bx. in the equation below, the sales forecasting calculation process will be carried out in januarydecember 2021 using the results of previous calculations. it is known that the value of a=98.03 and b=32.97585, and the value of x=25 (september), which is the time index. y = a + bx y = 98.03+ 32.97585 (x) y = 98.03+ 32.97585 (25) y = 98.03+ 824,39625 y = 922.42 then the forecasting results for january 2022 will increase by 922.42. 3. calculate errors using the mse (mean squared error) method. the actual data in january 2022 was a 922.42 sales increase, then the results of the forecast using the trending moment to get the mse value, the difference between the actual data and the forecast data was calculated, then the results were divided by the existing data and multiplied by 100%. the calculation using mse is as follows: mse = (actual data – forecast data) / actual data| *100% = ((30800 922.42)/30800│* 100% = 0.97005 * 100% = 97.005% where mse is absolute accuracy = 100% error = 100% 97.005% = 2.995% after obtaining the value of the trending moment above, it will be calculated using the season index. based on the season index formula, the following calculation results will be obtained: season index = average demand for a particular month. average demand per month note: average demand for a particular month = 35670.83 average demand per month = 190014,167 season index = 1 after being influenced by the season index, the final forecast's outcomes will use the following calculation: y = season index x y y* = 1068.3 as a result of the sample test stage forecasting, the number of bread sales forecasted in january 2022 was 1068.3 or equivalent to 1068.3. if the amount of bread inventory is less than the forecast number, then hoya's party must re-produce so that there is no shortage of stock of bread to be distributed to consumers algorithm (trend moment) the flowchart in figure 4 describes the flow in the system. this flowchart also understands how the system can direct the system. the following is an explanation: 1. admin and manager start 2. log in to the trend moment application home 3. admin/manager login enter username and password 4. bread sales data recap per month 5. of sales input sales data that you want to forecast 6. input data to be predicted in the next three months 7. conduct three sales forecasts next month 8. see the results of the forecast, then print a report 9. count again if you want to make predictions 10. admin log out when you have finished forecasting sales figure 4. algorithm trend moment where : y = trend value or variable to be predicted a = constant number b = slope of trendline coefficient x = time index (starting from 0.1,2,….n) y = the number of sales data x = the number of time periods xy = the number of sales data multiplied by the time period n = the number of data p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i2.349 jurnal riset informatika vol. 4, no. 2 march 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 172 system result the trend's second strategy to anticipate hoya bread sales consists of displaying the login form, main form, profile form, item data form, sales data form, prediction calculation form, prediction result data form, change password form, and report form. login form display, coming up next is the administrator login structure shown from the trend second strategy to foresee bread sales: figure 5. login form figure 5 shows that structure login is the underlying presentation that seems when the administrator runs the application framework. if you desire to enter the framework, the administrator should enter your username and secret phrase. in this framework, just the administrator approaches privileges to have the option to run the application framework. if successful, you will enter the system, as shown in figures 6, 7, and 8. figure 6. view form main figure 7. prediction calculation results figure 8. prediction result data coming up next, figure 9 is a presentation structure from the use of the trend second to foresee deals of hoya bread: figure 9. sales data report figure 10. prediction result data report jurnal riset informatika vol. 4, no. 2. march 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i2.349 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 173 figure 10 displays the form of the sales prediction data reports the output of the prediction calculations performed by the admin. this report displays the predicted number of future sales based on the acquisition of goods sold from 2019 to 2020. conclusions and suggestions conclusion by predicting bread sales using the trend moment, it is known that the stock of bread that must be provided in january 2022 is 296, with mad (mean absolute deviation) 40.08% and mse (mean squared error) 27.64%. the based forecasting system is designed website where the system can simplify and expedite parties in predicting bread sales for the following month. estimating frameworks can function admirably in giving answers for keeping away from hoarding or overselling bread to be distributed to customers/buyers. this system can be used to make predictions about bread sales. suggestion to improve system performance in the future to be accessed online. users' access rights are still generated, so a more significant difference in access rights is needed. the level of security needs to be increased if the system is online to avoid unauthorized parties' access. the system should be implemented in a local network intranet to improve team performance (teamwork) to complete the design. it can be developed with other linear regression or least square methods. references abdalazeim, a., & meziane, f. (2021). a review of the generation of requirements specification in natural language using objects uml models and domain ontology. procedia cirp, 189(2019), 328–334. https://doi.org/10.1016/j.procs.2021.05.102 andriano frans, j., orisa, m., & adi wibowo, s. (2020). prediksi penjualan kayu lapis di cv diato wood sejahtera dengan metode trend moment berbasis web. jati (jurnal mahasiswa teknik informatika), 4(2), 183– 190. https://doi.org/10.36040/jati.v4i2.2719 fernández-naranjo, r. p., vásconez-gonzález, e., simbaña-rivera, k., gómez-barreno, l., izquierdo-condoy, j. s., cevallos-robalino, d., & ortiz-prado, e. (2021). statistical data driven approach of covid-19 in ecuador: r0 and rt estimation via new method. infectious disease modelling, 6, 232–243. https://doi.org/10.1016/j.idm.2020.12.012 firmansyah, m. a., sasmito, a. p., & zahro, h. z. (2021). aplikasi forecasting penjualan bahan bangunan menggunakan metode trend moment (studi kasus di ud. hasil bumi). jati (jurnal mahasiswa teknik informatika), 5(2), 526–533. retrieved from https://ejournal.itn.ac.id/index.php/jati/arti cle/view/3759 heriansa, k., & supratman, e. (2021). sistem informasi prediksi penjualan pada depot prisma utama menggunakan metode trend moment. bina darma conference on computer science (bdccs), 3(1), 89–97. retrieved from https://conference.binadarma.ac.id/index.ph p/bdccs/article/view/2091 hidayat, d. (2021). e-government integrated eaudit system : design and analysis in the internal audit unit of the indonesian government (apip). jasa (jurnal akuntansi, audit dan sistem informasi akuntansi), 5(1), 37–52. https://doi.org/10.36555/jasa.v5i1.1511 ilyas, i., marisa, f., & purnomo, d. (2018). implementasi metode trend moment (peramalan) mahasiswa baru universitas widyagama malang. jointecs (journal of information technology and computer science), 3(2). https://doi.org/10.31328/jointecs.v3i2.785 iqbal, a., & nugroho, a. c. (2021). penjualan menggunakan pendekatan analisis statistik trend moment ( cv laut selatan jaya ). 1(1), 1–11. konsumsi, f., barang, b., storage, p., dengan, h., autoregressive, m., & average, m. (2021). forecasting konsumsi barang barang pada storage moving average. 03. muhammad, r. r., & raharja, s. (2022). the implementation of ramit tech robot accountant to impove the efficiency of bookkeeping and financial reporting in …. diponegoro journal of …, 10, 1–15. sohrabpour, v., oghazi, p., toorajipour, r., & nazarpour, a. (2021). export sales forecasting using artificial intelligence. technological forecasting and social change, 163(november 2020), 120480. https://doi.org/10.1016/j.techfore.2020.120 480 sudiatmo, a. (2021). sistem informasi manajemen gudang obat menggunakan database dan form oracle di pt. leuwitex. naratif jurnal nasional riset aplikasi dan teknik p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i2.349 jurnal riset informatika vol. 4, no. 2 march 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 174 informatika, 3(01), 64–70. https://doi.org/10.53580/naratif.v3i01.122 sutriadi. (2021). perancangan aplikasi prediksi produksi roti menggunakan metode trend moment. journal of information system research, 2(2), 187–192. tahmasebi, n., borin, l., jatowt, a., xu, y., & hengchen, s. (2021). computational approaches to semantic change. norderstedt: bod – books on demand. yulian, i., anggraeni, d. s., & aini, q. (2020). penerapan metode trend moment dalam forecasting penjualan produk cv. rabbani asyisa. jurteksi (jurnal teknologi dan sistem informasi), 6(2), 193–200. jurnal riset informatika vol. 5, no. 2 march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.340 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 219 the work is distributed under the creative commons attribution-noncommercial 4.0 international license mobile based student presence system using haar cascade and eigenface facial recognition methods suherman achmad1, nazori a z2, achmad solichin3 faculty of information technology universitas budi luhur jakarta, indonesia 1)1811600202@student.budiluhur.ac.id, 2)nazori@budiluhur.ac.id, 3)achmad.solichin@budiluhur.ac.id (*) corresponding author abstract using biometric technology for recording attendance in the school environment is still not widely done by researchers. in this study, a solution was proposed to the problems that occurred in the school environment where parents/guardians could not monitor the presence of their children in school. the solution offered is a student attendance recording system based on facial recognition algorithms (face recognition). the built system can record the presence of students when entering the classroom and when returning home or out of class. proposed methods for identifying student attendance are the haar cascade and eigenface algorithms. the system can also provide notice of attendance or absence of students in real time to parents/guardians via email that has been registered. based on the test results, the method can provide accurate and fast facial recognition results. the presence system developed based on mobile can recognize faces up to a distance of 200-300 cm with low and moderate light intensity. keywords: presence system, haar cascade classifier, eigenface abstrak pemanfaatan teknologi biometrik untuk pencatatan kehadiran di lingkungan sekolah masih belum banyak dilakukan oleh peneliti sebelumnya. dalam penelitian ini, diusulkan sebuah solusi atas permasalahan yang terjadi di lingkungan sekolah yang mana orang tua/wali tidak dapat melakukan monitoring terhadap kehadiran anaknya di sekolah. solusi yang ditawarkan berupa sistem pencatatan kehadiran siswa berbasis algoritma pengenalan wajah (face recognition). sistem yang dibangun dapat mencatat kehadiran siswa saat masuk ke kelas, maupun saat pulang atau keluar dari kelas. metode yang diusulkan untuk mengidentifikasi kehadiran siswa adalah algoritma haar cascade dan eigenface. sistem juga dapat memberikan pemberitahuan kehadiran maupun ketidakhadiran siswa secara realtime ke orang tua/wali melalui email yang telah terdaftar. berdasarkan hasil pengujian, metode tersebut mampu memberikan hasil pengenalan wajah yang akurat dan cepat. sistem presensi yang dikembangkan berbasis mobile mampu mengenali wajah hingga jarak 200-300 cm dengan intensitas cahaya rendah dan sedang. kata kunci: sistem presensi, haar cascade classifier, eigenface introduction the speed of access to information is currently the most fundamental need for managing and transferring data. the speed of access to information is currently the most fundamental need for managing and transferring data. existing and rapidly developing technology is now expected to build a system to provide solutions for disciplining students and providing benefits for schools. a series of evaluations conducted by administrative bureaus and administrative staff found several weaknesses related to the presence of learners. in this case, the system of recording attendance in schools is still manually done with a signature recording system, which is considered easy to manipulate, so the lack of information received by parents/guardians on the presence of their children in school. therefore, a computerized system can manage information quickly and accurately to help smooth activity and become one of the influential factors in improving the discipline of learners. facial recognition technology is growing and widely used for the identification process. facial recognition is one of the technologies that has now been applied to many applications in the field of presence (rijal & ariefianto, 2008; satwikayana et al., 2021; septyanto et al., 2020). among others, supporting the identification system in schools to become a tool to find out data collection such as names, nis, and majors, in addition to facial recognition conditions http://creativecommons.org/licenses/by-nc/4.0/ mailto:1811600202@student.budiluhur.ac.id1 mailto:achmad.solichin@budiluhur.ac.id3 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.340 jurnal riset informatika vol. 5, no. 2 march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 220 the work is distributed under the creative commons attribution-noncommercial 4.0 international license that are input (input) system, is also a significant problem. related to this study, there are several similar previous studies. simaremare and kurniawan compare lbph and eigenface for recognizing three faces at once in a real-time situation (simaremare & kurniawan, 2016). the researchers tested the accuracy of both methods in recognizing three faces at once. the test was conducted on 300 samples of facial imagery with four lighting conditions, namely indoor and outdoor daylight. the results of this test showed that the accuracy rate of lbph is better than eigenface, with the average accuracy of lbph being 93.54% and eigenface being 63.54%. the false rejection rate (frr) in the lbph method is lower than that of the eigenface method, with the average frr lbph being 0.24% and frr eigenface being 6.38%. this study only compares the two methods and is not a merger of the two methods, so the results obtained are not maximal. another researcher compared eigenface and fisherface methods for face recognition (firasari et al., 2022). then, septyanto et al. proposed a facial recognition presence application using haar cascade algorithm (septyanto et al., 2020). this test was conducted on 13 starcross store employees, each conducting 30 presidency trials. successful absentees had success scores of 87%, and 13% failed from 390 attempts. some absenteeism that fails occurs because several factors can affect absenteeism, such as high lighting, jacked head position, and the use of attributes (hats, glasses, etc.). the result of this study is that the system can identify faces with a reasonable degree of accuracy, but has limitations in knowing the face if the lack of lighting, conversely if the lighting is high or too bright, then the face cannot be identified, for it requires additional methods to overcome such weaknesses. many studies have also used haar cascade (anarki et al., 2021; behera, 2020; sulistiyo et al., 2014). in another research, the fisherface method supports the academic system (amri & rahmata, 2016; firasari et al., 2022). the system is built using primary visual programming languages and databases using mysql. in this test, the results obtained differed from one face to another, and the results came out in the name of the class of study program majors. facial recognition processing in absenteeism can work well if the data in the database is not too much and at the same lighting, so the level of face search approaching in the database can be better. based on testing, the percentage of facial recognition success reaches 80%. the disadvantage of this panel is that the detection results are sometimes not maximal if the distance of the face with the webcam is far and the position is not by the webcam. another weakness is that the system cannot identify the face if the light is too bright or dark. mobile-based face recognition technology is a rapidly developing field with significant implications for security, law enforcement, and mobile applications (arisandi et al., 2018; samet & tanriverdi, 2017). researchers are currently investigating the accuracy and performance of mobile-based face recognition systems compared to traditional desktop-based systems (abuzar et al., 2020; alburaiki et al., 2021; rodavia et al., 2017). there is growing concern about the privacy implications of mobile-based face recognition and how it can be used to identify individuals without their consent or knowledge (ahmed khan et al., 2021). studies are being conducted to explore ways to improve the accuracy and performance of mobile-based face recognition systems. moreover, researchers are also studying the performance of mobile-based face recognition systems on diverse faces, including different races, ages, and genders. studies have found that some systems perform better than others on diverse faces and that there are significant disparities in performance depending on the demographic group. overall, ongoing studies in mobile-based face recognition focus on developing new algorithms and techniques to improve the technology's accuracy and performance, addressing privacy concerns, and improving performance on diverse faces. this android-based attendance identification system aims to comfort parents/guardians, improve student discipline, and connect information online. the formula of the problem in this study is how the process of identifying the presence of learners entering and exiting the classroom can be detected early, accurately, and on target. based on previous research mentioned above, it is necessary to build further research by combining two different methods to produce a model of the student presence system using android-based facial recognition patterns (samet & tanriverdi, 2017). research methodology this research method is used as a guideline for researchers to implement research so that the results achieved do not deviate from the goals set. in this case, the stages of research conducted are as follows: data collection stages http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 5, no. 2 march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.340 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 221 the work is distributed under the creative commons attribution-noncommercial 4.0 international license the data collection stages in this study are as follows: 1. literature studies or study review. this technique begins with collecting data by studying the necessary materials, concepts, and theories from several written sources (books, magazines, tutorials, etc.), and the necessary understanding will be used as a reference for the preparation of research. 2. direct observation. this technique will be held direct observation of the main symptoms of what is being studied. observations made in actual situations are necessary for particular purposes. 3. designing student presence identification applications to support the proposed student presence identification system to provide information to parents/guardians via email using android-based facial recognition. 4. prepare sample data as input in research. system development stages the stages of application system development of student presence using the waterfall model, where the model consists of analysis, design, programming (coding), testing, and maintenance. the stages of the process use the waterfall model as follows: 1. analysis at the analysis stage, collecting needs is complete, observed, defined in detail, and presented as a specification system. 2. design at this stage, the system design process is carried out by requirement on hardware and software to form the overall system architecture. software design will identify the basic abstraction of software systems and their relationships. 3. coding at the coding stage, software design is realized as a program. furthermore, the program that has been realized will be tested by verifying whether each unit meets its initial specifications. 4. testing at this stage, the program that has been tested is confirmed to have fulfilled the software. requirement. when fulfilled, the user can implement and use the software system. 5. maintenance this stage is the maintenance part of the system, which carries out the program's operation, such as changes or improvements of the user's needs due to adaptation to the actual situation. the waterfall model is seen in the image below. design and implementation 1. system planning starting from entering the classroom and then doing the presence automatically to enter as a student. an image of the activity diagram identification of the student's presence can be seen in figure 1. figure 1. activity diagram identifies student presence the flow activity diagram in figure 1 is described as follows: a. learners perform presence activities. if true, then the identification process of the presence is successful; if wrong, then facial matching is not successfully identified, and learners are asked to return to presence. b. after successful identification, the student's face will be read on the system. c. next, the system will store the student's face on the server. 2. design of functions and infrastructure the infrastructure on the system will be built based on mutually agreed needs; outside of unified modeling language (uml) design, there is also application design for the user interface. this system will be described as infrastructurally by students connected to the presence system server and parents/guardians as receiving information. to be more clear can be seen in figure 2 system network infrastructure. figure 2. design function and infrastructure http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.340 jurnal riset informatika vol. 5, no. 2 march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 222 the work is distributed under the creative commons attribution-noncommercial 4.0 international license the flow of the function and system infrastructure design in figure 2 is the stage in running the presence system. here is an explanation of the flow of system and infrastructure function design that can be done, including: a) the first step, learners make a presence using facial recognition through a webcam or smartphone camera b) step two, the system connected to the internet will verify the face of the learner and whether the face of the participant can perform facial matching on the system. c) in step three, the learner's facial data will be stored on the system storage media, where nis, name, class, and email parents/guardians are stored using facial recognition when making a facial list. d) step four, student data stored on storage media will automatically connect to the cloud or internet network. e) in the last step, parents will receive a message about their child's presence through an online email address. 3. system component each component in figure 2 has different functions. the function of each component will be explained as follows: a. the webcam component is hardware that serves as a tool to take the image of the face of learners. this webcam will be a facial matching tool when conducting presence checks and taking images of the learner's face. b. the interface component is software on a desktop computer that serves as a tool to design and create a system that can connect with the web to take images of students' faces. smartphone components are multi-function devices used to install android-based presence applications so that applications can be used easily and quickly. c. the facial image component performs facial recognition mechanisms with the help of a webcam or smartphone camera, and this face capture is helpful for storage in the database and as input at the time of the presence. d. internet components function as an intermediary between the user and the system. the design is simple to make it easier for users to access information. facial steps with haar algorithm the process of facial shortness is needed in several stages. in the haar method, the process of facial shortness looks as in figure 3. figure 3. facial shortness process from figure 3 above, it is determined in advance whether the area is detected whether there is an object or not. the next process is to detect objects using haar cascade classifier, with steps to be described as follows. a. calculate feature samples with the haar algorithm. figure 4. rectangular feature haar cascade figure 4 is the result of camera detection, where there is a blue box which is a frame with values y = 480 and x = 640. in the blue box is the exposed face. figure 5 is the result of facial detection that has been recorded, so it has a size of 240 x 320. an original image converted to grayscale is shown in figure 9 figure 5. face detection with haar-like feature figure 6. the difference in the original image with grayscale http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 5, no. 2 march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.340 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 223 the work is distributed under the creative commons attribution-noncommercial 4.0 international license from the results of figure 6, it will be converted into matrix values so that haar-like squares in the input image are obtained as follows in table 1. table 1. square haar-like image input 46 45 44 45 44 44 46 44 41 43 44 44 46 43 40 40 43 44 45 40 40 40 44 45 45 41 39 40 44 45 46 41 40 41 45 46 the process of calculating the dark value and the light value, i.e. feature value = number of pixel values (dark value) – number of pixel values (light value), thus generating the feature value haar = 213. to calculate the haar value feature using the summed area table, known as the integral image, first formed an integral value matrix image. here is the matrix of integral values obtained from the input image, as seen in table 2. table 2. the integral value of the image from the input image 46 91 135 180 224 268 92 181 266 354 442 530 138 270 395 523 654 786 183 355 520 688 863 1040 228 441 645 853 1072 1294 274 528 772 1021 1285 1553 the haar feature value of the matrix area above is calculated using the following formula: i(x',y')=s(a)+s(d)+s(b)-s(c). so that the haar value feature is obtained = (528+46-274-91) (772+91-528135) + (1021+135-772-180) = 213 the haar = 213 value feature is then compared to the threshold determined as object detection. if haar's feature value is higher than the threshold, it can be said that the area meets the haar filter. this process will continue to retest the area with other haar filters, and if all haar filters are met, then it is said that there are observed objects in that area. results and discussions facial matching steps with eigenface algorithm facial recognition algorithms begin by creating a matrix of columns from faces inputted into a database. a column matrix's average vector image (mean) is calculated by dividing it by the number of images stored in the database. in the eigenface algorithm, the first step before determining the eigenface value first arranges a flat vector image matrix. the process flow can be seen in figure 7. figure 7. facial recognition process facial recognition algorithms are performed through several stages. 1) the first step is arranging an s matrix set of all training images. here is a training image of two facial data, as seen in figure 8 and figure 9, each of which has a matrix value. 𝐶1 = [ 1 0 2 1 2 1 0 2 2 ] figure 8. training image image of face image 1 𝐶1 = [ 1 1 2 0 2 1 1 2 4 ] figure 9. training image image http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.340 jurnal riset informatika vol. 5, no. 2 march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 224 the work is distributed under the creative commons attribution-noncommercial 4.0 international license 2) the second step is arranging the entire training image into one matrix. [ 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 ] → [𝑎 𝑏 𝑐 𝑥 𝑦 𝑧] 𝐶1 = [ 1 0 2 0 2 1 0 2 2 ] → [1 0 2 0 2 1 0 2 2] 𝐶2 = [ 1 2 2 0 2 1 0 2 4 ] → [1 1 2 0 2 1 0 2 4] 3) here is a count of flat vector averages. sum up the entire row from the flat vector obtained so that a matrix measuring 1 x (h x w) will be obtained. 𝐶1 + 𝐶2 = [ 1 0 2 0 2 1 0 2 2 1 1 2 0 2 1 0 2 4 ] 𝐶1 + 𝐶2 = [2 1 4 0 4 2 0 4 6] next, divide the matrix result by the number of images n to get the flat vector average value. [ 2 1 4 0 4 2 0 4 6 2 ] = [1 1 2 0 2 1 0 2 3] 4) the following flat vector average value will be used to calculate the eigenface value of the facial image in the training image. using the flat vector average value above, the eigenface can be calculated. how to reduce the rows on the flat vector matrix with flat vector average values. if the result is below zero, the value is replaced with zero. 𝐶1 = 1 0 2 0 2 1 0 2 2 1 1 2 0 2 1 0 2 3 0 0 0 0 0 0 0 0 0 𝐶1 = 1 1 2 0 2 1 0 2 3 1 1 2 0 2 1 0 2 4 0 0 0 0 0 1 0 0 1 5) here is the identified process. the identification process calculates the eigenface value of the test face matrix to determine the eigenface and flat vector values. the results can be seen in figure 10.. 𝐶𝑡 = [ 2 2 4 1 2 2 2 4 4 ] figure 10. test image (testface) 𝐶𝑡 = [ 2 2 4 1 2 2 2 4 4 ] → [2 2 4 1 2 2 2 4 4] 𝐶𝑡 = [ 2 2 4 1 2 2 2 4 4 1 1 2 1 0 0 0 2 3 1 1 2 1 0 2 2 2 1 ] eigenface value of test image 𝐶𝑡 = [1 1 2 1 0 2 2 2 1] 6) once the eigenface value is obtained, it can be identified by determining the shortest distance with the eigenface of the eigenvector training image. here determines the smallest eigenface value of the two image faces that are already known eigenface values. the results can be calculated as follows. eigenface value c1 = (0 0 0 0 0 0 0 0 0 0 0) 𝐶1 = 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 2 1 −1 −1 −2 −1 0 −2 −2 −2 −1 c1 = 1+1+2+1+0+2+2+2+1 = 12 eigenface value c2 = (0 0 0 0 0 1 0 0 1) 𝐶1 = 0 0 0 0 0 1 0 0 1 1 1 2 1 0 2 2 2 1 −1 −1 −2 −1 0 −1 −2 −2 0 c2 = 1+1+2+1+0+1+2+2+0 = 10 the smallest eigenface value of the two image faces above obtained from the distance of the image of face one has the smallest value of 10. the identification results concluded that the test face was more similar to face two than face one. application testing once this pretension identification software using facial recognition is built, the next stage is the display trial stage. this trial stage includes testing from the beginning of student data entry to the face-matching process when doing the presence of entry and home. the details will be described as follows. 1. test the app's entry window the use of the application is initiated by the user who must log in first (figure 11), if the login is successful then the user can enter the system. there are menus that can be selected for activities in the http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 5, no. 2 march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.340 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 225 the work is distributed under the creative commons attribution-noncommercial 4.0 international license system according to the desired function (figure 12). figure 11. app login menu view figure 12. app main menu view 2. test the filling of data on the menu of the list of learners. before testing, you can perform the face detection display (figure 13). the detected face will show a blue focus box furthermore after the face is detected, data input on the face list (figure 14). if it has been saved, then if the face is detected, a green focus box will appear with a caption with the name according to the detected face. figure 16 shows the faces stored on list data. figure 13. face detection view figure 14. data input on the face list figure 15. faces of registered learners figure 16. faces stored on list data 3. test the filling of data on the class entry menu. on this menu, students will do the presence of entering the class by using their faces. the step is that the learner faces the application, which is approximately 30cm away, then the face will be detected in the blue box and then face matching, then the face and name of the learner and the duration of the face matching process will be seen on the green box, after which automatically the student data will be stored and sent to the parent/guardian email, like the figure 17, 18, and 19 below. http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.340 jurnal riset informatika vol. 5, no. 2 march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 226 the work is distributed under the creative commons attribution-noncommercial 4.0 international license figure 17. face entry detection figure 18. face entry match figure 19. the process saves incoming data and messages sent to the email 4. test data are filled on the out-of-class menu. in this menu, students will do the presence of exiting the class / going home using the face. the step is that the learner faces the application, which is approximately 30cm away, then the face will be detected in the blue box and then face matching, then the face and name of the learner and the duration of the face matching process will be seen on the green box, after which automatically the student data will be stored and sent to the parent/guardian email, like the figure 20, 21, and 22 below. figure 20. face entry detection figure 21. face entry matc figure 22 process save data home and messages sent to the email 2.1. system testing based on distance and intensity of light. this test intends to determine the objects detected or undetected that can present learners in the classroom by matching faces at different distances/radii and light intensity. here is a test by matching faces at a distance/ radius and intensity of light. figure 23. face matching distance 30cm figure 23 is a facial matching test from 0cm to 30cm with low light intensity. gambar 24. face matching distance 50cm figure 24 is a facial matching test from 0cm to 50cm with low light intensity. figure 25. face matching distance 100cm http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 5, no. 2 march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.340 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 227 the work is distributed under the creative commons attribution-noncommercial 4.0 international license figure 25 is a facial matching test at a distance of 0cm to 100cm with low light intensity. figure 26. face matching distance 150cm figure 26 is a facial matching test from 0cm to 150cm with low light intensity. figure 27. face matching distance 200cm figure 27 is a facial matching test from 0cm to 200cm with low light intensity. figure 28. face matching distance 250cm figure 28 is a facial matching test from 0cm to 250cm with low light intensity. figure 29. 300cm distance face matching figure 29 is a facial matching test from 0cm to 250cm with low light intensity. based on the facematching image that has gone through the application test process, the following summary of the results of the face-matching trial can be seen in table 3 below. table 3. presence test results with distance coverage and light intensity no detection object distance light intensity detecti on 1 figure iv30 0cm until 30cm low detected 2 figure iv31 0cm until 50cm low detected 3 figure iv32 0cm until 100cm low detected 4 figure iv33 0cm until 150cm low detected 5 figure iv34 0cm until 200cm low detected 6 figure iv35 0cm until 250cm low detected 7 figure iv36 0cm until 300cm low detected conclusion as for the conclusion of this study, where applications can be run automatically to read and analyze the presence of learners, applications can be run on android smartphones version 5.0 lollipop, 6.0 marshmallow, 7.0 nougat, 8.0 oreo, 9.0 pie, and android 10, in addition, this study can write the results of detection done either verbose when executed or written in true-false values entered in the processed database. this study has found the results of testing with the merger of two algorithms or methods that can recognize faces up to a distance of 300cm and obtain an average percentage of facial recognition system success reaches 90%, so that the application in this study can provide information to parents/guardians quickly, precisely and accurately. this research still has some limitations. therefore it still needs to be developed to increase effectiveness, efficiency, and the addition of features to support the right target presence. for that, it is necessary to develop subsequent systems, such as software and hardware, that must be met for this application to work correctly. this study is limited to locating learners and needs to be developed before it can be applied to other fields. references abuzar, m., ahmad, a. bin, & ahmad, a. a. bin. (2020). a survey on student attendance system using face recognition. icrito 2020 ieee 8th international conference on reliability, infocom technologies and optimization (trends and future directions), http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.340 jurnal riset informatika vol. 5, no. 2 march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 228 the work is distributed under the creative commons attribution-noncommercial 4.0 international license 1252–1257. https://doi.org/10.1109/icrito48877.2020. 9197815 ahmed khan, d., rizvi assistant professor, a., & scholar, d. (2021). ai based facial recognition technology and criminal justice: issues and challenges. turkish journal of computer and mathematics education (turcomat), 12(14), 3384–3392. https://www.turcomat.org/index.php/turkbi lmat/article/view/10923 alburaiki, m. s. m., johar, g. m., helmi, r. a. a., & alkawaz, m. h. (2021). mobile based attendance system: face recognition and location detection using machine learning. 2021 ieee 12th control and system graduate research colloquium, icsgrc 2021 proceedings, 177–182. https://doi.org/10.1109/icsgrc53186.2021. 9515221 amri, a., & rahmata, t. (2016). pengenalan wajah menggunakan metode fisherface untuk mendukung sistem akademik. proceeding seminar nasional ilmu komputer (seminasik), 1(1), 39–43. http://jurnal.umuslim.ac.id/index.php/semin asik/article/view/474 anarki, g. a., auliasari, k., & orisa, m. (2021). penerapan metode haar cascade pada aplikasi deteksi masker. jati (jurnal mahasiswa teknik informatika), 5(1), 179– 186. https://doi.org/10.36040/jati.v5i1.3214 arisandi, d., syahputra, m. f., putri, i. l., purnamawati, s., rahmat, r. f., & sari, p. p. (2018). a real time mobile-based face recognition with fisherface methods. journal of physics: conference series, 978(1), 012038. https://doi.org/10.1088/17426596/978/1/012038 behera, g. s. (2020, december 24). face detection with haar cascade. towards data science. https://towardsdatascience.com/facedetection-with-haar-cascade-727f68dafd08 firasari, e., cahyanti, f. l. d., sarasati, f., & widiastuti, w. (2022). comparison of eigenface and fisherface methods for face recognition. techno nusa mandiri, 19(2), 125– 130. https://doi.org/10.33480/techno.v19i2.34 70 rijal, y., & ariefianto, r. d. (2008). deteksi wajah berbasis segmentasi model warna menggunakan template matching pada objek bergerak. seminar nasional aplikasi teknologi informasi (snati), 1907–5022. https://journal.uii.ac.id/snati/article/view/8 91 rodavia, m. r. d., bernaldez, o., & ballita, m. (2017). web and mobile based facial recognition security system using eigenfaces algorithm. proceedings of 2016 ieee international conference on teaching, assessment and learning for engineering, tale 2016, 86–92. https://doi.org/10.1109/tale.2016.785177 6 samet, r., & tanriverdi, m. (2017). face recognitionbased mobile automatic classroom attendance management system. proceedings 2017 international conference on cyberworlds, cw 2017 in cooperation with: eurographics association international federation for information processing acm siggraph, 2017january, 253–256. https://doi.org/10.1109/cw.2017.34 satwikayana, s., wibowo, s. a., & vendyansyah, n. (2021). sistem presensi mahasiswa otomatis pada zoom meeting menggunakan face recognition dengan metode convulitional neural network berbasis web. jati (jurnal mahasiswa teknik informatika), 5(2), 785– 793. https://doi.org/10.36040/jati.v5i2.3762 septyanto, m. w., sofyan, h., jayadianti, h., simanjuntak, o. s., & dessyanto, b. p. (2020). aplikasi presensi pengenalan wajah dengan menggunakan algoritma haar cascade classifier. telematika : jurnal informatika dan teknologi informasi, 16(2), 87–96. https://doi.org/10.31315/telematika.v16 i2.3182 simaremare, h., & kurniawan, a. (2016). perbandingan akurasi pengenalan wajah menggunakan metode lbph dan eigenface dalam mengenali tiga wajah sekaligus secara real-time. sitekin: jurnal sains, teknologi dan industri, 14(1), 66–71. https://doi.org/10.24014/sitekin.v14i1.27 03 sulistiyo, w., suyanto, b., hestiningsih, i., mardiyono, m., & sukamto, s. (2014). rancang bangun prototipe aplikasi pengenalan wajah untuk sistem absensi alternatif dengan metode haar like feature dan eigenface. jtet (jurnal teknik elektro terapan), 3(2), 93–98. https://doi.org/10.32497/jtet.v3i2.180 http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.460 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 139 decision support system for supplier selection on time concept with ahp and saw method warih dwi cahyo-1*), wahyu ari wibowo-2, suwarno-3, rizki ripai-4 1,2,3program studi ilmu komputer, fakultas teknologi informasi, universitas budi luhur, jakarta 1wassreh@gmail.com, 2wahyuariwibowo60@gmail.com, 3suwarmo663@gmail.com 4rekayasa keamanan siber, politeknik piksi input serang rizkiripai@piksiinputserang.ac.id (*) corresponding author abstract seeing the rapid development of global business causes companies to compete as the best to meet global market demands. in the current era of globalization, technological development is beneficial for human life. all human activities today can be done quickly and easily using a computer. decision support system is a computer-based system that assists decision-making in utilizing specific data and models to solve various unstructured problems. decision makers in selecting the best supplier for time concept are still having difficulties, and this is because there are no appropriate criteria and weights. making a decision support system is expected to help solve the problems in time concept. moreover, it can provide benefits or convenience for time concept when selecting the best supplier. the author uses the method of analytical hierarchy process (ahp) and simple additive weighting (saw). according to the system test results, the consistency ratio (cr) calculation value is 0.0752. the comparison assessment is considered consistent if the consistency ratio (cr) value is not greater than 0.1000. so that the comparison of the criteria does not need to be recalculated because it is consistent. keywords: ahp method; saw method; supplier selection; decision support system. abstrak melihat perkembangan global bisnis yang sedemikian cepatnya menyebabkan perusahaan berlombalomba sebagai yang terbaik untuk memenuhi permintaan pasar global. di era globalisasi seperti saat ini teknologi yang sudah berkembang sangat bermanfaat bagi kehidupan manusia. segala macam kegiatan manusia saat ini dapat dikerjakan dengan cepat dan mudah menggunakan komputer. sistem penunjang keputusan adalah suatu sistem berbasis komputer yang ditujukan untuk membantu pengambilan keputusan dalam memanfaatkan data dan model tertentu untuk memecahkan berbagai persoalan yang tidak terstruktur. pengambil keputusan dalam pemilihan supplier terbaik pada time concept masih mengalami kesulitan, hal ini disebabkan karena belum adanya kriteria dan bobot yang tepat. dengan dibuatnya sebuah sistem penunjang keputusan ini diharapkan dapat membantu memecahkan masalah yang ada pada time concept. serta dapat memberikan manfaat atau kemudahan bagi time concept pada saat melakukan pemilihan supplier terbaik. penulis menggunakan metode analytical hierarchy process (ahp) dan simple additive weighting (saw).hasil dari pengujian sistem maka didapatlah nilai perhitungan consistency rati o (cr) yaitu sebesar 0,0752. penilaian perbandingan dikatakan konsisten jika nilai consistency ratio (cr) tidak lebih besar dari 0,1000. sehingga penilaian perbandingan kriteria tidak perlu dilakukan perhitungan ulang karena sudah konsisten kata kunci: metode ahp; metode saw; pemilihan supplier; sistem penunjang keputusan. introduction seeing the rapid development of global business causes companies to compete as the best to meet global market demands. in the current era of globalization, technological development benefits human life. all human activities today can be done quickly and easily using a computer. according to hati and fitri in 2017, supplier selection is one of a company's essential activities because purchasing raw material components represents 40 to 80 percent of the total product cost and impacts https://www.cermati.com/artikel/decision-support-system-dss p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.460 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 140 company performance. companies have different criteria for choosing suppliers as business partners(hati & fitri, 2017) (purwitasari & pribadi, 2015). depending on the company's goals for smooth production and operations. many companies make fatal mistakes in choosing suppliers, resulting in company losses. assessment of suppliers requires various criteria that can describe the supplier's overall performance—the number of suppliers engaged in the sale of watches. the time concept company has several alternative suppliers, each with advantages and disadvantages. this requires foresight from time concept to analyze which supplier is suitable and worthy to be prioritized as a business partner. supplier selection is a long process. first, to evaluate suppliers based on several criteria, such as service, discount, payment duration, delivery time, and delivery amount. at the time of evaluation of supplier selection, trade-offs often occur, such as suppliers who provide fast service but late delivery, which can result in empty watch stocks. the more criteria time concept wants in the supplier selection, the more complicated the problem. therefore, it needs a decision-making technique. so the research can use the ahp method and the saw method to complete the decision support system that will be made, where the value of the weighting of the criteria for the ahp method will be the input for the simple additive weight (saw) method in ranking the best supplier selection alternatives. researchers also attach previous research (bagaspati & irawan, 2020). the decision support system uses the ahp and smart methods to select the best supplier. the results of research at pt. muria karya sentosa produces a weight of each criterion, namely quality criteria with a weight of 36.67%, delivery time criteria with a weight of 25.94%, price criteria with a weight of 7.61%, service criteria with a weight of 20.53%, and conformity criteria with weight 9.25%. the results of calculating the weight of the criteria have been tested with a consistency index (ci) value of 0.0945 and a consistency ratio (cr) value of 0.0844. the cr value is consistent because it is less than or equal to 0.1. calculations with the smart method ranked suppliers with the best value owned by pt. mighty lightning bow of 0.7627 (auddie & mahdiana, 2019). martoyo, anang, and fajar mahardika. "the effect of promotion and distribution on customer satisfaction at pt tiga serangkai internasional bandung branch." the method used is the promotion effect method with variable three obtained. satisfactory promotion and distribution for consumers can increase company improvement(martoyo & mahardika, 2020). setiyawan, siswanti and hasbi, 2020. analytical hierarchy process method and simple multiattribute rating technique as support for supplier selection decisions. ahp and smart methods. based on the analysis of validity testing using ten samples and determining the performance of dss, there is a similarity level of 20% or a difference of 80%. it is due to the difference in calculating the weight of each criterion between the manual process and the application. where the calculation of the application is not only calculated from the value of each criterion but also multiplied by the weight of the criteria. (setiyawan et al., 2020). putra, habibie and handayani, 2020. decision support system for supplier selection in tb.nameene with the simple additive weighting method. the results of this test are done by comparing the output or output of the system with the results of manual calculations against several formulas in the saw method. application testing is done by looking at the overall output given as a result of the analysis of the application with the actual conditions. moreover, after the coding is complete, a testing process will be carried out on the resulting application to find out whether the resulting application is to find out whether designed application is running correctly and by design carried out (putra et al., 2020). implementation of the waterfall method in the analog image digitization process. with the image processing method of negative images in matlab. with the results of the research and discussion, it can be concluded that this application can take pictures using a laptop or notebook webcam and can be used for digital image processing that comes from negative images (photo clichés) with inverted images to accurate color images. the results of the application image processing can be stored in jpg/jpeg (joint photographic expert group) format. the testing results show that this application is easy to use and is likely to be developed in a better and more complex direction (mahardika et al., 2017). mahardika, f., setiawan, e., & saputra, d. i. s. (2019). application of color segmentation to images on social media with the fuzzy k-means cluster algorithm. this is the basis for conducting this research to find image segmentation in social media images. researchers conducted research by combining image segmentation using the fuzzy kmeans cluster algorithm. the existence of this merger is expected to get maximum results. the research results on social media show the distribution of images for each area that has similarities and also find out the grouping of pixels jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.460 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 141 based on the proximity of the distance between pixels (mahardika et al., 2019). implementation segmentation of color image with detection of color to detect object (mahardika et al., 2017). with the image segmentation method in matlab. the results of object detection in 2-dimensional images are a somewhat complex process to do. object detection requires a computer vision approach for the desired part of the object to be accurately recognized by the computer (mahardika & saputra, 2017). apriastika, prima, and lusi fajarita. "decision support system for determining the best teacher at sd strada santa maria using the ahp (analytical hierarchy process) and saw (simple additive weighting) methods. this study discusses the decision support system in determining the best teacher at strada santa maria elementary school. strada santa maria elementary school is a superior, caring educational community with a spirit of service. currently, the school has conducted assessment activities to determine the best teacher, but this assessment has not produced maximum results because at strada santa maria elementary school, all teachers are said to be good, all are equal, and no one distinguishes degrees. strada santa maria elementary school requires an objective and structured decision support system so that the results obtained are by expectations and can improve the quality and quality of teachers so that they are well achieved. the system that will be created uses the ahp (analytical hierarchy process) method to determine the weight of the existing criteria, namely spiritualism, professionalism, leadership, and solidarity, which will later be compared with other criteria. moreover, the saw (simple additive weighting) method is used in selecting alternative rankings (apriastika & fajarita, 2019). setiyawan, bayu aji, sri siswanti, and muhammad hasbi. "analytical hierarchy process method and simple multi-attribute rating technique as supporting supplier selection decisions."the process of choosing a supplier in sukoharjo has not used the application program in making the decision but still uses the manual way of writing. in addition, in conducting the selection of suppliers conducted by the hrd section is still subjective, so the results obtained in the selection of suppliers are less valid because in selecting hrd suppliers only choose based on price criteria, where if there is a supplier that offers the lowest price then the supplier will be chosen as a supplier in sukoharjo. the research aims to build and implement a decision support system helpful in selecting suppliers in sukoharjo using the analytical hierarchy process (ahp) and simple multiattribute rating technique (smart). the ahp method calculates the weight of the criteria, and the smart method calculates the supplier's alignment. with testing, the black box system is already running according to the function, and for the results of the validity, test get, the test value results in the category very good with a percentage of 80% (setiyawan et al., 2020). gholamian, k., vakilifard, h., talebnia, g., & hejazi, r. (2020). conceptual design of sustainable outsourcing with balanced scorecard using analytic hierarchy process: a case study for fajr jam gas refining company. our findings indicated that a sustainable outsourcing model was successfully designed using a balanced scorecard. economic, social, and environmental sustainability was considered in each of the balanced scorecard faces used in the model. this work's primary objectives were a sustainable domestic business, customer satisfaction, and sustainable learning and growth. finally, a balanced scorecard with 26 strategic objectives was designed and implemented. to this end, paired comparisons were performed to compute the importance of each strategic goal in every phase and make prioritization accordingly (gholamian et al., 2020). gholamian, k., vakilifard, h., talebnia, g., & hejazi, r. (2019). identification and prioritization of environmental criteria of sustainable outsourcing model in fajr jam gas refining company with analytic hierarchy process method. the findings indicated that designing a sustainable outsourcing model using a balanced scorecard. seven strategic objectives in the environmental dimension had to be considered. two objectives in the learning and growth aspect, two in the internal business processes aspect, two in the customer satisfaction aspect, and a strategic environmental objective in the financial performance aspect were identified. finally, using a paired comparisons questionnaire, the importance of each strategic objective was calculated and prioritized (gholamian et al., 2019). yahya, s., & kingsman, b. (2017). vendor rating for an entrepreneur development program: a case study using the analytic hierarchy process method. this paper describes a case study into vendor rating for a government-sponsored entrepreneur development program in malaysia. the paper reviews current methods for vendor rating and finds them wanting. it illustrates a new approach based on saaty's analytic hierarchy process method, developed to assist in multicriteria decision problems. the new method overcomes the difficulties associated with the categorical and simple linear weighted average p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.460 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 142 criteria ranking methods. it provides a more systematic way of deriving the weights to be used and scoring vendor performance (yahya & kingsman, 2017). gap or gap analysis is defined as comparing actual performance with potential or expected performance. gap analysis evaluates the business by comparing the company's current performance with previously targeted performance and determining what steps need to be taken to reduce the gap and achieve the desired state in the future. this analysis model is based on consumer assumptions by comparing company performance with specific standards or consumer expectations (stolzer & goglia, 2016). gap analysis is used as a business evaluation tool focused on performance gaps. this analysis is used to determine the gap between consumer perceptions and expectations and identify the actions needed to enable them to reduce the gap and achieve the expected performance in the future. therefore, the company wants to know the gap between consumers' perceptions and expectations of quality service, price, and quality of watch products at time concept. supplier selection is a long process. first, the supplier is evaluated based on several criteria: service, price discounts, payment duration, delivery time, and the number of shipments. when evaluating supplier selection, there is often a tradeoff, such as a supplier who provides fast service but delivers late, which can result in an empty watch stock. the more criteria time concept wants to select suppliers, the more complicated the problem is. therefore, a decision-making technique is needed. this research aims to create a decision support system to help the supplier selection process correctly and accurately. research methods 1. research methods research methodology is a scientific process or method to obtain data for research purposes, such as data collection methods and research methodologies used as research guidelines so that the results achieved do not deviate from their objectives. this study examines the selection of the best suppliers using the analytical hierarchy process (ahp) and simple additive weight (saw) methods on the time concept(laurentinus & rinaldi, 2019). 2. sample selection method the sample selected or used in this study is supplier data on time concept and the criteria that have been determined, among others: a. service this criterion relates to supplier services to company requests with a fast response. the assessment of these criteria uses an ordinal scale based on the following table 1: table 1. ordinal service scale target value information 1 very bad 2 bad 3 normal 4 very nice 5 very good b. discounts this criterion relates to the discount given by the supplier to time concept. discounts are obtained from questions asked by the purchasing department when they want to order or from supplier invoices received by time concept. the assessment of this criterion is seen from the amount of discount given by the supplier. c. payment duration this criterion relates to the repayment period of the watch. these criteria are obtained from questions asked by the purchasing department when they want to order or from supplier invoices received by time concept. the assessment of this criterion is seen from the length of time for repayment. the longer the payment period, the better. d. delivery time this criterion relates to the delivery time of the watch. these criteria are obtained from questions the purchasing department asks when they want to order or from supplier invoices that time concept has received. 27 assessment of this criterion is seen from the time the order arrives. the sooner it comes, the better. e. number of send this criterion relates to the number of watch orders received. these criteria are obtained from questions the purchasing department asks when they want to order or from supplier invoices that time concept has received. the assessment of these criteria uses an ordinal scale based on table 2. table 2. ordinal scale number of sends target value information 1 tidak sesuai 2 sesuai in addition to the criteria, there are several alternative suppliers, as seen in table 3. jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.460 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 143 table 3. alternative no alternative alternative code 1 pt. radiance sp001 2 pt. time line sp002 3 pt. vip watch sp003 4 pt. luminoux sp004 5 pt. alva jaya mandiri sp005 6 pt. swiss watch sp006 7 pt. central watch sp007 3. data collection method in this study, to collect data. the author uses observation, interviews, document analysis, questionnaires, and literature studies. 4. research instruments research instruments are tools that are needed or used to collect data. the instrument used in collecting data in this study is to provide questionnaires to respondents. the respondent of this research is the general manager of brand activation, which can be seen in appendix-a of the questionnaire based on the following table 4. table 4. alternatives respondents amount alternative 1 5. data analysis techniques data analysis techniques used to analyze the data in this study are descriptive analysis, analytical hierarchy process (ahp), and simple additive weighting (saw). descriptive analysis aims to draw conclusions and provide an overview of current business processes. at the same time, the analytical hierarchy process (ahp) is used to determine the weight of each predetermined criterion. because time concept has not given weighting criteria. simple additive weighting (saw) is used to sort the alternatives after the criteria are processed and to determine the supplier rankings sorted from the most significant value to the smallest value to obtain results to determine the best supplier candidate(hati & fitri, 2017). 6. research stages the following are the stages of the research which can be seen in figure 1: figure 1. research stages 1. formulation problems at this research stage, the problems to be discussed are formulated based on the observations' results. 2. interview the interview is the process of collecting data on the time concept by asking questions directly to assist in making a decision support system. the questions asked included issues related to supplier selection and the criteria for supplier selection. 3. library studies library studies are carried out by looking for journals, books, and information from the internet related to the problem under study. 4. observation then observations are made by visiting time concept to conduct interviews with time concept decision-makers to obtain information regarding problems and the ongoing process of selecting suppliers. 5. data collection then carry out the data collection stage by collecting documents from time concept. 6. questionnaire design on the time concept side, the criteria used in the supplier selection process are determined so that the writer can directly design a questionnaire based on the specified criteria and, at the same time, carry it back to the data collection stage when filling out the questionnaire by the brand activation general manager as an expert respondent. 7. data analysis after the data collection process and questionnaire design, the next step is to analyze the data using the analytical hierarchy process (ahp) and simple additive weighting (saw) methods which will then obtain the level of importance of p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.460 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 144 each criterion, and the general manager brand activation makes the decision maker. 8. model design and system design then the next stage is designing the model and system design as a description, planning, and sketching or arrangement of several separate elements into a unified whole and function. 9. testing the decision support system application for supplier selection is tested to determine whether the system built is correct and uses the black box testing method. 10. report preparation after the test runs according to the required system, then there will be a report preparation process results and discussion 1. system analysis in analyzing the problems in time concept, namely determining the best supplier, the researchers in this chapter discuss the data analysis process. the data analysis technique is based on data collected through interviews, observations, questionnaires, and literature studies to determine the system requirements for solving the right problem. the data is processed in detail and precisely. then the data collected in detail will be developed with the selected methods to help design the desired system. 2. ahp method a. calculation process ahp figure 2. hierarchical criteria b. criteria used first, in this study, the general manager brand activation will give the importance and attributes of each criterion. criteria data is data regarding the criteria of decision-making. the following criteria table example contains several columns, namely the criteria name and attributes for the weight calculation using ahp weighting. the weight of the criteria determines how critical the criteria are. the criteria attribute consists of benefits or costs, where benefit means that the greater the value, the better, while the smaller the cost, the better the value. the following is the level of importance used in table 5: table 5 criteria level criteria name attribute service benefit potongan harga benefit durasi pembayaran benefit waktu pengiriman cost jumlah kirim benefit c. weighting stage ahp in this study, the head of brand activation will first be given a questionnaire to find the level of importance of the existing criteria, then the ahp method of comparison of criteria will be used to determine the weight of each criterion that will be jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.460 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 145 used as a benchmark for the assessment as follows table 6: 1) value of interest comparison between criteria table 6. pairwise comparison matrix criteria service discounts payment duration delivery time send amount service 1 2 1/2 1/3 2 discounts ½ 1 1 ½ 3 payment duration 2 1/1 1 ½ 3 delivery time 3 2 2 1 2 send amount ½ 1/3 1/3 ½ 1 2) convert fraction matrix to decimal table 7. pairwise comparison matrix criteria service discounts payment duration delivery time send amount service 1,0000 2,0000 0,5000 0,3333 2,0000 discounts 0,5000 1,0000 1,0000 0,5000 3,0000 payment duration 2,0000 1,0000 1,0000 0,5000 3,0000 delivery time 3,0000 2,0000 2,0000 1,0000 2,0000 send amount 0,5000 0,3333 0,3333 0,5000 1,0000 3) multiplying paired matrices (square of paired matrices) [ 1,0000 2,0000 0,5000 0,5000 1,0000 1,0000 2,0000 1,0000 1,0000 0,3333 2,0000 0,5000 3,0000 0,5000 3,0000 3,0000 2,0000 2,0000 0,5000 0,3333 0,3333 1,0000 2,0000 0,5000 1,0000] 𝑥 [ 1,0000 2,0000 0,5000 0,5000 1,0000 1,0000 2,0000 1,0000 1,0000 0,3333 2,0000 0,5000 3,0000 0,5000 3,0000 3,0000 2,0000 2,0000 0,5000 0,3333 0,3333 1,0000 2,0000 0,5000 1,0000] 4) matrix multiplication results [ 4,9999 5,8332 4,3332 6,0000 4,9999 4,2499 7,5000 7,9999 4,9999 2,9166 12,1666 3,1667 11,0000 3,6666 14,0000 12,0000 12,6666 8,1666 3,3333 2,9999 2,2499 4,9999 22,0000 1,5000 4,9998 ] this result is obtained from = ((1,000*1,0000)+(2,0000*0,5000)+(0,5000*2,000 0)+(0,3333*3,0000)+( 2,0000*0,5000) =(1,0000+1,0000+1,00000+0,9999+1,0000) =4,9999 5) add up each row of the result of matrix multiplication [ 4,9999 5,8332 4,3332 6,0000 4,9999 4,2499 7,5000 7,9999 4,9999 2,9166 12,1666 3,1667 11,0000 3,6666 14,0000 12,0000 12,6666 8,1666 3,3333 2,9999 2,2499 4,9999 22,0000 1,5000 4,9998 ] = 30,2495 29,4165 38,1664 59,8331 15,0829 172,7484 6) normalize each number of rows in the matrix with the total rows, which will produce an eigenvector 30,2495 29,4165 38,1664 59,8331 15,0829 172,7484 𝐸𝑖𝑔𝑒𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 → 0,1751 0,1703 0,2209 0,3464 0,0873 1 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.460 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 146 the eigenvector results are obtained from = 30,2495/172,7484 =0,1751 7) determine the weight of each criterion taken from the eigenvector table 8 criteria and weights criteria name weight service 0,1751 discounts 0,1703 payment duration 0,2209 delivery time 0,3464 send amount 0,0873 8) multiply the decimal number value of each criterion matrix by the weight/eigenvector. table 9 vector counting table criteria service discounts payment duration delivery time send amount vector service 1,0000 2,0000 0,5000 0,3333 2,0000 0,9162 discounts 0,5000 1,0000 1,0000 0,5000 3,0000 0,9139 payment duration 2,0000 1,0000 1,0000 0,5000 3,0000 1,1765 delivery time 3,0000 2,0000 2,0000 1,0000 2,0000 1,8287 send amount 0,5000 0,3333 0,3333 0,5000 1,0000 0,4784 weight 0,1751 0,1703 0,2209 0,3464 0,0873 this result is obtained from: = (1,0000*0,1751)+( 2,0000*)+(0,5000)+(0,33330,3464) +( 2,0000*0,0873) = 0,1751+0,3406+0,1105+0,1154+0,1746 = 0,9162 9) the result of the vector is divided by the weight or eigenvector in table 10. table 10 results table𝜆 criteria vector weight results service 0,9162 0,1751 5,2324 discounts 0,9139 0,1703 5,3664 payment duration 1,1765 0,2209 5,3259 delivery time 1,8287 0,3464 5,2792 send amount 0,4784 0,0873 5,4800 this result is obtained from 𝜆 = 0,9162/ 0,1751= 5,2324 10) calculate the sum of each result (λ) from each criterion and then divide by the number of elements as in the equation below: 𝜆𝑀𝑎𝑘𝑠 = ∑ 𝜆 /𝑛 λmaks = (5,2324+ 5,3664+ 5,3259+ 5,2792+ 5,4800)/5 λmaks = 26,6839 / 5 = 5,3368 11) calculate the consistency index (ci) shown like this equation: ci = (5,3368– 5) / (5-1) ci = 0,3368 / 4 = 0,0842 12) calculating consistency ratio(cr) the consistency ratio (cr) value is obtained by dividing consistency index (ci) and ratio index (ri). for the consistency ratio test, if the cr result is < 0.1, then the data is considered consistent and does not need to be recalculated, but if the cr value is > 0.1, then a recount is required. cr = 0.0842/1.12 = 0.0752 cr value < 0.1, then the data is declared consistent. with consistent testing, the weighting is no longer needed for recalculation. 3. simple additive weighting (saw) method the simple additive weighting (saw) method is used to determine the final alternative value in selecting the best supplier, which will produce the output as the best supplier based on the highest ranking value. a. saw calculation process based on the number of suppliers in the time concept, the simple additive weighting (saw) method is applied in determining suppliers. the supplier has the following data in table 11: jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.460 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 147 table 11 saw calculation process alternative name criteria service discounts payment duration delivery time send amount pt. radiance 3 250000 64 14 2 pt. time line 4 400000 64 14 1 pt. vip watch 5 500000 32 14 2 pt. luminoux 4 300000 32 14 2 pt. alva jaya mandiri 3 400000 64 14 1 pt. swiss watch 4 300000 32 14 1 pt. central watch 4 300000 32 14 1 1) first, normalization is carried out into an r matrix to calculate the value of each criterion, calculating based on the profit criteria or the cost criteria with the following equation in table 12: table 12 classification of criteria criteria name attribute service benefit discounts benefit payment duration benefit delivery time cost service benefit a) pt. radiance 𝑟1 = 0,6; 𝑟2 = 0,5; 𝑟3 = 1; 𝑟4 = 1; 𝑟5 = 1 b) pt. time line 𝑟1 = 0,8; 𝑟2 = 0,8; 𝑟3 = 1; 𝑟4 = 1; 𝑟5 = 0,5 c) pt. vip watch 𝑟1 = 1; 𝑟2 = 1; 𝑟3 = 0,5; 𝑟4 = 1; 𝑟5 = 1 d) pt. luminoux 𝑟1 = 0,8; 𝑟2 = 0,6; 𝑟3 = 1; 𝑟4 = 1; 𝑟5 = 1 e) pt.alva jaya mandiri 𝑟1 = 0,6; 𝑟2 = 0,8; 𝑟3 = 1; 𝑟4 = 1; 𝑟5 = 0,5 f) pt. swiss watch 𝑟1 = 0,8; 𝑟2 = 0,6; 𝑟3 = 1; 𝑟4 = 1; 𝑟5 = 0,5 g) pt. central watch 𝑟1 = 0,8 ; 𝑟2 = 0,6 ; 𝑟3 = 1; 𝑟4 = 1; 𝑟5 = 0,5 from the results of the calculation matrix above, get the value of the matrix r: 𝑅 = [ 0,6000 0,5000 1,0000 0,8000 0,8000 1,0000 1,0000 1,0000 0,5000 1,0000 1,0000 1,0000 11,0000 1,0000 1,0000 0,8000 0,6000 0,5000 0,6000 0,8000 1,0000 0,8000 0,6000 0,5000 0,8000 0,6000 1,0000 1,0000 1,0000 1,0000 0,5000 1,0000 0,5000 1,0000 0,5000 ] 2) alternate ranking after getting the r-value from the r matrix and the weight value (w), the next step is the preferred process (vi) using the formula: 𝑅 = [ 0,6000 0,5000 1,0000 0,8000 0,8000 1,0000 1,0000 1,0000 0,5000 1,0000 1,0000 1,0000 11,0000 1,0000 1,0000 0,8000 0,6000 0,5000 0,6000 0,8000 1,0000 0,8000 0,6000 0,5000 0,8000 0,6000 1,0000 1,0000 1,0000 1,0000 0,5000 1,0000 0,5000 1,0000 0,5000 ] a) pt. radiance get a score of 0,8448 b) pt. time line gets a score of 0,8873 c) pt. vip watch get a score of 0,84896 d) pt. luminoux get a score of 0,7862 e) pt. alva jaya mandiri get a score of 0,8523 f) pt. swiss watch get a score of 0,7428 g) pt. central watch get a score of 0,8532 after doing the above calculations, that pt. vip watch is the best supplier, with a value of 0.8896. conclusions and suggestions conclusion based on the research results, several conclusions were drawn, including decision support systems with the ahp and saw methods can be used to assess and select the best supplier, so there is no doubt in the selection. of course, several criteria and weights play a significant role in determining the ranking results. the results of the system test by inputting data from the questionnaire, the value of the consistency ratio (cr) calculation is 0.0752. suppose the consistency ratio (cr) value is less than or equal to 0.1000. in that case, the comparison evaluation is considered consistent to avoid the necessity of doing a new calculation in the comparative assessment of the criteria since it is consistent. suggestion the following is a suggestion for future system development: companies to train users who will use this decision support system to operate properly and correctly. subsequent research uses other variables to support changes in decision p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.460 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 148 support systems according to future company needs. references apriastika, p., & fajarita, l. (2019). sistem penunjang keputusan penentuan guru terbaik pada sd strada santa maria dengan metode ahp (analytical hierarchy process) dan saw (simple additive weighting). idealis : indonesia journal information system, 2(3), 138–145. https://jom.fti.budiluhur.ac.id/index.php/id ealis/article/view/462 auddie, m., & mahdiana, d. (2019). sistem penunjang keputusan pemilihan supplier terbaik dengan metode analytical hierarchy process pada klinik amc. idealis: indonesia journal information system, 2(6), 182–186. bagaspati, r. a., & irawan, h. (2020). sistem penunjang keputusan: pemilihan supplier terbaik menggunakan metode analytical hierarchy process (ahp) dan simple multi attribute rating technique (smart) studi kasus pt. muria karya sentosa. proceeding sendi_u, 200–207. https://www.unisbank.ac.id/ojs/index.php/s endi_u/article/view/7982 gholamian, k., vakilifard, h., talebnia, g., & hejazi, r. (2019). identification and prioritization of environmental criteria of sustainable outsourcing model in fajr jam gas refining company with analytic hierarchy process method. iranian (iranica) journal of energy & environment, 10(3), 204–210. https://doi.org/10.5829/ijee.2019.10.03.07 gholamian, k., vakilifard, h., talebnia, g., & hejazi, r. (2020). conceptual design of sustainable outsourcing with balanced scorecard using analytic hierarchy process: a case study for fajr jam gas refining company. international journal of engineering, 33(1), 112–123. https://doi.org/10.5829/ije.2020.33.01a.13 hati, s. w., & fitri, n. s. (2017). analisis pemilihan supplier pupuk npk dengan metode analytical hierarchy process (ahp). inovbiz: jurnal inovasi bisnis, 5(2), 122–132. https://doi.org/10.35314/inovbiz.v5i2.249 laurentinus, l., & rinaldi, s. (2019). implementasi metode analytical hierarchy process dan simple additive weighting untuk pemilihan dosen terbaik studi kasus stmik atma luhur. jurnal teknologi informasi dan ilmu komputer, 6(6), 655–664. https://doi.org/10.25126/jtiik.2019661636 mahardika, f., purwanto, k. a., & saputra, d. i. s. (2017). implementasi metode waterfall pada proses digitalisasi citra analog. volt : jurnal ilmiah pendidikan teknik elektro, 2(1), 63–72. https://doi.org/10.30870/volt.v2i1.948 mahardika, f., & saputra, d. i. s. (2017). implementation segmentation of color image with detection of color to detect object. volt : jurnal ilmiah pendidikan teknik elektro, 2(2), 157–166. https://doi.org/10.30870/volt.v2i2.1095 mahardika, f., setiawan, e., intan, d., & saputra, s. (2019). penerapan segmentasi warna pada gambar di media sosial dengan algoritma fuzzy k-means cluster. simetris: jurnal teknik mesin, elektro dan ilmu komputer, 10(2), 631– 638. https://doi.org/10.24176/simet.v10i2.3381 martoyo, a., & mahardika, f. (2020). pengaruh promosi dan distribusi terhadap kepuasan pelanggan pada pt tiga serangkai internasional cabang bandung. jurnal pemasaran kompetitif, 3(2), 1–11. http://openjournal.unpam.ac.id/index.php/j pk/article/view/3612 purwitasari, k. d., & pribadi, f. s. (2015). implementasi sistem pendukung keputusan peminatan peserta didik sma menggunakan metode ahp (analytic hierarchy process) dan saw (simple additive weighting). jurnal teknik elektro, 7(2), 57–61. https://doi.org/10.15294/jte.v7i2.8583 putra, n., habibie, d. r., & handayani, i. f. (2020). sistem pendukung keputusan pemilihan supplier pada tb.nameene dengan metode simple additive weighting (saw). jursima, 8(1), 45. https://doi.org/10.47024/js.v8i1.194 setiyawan, b. a., siswanti, s., & hasbi., m. (2020). metode analitychal hierarchy process dan simple multi attribute rating technique sebagai penunjang keputusan pemilihan supplier. jurnal ilmiah sinus, 18(2), 63–73. https://doi.org/10.30646/sinus.v18i2.475 stolzer, a., & goglia, j. (2016). safety management systems in aviation. yahya, s., & kingsman, b. (2017). vendor rating for an entrepreneur development programme: a case study using the analytic hierarchy process method. https://doi.org/10.1057/palgrave.jors.26007 97, 50(9), 916–930. https://doi.org/10.1057/palgrave.jors.26 00797 13 3 jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 133 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional sistem pendukung keputusan pemberian beras untuk keluarga miskin dengan metode simple additive weighting jamal abdul nasir sistem informasi stmik nusa mandiri jakarta www.nusamandiri.ac.id jamalabdul66@gmail.com abstract to improve indonesia's economic stability, the government has tried various methods. one of the policies taken by the government is to issue a raskin (rice for the poor) policy. in the distribution of raskin there are often obstacles or problems, one of which is the leveling of the amount of raskin received by all recipients and the misdirected distribution of rice. decision support systems are part of overcoming these problems so a study was made to develop a computer application that helps make a decision. the subject of this research was the application of the decision support system for selection of raskin acceptance using the simple additive weighting (saw) method. the purpose of this study as an alternative to assist the rt management in determining decisions related to the provision of raskin rice for residents in accordance with the requirements and criteria of the rt 04 rw.01 sukmajaya depok administration. keywords: simple additive weighting, raskin, decision support system abstrak untuk memperbaiki stabilitas ekonomi indonesia, pemerintah mengupayakan berbagai cara. salah satu kebijakan yang diambil pemerintah yaitu dengan mengeluarkan kebijakan raskin (beras untuk masyarakat miskin). dalam pendistribusian raskin sering kali ditemui kendala atau permasalahan, salah satunya adanya penyamarataan jumlah raskin yang diterima oleh semua penerima dan pembagian beras yang salah sasaran. sistem pendukung keputusan merupakan bagian untuk mengatasi masalah tersebut maka dibuat sebuah penelitian untuk mengembangkan suatu aplikasi komputer yang membantu mengambil sebuah keputusan. subjek pada penelitian ini adalah aplikasi sistem pendukung keputusan seleksi penerimaan raskin menggunakan metode simple additive weighting (saw). tujuan penelitian ini sebagai salah satu alternatif untuk membantu kepengurusan rt dalam menentukan keputusan terkait pemberian beras raskin bagi warga sesuai dengan syarat dan kriteria pengurus rt 04 rw.01 kelurahan sukmajaya depok. kata kunci: simple additive weighting, raskin, sistem pendukung keputusan pendahuluan indonesia merupakan negara agraris, ratarata penghasilan didapat dari pertanian. salah satu bidang pertanian yang paling maju adalah padi, yang menghasilkan beras sebagai makanan pokok. banyaknya warga negara indonesia, menyebabkan hasil panen beras dalam negeri tidak cukup untuk memenuhi kebutuhan warganya (rini & soyusiawaty, 2014), sehingga memerlukan tambahan pasokan dari luar negeri. hal ini menyebabkan terjadinya kekurangan bahan pangan (widiarsih, 1974) terutama pada keluarga tidak mampu. untuk memperbaiki stabilitas ekonomi indonesia, pemerintah mengupayakan berbagai cara. salah satu kebijakan yang diambil pemerintah yaitu dengan mengeluarkan kebijakan raskin (beras untuk masyarakat miskin). dalam pendistribusian raskin sering kali ditemui kendala atau permasalahan, salah satunya adanya penyamarataan jumlah raskin yang diterima oleh semua penerima raskin (angrawati, angrawati, yamin, & ransi, 2016). masih terjadi kecurangan dalam pemilihan masyarakat calon penerima raskin (handayani, 2016). sementara ada derajat sosial yang berbeda antara sesama penerima raskin tersebut. derajat sosial ini terutama dipengaruhi oleh tingkat pendapatan dan jenis profesi atau sumber mata pencaharian para penerima raskin. dilingkungan rt.04 rw.01 kelurahan sukmajaya merupakan sebuah pemerintahan level paling bawah pada suatu sistem pemerintahan yang terletak di kecamatan sukmajaya depok. warga di rt.04 rw.01 ini berasal dari berbagai daerah di indonesia. dengan jumlah kepala keluarga sebanyak 250 kepala keluarga (kk). dalam pengambilan keputusan untuk menentukan kriteria keluarga miskin dibutuhkan http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 134 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional sebuah sistem informasi yang dapat membantu mengatasi kecurangan yang dilakukan oleh pihak tertentu dalam menentukan calon penerima raskin. sistem pendukung keputusan merupakan bagian dari sistem informasi berbasis komputer yang mengatasi masalah ini. sistem ini dapat mendukung pengambilan keputusan calon penerima raskin berdasarkan kriteria-kriteria yang telah ditentukan. cara kerja sistem ini mencakup seluruh tahap pengambilan masalah, memilih data yang relevan dan menentukan pendekatan yang digunakan dalam proses pengambilan keputusan sampai pemecahan dan solusi masalah. beras untuk keluarga miskin atau raskin merupakan program pemerintah dalam menanggulangi kemiskinan. program raskin ini bertujuan untuk membantu kelompok miskin dan rentan miskin mendapat cukup pangan dan nutrisi karbohidrat tanpa terkendala (marlaeni & satria, 2017). namun dalam pelaksanaan raskin ini banyak masalah, diantara masalah tersebut adalah pembagian beras yang salah sasaran (septian, bahri, & makmur, 2013), untuk mengatasi masalah tersebut maka dibuat sebuah penelitian untuk mengembangkan suatu aplikasi komputer yang membantu mengambil sebuah keputusan. subjek pada penelitian ini adalah aplikasi sistem pendukung keputusan seleksi penerimaan raskin menggunakan metode simple additive weighting (suryeni, agustin, & nurfitria, 2015). metode penggumpulan data dengan literatur, dokumentasi, wawancara. tahap pengembangan aplikasi meliputi perancangan interface, analisis, pembuatan diagram konteks, diagram alir data, entity realationship diagram, mapping table, rancangan tabel, perancangan menu dan antarmuka, implementasi dan pengujian, metode yang digunakan adalah metode simple additive weighting dan pengujian sistem menggunakan blackbox test dan alpha test. dari penelitian yang menghasilkan sebuah perangkat lunak sistem pendukung keputusan seleksi penerimaan raskin menggunakan metode simple additive weighting dengan kemampuan dapat membantu menyeleksi warga berdasarkan kriteria-kriteria kondisi rumah, pekerjaan, penghasilan, jumlah tanggungan, asset pribadi. informasi yang dihasilkan adalah warga layak dan tidak layak menerima beras. hasil uji coba menunjukkan bahwa aplikasi ini layak dan dapat digunakan. (rini dan soyusiawaty 2014:2) tujuan penelitian ini sebagai salah satu alternatif untuk membantu kepengurusan rt dalam menentukan keputusan terkait pemberian beras raskin bagi warga sesuai dengan syarat dan kriteria pengurus rt 04 rw.01 kelurahan sukmajaya depok. melakukan penilaian dari setiap kriteria untuk pemberian beras raskin. menerapakan metode simple additive weighting (saw) dalam menentukan pemberian beras raskin untuk warga rt.04 rw.01 kelurahan sukmajaya depok. merancang suatu sitem pendukung keputusan pemberian beras raskin yang memenuhi syarat dan kriteria dengan cepat dengan kebutuhan pengurus rt.04 rw.01 kelurahan sukmajaya depok. metode penelitian a. tahapan penelitian dalam hal ini akan diuraikan mengenai langkah langkah yang akan dilakukan untuk mendapatkan metodologi penlitian yang merupakan suatu tahapan yang harus diterapkan agar penilitian dapat dilakukan dengan terarah dan memudahkan dalam melakukan analisa terhadap permasalahan yang ada. tahapan penelitian tentang sistem pendukung keputusan pemberian beras untuk keluarga miskin dengan metode simple additive weighting (saw) dijelaskan secara umum sebagai berikut: 1. survey literatur dalam tahap ini peneliti melakukan pengumpulan bahan literatur dan informasi terkait. 2. identifikasi masalah mengidentifikasi masalah yang akan dibahas, berkaitan dengan sistem pendukung keputusan pemberian beras untuk keluarga miskin dengan metode simple additive weighting (saw) sesuai dengan literature dan informasi yang diperoleh. 3. studi pustaka peneliti mempelajari buku-buku, jurnal penelitian, dan e-book teori tentang sistem pendukung keputusan dan metode simple addictive weighting (saw) yang akan digunakan sebagai kajian teori dalam penelitian. 4. hipotesis peneliti memiliki hipotesis awal, yaitu diduga dalam pengambilan keputusan dengan menggunakan simple additive weighting (saw) akan memberikan alternatif keputusan yang baik bagi pengurus rt.04/01 sehingga pengambilan keputusan tepat pada sasaran. 5. menentukan kriteria dan sumber data peneliti menentukan kriteria-kriteria dari sistem pendukung keputusan metode menggunakan metode simple additive weighting http://creativecommons.org/licenses/by-nc/4.0/ 13 5 jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 135 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional (saw) dalam menetukan pemberian raskin, diantaranya kepemilikan kartu keluarga sehat (kks), penghasilan, tempat tinggal, pendidikan, pola makan, dan kemampuan berobat. kemudian menentukan data-data yang dibutuhkan berdasarkan populasi, sampel dan cara pengambilan sampel. kemudian menentukan objek penelitian dan mempersiapkan alat pengumpulan data dengan menentukan dan menyusun alat ukur atau instrument penelitian yang akan digunakan dalam penelitian ini yaitu berupa skala model guttman. 6. observasi lapangan dan perijinan peneliti secara langsung datang ke salah satu lingkungan rukun tetangga, yaitu rt.04 rw.01 di depok dan meminta ijin kepada pihak-pihak terkait dan berwenang. 7. mengumpulkan data peneliti mengumpulkan data-data dan melakukan wawancara mengenai halhal yang berkaitan dengan penlitian. 8. analisis data peneliti menganalisa dan mengolah data quesioner, serta menentukan bobotbobot dari masing-masing kriteria. 9. menarik kesimpulan peneliti mengambil suatu kesimpulan berdasarkan analisis data-data yang terdapat pada bab-bab sebelumnya dan diperiksa apakah kesimpulan sesuai dengan hipotesis, maksud dan tujuan penelitian. selain itu juga memberikan saran yang dapat digunakan sebagai masukan bagi pengurus rt terkait untuk dapat dimanfaatkan lebih lanjut. b. instrument penelitian adapun jenis instrument yang digunakan dalam penilitian ini, yaitu ; a. observasi metode ini diterapkan dengan mendatangi obyek lingkungan rukun tetangga, yaitu salah satu pengurus rt.04/01 di depok untuk mendapatkan data-data yang dibutuhkan. b. wawancara pengumpulan data dengan cara wawancara adalah suatu usaha untuk mengumpulkan informasi dengan mengajukan beberapa pertanyaan secara lisan kepada pengurus rt.04/01. c. studi pustaka metode ini dilaksanakan dengan melakukan studi kepustakaan melalui membaca buku-buku, jurnal penelitian sejenis e-book yang dapat mendukung penulisan skripsi ini, yaitu yang menjelaskan tetntang sistem pendukung keputusan (spk) dengan menggunakan metode simple additive weighting (saw). d. quesioner pengumpulan data dengan cara mengumpulkan angket yang telah diisi oleh narasumber yang bertujuan untuk mendapatkan data yang akan digunakan dalam penerapan metode simple additive weghting. c. metode pengumpulan data, populasi dan sampel penelitian 1. metode pengumpulan data metode pengumpulan data yang dilakukan peneliti terbagi menjadi 2 cara, yaitu: a. dengan melakukan observasi langsug, wawancara, dan questioner untuk mendapatkan data primer. b. data sekunder berasal dari mengumpulkan dan mengidentifikasi serta mengolah data tertulis berbentuk buku-buku dan jurnal yang berkaitan dengan penilitian. 2. populasi dan sampel penelitian menurut sugiyono (2008: 80) “populasi adalah wilayah generalisasi yang terdiri: obyek/subyek yang mempunyai kualitas dan karakteristik tertentu yang ditetapkan oleh penenliti untuk dipelajari dan kemudian ditarik kesimpulannya.” menurut sugiyono (2008: 81) “teknik sampling adalah teknik pengambilan sampel. untuk menentukan sampel yang akan digunakan dalam penelitian.” dalam penelitian ini, peneliti melakukan observasi dan wawancara langsung kepada pengurus rt.04 rw.01 di depok. populasi yang diambil adalah warga sebanyak 50 orang. dari populasi tersebut akan diambil 42 sampel. hasil penelitian dan pembahasan tabel dibawah merupakan isi kuisioner dimana setiap item instrumen nilai tersebut diambil dari skala rating. tabel 1. variabel skala kriteria no data c1 c2 c3 c4 c5 1 aryana sb sb sb tb sb 2 henandar tb sb sb tb sb http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 136 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional no data c1 c2 c3 c4 c5 3 karmadi sb sb sb tb sb 4 miftahudin tb sb sb tb sb 5 malik tb sb sb sb sb 6 rendi tb sb sb sb sb 7 kartija tb sb sb tb sb 8 delfi efendi sb sb sb tb sb 9 deni tb sb sb sb sb 10 gunarso tb sb sb tb sb 11 sunandar tb sb sb tb sb 12 bram sb sb sb tb sb 13 deden sb sb tb tb sb 14 agus tb tb tb tb sb 15 munawar sb sb tb tb sb 16 abdul majid tb tb sb sb sb 17 suryani sb sb tb tb sb 18 sairin tb tb sb tb sb 19 heriansyah tb sb sb sb sb 20 ayat tb sb tb tb sb 21 jaka wahyudin tb sb tb tb sb 22 amran tb tb tb tb sb 23 subeki tb sb sb sb sb 24 syahroni tb tb sb sb sb 25 m idris tb sb tb sb sb 26 sukriyah sb sb sb sb sb 27 sarinah sb sb sb sb sb 28 imbron tb tb tb sb sb 29 dimas sb tb sb tb sb 30 zarkoni sb sb sb tb sb 31 bambang s r sb sb tb tb sb 32 ridwan sb sb sb tb sb 33 adi gunawan sb sb tb tb sb 34 marhadi sb sb sb tb sb 35 nenih sb sb sb tb sb 36 udin sb sb tb tb sb 37 mat amin sb sb tb tb sb 38 homsyah sb sb sb tb sb 39 yati aryati sb sb sb tb sb 40 dian jauhari sb tb tb tb sb 41 oktorizal sb sb tb sb sb 42 toriq sb tb tb tb sb data matrik x tabel dibawah ini merupakan data matriks dimana setiap kriteria didapat dari rekap kuisioner diubah ke bilangan fuzzy berdasarkan nilai bobot yang telah ditentukan. tabel 2. matriks persamaan no data matriks bobot fuzzy c1 c2 c3 c4 c5 1 aryana 1 1 1 0.25 1 2 henandar 0,25 1 1 0.25 1 3 karmadi 1 1 1 0.25 1 4 miftahudin 0.25 1 1 0.25 1 5 malik 0.25 1 1 1 1 6 rendi 0.25 1 1 1 1 7 kartija 0.25 1 1 0.25 1 8 delfi efendi 1 1 1 0.25 1 9 deni 0.25 1 1 1 1 10 gunarso 0.25 1 1 0.25 1 11 sunandar 0.25 1 1 0.25 1 12 bram 1 1 1 0.25 1 13 deden 1 1 0.25 0.25 1 14 agus 0.25 0.25 0.25 0.25 1 no data matriks bobot fuzzy c1 c2 c3 c4 c5 15 munawar 1 1 0.25 0.25 1 16 abdul majid 0.25 0.25 1 1 1 17 suryani 1 1 0.25 0.25 1 18 sairin 0.25 0.25 1 0.25 1 19 heriansyah 0.25 1 1 1 1 20 ayat 0.25 1 0.25 0.25 1 21 jaka wahyudin 0.25 1 0.25 0.25 1 22 amran 0.25 0.25 0.25 0.25 1 23 subeki 0.25 1 1 1 1 24 syahroni 0.25 0.25 1 1 1 25 m idris 0.25 1 0.25 1 1 26 sukriyah 1 1 1 1 1 27 sarinah 1 1 1 1 1 28 imbron 0.25 0.25 0.25 1 1 29 dimas 1 0.25 1 0.25 1 30 zarkoni 1 1 1 0.25 1 31 bambang s r 1 1 0.25 0.25 1 32 ridwan 1 1 1 0.25 1 33 adi gunawan 1 1 0.25 0.25 1 34 marhadi 1 1 1 0.25 1 35 nenih 1 1 1 0.25 1 36 udin 1 1 0.25 0.25 1 37 mat amin 1 1 0.25 0.25 1 38 homsyah 1 1 1 0.25 1 39 yati aryati 1 1 1 0.25 1 40 dian jauhari 1 0.25 0.25 0.25 1 41 oktorizal 1 1 0.25 1 1 42 toriq 1 0.25 0.25 0.25 1 perhitungan ai 𝑟𝑖 = { 𝑋𝑖𝑗 𝑀𝑎𝑥 𝑋𝑖𝑗 𝑗𝑖𝑘𝑎 𝑗 𝑎𝑑𝑎𝑙𝑎ℎ 𝑎𝑡𝑟𝑖𝑏𝑢𝑡 𝑘𝑒𝑢𝑛𝑡𝑢𝑛𝑔𝑎𝑛 (𝑏𝑒𝑛𝑒𝑓𝑖𝑡) 𝑀𝑖𝑛 𝑋𝑖𝑗 𝑋𝑖𝑗 𝑗𝑖𝑘𝑎 𝑗 𝑎𝑑𝑎𝑙𝑎ℎ 𝑎𝑡𝑟𝑖𝑏𝑢𝑡 𝑏𝑖𝑎𝑦𝑎 (𝑐𝑜𝑠𝑡) 𝑋𝑖𝑗 ..................... (1) dimana dengan rij adalah rating kinerja ternormalisasi dari alternatif ai pada atribut cj : i = 1,2…,m dan j = 1,2…,n keterangan : max xij = nilai terbesar dari setiap kriteria i min xij = nilai terbesar dari setiap kriteria i. x ij = nilai atribut yang dimiliki dari setiap kriteria. benefit = jika nilai terbesar adalah terbaik. cost = jik nilai terkecil adalah terbaik. http://creativecommons.org/licenses/by-nc/4.0/ 13 7 jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 137 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional r ( 1 0.25 1 0.25 0.25 1 1 1 1 1 1 1 1 1 1 0.25 1 1 0.25 1 0.25 0.25 0.25 1 1 0.25 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1 1 0.25 1 1 1 1 1 1 1 0.25 1 0.25 1 0.25 1 0.25 1 1 1 0.25 1 0.25 1 1 1 0.25 0.25 1 1 1 1 1 1 1 0.25 0.25 0.25 1 0.25 1 1 0.25 0.25 0.25 1 1 0.25 1 1 0.25 1 1 0.25 0.25 0.25 0.25 1 1 0.25 0.25 1 0.25 1 1 1 1 1 1 1 1 1 1 0.25 1 0.25 0.25 0.25 0.25 1 0.25 0.25 1 0.25 0.25 0.25 1 1 1 1 1 1 0.25 0.25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) normalisasi r r = ( 1 1 1 1 1 1 1 1 1 1 0.25 1 0.25 1 1 1 1 0.25 1 1 1 1 1 1 1 1 1 0.25 1 0.25 0.25 1 1 0.25 0.25 0.25 0.25 0.25 0.25 1 0.25 0.25 0.25 0.25 0.25 0.25 1 1 1 1 1 1 1 1 1 1 1 1 0.25 1) hasil dari normalisasi diatas selanjutnya dikalikan dengan bobot kriteria sesuai jenjangnya : bobot vektor = [1 : 0,75 : 0,5 : 0,25 : 0,25] hasil vektor 𝑉𝑖 = ∑ 𝑤𝑗𝑟𝑖𝑗 𝑛 𝑗=1 ..................................................................... (2) nilai preferensi untuk setiap alternatif (vi) diberikan rumus sebagai berikut, dimana : vi = rangking untuk setiap alternatif. wj = nilai bobot rangking (dari setiap kriteria). rij = nilai rating kinerja ternormalisasi. berdasarkan hipotesis pengambilan keputusan dengan menggunakan simple additive weighting (saw) akan memberikan alternative keputusan yang baik bagi pengurus rt.04 rw.01 sehingga pengambilan keputusan tepat pada sasaran. hasil penelitian dari metode simple additive weighting (saw) yang telah diperhitungkan dapat disimpulkan bahwa pemberian raskin diberikan kepada dengan hasil tabel 3. tabel rangking id nama rangking id nama rangking 101 aryana 2.56 122 amran 0.87 102 henandar 1.81 123 subeki 2 103 karmadi 2.56 124 syahroni 1.43 104 miftahudin 1.81 125 m idris 1.52 105 malik 2 126 sukriyah 2.75 106 rendi 2 127 sarinah 2.75 107 kartija 1.81 128 imbron 1.06 108 delfi efendi 2.56 129 dimas 2 109 deni 2 130 zarkoni 2.56 110 gunarso 1.81 131 bambang s r 2.18 111 sunandar 1.81 132 ridwan 2.56 112 bram 2 133 adi gunawan 2.18 113 deden 2.18 134 marhadi 2.75 114 agus 0.875 135 nenih 2.56 115 munawar 2.18 136 udin 2.18 116 abdul majid 1.43 137 mat amin 2.18 117 suryani 2.18 138 homsyah 2.56 118 sairin 1 139 yati aryati 2.56 119 heriansyah 2 140 dian jauhari 1.62 120 ayat 1.43 141 oktorizal 2.37 121 jaka wahyudin 1.43 142 toriq 1.62 tabel 4. tabel rangking terbaik id no nama rangking id no nama rangking 126 1 sukriyah 2.75 136 16 udin 2.18 127 2 sarinah 2.75 137 17 mat amin 2.18 134 3 marhadi 2.75 105 18 malik 2 101 4 aryana 2.56 106 19 rendi 2 103 5 karmadi 2.56 109 20 deni 2 108 6 delfi efendi 2.56 112 21 bram 2 130 7 zarkoni 2.56 119 22 heriansyah 2 132 8 ridwan 2.56 123 23 subeki 2 138 9 homsyah 2.56 129 24 dimas 2 139 10 yati aryati 2.56 102 25 henandar 1.81 141 11 oktorizal 2.37 104 26 miftahudin 1.81 113 12 deden 2.18 110 27 gunarso 1.81 117 13 suryani 2.18 111 28 sunandar 1.81 131 14 bambang s r 2.18 140 29 dian jauhari 1.62 133 15 adi gunawan 2.18 142 30 toriq 1.62 http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 138 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional kesimpulan berdasarkan hasil penelitian dan pembahasan dapat diambil kesimpulan bahwa sistem pendukung keputusan ini dibangun utuk membantu dalam pemberian raskin dilingkungan rt.04 rw.01 sukmajaya depok dengan menggunakan metode, yaitu metode simple additive weighting (saw) yang dapat mempercepat proses menentukan pemberian raskin dengan perhitungan yang akurat. hasil penelitian dari metode simple additive weighting (saw) yang telah diperhitungkan dapat disimpulkan bahwa pemberian raskin diberikan kepada sukriyah dengan hasil 2.75. penelitian dapat dikembangkan lebih lanjut dengan krtiria-kriteria yang berbeda sesuai dengan kriteria dan bobot yang ditentukan untuk menyelesaikan permasalan-permasalahan sosial lainnya. referensi angrawati, d., angrawati, d., yamin, m., & ransi, n. (2016). sistem pendukung keputusan menentukan jumlah beras miskin menggunakan metode simple additive weight (saw). semantik, 2(1). retrieved from http://ojs.uho.ac.id/index.php/semantik/arti cle/view/712 handayani, h. (2016). sistem pendukung keputusan untuk penerimaan raskin (beras miskin) di desa tanggul kundung menggunakan metode saw. kediri. retrieved from http://simki.unpkediri.ac.id/mahasiswa/file_ artikel/2016/11.1.03.03.0117.pdf marlaeni, n. u., & satria, f. (2017). sistem pendukung keputusan untuk menentukan penerima raskin (beras untuk rakyat miskin) menggunakan metode saw (studi kasus: desa cabang empat kec. abung selatan kab. lampung utara). prociding kmsi, 5(1). retrieved from http://ojs.stmikpringsewu.ac.id/index.php/p rocidingkmsi/article/view/450 rini, a. s., & soyusiawaty, d. (2014). sistem pendukung keputusan seleksi penerimaan beras untuk keluarga miskin dengan metode simple additive weighting. jstie (jurnal sarjana teknik informatika) (e-journal), 2(2), 121– 130. https://doi.org/10.12928/jstie.v2i2.2728 septian, m. d., bahri, t. s., & makmur, t. (2013). analisis efektivitas dan efisiensi distribusi beras miskin (raskin) di kecamatan trienggadeng kabupaten pidie jaya. jurnal agrisep, 14(1), 70–78. retrieved from http://www.jurnal.unsyiah.ac.id/agrisep/art icle/view/910 suryeni, e., agustin, y. h., & nurfitria, y. (2015). sistem pendukung keputusan kelayakan penerimaan bantuan beras miskin dengan metode weighted product di kelurahan karikil kecamatan mangkubumi kota tasikmalaya. proceedings konferensi nasional sistem dan informatika (kns&i), 0(0). retrieved from http://ejournal.stikombali.ac.id/index.php/knsi/article/view/488 widiarsih, d. (1974). pengaruh sektor komoditi beras terhadap inflasi bahan makanan. jurnal sosial ekonomi pembangunan, 2(6), 244–256. retrieved from https://ejournal.unri.ac.id/index.php/jsep/a rticle/view/863 http://creativecommons.org/licenses/by-nc/4.0/ journal of informatics research vol. 4, no. 4, september 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.431 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 391 iot-based home automation using nodemcu esp8266 paul k.a windesi-1*),mingsep rante sampebua-2, remuz mb kmurawak-3 123sistem infromasi, fakultas matematika dan ilmu pengetahuan alam universitas cenderawasih papua, indonesia https://www.uncen.ac.id 1*)remuzbertho3@gmail.com, 2mingsep75@gmail.com, 3remuzbertho3@gmail.com (*) corresponding author abstrak home automation didefinisikan sebagai teknologi otomatisasi yang berfokus pada majemen rangkaian serta peralatan elektronik di rumah, kantor dan lainnya. home automation merupakan bentuk perkembangan dari internet of things (iot) yang memungkinkan komunikasi serta kontrol melalui perangkat selama terhubung ke internet. penelitian ini bertujuan untuk merancang prototype home automation pada perangkat penerangan seperti lampu, sensor cahaya untuk mengaktifkan lampu, dan beberapa lampu yang dikontrol menggunakan perangkat mobile. metode penelitian menggunakan metode prototype, dimana pengembangan sistem difokuskan pada hasil masukan dari pelanggal yang akan dievaluasi untuk pengembanagan perangkat lunak. adapun tahapan dalam penelitian ini dimulai dengan menganalisis kebutuhan perangkat, studi literatur, perancangan sistem, perancangan hardware, perancangan antarmuka pengguna pengujian dan sampai pada hasil. output dari penelitian ini akan dibuat dalam bentuk prototype dimana semua komponen akan tempatkan berdasarkan layout yang sudah digambarkan pada perancangan. sistem ini dapat menolong pengguna dalam mengontrol peralatan yang ada di dalam rumah dari mana saja dan kapan saja,termasuk memanfaatkan sensor cahaya untuk memberikan inputan agar menyalakan atau mematikan lampu tersebut.. kata kunci: home automation, prototype, iot, arduino, nodemcu8266 abstract home automation is an automation technology that manages circuits and electronic equipment in homes, offices, and others. home automation is a form of internet of things (iot) development that allows communication and control through devices connected to the internet. this study aims to design a home automation prototype on lighting devices such as lamps, light sensors to activate lights, and several lights controlled using mobile devices. the research method uses the prototype method, where system development is focused on the results of input from customers who will be evaluated for software development. the stages in this research begin with analyzing device requirements, literature study, system design, hardware design, user interface design testing, and arriving at the results. this research output will be made in the form of a prototype, where all components will be placed based on the layout described in the design. this system can help users control the equipment in the house from anywhere and anytime, including using light sensors to provide input to turn the lights on or off. keywords: home automation, prototype, iot, arduino, nodemcu8266 introduction the internet has become an essential part of various life activities. (lasera & wahyudi, 2020). one of the impacts of the rapid development of the internet is the internet of things (iot) (malik et al., 2019). iot can be defined as a computational scheme interconnected with digital devices, a mechanism of transmitting data over a defined network without human involvement at any level (muktiawan & nurfiana, 2018; singh et al., 2020). iot allows users to manage and optimize electronic devices by using the internet. (junaidi, 2015). iot technology offers connectivity of system devices and services in various fields, such as agriculture, building management, health, energy, transportation, and even home management, often known as home automation. (jain et al., 2019) home automation is an automation technology that manages electronic devices and p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.431 journal of informatics research vol. 4, no. 4, september 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 392 equipment in the home, office, and others. (santoso et al., 2021; soleh & susilo, 2016). home automation allows for the management of lights (lighting), temperature (temperature), washing machines, etc. (mowad et al., 2014). this procedure is possible through the presence of electronic sensors such as temperature sensors, humidity, gas concentration, etc. (david et al., 2015) the existence of covid-19 has caused the role of technology to be increasingly important. social distancing, which requires many business processes and activities, is done with the internet. (komalasari, 2020) home automation can help facilitate human tasks by utilizing the internet. previous research on home automation (harahap, 2018) proposed an automatic clothesline prototype using water sensors and ldr sensors based on arduino microcontrollers to overcome weather uncertainty by applying the fuzzy logic controller (flc) method. (gitakarma, 2018) created a home automation system (has) to control bluetooth-based electrical devices using an android application to make it easier for elderly and physically disabled people in the family (santoso et al., 2021) and implemented nodemcu in home automation with the blynk control system using dht11 sensors to monitor temperature and humidity and mq2 sensors to detect smoke or gases that could potentially cause fires as well as relays to control electronic devices from anywhere. based on the author's search results, there is very little research on iot in papua due to very limited internet infrastructure constraints (wayangkau et al., 2020). this research has urgency as one of the pioneers in implementing such research in papua. this research can provide an overview of how to maximize the existing infrastructure to implement iot and home automation and help people use the internet to facilitate routines. based on this background, the author designed a prototype of home automation where lighting devices such as lights outside the house can automatically turn on when conditions are dark and turn off when conditions are bright using light sensors. the author added several components, such as a relay to control the lights in the house and a camera module for monitoring. for the user interface, the author uses the blynk application. the author also added a notification feature to the user interface so that when the light is dark or bright, the notification will appear to notify that the light will be turned on or off. the system is expected to make it easier to control the equipment at home from where we are and at any time. research methods the internet of things (iot) is a concept/scenario in which an object can transmit data over a network without requiring human-to-human or human-tocomputer interaction. iot also provides efficient data storage and exchange by connecting physical devices through electronic sensors and the internet. iot is closely related to machine-to-machine (m2m) communication in the manufacturing and electricity, oil, and gas industries. products designed with m2m communication are often considered intelligent or "smart" systems. (muktiawan & nurfiana, 2018). (wadhwani et al., 2018) figure 1. iot scheme for home automation home automation is an automation technology that manages electronic devices and equipment in the home, office, and others. (santoso et al., 2021; soleh & susilo, 2016). home automation allows the management of lamps (lighting), temperature, washing machines, etc., as shown in figure 1 (mowad et al., 2014). this procedure is possible using electronic sensors such as temperature, humidity, gas concentration, etc. (david et al., 2015). home automation consists of two components: hardware as output input and software to monitor and control hardware. (kholmatov & darvishev, 2020) nodemcu esp8266 is an integrated chip connecting the microcontroller to the internet via wifi. it offers a complete and standalone wifi journal of informatics research vol. 4, no. 4, september 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.431 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 393 network solution, which allows it to be hosted or as a wifi client. the esp8266 has powerful onboard processing and storage capabilities, allowing it to be integrated with sensors and other specialized device applications through gpios with easy development and minimal loading times. (hidayat et al., 2018) nodemcu has also equipped a usb to serial communication chip to program. it only requires a micro usb data cable. the blynk application is straightforward (artiyasa et al., 2020). to connect blynk on boards such as arduino, raspberry pi, wemos, and nodemcu only need to enter the auth token code sent via email when creating a blynk account, and then the auth code is entered in the program code and upload it on the board. from this application, we can control anything remotely wherever we are with a record of being connected to the internet. (santoso et al., 2021) in conducting this study, the authors applied several research methods, such as collecting data, where the research was carried out, and how to design the desired miniature. the research methodology applied by the author is as follows in figure 2. figure 2. research methods block diagram the design of this system is first planned by creating a block diagram. a block diagram is used at the beginning of the design to be an initial illustration of how the system works. the block diagram as a whole can be seen in figure 3 figure 3. hardware block diagram based on the block diagram image above, it can be explained that this system works because when nodemcu, esp32-cam, light sensors, and relays get a power source from the adapter, the devices will turn on. furthermore, according to the ssid, nodemcu and esp32-cam will automatically search for ssid via wifi or the nearest hotspot, which will later be entered into the program code. after the esp32-cam gets power, the device will automatically get an ip from wifi; then, the ip will forward using scraping software on the laptop so that the public can access the device. furthermore, the light sensor, the light sensor itself can directly trigger the relay to turn the light on and off when it is dark or bright without a program code. however, in this system, a notification program code will be generated on nodemcu so the blynk application can pop notifications when the sensor detects light or darkness. after creating a block diagram and knowing the functions of each component used, the next stage is hardware design. there are several processes in hardware design, including small design, circuit schemes, and wiring. figure 4 shows the appearance of the small layout design for home automation figure 4. miniature layout p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.431 journal of informatics research vol. 4, no. 4, september 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 394 information: x: lights y: camera z: sensors the development of the user interface on the blynk application serves as an intermediary to monitor the system that has been designed. figure 5 illustrates the user interface design that has been created. figure 5. user interface design this research uses a quantitative approach, just an example of this research. results and discussion connection test in this prototype connection test, connection testing is carried out using two different networks. it aims to prove that this prototype system can be accessed anywhere (accessible by the public). the connection testing is carried out by testing the connection between the blynk application and the system prototype via a smartphone using the internet network. the blynk application can be accessed publicly, but the public cannot access the esp32-cam camera module on the prototype. to be accessible to the public, the author uses ngrok software to forward the ip on the camera module to the public. here is a picture of the test results. figure 6. application notification when the device is not connected based on the picture above, it can be seen that figure 6 is a condition where the user interface device display has not been connected to the internet, and figure 7 is a condition where the user interface device display is connected to the internet. figure 7. when the device is connected user interfaces control test in the testing phase, the user interface display will be tested on the blynk application via smartphone, on the guest l_ruang button, l_kamar1, l_kamar2, l_rsantai, notification icon, and camera. this test aims to find out what is by functions have been designed and whether there is a delay on each device. journal of informatics research vol. 4, no. 4, september 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.431 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 395 table 11. user interface display testing no. input output button status delay (sec) information 1 l_rtamu lights on on 1 match lights off off 1 match 2 l_kamar1 lights on on 1 match lights off off 1 match 3 l_kamar2 lights on on 1 match lights off off 1 match 4 l_rsantai lights on on 1 match lights off off 1 match 5 notification appear 2 match 6 camera appear 3 match from table 1, every button on the user interface displayed during testing by pressing the button to turn off and turn on the lights on the prototype was found to be a delay of 1 second. then in the test, the notification that appears on the user interface when the sensor detects the presence of light and the rate of light is found to be a delay of 2 seconds. furthermore, in the camera test to display the image on the user interface display, a delay of 3 seconds was found so that the image could appear on the screen. the delay found in this user interface test is due to the quality of the internet network used. if the quality of the internet network used is not good, the delay found will be greater; on the contrary, if the quality of the internet network used is good, the delay found is minor. figure 8. condition when prototype in the off state figure 9. condition when prototype is on figure 10. when the button is off and the notification display when the sensor is dark 10 based on the picture above, it can be seen that figure 8 is a condition when the button has not been pressed and is in the off condition, and figure 9 is a condition when the button has been pressed and is in the state. then figure 10b is an image of the notification display when the resistance of the light sensor increases due to dark conditions, and figure 10b is a notification image when the resistance of the light sensor decreases due to bright conditions. conclusions and suggestions conclusion after testing, it is known that an iot-based home automation prototype has been successfully created and controlled via the internet, using the blynk application on a smartphone that can be accessed anywhere and anytime. some of the devices used are light sensors, lights, relays and buttons, which are connected to each other. in addition, the design of an iot-based home automation prototype has worked according to the design. suggestion some improvements that can be made for home automation are not only using lights and cameras but can be improved for other devices, such as motors, electric pumps, and other sensors. such as temperature sensors, gas sensors, motion sensors and so on. in addition, it can also replace power from electricity to solar cells to provide a more optimal power source. the author can also add security features such as better monitoring quality with multi cameras that can be recorded in real-time. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.431 journal of informatics research vol. 4, no. 4, september 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 396 references artiyasa, m., nita rostini, a., edwinanto, e., & pradifta junfithrana, a. (2020). aplikasi smart home node mcu iot untuk blynk. jurnal rekayasa teknologi nusa putra, 7(1), 1–7. https://doi.org/10.52005/rekayasa.v7i1.5 9 david, n., chima, a., ugochukwu, a., & obinna, e. (2015). design of a home automation system using arduino. international journal of scientific & engineering research, 6(6). https://doi.org/10.1680/cbfed.15654.0005 gitakarma, m. s. (2018). pengembangan home automation system (has) untuk mengendalikan perangkat listrik berbasis bluetooth menggunakan aplikasi android. jst (jurnal sains dan teknologi), 7(2), 157. https://doi.org/10.23887/jstundiksha.v7i2.12597 hidayat, m. r., christiono, c., & sapudin, b. s. (2018). perancangan sistem keamanan rumah berbasis iot dengan nodemcu esp8266 menggunakan ssensor pir hc-sr501 dan sensor some detector. kilat, 7(2), 139–148. https://doi.org/10.33322/kilat.v7i2.357 jain, a., tanwar, p., & mehra, s. (2019). home automation system using internet of things (iot). proceedings of the international conference on machine learning, big data, cloud and parallel computing: trends, prespectives and prospects, comitcon 2019, 300–305. https://doi.org/10.1109/comitcon.2019.88 62201 junaidi, a. (2015). internet of things: sejarah teknologi dan penerapannya. jurnal ilmiah teknologi terapan, 1(3), 62–66. http://journal.widyatama.ac.id/index.php/jitt er/article/view/66 kholmatov, o., & darvishev, a. b. ugli. (2020). smart home automation based on different sensors and arduino as the master controller. universum:technical sciences, 81(12–1). https://doi.org/10.32743/unitech.2020.81.1 2-1.25-28 komalasari, r. (2020). manfaat aplikasi teknologi iot di masa pandemi covid-19 : studi eksploratif. tematik jurnal teknologi informasi dan komunikasi, 7(2), 140–146. https://doi.org/10.38204/tematik.v7i2.469 lasera, a. b., & wahyudi, i. h. (2020). pengembangan prototipe sistem pengontrolan daya listrik berbasis iot esp32 pada smart home system. elinvo (electronics, informatics, and …, 5(november), 112–120. malik, a., magar, a. t., verma, h., singh, m., & sagar, p. (2019). a detailed study of an internet of things (iot). international journal of scientific and technology research, 8(12), 2989–2994. mowad, m. a. e., fathy, a., & hafez, a. (2014). smart home automated control system using android application and microcontroller. international journal of scientific & engineering research, 5(5), 935–939. muktiawan, d. a., & nurfiana, n. (2018). sistem monitoring penyimpanan kebutuhan pokok berbasis internet of things(iot). explore: jurnal sistem informasi dan telematika, 9(1). https://doi.org/10.36448/jsit.v9i1.1035 santoso, i., adiwisastra, m. f., simpony, b. k., supriadi, d., purnia, d. s., bina, u., & informatika, s. (2021). implementasi nodemcu dalam home automation dengan sistem kontrol aplikasi. 9(1). singh, r. p., javaid, m., haleem, a., & suman, r. (2020). internet of things (iot) applications to fight against covid-19 pandemic. diabetes & metabolic syndrome: clinical research & reviews, 14(4), 521–524. https://doi.org/10.1016/j.dsx.2020.04.041 soleh, & susilo, a. (2016). desain dan implementasi smart home system pengendali lampu rumah berbasis arduino mega. seminar riset teknologi informasi (sriti), 99–106. wadhwani, s., singh, u., singh, p., & dwivedi, s. (2018). smart home automation and security system using arduino and iot. international research journal of engineering and technology (irjet), 5(2), 1357–1359. wayangkau, i. h., mekiuw, y., rachmat, r., suwarjono, s., & hariyanto, h. (2020). utilization of iot for soil moisture and temperature monitoring system for onion growth. emerging science journal, 4(special issue), 102–115. https://doi.org/10.28991/esj-2021-sp1-07 jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.453 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 445 implementation of machine learning algorithms for early detection of cervical cancer based on behavioral determinants duwi cahya putri buani-1*, indah suryani-2 informatika universitas nusa mandiri jakarta, indonesia duwi.dcp@nusamandiri.ac.id, indah.ihy@nusamandiri.ac.id (*) corresponding author abstract cervical cancer is a disease that affects women and has the highest mortality rate after breast cancer. early detection of cervical cancer is critical at this time, so cervical cancer patients are decreasing. many women, especially in indonesia, are less concerned about the dangers of cervical cancer, even though if detected earlier, this disease will be easier to treat. one alternative for early detection can use machine learning algorithms. the machine learning algorithms used in this study are naïve bayes (nb), logistic regression (lr), decision tree (dt), svm, and random forest. in this study, a random under-sampling method was employed, which had no uses in any prior research. this technique makes the accuracy of the five algorithms even better. the research results show that nb has an accuracy rate of 91.67%, lr has an accuracy rate of 87.5%, dt has an accuracy rate of 81.81%, svm has an accuracy rate of 75%, and rf has the highest accuracy rate of 94.45%. this research shows that the best model is rf or random forest. keywords: cervical cancer; machine learning; random forest abstract kanker servik merupakan penyakit yang diidap oleh wanita memiliki tingkat kematikan terbesar di dunia setelah kanker payudara. deteksi dini kanker serviks sangat penting untuk saat ini, agar pasien kanker serviks semakin berkurang. banyak wanita terutama di indonesia kurang peduli dengan bahayanya kanker serviks, padahal jika dideteksi lebih dini penyakit ini akan lebih mudah untuk ditangani. salah satu alternatif untuk melakukan deteksi dini dapat menggunakan algortima machine learning. algortima machine learning yang digunakan dalam penelitian ini adalah naïve bayes (nb), logistic regerson (lr), decision tree (dt), svm dan random forest. dalam penelitian ini juga menggunakan teknik random under sampler yang pada penelitian sebelumnya tidak digunakan, teknik ini menjadikan akurasi dari ke-lima algortima menjadi semakin baik. dari hasil penelitian yang dilakukan menunjukan bahwa nb memiliki tingkat akurasi 91.67%, lr memiliki tingkat akurasi 87.5%, dt memiliki tingkat akurasi 81.81%, svm memiliki tingkat akurasi 75% dan rf memiliki tingkat akurasi yang paling tinggi yaitu 94.45%. dari penelitian ini menunjukan bahwa model yang paling baik adalah rf atau random forest. kata kunci: kanker servik; machine learning; random forest introduction globocan (global cancer observatory) stated that asian countries, including indonesia, contribute most significantly to cancer cases worldwide. data sourced from darmais hospital in 2018 showed that the most cancer cases were breast cancer at 19.18%, cervical cancer at 10.69%, and lung cancer at 9.89% (agustyawati, fauzi, & pratondo, 2021; pangribowo, 2019; wongkar, angka, & angeline, 2022). the who (world health organization) states that cervical cancer is a deadly disease that ranks second only to breast cancer. about 50,000 women have diagnosed with cervical cancer annually (sobar, machmud, & wijaya, 2016)(setyani, 2018). the high number of cervical cancer patients is influenced by the lack of knowledge among the public, especially women, to carry out early detection before cancer spreads (aisah, hafiyusholeh, & ulinnuha, 2022; winarni & suratih, 2020). this data shows that cervical cancer is one of the most common cases of cancer in indonesia, so it needs to be detected early (arifin, siregar, ratna, & mudzakir, 2021; hidayah, cholissodin, & adikara, 2019). to perform early detection using machine learning. machine learning p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.453 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 446 is used as a classifier to detect the probability of cervical cancer risk based on its behavior and determinants (feblian & daihani, 2017). previous research using the naïve bayes (nb) and logistic regression (lr) algorithms showed the following results in table 1: table 1. previous research algorithm accuracy auc nb 91.67% 0.96 lr 87.5% 0.97 source: (sobar et al., 2016) table 1 shows previous studies using the same data but only two popular algorithms in 2016: nb and lr. in this study, the authors will compare nb and lr algorithms with other algorithms to find the best model for the early detection of cervical cancer. previous research conducted by sober used the same data but only made comparisons with two algorithms, nb and lr, which were prevalent then. this study compares three additional algorithms: decision tree (dt), svm, and random forest (rf). these three additional algorithms have their respective advantages that can cover the weaknesses of the naïve bayes algorithm, which in previous studies had the highest level of accuracy, namely 91.67%. in addition to adding algorithms for comparison, this study also uses the random under sampler technique to overcome class imbalance, although this method had not been employed in earlier investigations. previous research using the same data using the svm algorithm has an accuracy rate of 87%, this research uses a sample data of 59 data and four attributes without using the random under sampler technique and data processing using python (arifin et al., 2021). previous research using cervical cancer risk classification data with feature selection based on expert interviews used the extreme learning machine algorithm to classify and measure using the confusion matrix curve, resulting in an accuracy of 91.76% (hidayah et al., 2019). previous research used the decision trees algorithm. the results of the accuracy error in the study were 0% using 19 attributes, and the data was hospital patient data. dr. wahidin sudirohusodo makassa, in this study, used symptoms and signs to determine the stage of cervical cancer suffered by patients (irmayani1, 2017). the medical lens is typically used in cervical cancer studies, not a lifestyle perspective. in this study, the authors used data from habits carried out in everyday life. of course, the information was collected from both people with and without cervical cancer. research methods in this study, the crisp-dm (cross industry standard process for data mining) model was used, which consisted of six stages, namely business understanding, data understanding, data preparation, modeling, evaluation, and deployment (firqiani, kustyo, & giri, 2008; hasanah, soim, & handayani, 2021; matovani & hadiono, 2018). a. stages of business understanding based on data from the uci machine learning repository with a total of 72 respondents, 22 were cancer patients, and 50 were cancer survivors. all respondents were residents of a city in jakarta, indonesia. examining sufferers must be done so that the disease can be detected early to reduce the risk of cervical cancer. using data mining with classification algorithms with a high level of prediction and accuracy can help overcome these problems so that the diagnostic results obtained are accurate. this study used algorithm comparisons to obtain high accuracies, such as logistic regression, naïve bayes, svm, decision trees, and random forests. b. data understanding stage the data used are secondary data obtained from the survey results of cervical cancer patients, and the data comes from a questionnaire distributed to 72 respondents, of which 22 are cancer patients and 50 are not cancer survivors. all respondents are residents of cities in jakarta, indonesia, which can be accessed publicly through uci machine learning repositories. data consists of 19 attributes and one attribute as a class. source: (buani & suryani, 2022) figure 1. visualization of ca cervix variables the ca cervix variable is a label variable used to classify having cervical or no cervical cancer. jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.453 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 447 source: (buani & suryani, 2022) figure 2. visualization of eating behavior data the eating behavior variable is a variable that describes the consumption of food. the food consumed is very influential on the health of the body. source: (buani & suryani, 2022) figure 3. visualization of behavioral sexual risk variable behavioral sexual is a variable that most likely determines whether a person has cervical cancer. c. stages of data preparation the total data in this study was 72, which already has a label where respondents have a risk of cancer and respondents who do not. however, this data still contains duplicate data, outliers, and anomalous or inconsistent data. therefore, this stage is necessary to obtain quality data to produce a more effective and efficient model. an example of outlier data can be seen in figure 4 below: source: (buani & suryani, 2022) figure 4. eating behavior variable figure 4 shows that the behavior eating variable has no outlier data, so no data is far from observation. source: (buani & suryani, 2022) figure 5. distribution of ca-cervix data in figure 5, if blue is data labeled no cervical cancer and the orange bar is cervical cancer. from the figure, the data must equate first. here the author uses the random under sampler technique. then the result is as in figure 6. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.453 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 448 source: (buani & suryani, 2022) figure 6. data distribution after random under sampler figure 6 shows the use of the random under sampler technique data distribution. the random under sampler deals with classes/labels that are not identical in number. in the random under sampler process, data is the division into testing data and training data, and the data division is 70% for training data and 30% for testing data. after the random under sampler, perform techniques and data in the same class. the next thing to do is look at the correlation between attributes or variables using heatmap, seen in figure 7. source: (buani & suryani, 2022) figure 7. heatmap correlation between variables figure 7 shows that the darker the heatmap color, the more attributes or variables have a stronger association with data classes or labels if and only if. figure 3 shows that the variables/attributes are behavioral sexual risk, commitment of intentions, aggregation of intentions, norm significant people, appreciative social support, self-hygiene behavior, perceptual susceptibility, and fulfillment of norms. eight variables/attributes are the attributes that most influence the class/label of cervical cancer. a. dataset the dataset used in this study is public data from the uci machine learning repository with a total of 72 data, data consisting of 20 attributes, and one attribute is a label, which sees in table 2: table 2. data description variable behavior_sexualrisk behavior_eating behavior_personalhygine intention_aggregation intention_commitment attitude_consistency attitude_spontaneity norm_significantperson norm_fulfillment perception_vulnerability perception_severity motivation_strength motivation_willingness socialsupport_emotionality socialsupport_appreciation socialsupport_instrumental empowerment_knowledge empowerment_abilities empowerment_desires ca_cervix (this is a class attribute, 1=have cervical cancer, 0=no cervical cancer) source: (sobar et al., 2016) table 2 shows the variables or attributes used in the study. these attributes include behavioral sexual risk, behavior eating, behavior personal hygiene, aggregation of intentions, commitment of intentions, attitude consistency, attitude spontaneity, norm significant people, norm fulfillment, perceptual vulnerability, perceived severity, motivation strength, volitional motivation, emotional, social support, appreciative social support, instrumental social support, empowerment knowledge, empowerment ability, empowerment desire and ca_cervix (these are class attributes, 1=cervical cancer, 0=no cervical cancer). b. research methods the model used in this study is the application of machine learning algorithms for the early detection of cervical cancer. the algorithms used include decision tree (dt), svm, random forest (rf), and two algorithms from previous studies, nb and lr. then from the five algorithms selected the jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.453 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 449 best model, the results are accurate. figure 1 shows the flow chart of this study. source: (buani & suryani, 2022) figure 8. research flowchart figure 8 shows research from data preparation, such as checking blank data, duplicate data, and imbalance classes. results and discussion this study compared five algorithms: logistic regression, naïve bayes, svm, decision tree, and random forest. for lr and nb, the accuracy results come from previous studies. svm is a classification algorithm whose level of accuracy in a model depends on the kernel functions and parameters used, and the advantage of svm is that it can classify and overcome regression with linear and non-linear (dasmasela, tomasouw, & leleury, 2021)(parapat, furqon, & sutrisno, 2018). decision trees are prediction model techniques that use for task classification and prediction (bahri & lubis, 2020)(wijaya, bahtiar, kaslani, & r, 2021)(wuryani & agustiani, 2021)(schonlau & zou, 2020). the results of the study can be seen in table 3. table 3. predicted results algorithm accuracy auc nb 91.67% 0.96 lr 87.5% 0.97 dt 81.81% 0.81 rf 94.45% 0.75 svm 75% 0.75 source: (buani & suryani, 2022) table 3 is the result of the research conducted in this study. table 3 describes the accuracy results after conducting experiments where naïve bayes (nb) has an accuracy of 91.67%, logistic regression (lr) of 87.5%, decision tree (dt) of 81.81%, svm 75%, and random forest (rf) 94.45%, from the table. it shows that the highest accuracy in this study is rf. source: (buani & suryani, 2022) figure 9. graph of prediction results figure 9 is a visualization of the prediction results made by nm, lr, dt, rf, and svm from the image showing that random forest is the best algorithm in making predictions with a result of 94.45% conclusions and suggestions the results of this research using the random under sampler technique show that the model using the svm algorithm is 75%, while the results of the model using the decision tree algorithm are 82%. for the model with the random forest algorithm, 94% of the results indicate that the random forest is a random forest model. the best method for early detection of cervical cancer in behavioral determinants. references agustyawati, d. n., fauzi, h., & pratondo, a. (2021). perancangan aplikasi deteksi kanker serviks menggunakan metode convolutional neural network. eproceedings of engineering, 8(4), 3908–3924. aisah, s. n., hafiyusholeh, m., & ulinnuha, n. (2022). klasifikasi kanker serviks menggunakan metode extreme learning machine (elm). komputek, 6(3), 68–75. retrieved from https://studentjournal.umpo.ac.id/index.php /komputek/article/view/68 arifin, s. s., siregar, a. m., ratna, a., & mudzakir, t. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.453 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 450 al. (2021). klasifikasi penyakit kanker serviks menggunakan algoritma support vector machine ( svm). (ciastech), 521–528. bahri, s., & lubis, a. (2020). metode klasifikasi decision tree untuk memprediksi juara english premier league. jurnal sintaksis, 2(1), 63–70. retrieved from http://www.jurnal.stkipalmaksum.ac.id/inde x.php/sintaksis/article/view/47 buani, d. c. p., & suryani, i. (2022). independent research report. jakarta. dasmasela, r., tomasouw, b. p., & leleury, z. a. (2021). penerapan metode support vector machine (svm) untuk mendeteksi penyalahgunaan narkoba. matematika, statistik dan terapannya, 1(02), 93–101. feblian, d., & daihani, d. u. (2017). implementasi model crisp-dm untuk menentukan sales pipeline pada pt x. jurnal teknik industri, 6(1). https://doi.org/10.25105/jti.v6i1.1526 firqiani, h. n., kustyo, a., & giri, e. p. (2008). seleksi fitur menggunakan fast correlation based filter pada algoritma voting feature intervals 5. jurnal ilmiah ilmu komputer, 6(2), 245184. hasanah, m. a., soim, s., & handayani, a. s. (2021). implementasi crisp-dm model menggunakan metode decision tree dengan algoritma cart untuk prediksi curah hujan berpotensi banjir. journal of applied informatics and computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200 hidayah, u. r., cholissodin, i., & adikara, p. p. (2019). klasifikasi penyakit kanker serviks dengan extreme learning machine. jurnal pengembangan teknologi informasi dan ilmu komputer, 3(7), 6575–6582. retrieved from http://j-ptiik.ub.ac.id irmayani1, b. a. (2017). klasifikasi stadium kanker serviks menggunakan sistem pengambilan keputusan decision tree. prosiding seminar nasional, 04(1), 455–464. retrieved from http://journal.uncp.ac.id/index.php/procedi ng/article/view/1281 matovani, d., & hadiono, k. (2018). implementasi algoritma apriori untuk membantu proses persediaan barang. jurnal dinamika informatika, 10(2), 53–59. https://doi.org/10.35315/informatika.v10i2. 8133 pangribowo, s. (2019). beban kanker di indonesia. pusat data dan informasi kesehatan kementerian kesehatan ri, 1–16. parapat, i. m., furqon, m. t., & sutrisno. (2018). penerapan metode support vector machine (svm) pada klasifikasi penyimpangan tumbuh kembang anak. jurnal pengembangan teknologi informasi dan ilmu komputer, 2(10), 3163–3169. schonlau, m., & zou, r. y. (2020). the random forest algorithm for statistical learning. stata journal, 20(1), 3–29. https://doi.org/10.1177/1536867x2090968 8 setyani, r. a. (2018). penerapan program deteksi dini kanker serviks sebagai upaya pemberdayaan wanita di sleman yogyakarta. kebidanan, fakultas ilmu kesehatan universitas respati yogyakarta, iii(2), 12. sobar, machmud, r., & wijaya, a. (2016). behavior determinant based cervical cancer early detection with machine learning algorithm. advanced science letters, 22(10), 3120–3123. https://doi.org/10.1166/asl.2016.7980 wijaya, y. a., bahtiar, a., kaslani, & r, n. (2021). analisa klasifikasi menggunakan algoritma decision tree pada data log firewall. jurnal sistem informasi dan manajemen, 9(3), 256– 264. https://doi.org/10.47024/js.v9i3.303 winarni, w., & suratih, k. (2020). mengenal lebih dini kanker leher rahim bersama forum kajian dan komunikasi muslimah. gemassika : jurnal pengabdian kepada masyarakat, 4(2), 186. https://doi.org/10.30787/gemassika.v4i2.56 9 wongkar, r., angka, r. n., & angeline, r. (2022). karakteristik pasien kanker stadium 4 yang mendapatkan perawatan paliatif di rumah sakit x. jurnal kedokteran meditek, 28(2), 126–132. https://doi.org/10.36452/jkdoktmeditek.v2 8i2.2235 wuryani, n., & agustiani, s. (2021). random forest classifier untuk deteksi penderita covid-19 berbasis citra ct scan. jurnal teknik komputer, 7(2), 187–193. https://doi.org/10.31294/jtk.v4i2 227 expert system development to identify employee personality types using dempster shafer theory julia fajaryanti1*), rogayah2 informatika, fakultas teknologi industri universitas gunadarma www.gunadarma.ac.id julia@staff.gunadarma.ac.id, rogayah@staff.gunadarma.ac.id (*) corresponding author abstrak sumber daya manuisa menjadi aset penting bagi perusahaan untuk berkembang dan mewujudkan cita -cita perusahaan. salah satu usaha untuk mengoptimalkan kapasitas karyawan adalah dengan mengetahui kepribadiannya. kepribadian merupakan bentuk yang dimiliki seseorang individu dalam bertingkahlaku dan segala watak yang membedakan antara seorang individu yang satu dengan seorang individu lainnya. mengetahui kepribadian karyawan menjadi suatu hal yang penting bagi perusahaan dan karyawan itu sendiri. karena dengan mengetahui kepribadian seseorang perusahaan dapat dapat memaksimalkan potensi karyawan dan dapat menepatkan posisi tertentu yang sesuai dengan kepribadian karyawan. penelitian ini bertujuan untuk mengimplementasikani dempster-shafer theory pada mesin inferensi dalam membangun sistem pakar untuk mengidentifikasi tipe kepribadian karyawan. dempster-shafer theory dapat melakukan perhitungan probabilitas sehingga dapat dilakukan pembuktian berdasarkan tingkat kepercayaan dan penalaran yang logis. sistem yang dikembangkan mampu mengidentifikasi tipe kepribadian karyawan melalui sifat atau gejala yang ada pada diri karyawan. selain itu, sistem dapat menampilkan hasil diagnosis dengan penjelasan tentang tipe kepribadian, sifatnya dalam pekerjaan dan pekerjaan atau posisi yang cocok untuk tipe kepribadian tersebut. berdasarkan hasil uji akurasi yang diperoleh dari hasil perbandingan diagnosa sistem pakar dengan analisis seorang pakar menunjukkan nilai akurasi mencapai 85%. kata kunci: dempster-shafer theory; sistem pakar; mesin inferensi; tipe kepribadian abstract human resources are an essential asset for the company to develop and realize the company's goals. one of the efforts to optimize the capacity of employees is to know their personality. personality is the form an individual possesses in behaving and all the characteristics that distinguish one individual from another. understanding employees' personality is essential for the company and the employees themselves. because by knowing a person's personality, the company can maximize the potential of employees and place certain positions that suit the employee's personality. this study aims to implement the dempster-shafer theory on an inference engine in building an expert system to identify employee personality types. dempstershafer's approach can perform probability calculations so that evidence can be carried out based on confidence and logical reasoning. the system developed can identify the employee's personality type through the nature or symptoms that exist in the employee. in addition, the system can display the diagnosis results with an explanation of the personality type, its character in work and occupations or positions suitable for that personality type. based on the results of the accuracy-test obtained from the comparison of expert system diagnoses with the analysis of an expert, the accuracy value reaches 85%. keywords: dempster-shafer theory; expert system; inference engine; personality type introduction human resources are one of the most important elements for a company or organization to run well. where human resources have a significant influence on the success of achieving goals in order to realize the company's vision and mission. today, many companies have viewed human resources not only as resources but rather as valuable capital or assets that must be cared for and maintained for development (zulkarnaen, 2018). one of the developments of human resources is knowing each employee's personality. the reason is that each employee has various 228 psychological behaviours that must be processed to achieve company goals. personality is the form an individual possesses in behaving and all the characteristics that distinguish one individual from another (sya'baniah et al., 2019). personality is something that someone needs to know so that everyone can develop the potential that exists in each individual (darmansah et al., 2021). human personality types have been studied and summarized into 4 (four) types. the four types are included in the proto-psychological theory. this theory was first discovered in the century bc by hippocrates, then by galen was developed into a medical approach. according to this theory, human personality is grouped into four categories: choleric, sanguine, phlegmatic, and melancholic. knowing employees' personalities is essential for the company and the employees themselves. because by knowing a person's personality, the company can place certain positions that are appropriate and can maximize the potential of employees. to find out a person's personality type, you can use technology such as an expert system. expert system is a sub-field of artificial intelligence that can manage and draw conclusions based on specific rules obtained from knowledge (borman et al., 2020). expert systems are also called knowledge-based systems, and this is because the expert system provides a collection of knowledge obtained from an expert and the required knowledge sources (putri, 2018). the purpose of developing an expert system is to build a system that can ease human work, especially those related to the use of the ability and experience of an expert (sucipto et al., 2019). one of the inference engine methods in expert systems that can overcome uncertainty is the dempster-shafer theory. the dempster-shafer idea comes up with an approach to calculating probabilities so that proof can be done based on the level of belief and logical reasoning so that it can be used in combining information (evidence) (rahmanita et al., 2019). several studies have shown that the dempster-shafer theory can reasonably produce expert systems. research the expert system used to diagnose gastric disease using the dumpster-shafer algorithm (ardiansyah et al., 2019). in this study, the dempster shafer produced a system based on the confidence function with an accuracy of 95%. further research, developing a system that can diagnose human skin diseases using the dempstershafer algorithm (mz et al., 2020). in this study, the expert system developed for each symptom has a confidence value used to calculate the density that results in conclusions. based on the accuracy test, it produces a discount of 90%. meanwhile, the mean opinion score (mos) test resulted in a mos size of 4.35, which means the system has a good feasibility level. furthermore, research on developing an expert system for diagnosing oral cancer shows that the dempstershafer algorithm can overcome the uncertainty in constructing an inference engine. it is indicated by the results of the accuracy test of 86.6% (napianto et al., 2018). this study aims to implement the dempster-shafer theory on the inference engine in building an expert system to identify the employee personality type. an expert system is built based on a website to make it easier for users to use the system. the system can recognize personality types based on symptoms or a person's character. the system also includes an explanation of the personality type, its nature in the job, and the job or position that is suitable for that personality type. research methods research needs to be arranged in stages so that the research carried out is by the objectives to be achieved. the locations of research carried out in this study are presented in figure 1. figure 1. research stages 229 identification of problems the first step is identifying the main problem to get the right solution. the output of this stage is a statement of the problem to be solved. the situation in the world of work that is often experienced is the inaccuracy of a person's position or job with his personality. it results in not working optimally. so we need a system that can identify a person's personality type to suit his career. knowledge acquisition expert systems are also known as knowledge-based systems, so they cannot be separated from the collection of knowledge from experts or experts. to get an understanding from an expert, a knowledge acquisition stage is needed. knowledge acquisition is the process of extracting, structuring, and organizing knowledge from knowledge sources, so that knowledge can become a knowledge base that is the basis for decisions in expert systems (anita et al., 2019). the output of this stage is knowledge in the form of symptom data, personality type data, and diagnostic rules. this study was obtained through interviews and gathering sources of knowledge through books to get the required data, such as data on symptoms, personality types, and the level of confidence for each sign and personality type. the data was obtained from the results of consultations with experts or experts, namely a psychologist. from the results of interviews with psychologists and collecting data from books, he got 4 (four) personality types with 30 characters or symptoms. the personality type used is based on hippocratic theory and developed by galen. according to this theory, human personality is grouped into four categories: choleric, sanguine, phlegmatic, and melancholic. knowledge representation the next stage is knowledge representation, where the results obtained in knowledge acquisition will be organized regularly to encode expert knowledge into appropriate media forms. knowledge representation is vital in developing expert systems because a good solution will also depend on a good word. if the knowledge representation is not made correctly, the impact will affect the next stage, and the resulting system is not as desired (nasution & khairuna, 2017). from the knowledge acquisition process, knowledge is obtained that will be used as a knowledge base, then knowledge representation is carried out using a decision table, and rules are made based on the understanding that has been obtained from experts, which will later be used to build an inference engine. inference engine the inference engine can be said to be part of an expert system that carries out a reasoning function that utilizes rules with specific patterns (annisa, 2018). the inference engine will perform a search based on the rules in the knowledge base, which results from the conclusion in the form of a solution that suits your needs. in this study, the inference engine used is the dempster-shafer theory. dempster-shafer's approach performs probability calculations to obtain evidence based on the level of belief and logical reasoning because later, it will be used to combine evidence to get firm conclusions. dempster-shafer's theory generally uses the [belief, plausibility] format. bel (belief) is a measure of evidence's ability to support a condition (rahmanita et al., 2019). if belief has a value of 0, then the indication is that there is no evidence. on the contrary, there is a certainty if it has a value of 1. the belief function can be denoted by equation (1). )()( ymxbel x .................................................................. (1) where bel (x) is a belief of (x), while m (y) is a mass function of (y), plausibility (pls) is denoted in equation (2) below. )'()'()( xmxbelxpls n xy  11 .................................. (2) bel(x) is a belief of (x), while m is a mass function. pls(x) is the plausibility of (x). plausibility can have a value between 0 to 1, if there is belief in x' then belief (x') = 1 which results in the result pls(x) = 0. table 1 below is the possibilities that occur between belief and plausibility. table 1. possible bell and pls ranges certainty description [1, 1] [0, 0] [0, 1] [bel, 1] where 0< bel<1 [0, pls] where 0 2,000,000 1 battery capacity (c2) < 1.500 mah 1 1.500 2.000 mah 2 2.000 2.500 mah 3 > 2.500 mah 4 sales type (c3) bundling 1 non bundling 2 number of users (c4) < 10 1 10 20 2 20 30 3 > 30 4 speed (c5) < 100 mbps 1 100 200 mbps 2 200 300 mbps 3 > 300 mbps 4 furthermore, the decision maker will assess each criterion's weight or level of importance. the level of importance or weight value will be given a value including not important with a value of 1; enough with a value of 2; fairly important with a score of 3; important with a value of 4; very important with a value of 4. as a case study, in table 2, the following is the weight value of the decision maker. table 2. weight of each criterion c1 c2 c3 c4 c5 4 3 2 2 4 as a case study, for the selection of a wi-fi modem using the alternative topsis method used, including prolink smart 4g lte (a1); alcatel mifi 4g lte (a2); moviemax mobile wi-fi (a3); bolt modem mifi juno (a4). each alternative will be assessed based on product specifications against predetermined criteria. alternative assessments whose values have been converted are presented in table 3. table 3. value of each alternative that has been converted alternative c1 c2 c3 c4 c5 prolink smart 4g lte (a1) 4 2 2 3 2 alcatel mifi 4g lte (a2) 3 3 2 2 3 moviemax mobile wi-fi (a3) 4 4 1 2 2 bolt modem mifi juno (a4) 5 3 1 2 2 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.388 jurnal riset informatika vol. 4, no. 4. september 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 350 based on the case study above, it can be solved using the topsis method with the following stages. 1. determine the normalized decision matrix the normalized decision matrix is used to determine the performance of each alternative. the normalized decision matrix for each criterion is denoted by xij, which is obtained from the sum of all alternatives, and each criterion will be divided by the total number of criteria. the calculation to get a normalized decision matrix is through equation (1) below.    m i ij ij ij x x r 1 2 .....................................................................(1) where:: rij = result of normalized decision matrix (matrix r) i = 1, 2, 3, …, m and j = 1, 2, 3, …, n based on the case study above, solving problems using the topsis method begins with determining the normalized decision matrix using equation (1). the normalization decision matrix can be calculated as follows: 4924.0 1240.8 4 5434 4 2222 11   r 3693.0 1240.8 3 5434 3 2222 21   r 4924.0 1240.8 4 5434 4 2222 11   r 6155.0 1240.8 5 5434 5 2222 11   r the calculation is carried out continuously until all alternative values in each criterion have been normalized. the calculation results for the entire rij value are then entered in the r matrix.              4364.00.43643162.04867.06155.0 4364.00.43643162.06489.04294.0 6547.00.43646325.04867.03693.0 4364.00.65476325.03244.04924.0 r 2. determine the weighted normalized decision matrix before the weighted normalized matrix is used, the weight w = (w1,w2,…wn), with equation (2) below: ijjij rwy  ......................................................................(2) where: yij = the results of the weighted normalized decision matrix (matrix y) i = 1, 2, 3, …, m and j = 1, 2, 3, …, n based on table 2, the weight of the criteria w = (4, 3, 2, 2, 4), the weighted normalized matrix can be calculated using equation (2). the following is the calculation process: 9695.14924.0411  rwy j 4771.13693.0421  rwy j 9695.14924.0431  rwy j 4618.26155.0441  rwy j the calculation is carried out continuously until all the values in the r matrix have been multiplied by the weights. then, the results of the normalized decision matrix (y) are obtained as follows:              7457.10.87296325.04600.14618.2 7457.10.87296325.09467.19695.1 6186.20.87292649.14600.14771.1 7457.11.30932649.19773.09695.1 y 3. determine the positive ideal solution matrix and negative ideal solution the positive and negative ideal solution matrices are obtained from calculations using equations (3) and (4).   nyyyya ,...,,, 321 .................................................... (3)   nyyyya ,...,,, 321 ...................................................... (4) with,            attributecost a is j if, ij ymin attributebenefit a is j if, ij y max i i y j ................. (5)          attributebenefit a is j if,y max attributecost a is j if,ymin ij ij i i jy ................. (6) the following is the calculation process for the positive ideal solution.   4771.1;2.4618771;1.96951.9695;1.4min1   y   9467.1;1.4600600;1.94670.9733;1.4max2   y 351   1.2649;0.6325649;0.63251.2649;1.2max3   y   1.3093;0.8729729;0.87291.3093;0.8max4   y   2.6186;1.7457186;1.74571.7457;2.6max5   y  6186;1.3093;2.467;1.26491.4771;1.9a calculating the negative ideal solution can be seen in the following calculations.   4618.2;2.4618771;1.96951.9695;1.4max1   y   9733.0;1.4600600;1.94670.9733;1.4min2   y   0.6325;0.6325649;0.63251.2649;1.2min3   y   0.8729;0.8729729;0.87291.3093;0.8min4   y   1.7457;1.7457186;1.74571.7457;2.6min5   y  7457;0.8729;1.733;0,63252.4618;0.9a 4. determine the distance of each alternative through a positive and negative ideal solution matrix the distance for each alternative through the positive ideal solution matrix and the negative ideal solution matrix can be calculated by equations (5) and (6).     n j jiji yyd 1 2 )( .....................................................(5)     n j jiji yyd 1 2 )( .....................................................(6) where, i = 1, 2, 3, …, m the following results from calculating the distance of the positive ideal solution (d+). 3970.11   d ; 6537.02   d ; 2629.13   d ; 5997.14   d while the following are the results of calculating the negative ideal solution distance (d-). 9126.01   d ; 5390.12   d ; 0908.13   d ; 4867.04   d 5. calculating the preference value on each alternative the last step is to find the preference value for each alternative. the result of the largest vi is the best alternative. calculating the preference value can apply the following equation (7).     ii i i dd d v .....................................................................(7) where, i = 1, 2, 3, …, m following are the calculation steps to get the preference value. 3951.0 3970.19126.0 9126.0 1   v 7019.0 2629.13590.1 5390.1 2   v 4634.0 2629.10908.1 0908.1 3   v 2333.0 5997.14867.0 4867.0 4   v based on the results of vi or the reference value above, the one with the largest weight is the best alternative or solution. the results of the reference values for each alternative are presented in table 4 below. table 4. reference value of each alternative alternative preference value prolink smart 4g lte (a1) 0.3951 alcatel mifi 4g lte (a2) 0.7019 moviemax mobile wi-fi (a3) 0.4634 bolt modem mifi juno (a4) 0.2333 after the topsis analysis has been carried out, the topsis algorithm is applied in a decision support system to choose a wi-fi modem with the php programming language notepad++ and the database using mysql. the interface display on the decision support system for selecting a wi-fi modem is presented in figure 2. figure 2. system main menu interface the developed system has facilities such as alternative management, weights, inputting alternative values, performing topsis calculations, and displaying the best alternative recommendations. users can enter alternative data and delete alternative data. after the main menu is accessed, the user can perform alternative management using the wi-fi modem list feature. the interface of the wi-fi modem list feature can be seen in figure 3. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.388 jurnal riset informatika vol. 4, no. 4. september 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 352 figure 3. wi-fi modem list menu interface after inputting the alternative data, system users can select a wi-fi modem via the recommendations menu. in this menu, system users will give weighting to each criterion. then, the user can continue it by pressing the calculate menu. the system will show the calculation process using the topsis method in the calculate menu. in addition, the system also presents recommendations in the form of the best alternative results. figure 4 below is a display of the topsis calculation results. figure 4. the best alternative results interface furthermore, the system will be tested to ensure that the system developed is error-free. the test technique used is the black-box testing method. black-box testing will test the functionality of the developed software. the black-box testing carried out is presented in table 5 below. table 5. black-box testing results no. functionality expected results results 1 main menu interface the main menu can appear when the system is accessed. valid 2 managing alternatives users can perform valid no. functionality expected results results alternative management by adding or deleting data 3 managing weights users can provide a weighted value from predefined criteria valid 4 recommendation users can select the wi-fi modem by entering the desired weight valid 5 topsis calculation the system will display the calculation of the topsis method in the form of a detailed calculation process from start to finish. valid 6 best alternative results users can see the best alternative results valid table 5 above shows that the system has been functioning properly. it is because, based on black-box testing, all test elements are valid. in addition, the calculation results issued by the system with conventional calculation results show the same results. it means that the topsis method has worked well on the developed system. conclusions and suggestions conclusion this study implements the multiple attribute decision making (madm) approach using the technique for order preference by similarity to ideal solution (topsis) on a website-based wi-fi modem selection system. the topsis method can obtain the best alternative by calculating the shortest distance in the positive ideal solution and the farthest distance in the perfect negative solution. developed facilities such as alternative management, weights, and entering alternative values can perform topsis calculations and display the best alternative results. based on black-box testing tests, it shows that the system built can run well. in addition, the calculation of the topsis method generated by the system with manual calculations produces the same values and results. suggestion several suggestions can be considered to improve further research, including developing an android-based system so the system can be used on 353 smartphones without the need to open a browser. in addition, it can develop using various methods to produce a more optimal system. references arifin, n. y., borman, r. i., ahmad, i., tyas, s. s., sulistiani, h., hardiansyah, a., & suri, g. p. (2021). analisa perancangan sistem informasi. cendikia mulia mandiri. badriansyah, m., suryadi, d., marpaung, j., & imansyah, f. (2021). rancang bangun antena helix sebagai penguat jaringan internet modem mifi di desa sungai ambangah. jurnal teknik elektro universitas tanjungpura, 1(1), 1–8. borman, r. i., & fauzi, h. (2018). penerapan metode perbandingan eksponensial (mpe) dalam sistem pendukung keputusan penerimaan beasiswa siswa berprestasi pada smk xyz. cess: journal of computer engineering, system and science, 3(1), 17–22. borman, r. i., megawaty, d. a., & attohiroh, a. (2020). implementasi metode topsis pada sistem pendukung keputusan pemilihan biji kopi robusta yang bernilai mutu ekspor (studi kasus : pt . indo cafco fajar bulan lampung). fountain of informatics journal, 5(1), 14–20. https://doi.org/10.21111/fij.v5i1.3828 borman, r. i., priandika, a. t., & edison, a. r. (2020). implementasi metode pengembangan sistem extreme programming (xp) pada aplikasi investasi peternakan. justin (jurnal sistem dan teknologi informasi), 8(3), 272–277. https://doi.org/10.26418/justin.v8i3.40273 faynilla, f. (2022). 10 mifi terbaik ditinjau oleh gaming content creator. mybest. https://mybest.id/137655 herdiansah, a., borman, r. i., & maylinda, s. (2021). sistem informasi monitoring dan reporting quality control proses laminating berbasis web framework laravel. jurnal tekno kompak, 15(2), 13–24. hertyana, h. (2019). sistem pendukung keputusan seleksi pemilihan perguruan tinggi menggunakan metode topsis. jurnal pilar nusa mandiri, 15(1), 97–102. https://doi.org/10.33480/pilar.v15i1.223 jaya, r., fitria, e., & yusriana, y. (2020). implementasi multi criteria decision making (mcdm) pada agroindustri: suatu telaah literatur. jurnal teknologi industri pertanian, 30(2), 234–343. nurelasari, e., & purwaningsih, e. (2020). sistem pendukung keputusan pemilihan perumahan terbaik dengan metode topsis. jurnal sistem dan teknologi informasi (justin), 8(4), 317. paypas, a. a., dewi, r. k., & brata, k. c. (2019). implementasi topsis pada sistem rekomendasi tempat wisata dalam kota malang berbasis lokasi. jurnal pengembangan teknologi informasi dan ilmu komputer, 3(4), 3368–3373. rahmanto, y., alfian, j., & borman, r. i. (2021). penerapan algoritma sequential search pada aplikasi kamus bahasa ilmiah tumbuhan. jurnal buana informatika, 12(1), 21–30. saputra, a. d., & borman, r. i. (2020). sistem informasi pelayanan jasa foto berbasis android (studi kasus: ace photography way kanan). jurnal teknologi dan sistem informasi (jtsi), 1(2), 87–94. ulloh, n. w. h., rosiani, u. d., & amalia, e. l. (2021). implementasi metode topsis dalam sistem pendukung keputusan keringanan ukt (studi kasus : stit madina sragen). smatika jurnal, 11(01), 27–31. walidaini, b., & muhammad arifin, a. m. (2018). pemanfaatan internet untuk belajar pada mahasiswa. jurnal penelitian bimbingan dan konseling, 3(1), 37–49. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.388 jurnal riset informatika vol. 4, no. 4. september 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 354 jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 139 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional analisis kepuasan pengguna aplikasi ojek online menggunakan metode technology acceptance model (tam) 1novian putra utama, 2fintri indriani 1program studi sistem informasi stmik nusa mandiri jakarta www.nusamandiri.ac.id novianputraid@gmail.com 2program studi sistem informasi akuntansi universitas bina sarana informatika www.bsi.ac.id/ubsi fintri.fni@bsi.ac.id abstractcongestion in jakarta is a phenomenon that has become a scourge of the community, congestion occurs because of the increasing number of motorized vehicles in jakarta, the lack of public awareness of driving and traffic and the lack of public awareness of the use of public transportation which is one of the solutions to reduce congestion in jakarta. based on the description on the background of the problem, it can be identified several problems, including 1) does ease of perception (percived ease of use) have a positive effect on the acceptance of the online motorcycle taxi application system in indonesia? 2) does the perceived usefulness (percived usefulness) have a positive effect on the acceptance of online motorcycle taxi applications in indonesia ?. the purpose of this study is to analyze and test whether ease of perception (percived ease of use) has a positive effect on the acceptance of online motorcycle taxi application systems in indonesia, and to analyze and test whether the benefits of perceived use (percived usefulness) have a positive effect on the acceptance of online motorcycle taxi applications in indonesia. keywords: user satisfaction, online motorcycle taxi application, tam abstrakkemacetan di jakarta adalah suatu fenomena yang sudah menjadi momok masyarakat , kemacetan terjadi karena semakin banyaknya kendaraan bermotor yang ada di jakarta, masih kurangnya kesadaran masyarakat berkendaraan dan berlalu lintas dan kurang nya tingkat kesadaran masyarakat akan penggunaan transportasi umum yang menjadi salah satu solusi untuk mengurangi kemacetan di jakarta. berdasarkan uraian pada latar belakang masalah, maka dapat di idetifikasikan beberapa masalah, diantaranya 1) apakah kemudahan persepsian (percived ease of use) berpengaruh positif terhadap penerimaan sistem aplikasi ojek online di indonesia? 2) apakah kemanfaatan persepsian (percived usefulness) berpengaruh positif terhadap penerimaan aplikasi ojek online di indonesia?. tujuan penelitian ini untuk menganalisis dan menguji apakah kemudahan persepsian (percived ease of use) berpengaruh positif terhadap penerimaan sistem aplikasi ojek online di indonesia, dan untuk menganalisis dan menguji apakah kemanfaatan persepsian (percived usefulness) berpengaruh positif terhadap penerimaan aplikasi ojek online di indonesia. kata kunci: kepuasan pengguna, aplikasi ojek online, tam pendahuluan ojek online saat ini adalah suatu fenomena yang patut kita perhatikan, seperti yang kita ketahui sekarang terdapat tiga raksasa penyedia layanan ojek berbasis online yaitu, go-jek, grabbike, dan ubermotor. mereka bersaing dalam menarik minat masyarakat untuk menggunakan layanan yang mereka sediakan diantaranya dengan meningkatkan software aplikasi untuk semakin mudah di gunakan oleh masyarakat dari berbagai kalangan seperti anak-anak, orang dewasa hingga lansia. kemacetan di jakarta adalah suatu fenomena yang sudah menjadi momok masyarakat (fahmi, umyati, riyanto, & basuki, 2015), kemacetan terjadi karena semakin banyaknya http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 140 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional kendaraan bermotor (sengkey, jansen, & wallah, 2011) yang ada di jakarta, masih kurangnya kesadaran masyarakat berkendaraan dan berlalu lintas (soesilowati, 2008) dan kurang nya tingkat kesadaran masyarakat akan penggunaan transportasi umum yang menjadi salah satu solusi untuk mengurangi kemacetan di jakarta. tingkat kepadatan lalu lintas di dki jakarta terus meningkat. hal ini telah menyebabkan tingkat kemacetan semakin tinggi, yang menimbulkan kerugian di masyarakat (soebali & mahendra, 2017). menurut arie setiadi moerwanto, kepala badan penelitian dan pengembangan kementerian pekerjaan umum dan perumahan rakyat, kerugian yang diakibat kemacetan di jakarta mencapai rp. 65 triliun per tahun (rachman, 2015). dinas perhubungan dki jakarta mencatat kerugian masyarakat dari dampak kemacetan di sejumlah wilayah jakarta mencapai rp 150 triliun per tahun. (zuraya, 2016). berdasarkan uraian pada latar belakang masalah, maka dapat di idetifikasikan beberapa masalah, diantaranya 1) apakah kemudahan persepsian (percived ease of use) berpengaruh positif terhadap penerimaan sistem aplikasi ojek online di indonesia? 2) apakah kemanfaatan persepsian (percived usefulness) berpengaruh positif terhadap penerimaan aplikasi ojek online di indonesia? mengacu pada identifikasi masalah yang di uraikan di atas, maka di dapatkan beberapa hipotesis dalam penelitian ini h1 : terdapat persepsi terhadap kemudahan penggunaan (perceived ease of use). h2 : terdapat persepsi terhadap manfaat penggunaan (perceived usefulness). adapun penelitian ini dilakukan untuk mengetahui seberapa besar pengaruh persepsi pemanfaatan dan kemudahan terhadap aplikasi ojek online. penelitian ini mengadopsi model technology acceptance model (tam) dalam upaya pengembangan model penelitiannya. tujuan penelitian ini untuk menganalisis dan menguji apakah kemudahan persepsian (percived ease of use) berpengaruh positif terhadap penerimaan sistem aplikasi ojek online di indonesia, dan untuk menganalisis dan menguji apakah kemanfaatan persepsian (percived usefulness) berpengaruh positif terhadap penerimaan aplikasi ojek online di indonesia? metode penelitian dalam penyusunan penelitian dengan mengambil objek penelitian pengguna jasa ojek online yang saat ini telah mencapai 10 juta unduhan untuk go-jek, 10 juta unduhan untuk grabbike, dan 10 juta unduhan untuk uberbike (sumber : playstore, 2017). a. tahapan penelitian dalam penelitian ini ditujukan untuk menganalisa dan mendeskripsikan tentang datadata tingkat kepuasan pengguna aplikasi ojek online dengan metode technology acceptance model (tam). penelitian ini adalah penelitian survei yang dilakukan dengan kuesioner sebagai pengumpul data-data yang diperlukan. berikut ini adalah kerangka pemikiran yang telah di rancang untuk melakukan penelitian yang sedang dikaji. studi pendahuluan identikasi masalah perceived usefulness perceived ease of use metode yang digunakan technology acceptance model (tam) pengumpulan data kuesioner / angket analisis data uji kualitas data (uji validitas & uji reliabilitas) uji asumsi klasik (uji normalitas, uji multikolineritas, uji heterokedastisitas) uji regresi linier berganda uji hipotesis (uji f & uji t, uji koefisien determinasi simultan, uji koefisien determinasi parsial) metode perhitungan kesimpulan dan saran gambar 1. struktur penelitian b. intrumen penelitian alat yang digunakan berupa kuesioner yang memuat sejumlah pertanyaan tertulis dari responden. instrumen yang digunakan dalam penelitian ini menggunakan kuesioner yang sebagai alat pengumpul data-data yang diperlukan. dan untuk variabel penelitan menggunakan variabel : 1. kemudahan (ease of use) variabel ini dibuat untuk mengukur sejauh mana pengguna percaya bahwa aplikasi ojek online mudah untuk digunakan. http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 141 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional tabel 1. item-item konstruk kemudahan persepsian dimensi no. indikator kemudahan persepsian 1. mudah dipelajari 2. dapat dikontrol 3. jelas & dapat dipahami 4. fleksibel 5. mudah untuk menjadi terampil/mahir 6. mudah digunakan 2. kegunaan (usefulness) variabel ini dibuat untuk mengukur sejauh mana pengguna percaya bahwa menggunakan aplikasi ojek online akan meningkatkan kinerja. tabel 2. item-item konstruk kemanfaatan persepsian dimensi no. indikator kemanfaatan persepsian 1. mempercepat pekerjaan 2. meningkatkan kinerja 3. meningkatkan produktivitas 4. efektifitas 5. mempermudah pekerjaan 6. bermanfaat 3. penerimaan sistem variabel ini merupakan konstruk endogen untuk mengetahui pengaruh antara konstruk kemudahan penggunaan persepsian dan konstruk kemanfaatan persepsian terhadap penerimaan sistem aplikasi ojek online. tabel 3. item-item konstruk penerimaan sistem dimensi no. indikator penerimaan sistem 1. pengguna selalu menggunakan 2. selalu mengakses 3. kepuasan pengguna kuesioner suatu teknik pengumpulan data dengan mengajukan beberapa pernyataan secara tertulis dan diberikan langsung kepada responden (sugiyono, 2010). dalam penelitian ini kuesioner yang digunakan berbentuk skala likert. kuesioner dilakukan dengan membagikan 100 responden yang menggunakan jasa aplikasi ojek online. data yang diperoleh dari kuesioner ini akan diolah dengan perhitungan persentase, yaitu melihat berapa persentase responden dengan skor sebagai berikut: sangat setuju (ss) = 5 setuju (s) = 4 netral (n) = 3 tidak setuju (ts) = 2 sangat tidak setuju (sts) = 1 c. metode pengumpulan data, populasi dan sample penelitian metode pengumpulan data dalam penelitian ini, metode pengumpulan data menggunakan riset lapangan. riset lapangan digunakan untuk mengumpulkan data dari responden. pengumpulan data dilapangan dilakukan dengan menggunakan kuesioner yang diberikan kepada responden secara langsung. populasi dan sample penelitian 1. populasi populasi dalam penelitian ini adalah seseorang yang di ambil secara acak untuk di jadikan sampel penelitian atau seseorang yang sudah dikenal oleh penulis yang kemudian di jadikan sampel dalam penelitian ini. populasi dalam penelitian ini sebanyak 10.000.000 orang mengunduh aplikasi ojek online dan diperoleh dari play store 2017. 2. sample penelitian dalam penelitian ini teknik sampling yang digunakan adalahteknik simple random sampling karena sampel diambil secara acak tanpa memperhatikan strata yang ada dalam populasi tersebut.untuk menentukan jumlah besaran sampel penulis menggunakan rumus slovin dengan batas toleransi kesalahan sebesar 10%. berikut adalah rumus sampel yang akan dipakai : 𝑛 = 𝑁 1+𝑁 𝑒2 ............................................................................ (1) dimana: n = ukuran sampel; n = ukuran populasi; e = batas toleransi kesalahan 𝑛 = 10.000.000 1 + 10.000.000 (0,10)2 𝑛 = 10.000.000 100.001 𝑛 = 99,9 = 100 jumlah sampel yang dibutuhkan dari hasil perhitungan menggunakan rumus slovin adalah sebesar 99,9 yang kemudian dibulatkan menjadi 100. http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 142 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional d. metode analisis data metode analisis data yang digunakan dalam penelitian ini menggunakan analisis persamaan regresi linier ganda, uji asumsi klasik (normalitas, multikolinearitas, dan heterokedastisitas), koefisien determinasi, uji f, dan uji t. hasil penelitian dan pembahasan a. gambaran umum responden penelitian ini akan menjelaskan tentang hubungan antara variabel kemanfaatan persepsian dan kemudahan persepsian terhadap penerimaan sistem pada aplikasi ojek online di indonesia. populasi pada penelitian ini adalah masyarakat dki jakarta yang menggunakan aplikasi ojek online. sampel yang diambil pada penelitian ini adalah 100 orang. di dalam penelitian ini, akan dilihat karakteristiknya melalui jenis kelamin, usia dan pekerjaan. hal ini agar dapat mengetahui gambaran secara umum pada pengguna aplikasi ojek online. 1. profil responden berdasarkan jenis kelamin tabel 4. jenis kelamin jenis kelamin frekuensi persentase (%) laki-laki 36 36% perempuan 64 64% total 100 100% tabel 4 menjelaskan bahwa dari 100 responden yang ada responden yang paling banyak menggunakan aplikasi ojek online pada kota dki jakarta adalah responden yang berjenis kelamin perempuan yaitu sebesar 64% atau berjumlah 64 responden, sedangkan responden laki-laki sebesar 36% yang berjumlah 36 responden. dari informasi tersebut, maka dapat disimpulkan bahwa rata-rata yang menjadi responden pengguna aplikasi ojek online adalah perempuan daripada responden laki-laki. 2. profil responden berdasarkan usia tabel 5. usia usia frekuensi persentase (%) 17 – 20 tahun 31 31% 21 – 30 tahun 48 48% ≥ 30 tahun 21 21% total 100 100% dari tabel 5, dapat dijelaskan bahwa responden yang paling banyak menggunakan aplikasi ojek online dalam penelitian ini adalah mereka yang berusia antara 21 – 30 tahun dengan persentase 48% atau sebanyak 48 responden, responden berusia 17 – 20 tahun dengan persentase 31% atau sebanyak 31 responden dan yang lainnya adalah responden dengan berusia lebih dari atau sama dengan 30 tahun dengan persentase 21% atau sebanyak 21 responden. dapat disimpulkan bahwa rata-rata yang menjadi responden penelitian adalah responden yang berusia antara 21 – 30 tahun yaitu sebanyak 48 responden. hal ini dikarenakan menurut fredereca dan chairy mengatakan usia 21 – 30 tahun di katakan mampu mengenali suatu kebutuhan barang atau jasa, serta mampu mengambil keputusan untuk memilih suatu produk/jasa dan dapat memahami mengenai informasi yang di sajikan . 3. profil responden berdasarkan pekerjaan tabel 6. pekerjaan pekerjaan frekuensi persentase (%) pelajar/mahasiswa 21 21% wiraswasta 20 20% karyawan 38 38% ibu rumah tangga 16 16% lainnya 5 5% total 100 100 berdasarkan tabel 6, dapat dilihat bahwa dari 100 responden yang ada, responden yang berstatus pelajar/mahasiswa memiliki persentase sebesar 21% atau sebanyak 21 responden. untuk responden dengan pekerjaan wiraswasta mempunyai persentase sebesar 20% atau sebanyak 20 responden. untuk responden dengan pekerjaan sebagai karyawan memiliki persentase yang cukup tinggi di bandingkan dengan jenis pekerjaan lainnya sebesar 38% atau sebanyak 38 responden. responden dengan pekerjaan sebagai ibu rumah tangga memiliki persentase sebesar 16% atau sebanyak 16 responden. sedangkan responden dengan pekerjaan lainnya mempunyai persentase 5% atau sebanyak 5 responden. dari data diatas dapat disimpulkan bahwa persentase yang paling tinggi untuk tingkat pekerjaan terdapat pada pekerjaan karyawan. maka dari informasi yang telah dikumpulkan dapat dikatakan bahwa dalam penelitian ini responden dengan pekerjaan karyawan yang lebih banyak menggunakan aplikasi ojek online guna memudahkan aktifitas bekerja mereka. b. uji kualitas data untuk menguji kualitas data penelitian, maka akan dilakukan uji validitas untuk melihat kesesuaian butir pertanyaan kuesioner dan uji http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 143 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional reliabilitas untuk menguji tingkat kepercayaan dari butir pertanyaan kuesioner agar dapat dihandalkan. 1. uji validitas data sampel sebesar 100 responden maka df (degree of freedom) = n-2 adalah sebesar 98 dengan tingkat signifikan 5%, maka diperoleh r tabel yaitu 0,1966. pada tabel 7, menjelaskan bahwa dari pengujian validitas yang telah dilakukan untuk variabel kemudahan persepsian, kemanfaatan persepsian dan penerimaan sistem dengan total pernyataan/pertanyaan sebanyak 15 butir. dari 15 butir yang ada, 6 butir pernyataan untuk variabel kemudahan persepsian, 6 butir pernyataan untuk variabel kemanfaatan persepsian, 3 butir pernyataan untuk variabel penerimaan sistem. hasil pengujian adalah diperoleh data yang valid adalah sebanyak 15 pernyataan. dari 15 butir pernyataan yang ada, maka dapat dibuktikan dengan membandingkan r hitung dan r tabelnya, karena semuanya > 0,1966 maka semua data yang telah diuji dinyatakan valid, sehingga dapat dilanjutkan ke proses pengolahan data selanjutnya. tabel 7. uji validitas data 100 responden variabel item r hitung r tabel keterangan kemudahan persepsian kp1 0,384 0,1966 valid kp2 0,631 0,1966 valid kp3 0,750 0,1966 valid kp4 0,643 0,1966 valid kp5 0,719 0.1966 valid kp6 0,834 0,1966 valid kemanfaatan persepsian kep1 0,793 0,1966 valid kep2 0,719 0,1966 valid kep3 0,811 0,1966 valid kep4 0,841 0.1966 valid kep5 0,806 0.1966 valid kep6 0,672 0,1966 valid penerimaan sistem ps1 0,735 ,1966 valid ps2 0,767 0,1966 valid ps3 0,816 0,1966 valid 2. uji reliabilitas dalam penelitian ini menggunakan analisis cronbach’s alpha.. tabel 8. uji reliabilitas data 100 responden variabel cronbach’s alpha nilai alpha minimal n of items keterangan kemudahan persepsian 0,830 0,600 6 reliabel kemanfaatan persepsian 0,863 0,600 6 reliabel penerimaan sistem 0,660 0,600 3 reliabel suatu kuesioner dapat dinyatakan reliabel apabila nilai cronbach’s alpha memiliki hasil yang positif. n of items (number of items) artinya adalah jumlah pertanyaan kuesioner yang peneliti lakukan yaitu totalnya berjumlah 21 butir pertanyaan yang mencakup 3 variabel yaitu kemudahan persepsian, kemanfaatan persepsian dan penerimaan sistem. dari informasi yang tersedia pada tabel 8, maka dapat diketahui bahwa nilai cronbach’s alpha untuk variabel kemudahan persepsian adalah 0,830 dengan 6 butir pertanyaan, nilai cronbach’s alpha untuk variabel kemanfaatan persepsian adalah 0,863 dengan 6 butir pertanyaan, nilai cronbach’s alpha untuk variabel penerimaan sistem adalah 0,660 dengan 3 butir pertanyaan. dengan demikian, dapat simpulkan bahwa butir pertanyaan/pernyataan kuesioner ini realiabel karena semua butirnya lebih besar dari 0,1654 atau cronbach’s alpha memiliki hasil yang positif dan semua variabel memiliki alpha > 0,600. ini berarti data hasil kuesioner dapat dipercaya. uji asumsi klasik penelitian ini akan menggunakan uji normalitas, uji multikolinieritas dan uji heteroskedastisitas dalam melakukan pengujian asumsi klasik. a. uji normalitas penelitian ini menggunakan uji kolmogorovsmirnov z untuk menguji normalitas data variabel dengan bantuan software spss 23. berikut hasil uji normalitas yang telah peneliti lakukan : tabel 9. uji normalitas data asymp. sig. (2-tailed) kolmogorov-smirnov test 0,054 0,050 berdasarkan tabel 9, hasil pengujian normalitas data variabel terikat dan variabel bebas keduanya dinyatakan memiliki data berdistribusi normal karena angka signifikasinya yaitu 0,054 lebih besar dari nilai signifikasi (ɑ) yaitu 0,050. b. uji multikolinieritas uji multikolinieritas bertujuan untuk menguji apakah model regresi ditemukan adanya korelasi antar variabel bebas (independent). pengujian multikolinieritas dilakukan dengan melihat nilai dari variance inflation factor (vif) lebih kecil dari 10 dan nilai tolerancenya lebih besar dari 0,10. hal ini berarti tidak terjadi multikolinieritas dalam model regresi. tabel 10. uji multikolinieritas http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 144 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional variabel collinearity statistic tolerance vip kemudahan persepsian 0,254 3,824 kemanfaatan persepsian 0,454 1,328 berdasarkan tabel 10, menunjukkan bahwa variabel kemudahan persepsian memiliki nilai vif sebesar 3,824 dan lebih kecil dari 10 dan nilai tolerancenya 0,254 yang lebih besar dari 0,10 artinya variabel kemudahan persepsian tidak terjadi multikolinieritas. pada variabel kemanfaatan persepsian nilai vif sebesar 1,328 lebih kecil dari 10 dan nilai tolerancenya sebesar 0,454 lebih besar dari 0,10 yang berarti variabel kemanfaatan persepsian tidak terjadi multikolinieritas. uji heteroskedastisitas berikut hasil pengujian heteroskedastisitas yang telah peneliti lakukan : tabel 11. uji heteroskedastisitas variabel sig. kemudahan persepsian 0,291 kemanfaatan persepsian 0,676 berdasarkan tabel 11, diketahui bahwa nilai signifikasi kemudahan persepsian sebesar 0,291 lebih besar dari 0,05 artinya tidak terjadi heteroskedastisitas pada variabel kemudahan persepsian. variabel kemanfaatan persepsian diketahui nilai signifikasinya adalah 0,676 lebih besar dari 0,05 yang artinya tidak terjadi heteroskedastisitas. analisis regresi linier berganda tabel 12. uji regresi linier berganda variabel b t sig. constant 9,786 8,314 0,000 kemudahan persepsi 0,263 3,024 0,003 kemanfaatan persepsi 0,108 1,495 0,033 model persamaan regresi yang dapat dituliskan dari hasil tersebut dalam bentuk : y = ɑ + b1x1 + b2x2 + e y = 9,786 + 0,263 x1 + 0,108 x2 + e persamaan regresi tersebut dapat dijelaskan sebagai berikut : a) konstanta positif sebesar 9,786 memiliki arti bahwa penerimaan sistem akan bertambah sebesar 9,786 jika variabel kemudahan persepsian dan kemanfaatan persepsian adalah konstan. b) koefisien regresi variabel kemudahan persepsian yang positif sebesar 0,263 menyatakan bahwa setiap adanya penambahan konstanta sebesar 1 maka akan menambah kepuasan pelanggan sebesar 0,263. c) koefisien regresi variabel kemanfaatan persepsian yang positif sebesar 0,108 menyatakan bahwa setiap adanya penambahan konstanta sebesar 1 maka akan menambah kepuasan pelanggan sebesar 0,108. uji hipotesis 1. uji statistika t hasil pengujian nilai t digunakan untuk mengetahui apakah secara parsial kemudahan persepsian dan kemanfaatan persepsian berpengaruh secara signifikan atau tidak terhadap variabel penerimaan sistem. a. pada tabel 12 untuk variabel kemudahan persepsian menunjukkan nilai t = 3,024 dengan nilai signifikansi 0,003 < 0,05. dengan demikian diambil kesimpulan bahwa variabel kemudahan persepsian memiliki pengaruh yang signifikan terhadap penerimaan aplikasi ojek online di indonesia dengan sistem tam (technology acceptance model) b. pada tabel 12 untuk variabel kemanfaatan persepsian menunjukkan nilai t = 1,495 dengan nilai signifikansi 0,033 < 0,05. dengan demikian diambil kesimpulan bahwa variabel kemanfaatan persepsian memiliki pengaruh yang signifikan terhadap penerimaan aplikasi ojek online di indonesia dengan sistem tam (technology acceptance model) 2. uji statistika f berdasarkan tabel 13, diperoleh hasil uji f yang berfungsi untuk mengetahui bagaimanakah pengaruh semua variabel independen terhadap variabel dependen secara bersamaan. berdasarkan hasil tabel diperoleh fℎ𝑖tu𝑛𝑔 sebesar 3,080 dengan tingkat signifikansi 0,005 dibawah dari nilai signifikansi 0,05. maka dapat dikatakan model regresi dapat dipakai untuk memprediksi variabel penerimaan sistem sebagai variabel dependen dipengaruhi oleh kemudahan persepsian dan kemanfaatan persepsian secara bersamaan. tabel 13. uji f model df f signifikansi 1 regression 2 3,080 0,005 http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 145 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional residual 97 total 99 maka rumusan hipotesis penelitian ini adalah : ho : tidak terdapat pengaruh secara signifikan antara kemudahan persepsian dan kemanfaatan persepsian secara bersama-sama terhadap penerimaan sistem tam (technology acceptance model). h1 : terdapat pengaruh secara signifikan antara kemudahan persepsian dan kemanfaatan persepsian secara bersama-sama terhadap penerimaan sistem tam (technology acceptance model) koefisien determinasi berdasarkan tabel 14, diperoleh koefisien korelasi sebesar 0,409 yang artinya terdapat pengaruh yang kuat antara kemudahan persepsian dan kemanfaatan persepsian terdahap penerimaan sistem aplikasi ojek online. nilai adjusted r square yang diperoleh sebesar 0,142 (14,2%) menunjukkan bahwa variabel penerimaan sistem dipengaruhi oleh variabel kemudahan persepsian dan kemanfaatan persepsian sebesar 14,2%, sedangkan sisanya 85,8% dipengaruhi oleh variabel lain diluar penelitian ini. tabel 14. koefisien determinasi r adjusted r square 0,409 0,142 pembahasan 1. kemudahan persepsian terhadap penerimaan sistem pengujian yang telah dilakukan pada regresi berganda dengan menggunakan uji t menunjukkan kemudahan persepsian berpengaruh secara positif dan signifikan terhadap penerimaan sistem. hal ini ditunjukkan dengan nilai t = 3,024 dengan nilai signifikansi 0,003 yang lebih kecil dari 0,05, dengan demikian hipotesis pertama diterima. nilai positif dapat diartikan bahwa apabila pengaruh kemudahan meningkat maka penerimaan sistem aplikasi ojek online juga akan meningkat. hal ini juga mendukung keenam indikator kemudahan persepsian menurut fatmawati (2015) yaitu, indikator pertama dengan memiliki tingkat rℎ𝑖tu𝑛𝑔 sebesar 0,384 dimana lebih besar dari rtabel, indikator kedua dengan tingkat rℎ𝑖tu𝑛𝑔 sebesar 0,631, indikator ketiga dengan rℎ𝑖tu𝑛𝑔 sebesar 0,750, indikator keempat sebesar 0,643, indikator kelima dengan rℎ𝑖tu𝑛𝑔 sebesar 0,719 dan indikator keenam sebesar 0,834 dinyatakan valid. pada pengujian reliabilitas dengan menggunakan analisis cronbach’s alpha menunjukkan bahwa variabel kemudahan persepsian bernilai positif sebesar 0,830 dengan 6 butir pernyataan yang dapat dipercaya. pada pengujian asumsi klasik dengan menggunakan uji normalitas, uji multikolinieritas dan uji heteroskedastisitas. nilai variabel kemudahan persepsian dengan pengujian multikolinieritas menunjukkan bahwa nilai tolerance 0,254 dimana lebih besar dari 0,10 serta nilai variance inflation factor (vif) 3,824 dimana lebih kecil dari 10 dengan ini variabel kemudahan persepsian tidak menunjukkan adanya multikolinieritas. variabel kemudahan persepsian juga menunjukkan bahwa tidak terjadinya heteroskedastisitas dimana nilai signifikasi sebesar 0,291 lebih besar dari 0,05. 2. kemanfaatan persepsian terhadap penerimaan sistem pengujian yang telah dilakukan pada variabel kemanfaatan persepsian menunjukkan bahwa keenam indikator dinyatakan valid dan dapat dilanjutkan pada pengujian selanjutnya (fatmawati, 2015). terlihat pada uji validitas data dimana indikator pertama sebesar 0,793, indikator kedua sebesar 0,719, indikator ketiga sebesar 0,811, indikator keempat sebesar 0,841, indikator kelima sebesar 0,806 dan indikator keenam sebesar 0,672 masing-masing indikator menunjukkan bahwa nilai rℎ𝑖tu𝑛𝑔 lebih besar dari 0,1966 yang merupakan nilai rtabel. pada uji reliabilitas data nilai pada variabel kemanfaatan persepsian sebesar 0,863 dimana nilai alpha minimal 0,600. keenam indikator kemanfaatan persepsian dinyatakan reliabel atau dapat dipercaya karena nilai cronbach’s alpha yang bernilai positif dan lebih besar dari rtabel. pada pengujian asumsi klasik didapat nilai tolerance untuk uji multikolinieritas sebesar 0,454 serta nilai variance inflation factor (vif) sebesar 1,328 dengan ini menunjukkan bahwa tidak terjadinya multikolinieritas pada variabel kemanfaatan persepsian. pada pengujian heteroskedastisitas menunjukkan bahwa nilai pada variabel kemanfaatan persepsian sebesar 0,676 lebih besar dari nilai 0.05. dari hasil uji t menyatakan bahwa variabel kemanfaatan persepsian memiliki pengaruh secara signifikan terhadap penerimaan sistem berdasarkan hasil output spss yang menunjukan bahwa thitung 1,495 lebih besar dari ttabel 1,661 dan signifikasi dibawah dari 0,05 yaitu sebesar 0,000. sementara pada hasil perhitungan koefisien determinasi dapat disimpulkan bahwa variabel independen dalam penelitian ini mampu menerangkan nilai adjusted r square yang diperoleh sebesar 0,142 (14,2%) menunjukkan bahwa variabel penerimaan sistem dipengaruhi http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 146 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional oleh variabel kemudahan persepsian dan kemanfaatan persepsian sebesar 14,2%, sedangkan sisanya 85,8% dipengaruhi oleh variabel lain diluar penelitian ini. berdasarkan uji f hasil tabel diperoleh fℎ𝑖tu𝑛𝑔 sebesar 3,080 dengan tingkat signifikansi 0,005 dibawah dari nilai signifikansi 0,05. maka dapat dikatakan model regresi dapat dipakai untuk memprediksi variabel penerimaan sistem sebagai variabel dependen dipengaruhi oleh kemudahan persepsian dan kemanfaatan persepsian secara bersamaan. referensi fahmi, m., umyati, u., riyanto, b., & basuki, k. h. (2015). pemodelan pemilihan moda dengan metode stated preference, studi kasus perpindahan dari sepeda motor ke brt rute semarang – kendal. jurnal karya teknik sipil, 4(4), 343–352. retrieved from https://ejournal3.undip.ac.id/index.php/jkts /article/view/10318 fatmawati, e. (2015). technology acceptance model (tam) untuk menganalisis penerimaan terhadap sistem informasi di perpustakaanm informasi perpustakaan. iqra’: jurnal perpustakaan dan informasi, 9(1), 1–13. https://doi.org/10.30829/iqra.v9i1.66 rachman, t. (2015). kerugian akibat macet di jakarta capai rp 65 triliun per tahun | republika online. retrieved august 13, 2017, from https://www.republika.co.id/berita/nasiona l/jabodetabeknasional/15/05/22/noqqrokerugian-akibat-macet-di-jakarta-capai-rp65-triliun-pertahun sengkey, s. l., jansen, f., & wallah, s. e. (2011). tingkat pencemaran udara co akibat lalu lintas dengan model prediksi polusi udara skala mikro. jurnal ilmiah media engineering, 1(2). retrieved from https://ejournal.unsrat.ac.id/index.php/jime /article/view/4218 soebali, l. f., & mahendra, i. (2017). analisa faktor-faktor yang mempengaruhi penerimaan dan penggunaan aplikasi go-jek menggunakan unified theory of acceptance and use of technology (utaut). jurnal pilar nusa mandiri, 13(1), 136–144. https://doi.org/10.33480/pilar.v13i1.348 soesilowati, e. (2008). dampak pertumbuhan ekonomi kota semarang terhadap kemacetan lalulintas di wilayah pinggiran dan kebijakan yang ditempuhnya. jejak: jurnal ekonomi dan kebijakan, 1(1). https://doi.org/10.15294/jejak.v1i1.1447 sugiyono. (2010). metode penelitian bisnis. bandung: alfabeta. zuraya, n. (2016). dishub: kemacetan di dki jakarta sebabkan kerugian rp 150 triliun. retrieved march 1, 2017, from https://www.republika.co.id/berita/nasiona l/jabodetabeknasional/16/04/25/o66jqo383-dishubkemacetan-di-dki-jakarta-sebabkankerugian-rp-150-triliun http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 4, no. 4. september 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.424 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 325 determination of priorities of elementary school rehabilitation at asahan using simple addictive weight dian aprillia1*), william ramdhan2, wan mariatul kifti3 jurusan informasi stmik royal kisaran, kabupaten asahan, indonesia https://stmikroyal.ac.id/ daprillia827@gmail.com1*), william.ramdhan052@gmail.com2, kifti.inti@gmail.com3 (*)corresponding author abstract in the budgeting process for school building rehabilitation activities in asahan regency, there are still inaccuracies in selecting prioritized primary schools for rehabilitation. this study aimed to apply the simple additive weighting (saw) method to determine five primary schools that were prioritized for repair. this research method uses quantitative methods. the data source comes from the east kisaran and west kisaran elementary schools. the data were analyzed using the saw method based on the criteria weight depending on the matrix value and normalization. the results showed the 5 largest criteria weights, namely uptd sdn 010097 selawan (0.940), uptd sdn 014689 lestari (0.884), uptd sdn 010039 sentang (0.880), sd taman kasih karunia (0.847), and uptd sdn 018453 siumbut-umbut (0.820). ). this study concluded that the double exponential smoothing method could make it easier to determine which primary school decisions are prioritized for rehabilitation. keywords: decision support; elementary school; priority; rehabilitation; simple additive weighting abstrak proses penganggaran kegiatan rehabilitasi gedung sekolah di kabupaten asahan masih terdapat ketidak tepatan dalam pemilihan sekolah dasar yang diprioritaskan untuk direhabilitasi. tujuan penelitian ini adalah menerapkan metode simple additive weighting (saw) untuk menentukan 5 sekolah dasar yang diprioritaskan untuk direhabilitasi. metode penelitian ini menggunakan metode kuantitatif. sumber data berasal dari data sekolah dasar daerah kisaran timur dan kisaran barat. data dianalisis menggunakan metode saw berdasarkan bobot kriteria yang tergantung dari nilai matriks dan normalisasi. hasil penelitian menunjukkan 5 bobot kriteria terbesar, yaitu uptd sdn 010097 selawan (0,940), uptd sdn 014689 lestari (0,884), uptd sdn 010039 sentang (0,880), sd taman kasih karunia (0,847), dan uptd sdn 018453 siumbut-umbut (0,820). penelitian ini menyimpulkan bahwa metode double exponential smoothing dapat mempermudah menentukan keputusan sekolah dasar yang diprioritaskan untuk direhabilitasi. kata kunci: dukungan keputusan; sekolah dasar; prioritas; rehabilitasi; pembobotan aditif sederhana introduction school facilities and infrastructure are components of education, which is also the main problem faced by schools (wardani, 2021). it is due to the limitations of school facilities and the lack of good management from the manager, such as damaged school buildings, inadequate learning media, and lack of classrooms so that there is one study group placed in a multimedia room that is not by the standard of classroom size. (sahid & rachlan, 2019). lack of planning in the procurement of facilities so that procurement activities often occur that do not match the specifications needed by users, uneven distribution of facilities, and lack of care and maintenance of existing infrastructure facilities(sahid & rachlan, 2019). damaged school buildings can affect the quality of education for students because children are psychologically not comfortable studying in buildings that are almost collapsed (bustari, 2016). in budgeting for school building rehabilitation activities in asahan regency, there are often inaccuracies in selecting schools that need to be rehabilitated, considering that currently, the rehabilitation of primary schools is only based on mailto:william mailto:kifti.inti@gmail.com3 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.424 jurnal riset informatika vol. 4, no. 4, september 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 326 the level of the worst damage. the factors that cause inaccuracy in budgeting are the absence of an accurate database of school conditions and a comprehensive system for determining the priority scale for handling school building maintenance. so far, the determination of the priority scale for handling school building maintenance only focuses on the criteria for the level of damage. schools that should be more deserving of maintenance but do not receive care. in other cases, the status of the land is not clear, but it is receiving rehabilitation. as a result, there is often an inaccuracy in determining the priority of handling the maintenance of school buildings that really must be rehabilitated, considering that currently, the rehabilitation of primary schools is only based on the level of the worst damage(mulyadi,2019). the decision support system can be used as a tool to make a decision on which primary school is the priority for rehabilitation (prasetia,2019), so it is hoped that it can help the asahan district education office in making policy decisions, to obtain valid, objective and reliable information about elementary schools that are priority rehabilitation. the simple additive weighting (saw) method is a decision support system that can select the best alternative from several other options because of the ranking process after determining the weight for each attribute. the simple additive weight (saw) method is often also known as the weighted addition method. the basic concept of the simple additive weighting (saw) method is to find the weighted sum of the performance ratings for each alternative on all attributes. the simple additive weighting (saw) method is recommended to solve the selection problem in a multi-process decision-making system. the simple additive weighting (saw) method is a method that is widely used in decision-making that has many attributes(frieyadie, 2016)(lubis & fadil, 2020). this study aims to apply the saw method to objectively determine priority primary schools for rehabilitation in asahan. research methods type of research this type of research is quantitative research. time and place of research this research was conducted from february 2022 to june 2022. the study was conducted at the department of education in the head of profile. jl ahmad yani, kisaran naga. procedures 1. problem identification problem identification is the first step in applying simple additive weighting. problem identification aims to determine the appropriate data to be analyzed using the simple additive weighting method. 2. method, source, and data collecting this research method is qualitative. the data used in this study is the data of the east kisaran and west kisaran regional elementary schools. the techniques used for data collection include the following: a) field research in field research, researchers directly visit the research site and take the data needed for research. the field research was conducted using direct interviews with the principals of kisaran timur and kisaran barat elementary schools. b) literature research literature research is carried out by collecting references from journals or academic books related to the problems discussed and used as support for comparisons in thesis completion. 3. data collecting at this stage, the data obtained is processed into new information that is easier to understand. 4. data analysis after the data is processed, the system is analyzed using the saw method based on the matrix value, normalization, and the number of weights as parameters in making decisions. result and discussion the decision support system is interactive, helping decision-making through data and decision models to solve semi-structured and unstructured problems. the basic concept of the simple additive weighting method is to find the weighted sum of the performance ratings for each alternative on all attributes(resti, 2017). the problems identified were the problems faced by the asahan district education office. namely, the assessment team's selection of primary schools prioritized for rehabilitation was still carried out manually, so it was inefficient to use the budget because every performance assessment always carried out procurement and doubling instruments. in addition, there is much interest in providing an evaluation of the selection of primary schools as a priority for rehabilitation so that the assessment is not carried out transparently. a decision support system, namely saw, is needed to jurnal riset informatika vol. 4, no. 4. september 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.424 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 327 overcome these obstacles. the data analyzed in this study are referred to as criteria data which can be seen in table 1. table 1. criteria no. alternative criteria 1. c1 building age 2. c2 number of students 3. c3 operational permit 4. c4 rate of damage 5. c5 facilities after the criteria data was determined, the criteria conversion was carried out. conversion of standards is the value of the existing criteria for the calculation process. values in the conversion criteria consist of 1 to 5. conversion criteria can be seen in tables 2, 3, and 4. table 2. conversion of building age criteria building age (years) value >6 5 5-6 4 4-5 3 3-4 2 1-2 1 table 3. conversion of student criteria number of students value >200 5 151-200 4 101-150 3 51-100 2 10-50 1 table 4. conversion of criteria for operational permits operational permits (month) value 49-60 5 37-48 4 25-36 3 13-24 2 0-12 1 table 5. conversion of damage level criteria rate of damage value worst (>50%) 5 poor (41%-50%) 4 pretty good ( 31% 40%) 3 good (21% 30%) 2 very good (10 % 20%) 1 table 6. facilities criteria facilities (number of building) value 1-5 5 5-10 4 10-15 3 15-20 2 >20 1 after the conversion of criteria is carried out, the standard weights are determined. see tables 5 and 6, which are useful for describing the criteria' importance. the importance of the requirements can be seen in table 7. table 7. criteria weight alternative criteria weight attribute c1 building age 5 benefit c2 number of students 2 benefit c3 operational permit 4 benefit c4 rate of damage 3 benefit c5 facilities 1 benefit furthermore, the name of the education unit is determined as the data to be decided by the saw method. the decision by the saw method is based on the value of the decision matrix. the value of the decision matrix is the value of each alternative against each criterion. the value is based on the value of the previously converted criteria. decision makers provide alternative values based on the level of importance of each criterion needed (setiawan, 2017). the saw method requires normalizing the decision matrix to a scale that can be compared with all available alternative ratings. the decision matrix can be seen in table 8. table 8. decision matrix value code alternative c1 c2 c3 c4 c5 a1 sds it ar-roja 3 4 4 3 3 a2 sd taman kasih karunia 5 4 4 4 4 a3 uptd sdn 010039 sentang 4 5 4 5 2 a4 uptd sdn 010086 selawan 5 3 3 5 3 a5 uptd sdn 010087 selawan 3 3 4 4 2 a6 uptd sdn 010088 selawan 4 4 4 5 4 a7 uptd sdn 010093 selawan 5 3 4 3 3 a8 uptd sdn 010096 karang anyer 2 3 4 4 4 a9 uptd sdn 010097 selawan 5 4 5 5 4 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.424 jurnal riset informatika vol. 4, no. 4, september 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 328 code alternative c1 c2 c3 c4 c5 a10 uptd sdn 013849 siumbut-umbut baru 3 3 3 5 4 a11 uptd sdn 013853 selawan 4 4 4 5 4 a12 uptd sdn 013854 selawan 3 3 3 4 4 a13 uptd sdn 013855 selawan 2 4 4 4 4 a14 uptd sdn 013856 selawan 5 5 3 3 4 a15 uptd sdn 014671 sentang 3 5 4 3 4 a16 uptd sdn 014685 siumbut baru 4 5 3 4 3 a17 uptd sdn 014689 lestari 5 5 4 4 3 a18 uptd sdn 015921 kedai ledang 3 4 4 3 3 a19 uptd sdn 017108 sentang 4 3 5 4 3 a20 uptd sdn 018065 teladan 3 4 2 5 3 a21 uptd sdn 018453 siumbut-umbut 5 3 4 4 4 a22 sd harapan bunut 2 4 2 3 3 a23 sd islam manbaul hidayah 3 3 3 5 3 a24 sd swasta al washliyah 74 sidomukti 1 4 4 5 4 a25 sd taman siswa sidodadi 4 2 5 3 3 a26 sd tpi kisaran 3 3 3 3 4 the saw method requires the process of normalizing the decision matrix (x) to a scale that can be compared with all available alternative ratings(susilowati et al., 2019)(pratama et al.,, 2017)(buraerah, 2020). the calculation of the normalization matrix starts from the values that have been collected from each alternative and its criteria. normalization of this matrix is used to find the value of the performance rating on each criterion (wiyono, 2017). previous studies used the decision and normalization matrix to determine the ranking(mulyati, 2016). normalization matrix values can be seen in table 9. table 9. normalization matrix value elementary school (c1) (c2) (c3) (c4) (c5) sds it ar-roja 0,6 0,8 0,8 0,6 0,667 sd taman kasih karunia 1 0,8 0,8 0,8 0,5 uptd sdn 010039 sentang 0,8 1 0,8 1 1 uptd sdn 010086 selawan 1 0,6 0,6 1 0,667 uptd sdn 010087 selawan 0,6 0,6 0,8 0,8 1 uptd sdn 010088 selawan 0,8 0,8 0,8 1 0,5 uptd sdn 010093 selawan 1 0,6 0,8 0,6 0,667 uptd sdn 010096 karang anyer 0,4 0,6 0,8 0,8 0,5 uptd sdn 010097 selawan 1 0,8 1 1 0,5 uptd sdn 013849 siumbut-umbut baru 0,6 0,6 0,6 1 0,5 elementary school (c1) (c2) (c3) (c4) (c5) uptd sdn 013853 selawan 0,8 0,8 0,8 1 0,5 uptd sdn 013854 selawan 0,6 0,6 0,6 0,8 0,5 uptd sdn 013855 selawan 0,4 0,8 0,8 0,8 0,5 uptd sdn 013856 selawan 1 1 0,6 0,6 0,667 uptd sdn 014671 sentang 0,6 1 0,8 0,6 0,5 uptd sdn 014685 siumbut baru 0,8 1 0,6 0,8 0,667 uptd sdn 014689 lestari 1 1 0,8 0,8 0,667 uptd sdn 015921 kedai ledang 0,6 0,8 0,8 0,6 0,667 uptd sdn 017108 sentang 0,8 0,6 1 0,8 0,667 uptd sdn 018065 teladan 0,6 0,8 0,4 1 0,667 uptd sdn 018453 siumbut-umbut 1 0,6 0,8 0,8 1 sd harapan bunut 0,4 0,8 0,4 0,6 0,667 sd islam manbaul hidayah 0,6 0,6 0,6 1 0,667 sd swasta al washliyah 74 sidomukti 0,2 0,8 0,8 1 0,5 sd taman siswa sidodadi 0,8 0,4 1 0,6 0,667 sd tpi kisaran 0,6 0,6 0,6 0,6 0,5 after obtaining the normalized matrix value, the number of weights is calculated by adding the product of the normalized matrix with the weight value. the normalized matrix values can be seen in table 10. table 10. total weight code name weig ht ranki ng a01 sds it ar-roja 0,684 17 a02 sd taman kasih karunia 0,84 7 4 a03 uptd sdn 010039 sentang 0,88 0 3 a04 uptd sdn 010086 selawan 0,818 8 a05 uptd sdn 010087 selawan 0,720 14 a06 uptd sdn 010088 selawan 0,820 6 a07 uptd sdn 010093 selawan 0,791 11 a08 uptd sdn 010096 karang anyer 0,620 24 a09 uptd sdn 010097 selawan 0,94 0 1 a10 uptd sdn 013849 siumbut-umbut baru 0,673 19 jurnal riset informatika vol. 4, no. 4. september 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.424 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 329 code name weig ht ranki ng a11 uptd sdn 013853 selawan 0,820 7 a12 uptd sdn 013854 selawan 0,633 22 a13 uptd sdn 013855 selawan 0,647 21 a14 uptd sdn 013856 selawan 0,780 10 a15 uptd sdn 014671 sentang 0,700 15 a16 uptd sdn 014685 siumbut baru 0,764 12 a17 uptd sdn 014689 lestari 0,88 4 2 a18 uptd sdn 015921 kedai ledang 0,684 16 a19 uptd sdn 017108 sentang 0,818 9 a20 uptd sdn 018065 teladan 0,658 20 a21 uptd sdn 018453 siumbut-umbut 0,82 0 5 a22 sd harapan bunut 0,511 26 a23 sd islam manbaul hidayah 0,684 18 a24 sd swasta al washliyah 74 sidomukti 0,620 23 a25 sd taman siswa sidodadi 0,751 13 a26 sd tpi kisaran 0,593 25 based on table 10, 5 elementary schools that deserve rehabilitation are 5 elementary schools with the 5 largest weight values, namely uptd sdn 010097 selawan (0.940), uptd sdn 014689 lestari (0.884), uptd sdn 010039 sentang (0.880), sd taman kasih karunia (0.847), and uptd sdn 018453 siumbut-umbut (0.820). the greater the number of weights, the greater the opportunity (setiadi et al., 2018; topadang et al., 2020). analysis with the saw method uses predetermined criteria to reference the ranking (syam & rabidin, 2019)(helilintar, winarno, & fatta, 2016). the ranking process is the sum of the normalized matrix multiplication r with the preference weight vector so that the largest value is chosen as the best alternative(subagio et al., 2017). the research stage in the application of the saw method consists of determining the criteria that will be used as a reference in decision making, determining the suitability of each alternative for each criterion, making a decision matrix based on the criteria (cj) then normalizing the matrix based on the equation adjusted to the type of attribute so that it can obtain a normalized matrix. (r), and ranking as the final result, by adding the normalized matrix multiplication (r) with the weight vector, the largest value was selected as the best alternative (ermin, sunardi, & fadil, 2020). conclusions and suggestions conclusion the saw method as a decision support system can determine the priority of primary school rehabilitation at the asahan district education office based on the number of weights. the saw method states that 5 elementary schools are entitled to rehabilitation based on the largest number of weights, namely uptd sdn 010097 selawan (0.940), uptd sdn 014689 lestari (0.884), uptd sdn 010039 sentang (0.880), sd taman kasih karunia (0.847), and uptd sdn 018453 siumbutumbut (0.820). suggestion the saw method should also be compared with other methods to strengthen the decision support system's results. references buraerah, m. f. (2020). penerapan metode simple additive weighting (saw) dalam menentukan karakteristik lahan terbaik untuk tanaman ubi jalar (ipomoea batatas l.). smart comp :jurnalnya orang pintar komputer, 9(2), 80–84. https://doi.org/10.30591/smartcomp.v9i2.1 916 ermin, e., sunardi, s., & fadil, a. (2020). metode simple additive weighting pada penentuan penerimaan karyawan. format : jurnal ilmiah teknik informatika, 8(2), 125. https://doi.org/10.22441/format.2019.v8.i2. 005 frieyadie, f. (2016). penerapan metode simple additive weight (saw) dalam sistem pendukung keputusan promosi kenaikan jabatan. jurnal pilar nusa mandiri, 12(1), 37– 45. https://doi.org/10.33480/pilar.v12i1.257 helilintar, r., winarno, w. w., & fatta, h. al. (2016). penerapan metode saw dan fuzzy dalam sistem pendukung keputusan penerimaan beasiswa. creative information technology journal, 3(2), 89. https://doi.org/10.24076/citec.2016v3i2.68 lubis, d. j., & fadil, n. m. (2020). penerapan metode p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.424 jurnal riset informatika vol. 4, no. 4, september 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 330 saw (simple additive weighting) untuk menentukan siswa bermasalah di smk taruna terpadu 2 bogor. teknois : jurnal ilmiah teknologi informasi dan sains, 10(1), 35–44. https://doi.org/10.36350/jbs.v10i1.76 mulyadi, 2019. prosedur penentuan prioritas pemeliharaan gedung sekolah menengah atas negeri di kabupaten balangan. jurnal teknologi berkelanjutan, 8(1), 1-5. mulyati, s. (2016). penerapan metode simple additive weighting untuk penentuan prioritas pemasaran kemasan produk bakso sapi. 1(1), 33–37. pratama, m. n. p., sevtiana, a., & martha, d. (2017). penerapan metode simple additive weighting (saw) pada sistem seleksi penerimaan calon siswa baru (studi kasus: smk negeri 1 cirebon). jurnal digit, 5(2), 159–170. prasetia, m. 2019. sistem pendukung keputusan prioritas rehabilitasi bangunan sdn/min di kabupaten pulang pisau. jurnal teknologi berkelanjutan, 8(2), 41-49. resti, n. c. (2017). penerapan metode simple additive weighting (saw) pada sistem pendukung keputusan pemilihan lokasi untuk cabang baru toko pakan ud. indo multi fish. intensif, 1(2), 102. https://doi.org/10.29407/intensif.v1i2.839 sahid, d.r. & rachlan, e.r. 2019. pengelolaan fasilitas pembelajaran guru dalam meningkatkan mutu pembelajaran pendidikan jasmani di sekolah menengah kejuruan (smk). indonesian journal of education management and administration review, 3(1), 25-39. setiadi, a., yunita, y., & ningsih, a. r. (2018). penerapan metode simple additive weighting(saw) untuk pemilihan siswa terbaik. jurnal sisfokom (sistem informasi dan komputer), 7(2), 104–109. https://doi.org/10.32736/sisfokom.v7i2.572 setiawan, a. (2017). implementasi metode saw dalam penerimaan siswa baru pada sma negeri 16 medan. jurasik (jurnal riset sistem informasi dan teknik informatika), 2(1), 96. https://doi.org/10.30645/jurasik.v2i1.23 sigit eko wiyono, l. (2017). penerapan metode simple additive weighting ( saw ) pada sakinah supermarket untuk. 26(1), 24–28. subagio, r. t., abdullah, m. t., & jaenudin. (2017). penerapan metode saw (simple additive weighting) dalam sistem pendukung keputusan untuk menentukan penerima beasiswa. prosiding saintiks ftik unikom, 2, 61–68. susilowati, t., sucipto, s., nungsiyati, n., kartika, t. a., & zaman, n. (2019). penerapan metode simple additive weighting (saw) pada amri supermarket banjar jaya untuk pemilihan karyawan terbaik. explore: jurnal sistem informasi dan telematika, 10(2). https://doi.org/10.36448/jsit.v10i2.1317 syam, s., & rabidin, m. (2019). metode simple additive weighting dalam sistem pendukung keputusan pemilihan karyawan berprestasi (studi kasus : pt. indomarco prismatama cabang tangerang 1). unistek, 6(1), 14–18. https://doi.org/10.33592/unistek.v6i1.168 topadang, a., irwansyah, i., & safruddin, s. (2020). analisis pemilihan beasiswa kurang mampu pada sekolah dasar katolik hati kudus samarinda. just ti (jurnal sains terapan teknologi informasi), 12(2), 66–72. wardani, s.d.k. 2021. pengelolaan sarana dan prasarana dalam menunjang mutu pembelajaran peserta didik di masa pandemi covid-19. jurnal inspirasi manajemen pendidikan, 9(3), 516-531. jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.488 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 105 texture feature extraction of pathogen microscopic image using discrete wavelet transform hasan basri information system institut teknologi dan bisnis bank rakyat indonesia jakarta, indonesia http://bri-institute.ac.id/ basrihasan@bri-institute.ac.id abstract this study used a case study of jabon leaves, and the pathogen is one of the causes of disease that attack the leaves of jabon, one of the leaf spots and leaf blight. discovery of leaf spot disease in different pathogens and leaf blight. the pathogen was obtained from the leaf spot of curvularia sp. 1 and pestalotia sp., while the pathogen came from curvularia sp. 2 and botrytis sp. identify the pathogen as soon as possible to minimize its effects. improper handling can lead to increased virulence and resistance to the pathogen. improper handling also can cause a disease outbreak (disease epidemic) in a region. this study is the first step in identifying the pathogens responsible for jabon leaf disease. in this study, the application of koch's postulates method to achieve the purification of pathogens and retrieve the microscopic pathogen image as the data acquisition stage. furthermore, use of the segmentation stage to separate the object pathogen from the background, and one of the methods used is otsu thresholding. the extraction process of pathogen microscopic image using discrete wavelet transform (dwt), dwt extraction results can be obtained using energy and entropy information. keywords: dwt; pathogen; extraction feature abstrak penelitian ini menggunakan studi kasus daun jabon, patogen merupakan salah satu penyebab penyakit yang menyerang daun jabon, salah satunya bercak daun dan hawar daun. penemuan penyakit bercak daun pada patogen yang berbeda begitu pula pada penyakit hawar daun. patogen diperoleh dari bercak daun culvularia sp. 1 dan pestalotia sp., sedangkan patogen yang berasal dari hawar daun culvularia sp. 2 dan botrytis sp. patogen harus diidentifikasi sesegera mungkin untuk meminimalkan efek yang ditimbulkannya. penanganan yang tidak tepat dapat menyebabkan peningkatan virulensi dan resistensi patogen. penanganan yang tidak tepat juga berpotensi menimbulkan wabah penyakit (wabah penyakit) di suatu wilayah. tujuan dari penelitian ini adalah tahap awal untuk mengidentifikasi patogen yang ada pada penyakit daun jabon. pada penelitian ini, metode postulat koch diterapkan untuk mendapatkan purifikasi patogen dan kemudian mengambil citra patogen mikroskopis sebagai tahap akuisisi data. selanjutnya adalah tahap segmentasi yang digunakan untuk memisahkan objek patogen dengan backgroundnya, sedangkan salah satu metode yang digunakan adalah otsu thresholding. proses ekstraksi citra mikroskopis patogen menggunakan discrete wavelet transform (dwt), hasil ekstraksi dwt dapat diperoleh dengan menggunakan informasi energi dan entropi. kata kunci: dwt; pathogen; fitur ekstraksi introduction jabon merah (neolamarckia macrophylla (wall.) as a timber plant has the potential to meet the national timber demand (larekeng, qalbi, rachmat, iswanto, & restu, 2022). several diseases attack the jabon, including root, stem, and leaf disease. most jabon disease is caused by fungi (warisno & dahana k, 2011). the fungus that attacks the leaves of jabon causes spots, blight, and dead buds. the fungus has several properties, one of which is that it causes plant diseases. these fungi are categorized as pathogens (agrios g, 2005). the spread of pathogens is very broad (hadi s, 2001). jabon seeds are among the most vulnerable to pathogen attacks (aisah, 2014). it is necessary to p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.488 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 106 handle this as early as possible, so the growth of jabon is not hampered. according to herliyana, the fungi have an abundance of type, only known about 98.998 species, and which are a pathogen number of about 8000 species (herliyana, 2013). herliyana et al. obtained several types of pathogens from red jabon leaves, a pathogen found in spotting diseases, namely pestalotia sp. and rhizoctonia sp., in blight diseases, namely lasiodiplodia theobromae, fusarium sp., colletotrichum sp., marsonia sp., gleosporium sp. 1 and gleosporium sp. 2 (herliyana, sakbani, herdiyeni, & munif, 2020). disease control should be adjusted to consider the type of pathogen. one way to know the pathogen is by conducting the pathogen identification process, which is done by using the aid of microscope magnification (streets, 1972). sudarsan et al. researched microscope image processing (mip) and developed a cwtbased computer vision algorithm to characterize soil particle size from digital images captured with a microscope. the wavelet technique's efficacy in detecting an image's particle size is promising, and the portability of the image acquisition device produces excellent proximate soil sensors (sudarsan, ji, adamchuk, & biswas, 2018). santosh et al. also research mip. the discrete wavelet transform (dwt) is comparable to a microscope because distinct signal components can be distinguished by simply adjusting the focus (santosh & barpanda, 2020). this study, using primary data, collected a 2043 microscopic pathogen image of jabon leaf disease that is spotting and blight, then extracted using the discrete wavelet transform (dwt) method. table 1. morphological and texture features of the pathogen pathogen characteristic culvularia sp 1. is a darkcolored conidia with clear tip cells. 3-to-5-cell conidia, characterized by curving and enlarged central cells. culvularia sp one is derived from jabon leaf spot disease. culvularia sp.2. the difference between culvularia sp. one and culvularia sp.2. in culvularia sp.1, each cell constraint has a light black color, while culvularia sp.2 has two cell boundaries in the center of wider black conidia. the origin pathogen characteristic of the disease is the pathogen of jabon leaf blight. pestalotia sp. has dark conidia with some clear-colored cells. the tip of the cell is tapered, with two or more tails. pestalotia sp. can cause leaf spot disease jabon. botrytis sp. has long-shaped mycelium features, cylindrical, clear color, and irregular branches. conidia surround conidiaphore. color conidia clear or grey, cell 1. botrytis sp. is one of the causes of leaf blight jabon the number of pathogens is very high; therefore, to determine the type of pathogen, a researcher must manually examine the manual to determine the pathogen's characteristics and identify similar characteristics. each image of a pathogen using computer vision can be identified because pathogens have different characteristics s, as shown in table 1. bangun et al. conducted another study to identify the microscopic pathogen image of the white jabon leaf. that is pathogen colletotrichum sp., curvularia sp., and fusarium sp. using morphological characteristic extraction methods and producing the best features of compactness and roundness for classification (bangun, herdiyeni, & herliyana, 2016). figure 1. cutting only one pathogen in the study above by bangun et al., the image's distinguishing features were obtained by cutting only the pathogenic image, as shown in figure 1. however, the entire image cannot be extracted. in this study, we attempted to extract colony image pathogens from a full image without cutting them individually. jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.488 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 107 other challenges of the microscopic image are complex images, objects that can be stacked, blurred images in part because the objects are stacked, and many other objects that become noise. research methods the method proposed in this research includes three stages: data acquisition, preprocessing, and feature extraction. data acquisition this process was done in the forest pathology laboratory of the silviculture department of the ipb forestry faculty. the sample of jabon leaf studied is a jabon leaf from "persemain permanent ipb." the acquisition phase of this pathogen microscopic image data uses the postulat koch method to obtain pure pathogens (streets, 1972) and then photographed using the optilab camera with 400x. magnification and a maximum resolution of 5 megapixels for the image produced under 1 megabyte. figure 2. stage of image capture and sick leaf selection figure 3. purification of pathogen isolation and pathogen image capture figures 2 and 3 depict the various stages of postulate koch's method for identifying foliar disease-causing pathogens. preprocessing the preprocessing step is to select the image to be extracted, some images with good pathogen image quality are selected, and the next process is to crop the selected image of good quality to remove the overly dominant noise. figure 3. cropping culvularia sp. 1 to remove the dominant noise during postulate koch's, dominant noise occurs due to shooting and several other factors. so as in figure 4, noise that is too dominant must be removed because it will greatly affect the value of the feature extraction of pathogen image features. the image is segmented to get the object of a microscopic pathogen image separated from its background, and the separator of the pathogen microscopic image with its background is one of them using the otsu thresholding method, otsu thresholding is the optimum method of global thresholding (rafael c. gonzalez & woods, 2008). this method maximizes the differences between the two regions using discriminant analysis (otsu & n., 1996) (naga kiran d & kanchana v, 2019). in this part, otsu thresholding will generate a mask to get the microscopic object of the pathogen with black/white background, as in figure 5. figure 5. segmentation stages, create a mask using otsu thresholding figure 6. result of pathogen segmentation p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.488 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 108 the method of otsu thresholding is a rapid method of computation. it very well separates microscopic objects of pathogens against the background with the condition that the intensity of the pixel of a pathogen microscope object with its background has a pixel intensity value that is not too close. figure 6 depicts the results of otsu segmentation, which produces a pathogen object image with greater prominence for the subsequent extraction procedure. feature extraction dwt dwt is used to extract image texture characteristics using the scaling function and wavelet function (madhu & kumar, 2022). an image can be extracted to produce four coefficients. 𝑊𝜑 (𝑗0, 𝑚, 𝑛) = 1 √𝑀𝑁 ∑ ∑ 𝑓(𝑥, 𝑦)𝑁−1𝑦=0 𝑀−1 𝑥=0 ∗ 𝜑𝑗0,𝑚,𝑛 (𝑥, 𝑦) ... ......................................................................................... (1) 𝑊𝜓 𝑖 (𝑗, 𝑚, 𝑛) = 1 √𝑀𝑁 ∑ ∑ 𝑓(𝑥, 𝑦)𝑁−1𝑦=0 𝑀−1 𝑥=0 ∗ 𝜓𝑖 𝑗,𝑚,𝑛 (𝑥, 𝑦), 𝑖 = {𝐻, 𝑉, 𝐷} .................................. (2) four coefficients from dwt extraction can be analyzed: ll, lh, hl, and hh. dwt can analyze the information of an object in the image with the method of multiresolution analysis (mra), which was introduced by stephane mallat (rafael c. gonzalez & woods, 2008). mra is used to analyze the depth of information contained in an image. at this stage, the image is processed using dwt with levels 1 – 4 of decomposition (multiresolution). some extraction images using dwt can be seen from the different spectrums of each image, showing that each pathogen has different texture characteristics when extracted using dwt. the ll coefficient shows the approximation of the original image. as for the other results of the ll coefficient, it can reduce or eliminate small noises in the image so that the ll coefficient gives the value of a cleaner image that is close to the pure value of an image. the higher the dwt decomposition level of an image, the ll coefficient is reduced in size and approximates the image approximation. the coefficients of lh, hl, and hh can each show the texture value of an image and the edge of an image based on horizontal, vertical, and diagonal orientation. lh, hl, and hh coefficients at dwt levels increasingly show an edge and image characteristic. as for dwt extraction can be used some family wavelet that is daubechies, symlet, and coiflet. wavelet family is different only on the value of high filter and low filter just in processing an image but can show different results in any retrieval of information contained in the image. figures 7, 8, 9, and 10 display examples of the spectrum images of each pathogen studied. we can see that each studied pathogen has a unique spectrum. figure 7. dwt extraction results from the pathogen coefficients ll, lh, hl, and hh in the culvularia sp. 1 spectrum figure 8. dwt extraction results from the pathogen coefficients ll, lh, hl, and hh in the botrytis sp. spectrum figure 9. dwt extraction results from a pathogen, coefficients ll, lh, hl, and hh in the culvularia sp. 2 spectrum figure 10. dwt extraction results from the pathogen coefficients ll, lh, hl, and hh in the pestalotia sp. spectrum jurnal riset informatika vol. 5, no. 1. december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.488 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 109 image extraction results using dwt then calculated the information contained therein using entropy and energy. energy is the sum of the absolute value of data. the energy can present the texture image characteristic, and the energy can be used to obtain the image character extracted with dwt (tan et al., 2014) (tampinongkol, herdiyeni, & herliyana, 2020). 𝐸 = ∑ |𝑓(𝑛)| 𝑁 𝑛=1 where e represents energy, n represents the amount of data, and f (n) represents the position of data to n. entropy is used to measure pixel diversity in an image to generalize the uncertainty that appears in an image (wang et al., 2015) (widiyanto, sukra, madenda, wardani, & wibowo, 2018). 𝑆 = − ∫ ℎ𝑛 log2(ℎ𝑛 ) 𝐺 𝑛=1 where n is the gray level of some subband, he is the n-probability of the gray level, and g is the total of the gray level. results and discussion extract results using the dwt with symlet family wavelet, which measured information using energy and entropy. energy is used to calculate the coefficients of lh, hl, and hh since that coefficient can represent the texture contained in an image. whereas the ll coefficient is computed using entropy to measure the uniformity of the texture in the approximation image. figure 11. distribution of data of each pathogen (energy) figure 11, the distribution of extracts calculated using wavelet energy, shows an overlap in botrytis sp. and culvularia sp. 2. the largest standard deviation is found in botrytis sp. with values ranging from 925 to 647.2. extreme outliers influence the value with a value of 11121374. as for culvularia sp. 2., the data distribution is heavily piled into other classes of pathogens, which can cause many errors in the class culvularia sp.2. at the same time, the largest outlier is shown in culvularia sp.1. figure 12. distribution of data of each pathogen (entropy) figure 12 shows the distribution of entropy values for the four pathogens and highly stacked data, with the highest distribution seen in botrytis sp. and the largest outliers. there is also the main data distribution between quartile one to quartile third largest culvularia sp. 1 with a range of 1.78 605 greater than the others. conclusions and suggestions conclusion after dwt image feature extraction, the four pathogens (botrytis sp., culvularia sp.1, culvularia sp.2, and pestalotia sp.) exhibited distinctive characteristics. additional findings from this study, object culvularia sp. 1 and culvularia sp. 2. have a pixel intensity that is much different from the pixel background intensity of the image. segmentation using the otsu thresholding method is perfect for such image types. the tail and the tip of pestalotia sp. have a pixel intensity that is not much different from the pixel intensity of the background image, so the otsu thresholding method is not suitable for detecting the tail and the tip of pestalotia sp. suggestion the image used has an image resolution of under 1 megabyte. higher quality is expected to p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.488 jurnal riset informatika vol. 5, no. 1. december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 110 capture more of the texture of a pathogen so that it can capture more accurate images. references agrios g. (2005). plant pathology (5th ed.). new york: elsevier academic. aisah, a. r. (2014). identifikasi dan patogenisitas cendawan penyebab primer penyakit mati pucuk pada bibit jabon ( anthocephalus cadamba (roxb.) miq). ipb, bogor. bangun, m. b., herdiyeni, y., & herliyana, e. n. (2016). morphological feature extraction of jabon’s leaf seedling pathogen using microscopic image. telkomnika (telecommunication computing electronics and control), 14(1). https://doi.org/10.12928/telkomnika.v14i1. 2486 hadi s. (2001). masalah dalam perlindungan hutan terhadap ganguan oleh penyakit. in patologi hutan perkembangannya di indonesia. bogor: fakultas kehutanan ipb. herliyana, e. n. (2013). biodiversitas dan potensi cendawan di indonesia. bogor: ipb press. herliyana, e. n., sakbani, l., herdiyeni, y., & munif, a. (2020). identifikasi cendawan patogen penyebab penyakit pada daun jabon merah (anthocephalus macrophyllus (roxb.) havil). journal of tropical silviculture, 11(3), 154– 162. https://doi.org/10.29244/jsiltrop.11.3.154-162 larekeng, s. h., qalbi, n., rachmat, a., iswanto, i., & restu, m. (2022). effect of gamma iradiated seeds of jabon merah (neolamarckia macrophylla (wall.) bosser) to genetic diversity. iop conference series: earth and environmental science, 1115(1), 012027. https://doi.org/10.1088/17551315/1115/1/012027 madhu, & kumar, r. (2022). a hybrid feature extraction technique for content based medical image retrieval using segmentation and clustering techniques. multimedia tools and applications, 81(6). https://doi.org/10.1007/s11042-02211901-8 naga kiran d, & kanchana v. (2019). recognition of glaucoma using otsu segmentation method. international journal of research in pharmaceutical sciences, 10(3), 1988–1996. https://doi.org/10.26452/ijrps.v10i3.1407 otsu, & n. (1996). a threshold selection method from gray-level histograms. ieee trans. on systems, man and cybernetics, 9(1), 62–66. retrieved from https://cw.fel.cvut.cz/b201/_media/courses/ a6m33bio/otsu.pdf rafael c. gonzalez, & woods, r. e. (2008). digital image processing. hoboken, new jersey: prentice hall. santosh, n. k., & barpanda, s. s. (2020). 4. wavelet applications in medical image processing. in predictive intelligence in biomedical and health informatics (pp. 63–90). de gruyter. https://doi.org/10.1515/9783110676129004 streets, r. b. (1972). the diagnosis of plant diseases: a field and laboratory manual emphasizing the most practical methods for rapid identification. tucson, arizona: university of arizona press. sudarsan, b., ji, w., adamchuk, v., & biswas, a. (2018). characterizing soil particle sizes using wavelet analysis of microscope images. computers and electronics in agriculture, 148, 217–225. https://doi.org/10.1016/j.compag.2018.03.0 19 tampinongkol, f. f., herdiyeni, y., & herliyana, e. n. (2020). feature extraction of jabon (anthocephalus sp) leaf disease using discrete wavelet transform. telkomnika (telecommunication computing electronics and control), 18(2), 740. https://doi.org/10.12928/telkomnika.v18i2. 10714 tan, c., wang, y., zhou, x., wang, z., zhang, l., & liu, x. (2014). an integrated denoising method for sensor mixed noises based on wavelet packet transform and energy-correlation analysis. journal of sensors, 2014. https://doi.org/10.1155/2014/650891 wang, s., yang, x., zhang, y., phillips, p., yang, j., & yuan, t.-f. (2015). identification of green, oolong and black teas in china via wavelet packet entropy and fuzzy support vector machine. entropy, 17(12). https://doi.org/10.3390/e17106663 warisno, & dahana k. (2011). peluang investasi: jabon tanaman kayu masa depan. jakarta: gramedia pustaka utama. widiyanto, s., sukra, y., madenda, s., wardani, d. t., & wibowo, e. p. (2018). texture feature extraction based on glcm and dwt for beef tenderness classification. 2018 third international conference on informatics and computing (icic), 1–4. ieee. https://doi.org/10.1109/iac.2018.8780569 jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.491 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 149 implementation of the association method in the analysis of sales data from manufacturing companies fachri amsury1, nanang ruhyana2, andry agung riyadi3, ihsan aulia rahman4 information system / faculty of technology and information university of nusa mandiri fachri.fcy@nusamandiri.ac.id data science / faculty of technology and information university of nusa mandiri fachri.fcy@nusamandiri.ac.id1, nanang.ngy@nusamandiri.ac.id2, andriagu1603@nusamandiri.ac.id3, ihsanaulia24@gmail.com4 (*) corresponding author abstract the company produces sales data every day. over time, the data increases, and the amount becomes very large, and the data is only stored without understanding the benefits that exist from these data due to limitations in proper knowledge in analyzing the data, especially transaction data. sale. in order to overcome these problems, a study focused on reprocessing sales transaction data in 2018 with a data mining technique approach using the knowledge discovery in database (kdd) concept using the association method and apriori algorithm and a supporting application, namely rapidminer. this study aims to help companies find customer buying habits or patterns based on 2018 sales transaction data. the results of this study produce 316 association rules where the best rules are generated on record 309 with pro 889 & pro 868 pro 869 rules. keywords: data mining; kdd; asosiasi; algoritma apriori abstrak perusahaan setiap harinya menghasilkan data penjualan, semakin berjalannya waktu data tersebut meningkat dan jumlahnya menjadi sangat besar, data tersebut hanya disimpan tanpa mengerti manfaat yang terdapat dari data-data tersebut, karena keterbatasan dalam pengetahuan yang tepat dalam melakukan analisa pada data tersebut khusunya pada data transaksi penjualan. demi mengatasi permasalahan tersebut dilakukan sebuah penelitian yang berfokus dalam mengolah kembali data transaksi penjualan tahun 2018 dengan pendekatan teknik data mining menggunakan konsep knowledge discovery in database (kdd) menggunakan metode asosiasi dan algoritma apriori, serta menggunakan aplikasi pendukung yaitu rapidminer. tujuan penelitian ini berusaha membantu perusahaan dalam mengetahui kebiasaaan atau pola pembelian pelanggan berdasarkan data transaksi penjualan 2018. hasil penelitian ini menghasilkan 316 aturan asosiasi dimana aturan terbaik dihasilkan pada record 309 dengan aturan pro 889 & pro 868 ⇒ pro 869. kata kunci: data mining; kdd; asosiasi; algoritma apriori introduction industries in the property sector, such as housing, shops, apartments, and so on, are currently experiencing significant progress due to increasing population growth (fadilah, purnama, & zamrudy, 2019). the development of the property industry has also increased the need for building materials. one example of building materials that have an essential role is instant cement. instant cement is a ready-to-use building material with the easy application just by mixing water, and it already contains sand, so there is no need to add other mixed ingredients (susilowati, 2012). the development and competition in the instant cement industry are getting stricter with many competitors and high demand for instant cement products. business people must be able to find solutions and create a marketing strategy so that the business develops and survives (listriani, setyaningrum, & eka, 2018). p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.493 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 150 companies can use technology to find a solution in formulating an appropriate marketing strategy, such as utilizing their sales transaction data (wijayanti, 2017). companies usually only use transaction data to view stock, calculate the number of sales and calculate monthly profit (rahmawati & merlina, 2018). sales transaction data is mostly only collected and archived without analysis on sales transaction data because the data that is growing increasingly from time to time makes it difficult for companies to utilize the data and not know what to do with it (samuel, sani, budiyantara, ivone, & frieyadie, 2022). use sales transaction data by analyzing the behavior and habits of customers who often buy instant cement products. an approach used is market basket analysis, which t utilization of sales transaction data by analyzing customer behavior and habits regarding what instant cement products are frequently purchased. market basket analysis approach to analyze consumer spending patterns (fitrina, kustanto, & vulandari, 2018). millions of data stored in databases must be applied to the data change process to become helpful information for companies by applying data mining techniques (silvanie, 2020). data mining is a technique that aims to extract information from large data sets to analyze and extract data to gain knowledge (adha, sianturi, & siagian, 201 c.e.). one approach to data mining in various fields is the a priori algorithm (putra, raharjo, sandi, ridwan, & prasetyo, 2019). the apriori algorithm can find all items of association rules in transaction data that meet the minimum and minimum requirements because it is easy to understand, and some research literature has been proposed (lestari & hafiz, 2020). one of the applications of the a priori algorithm in the research conducted by (gumilang, 2021) is the problem faced with providing product data that many customers buy as data and implementing the a priori algorithm on web-based applications. the research results are applications built based on the application of the a priori algorithm consisting of item set selection and association rules. the following research was conducted by (junaidi, 2019). the problem in the company is that it has several data on sales of goods, but using this data is not to develop future sales plans. the solution is to use the frequent pattern growth method, and the company can make decisions in determining products that require more inventory than other products, with a reference threshold of 60% and 90% confidence and paying attention to the relationship between support and confidence. based on the results of observations and interviews with the company's sales management, utilization of sales transaction data is not optimal for determining unique buying habits and patterns of customers when buying more than one type of goods in one transaction by looking at transaction records on the company's internal applications and excel data. the application of data mining and an a priori algorithm approach can be a solution for companies to provide an overview in seeing customer purchasing patterns in order to be able to recommend products that are suitable for customers and as a reference to determine the amount of product production that is most sought after by customers. the transaction data used in this study is sales data for installed cement in 2018 in its application using the rapidminer application in helping to find association rules. the expected results in this study are so that the company can recommend the right product to customers and make a more effective sales strategy in the future, which will come. research methods research using the concept of knowledge discovery in a database to create association rules for instant cement sales transactions (takdirillah, 2020). types of research this study applies a qualitative method. qualitative research has the advantage of gaining a deep and fundamental understanding of the object being observed in a systematic scientific manner. time and place of research the author researched instant cement manufacturing companies to obtain historical instant cement sales transaction data in 2018. research time for two months by conducting research. research target / subject the study aims to apply an a priori algorithm approach to find association rules and generate customer purchasing patterns at instant cement manufacturing companies based on sales transaction data that occurred in the 2018 period. procedure the framework applied is based on the steps and procedures of this research process using knowledge discovery in database. jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.491 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 151 source : (takdirillah, 2020) figure 1. knowledge discovery in database figure 1 describes the stages of the kdd process used to find and identify a pattern in the database. the data source of this research comes from instant cement sales transaction data in 2018. the data is selected and cleaned from noise, and the data is selected and transformed using the data mining process. data mining involves looking for patterns or information from the a priori algorithm approach. the final stage is evaluation, namely translating the patterns generated from data mining and presented in a form that interested parties easily understand. data, instruments, and data collection techniques this study uses primary data from interviews and instant cement sales transaction data from january 2018 – december 2018. secondary data comes from research books and journals related to the research conducted. this study also conducted direct observations of the company to find out information related to existing sales information systems to assist in analyzing customer purchasing patterns and conducted interviews with sales managers regarding the instant cement sales transaction process to find out the workflow of related parties and obtain the required data. data analysis technique data analysis in figure 2 describes the stages of the research carried out as follows: 1. problem identification the research begins by identifying the problems that occur in the company, namely having a lot of sales transaction data but only storing it in a database and not knowing how to use it, even though sales transaction data can be analyzed and to obtain important information contained therein. 2. preprocessing sales transaction data must be processed before data mining techniques can be applied by removing noise from the data, selecting data, and transforming data so it can be processed using data mining techniques. problem identification have a lot of data, only stored in data storage, no data analysis preprocessing collect sales transaction data, data selection, & data transformation methode association algorithm apriori research result customer buying pattern figure 2. research stages 3. method this study applies the association method to determine the relationship and interrelationships between products purchased in a sales transaction based on instant cement sales data for 2018. 4. algorithm the algorithm approach applied in this research is the a priori algorithm. the primary process is to combine each item until no more combinations are formed using the minimum support parameter. (anggraini, putri, & utami, 2020). at this point, the search for a combination of items that satisfies the minimum requirements of the support value is described in equation 1, and the confidence level is expressed in equation 2. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 ∩ 𝐵 ) = ∑ 𝑡𝑟𝑎𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝐴 𝑎𝑛𝑑 𝐵 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 …………….(1) equation 1 is a formula for finding the support value of two items. 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑃(𝐵|𝐴) = ∑ 𝑡𝑟𝑎𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝐴 𝑎𝑛𝑑 𝐵 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐴 ……….(2) p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.493 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 152 equation 2 is a formula for finding the confidence value by calculating the association rules a – b. 5. research results the results of this study are to obtain a pattern of instant cement purchase transactions so that companies know the best-selling products on the market, recommend the right products to customers, and increase sales of instant cement in the future. results and discussion the observation and interview process results carried out at manufacturing companies producing instant cement obtained transaction data on sales of instant cement products in january december 2018. based on these data, the implementation of data mining techniques uses the association method. association method to determine customer purchasing patterns through the a priori algorithm approach. the table below is a list of item codes and item names. table 1. list of item code and description item no item code description item 1 pro 686 perekat keramik 2 pro 688 perekat keramik area dalam 3 pro 689 perekat keramik area luar 4 pro 787r topping screed 5 pro 788r perata lantai 6 pro 858 plester finish 7 pro 866 acian profilan 8 pro 867 acian putih 9 pro 868 acian plesteran & beton 10 pro 869 acian plesteran 11 pro 878 plesteran premium 12 pro 879r pasangan bata merah 13 pro 888 perekat pasangan beton ringan 14 pro 889 perekat pasangan beton ringan 15 pro 889r perekat pasangan beton ringan table 1 explains the code for instant cement products and detailed descriptions of the existing products. the testing phase uses data from the transaction date and item code. figure 3. example of sales data 2018 the next stage is changing the data in tabulation form and saving it in an excel file. then the process of analysis using the association method. figure 4. example of data tabulation jurnal riset informatika vol. 5, no. 1 december 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.491 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 153 figure 4 explains the results of changing data into tabulations in the form of binary numbers 0 and 1. the next step is importing the data that has become tabulated using the read excel operator in the rapidminer application. the following is an analysis model created using the rapidminer application. figure 5. rapidminer model figure 5 is a model created in the rapid miner application, starting through the data import process using the read excel operator. the data is transformed using numerical to binomial operators, followed by an algorithmic approach using the fpgrowth operator and creating association rules with the create association rules operator. the study carried out observations and several data tests to determine boundary parameters, with a minimum support value of 20% and a minimum confidence of 60%. the limit value was adjusted to obtain the most optimal association rule results. association rule result the data processing results using the rapidminer application obtain several association rules that provide many regulations for instant cement sales transaction data, and these results provide a reference to assist company decisionmaking. based on the rules of the association, that has the highest level of trust, support, and confidence. figure 6. association rules in rapidminer figure 6 shows the association rules formed using the rapid miner application. based on these results, rules number 309 – 316 get the highest confidence value of 100% and produce a lift value of 1,070, with a total of 316 rules formed. based on the results of these rules, it can be explained that.  customers buy pro 889 & pro 868 instant cement products, and the chance of customers also buying pro 869 products is 100%.  customers buy pro 889 & pro 689 instant cement products, and the chance of customers also buying pro 869 products is 100%.  customer buys pro 888 & pro 688 instant cement products, and the chance of customers also buying pro 869 products is 100%.  customers buy pro 888 & pro 689 instant cement products, and the chance of customers also buying pro 869 products is 100%.  customers buy pro 688 & pro 868 instant cement products, and the chances of customers also buying pro 869 products are 100%.  customers buy pro 868 & pro 689 instant cement products, and the chance of customers also buying pro 869 products is 100%.  customers buy pro 868 & pro 689 instant cement products, and the chance of customers also buying pro 869 products is 100%.  customers buy pro 868 & pro 878 instant cement products, and the chance of customers also buying pro 869 products is 100%. rapidminer application with a 100% confidence value recommends that pro 869 is a solution for plastering plaster, while the highest demand is dominated by pro 888 & pro 889 types for adhesive solutions. lightweight concrete pairs, so the pro 869 type is the most suitable. it is recommended because after the process of installing lightweight brick materials for foundation walls, etc. the next stage is the wall plastering process, where the right product solution is pro 869. this may occur due to the increasing housing, shops, office, or hotel property industry. conclusions and suggestions conclusion the results of this study are recommended to provide consideration for company management to implement data mining methods in assisting decision-making by applying the association method to instant cement sales transaction data. the company can direct sales and marketing by providing customers with product recommendations and attractive promos based on the association rules. based on the results of making association rules using instant cement sales data, all p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i1.493 jurnal riset informatika vol. 5, no. 1 december 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 154 regulations formed from processing the results of this study are recommended to provide consideration for company management to implement data mining methods in assisting decision-making by applying the association method to instant cement sales transaction data. the company can direct sales and marketing by providing customers with product recommendations and attractive promos based on the association rules. suggestion the association method is a suitable recommendation to find association rules for the company's products to assist companies in formulating appropriate and accurate marketing strategies and production planning. this analysis can also be developed using transaction data in the following year, such as 2019-2021, to obtain more critical information from the resulting association rules. research development can also be done by combining or comparing several other algorithms, such as linear regression algorithms, neural network support vector machines, etc. references adha, n., sianturi, l. t., & siagian, e. r. (201 c.e.). implementasi data mining penjualan sabun dengan menggunakan metode apriori (studi kasus : pt. unilever). informasi dan teknologi ilmiah (inti), 4(3), 219–223. retrieved from http://www.ejurnal.stmikbudidarma.ac.id/index.php/inti/article/view/4 26 anggraini, d., putri, s. a., & utami, l. a. (2020). implementasi algoritma apriori dalam menentukan penjualan mobil yang paling diminati pada honda permata serpong. jurnal media informatika budidarma, 4(2), 302. https://doi.org/10.30865/mib.v4i2.1496 fadilah, m. f., purnama, d., & zamrudy, w. (2019). pengaruh waktu hidrasi dan methyl cellulose terhadap kuat tekan dan water retension dalam pembuatan semen instan. distilat: jurnal teknologi separasi, 5(2), 222–227. https://doi.org/10.33795/distilat.v5i2.43 fitrina, n., kustanto, k., & vulandari, r. t. (2018). penerapan algoritma apriori pada sistem rekomendasi barang di minimarket batox. jurnal teknologi informasi dan komunikasi (tikomsin), 6(2), 21–27. https://doi.org/10.30646/tikomsin.v6i2.376 gumilang, j. r. (2021). implementasi algoritma apriori untuk analisis penjualan konter berbasis web. jurnal informatika dan rekayasa perangkat lunak, 1(2), 226–233. https://doi.org/10.33365/jatika.v1i2.612 junaidi, a. (2019). implementasi algoritma apriori dan fp-growth untuk menentukan persediaan barang. jurnal sisfokom (sistem informasi dan komputer), 8(1). https://doi.org/10.32736/sisfokom.v8i1.604 lestari, a. f., & hafiz, m. (2020). penerapan algoritma apriori pada data penjualan barbar warehouse. inovtek polbeng seri informatika, 5(1), 96. https://doi.org/10.35314/isi.v5i1.1317 listriani, d., setyaningrum, a. h., & eka, f. (2018). penerapan metode asosiasi menggunakan algoritma apriori pada aplikasi analisa pola belanja konsumen. jurnal teknik informatika, 9(2), 120–127. https://doi.org/10.15408/jti.v9i2.5602 putra, j. l., raharjo, m., sandi, t. a. a., ridwan, r., & prasetyo, r. (2019). implementasi algoritma apriori terhadap data penjualan pada perusahaan retail. jurnal pilar nusa mandiri, 15(1), 85–90. https://doi.org/10.33480/pilar.v15i1.113 rahmawati, f., & merlina, n. (2018). metode data mining terhadap data penjualan sparepart mesin fotocopy menggunakan algoritma apriori. piksel : penelitian ilmu komputer sistem embedded and logic, 6(1), 9–20. https://doi.org/10.33558/piksel.v6i1.1390 samuel, s., sani, a., budiyantara, a., ivone, m., & frieyadie, f. (2022). sales level analysis using the association method with the apriori algorithm. jurnal riset informatika, 4(4), 331– 340. https://doi.org/10.34288/jri.v4i4.422 silvanie, a. (2020). pencarian frequent itemset dengan algoritma apriori dan python. studi kasus: data transaksi penjualan eceran online di uk. jurnal nasional informatikan, 1(2), 103– 113. retrieved from http://ejournalibik57.ac.id/index.php/junif/article/view/124 susilowati, a. (2012). pemanfaatan sampah daun sebagai bahan campuran papan panel semen dengan bahan ikat mu plesteran. jurnal politeknolog, 11(1), 31–38. retrieved from https://jurnal.pnj.ac.id/index.php/politeknolog i/article/view/20 takdirillah, r. (2020). penerapan data mining menggunakan algoritma apriori terhadap data transaksi sebagai pendukung informasi strategi penjualan. edumatic : jurnal pendidikan informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081 wijayanti, a. w. (2017). analisis hasil implementasi data mining menggunakan algoritma apriori pada apotek. jurnal edukasi dan penelitian informatika (jepin), 3(1), 60. https://doi.org/10.26418/jp.v3i1.19534 jurnal riset informatika vol. 4, no. 4 september 2022 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.439 accredited rank 3 (sinta 3), an excerpt from the decree of the minister of ristek-brin no. 200/m/kpt/2020 421 assessment effectiveness analysis system using g-form with tam method at sd galatia3 jakarta barat asrul sani1*), agus budiyantara2, rizaldy khair3, siti aisyah4 1.2 informatics engineering study program stmik widuri jakarta, indonesia www.kampuswiduri.ac.id asrul.5779@gmail.com; agusbudiyantara@kampuswiduri.ac.id 3 computer technology study program polytechnic lp3i medan medan, indonesia www.plm.ac.id rizaldy.khair@plm.ac.id 4 graphic engineering study program politeknik negeri media kreatif medan, indonesia www.polimedia.ac.id sitiaisyah@polimedia.ac.id (*) corresponding author abstract peserta didik merasakan dampak dari penyebaran covid-19 seperti perubahan penyediaan layanan dalam lembaga pendidikan, seperti pendidikan formal pada semua tingkatan, pendidikan non -formal, sampai akademi. berdasarkan pengumuman kementerian pendidikan dan kebudayaan nomor 4 tahun 2020 tentang pelaksanaan kebijakan pendidikan pada masa darurat penyebaran virus corona (covid-19). pemerintah mulai memberlakukan sistem pembelajaran daring (dalam jaringan). masalah yang muncul selama masa pembelajaran daring ini adalah, masih banyak orang yang belum siap dalam menghadapi teknologi, baik dari segi pengajar maupun pelajar, hal ini terjadi di awal-awal masa pandemi. sehingga proses pembelajaran yang selama ini dilaksanakan secara normal, baik dalam hal mengajar hingga memberikan penilaian juga mengalami hambatan. hal ini dikarenakan tenaga pengajar (guru) selalu memiliki data penilaian harian yang biasa dilakukan sehari-hari selama pembelajaran normal. namun selama masa pjj ini guru-guru jadi bingung dalam memberikan penilaian harian pada siswanya. tujuan penelitian untuk menganalisa dan mengevaluasi sistem pembelajaran daring menggunakan platform yang mudah dioperasikan oleh guru dan bisa diakses dimana saja yaitu google form. di aplikasi google form terdapat suatu sistem perhitungan otomatis berupa feedback siswa dimana guru tidak repot melakukan perhitungan secara manual terhadap hasil evaluasi belajar siswa. metode analisis yang digunakan adalah technology acceptance model (tam) yang mampu untuk mengetahui sikap para pengguna terhadap teknologi yang digunakan, sehingga para guru mudah mengetahui apakah tugas yang diberikan ke siswa dikerjakan sendiri oleh siswa bukan bantuan orang tua. keywords: tam; covid-19; platform; google form; application abstract students feel the impact of the spread of covid-19, such as changes in the provision of services in educational institutions, such as formal education at all levels, non-formal education, to academics. the government began to implement an online learning system (online). the problem during this online learning period is that many people are still not ready to face technology, both teachers and students. it happened in the early days of the pandemic. it results in challenges for the standard learning process, including challenges for teaching and giving assessments. it is because the teaching staff (teachers) always mailto:sitiaisyah@polimedia.ac.id p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.439 jurnal riset informatika vol. 4, no. 4 september 2022 accredited rank 3 (sinta 3), an excerpt from the decree of the minister of ristek-brin no. 200/m/kpt/2020 422 have daily assessment data that is usually carried out daily during everyday learning. however, during this pjj period, teachers became confused about giving daily assessments to their students. the research aims to analyze and evaluate the online learning system using a platform that is easy to operate by teachers and can be accessed anywhere, namely google forms. in the google form application, there is an automatic calculation system in the form of student feedback where teachers do not bother to manually calculate the results of student learning evaluations. the analysis method used is the technology acceptance model (tam), which can determine users' attitudes towards the technology used, so that teachers can easily find out whether the tasks given to students are done by the students themselves, not with the help of parents. keywords: tam; covid-19; platform; google form; application introduction the covid-19 pandemic from the beginning of 2020 impacted every aspect of indonesia, including education. indonesian government policy in mid-march 2020 through the ministry of education and culture and the ministry of religious affairs of the republic of indonesia. implement a work-from-home policy. the government's demands during the pandemic related to the learning process have become a new polemic in the learning system in indonesia. it is undeniable that teachers must adapt their teaching methods to the needs of current students, especially during a pandemic. it is necessary to change the education system that aims to accommodate the needs of students. online learning (online) has become familiar today, and online learning meets students' learning needs during the pandemic (baety & munandar, 2021). however, it is denied that it also poses obstacles to education. the problem that occurs with the emergence of new barriers related to learning is a problem that has been studied in depth (handarini & wulandari, 2020). obstacles in the learning process can result in a decrease in student interest in learning. one of the obstacles is the teachers' limited ability in the information and communication technology field. according to the minister of national education number 16 of 2007, ict competence for teachers has at least two functions: ict as self-development and ict as a support for learning. this study aims to make it easier for teachers/teaching staff to carry out the online learning process during the pandemic, from teaching to daily assessments. by utilizing platform technology and google forms, teachers can minimize difficulties in terms of learning and evaluation so that teachers easily get learning feedback followed by their students, whom parents can help at home. this research was conducted at sd galatia 3 west jakarta. the urgency in this study is to assist teachers in assessing students' daily activities during learning at home. utilization of google form technology for feasibility research to evaluate daily student behavior (munawaroh et al., 2021). this research is very relevant to the rirn 2017-2045 in the field of information and communication technology, then prn 2020-2024 on the theme framework/platform supporting the creative industry and control in the field of education. the objectives of this study are as follows: 1. analyzing and evaluating the online learning system using google forms for daily assessment. 2. to find out the responses of students and teachers to the use of google forms as an evaluation tool for daily assessment. 3. to find out the shortcomings in the use of the google form for daily assessment research methods the idea of user attitudes and behavior served as the foundation for this study, which led to an emphasis on tra from viewpoints examined from a psychological standpoint (ayuni et al., 2020). on this tra principle, we can know how much we measure the relevant attitude components of a person's behavior, group between beliefs and attitudes, and determine external stimuli so that the reaction and perception of users caused by this tra model to the information system determined by the attitude and behavior of the user. then in 1986, davis conducted dissertation research that adapted the tra, and davis disseminated the results of his dissertation research to the journal mis quarterly in 1989. then from the effects of his dissertation research conducted by davis, a theory called tam (technology acceptance model) emerged, which emphasizes the perception of ease of use and usefulness, which has to do with predicting the attitude toward using information systems. the tam model's application is much wider than the tra model (darna & herlina, 2018; fatmawati, 2015). the tam model is the basis for evaluating user behavior attitudes in using technology based on jurnal riset informatika vol. 4, no. 4 september 2022 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.439 accredited rank 3 (sinta 3), an excerpt from the decree of the minister of ristek-brin no. 200/m/kpt/2020 423 its use from the beginning to the end of use which can be seen in figure 1 below: figure 1. tam construction structure information: pu = perceived usefulness peu = perceived ease of use atu= attitude toward using biu = behavioral intention to use types of research this research uses a quantitative approach to collecting data through interviews, observations, literature studies, and questionnaires. the questionnaire will distribute to 85 students of galatian elementary school 3. in making the questionnaire, the author adopted the technology acceptance model (tam) technology as a process (mulatsih, 2020), which will later be translated into a questionnaire in the form of a google form by taking the variables contained in the tam, namely perceived ease of use, perceived usefulness, attitude toward using, and behavioral intention to use. from these variables will be created five questions each. the software used by the author to process quantitative data is statistical product and service solutions (spss). spss is a unique program for processing statistical data and is known to be reliable in assisting researchers in testing and analyzing statistical information. time and place of research the study is approximately four months, from march 2022 to july 2022. the study location was at the galatia 3 elementary school (sd), west jakarta. research targets/ subjects in this study, the author chose the target/subject of the study, namely teachers in grades 1-6 of sd galatia 3, based on the results obtained by the author concluding that sd galatia 3 uses google form to conduct daily assessments carried out since the covid-19 pandemic and the implementation of distance learning rules in 2020. in grades 1-5, teachers using google forms to conduct daily assessments are considered ineffective because of complaints from students about poor internet networks and sometimes google form links to have problems. meanwhile, the grade 6 teacher's opinion on using google forms to conduct a daily assessment considers very effective because there have been no complaints from students until now (erawati et al., 2017). google form is more practical, easy, and precise because it can see the grades directly, and children only click on the google form link shared by the teacher, after which the child can already do the daily assessment so that they do not need to download the google form application. therefore, teachers choose google forms to conduct daily assessments for their students. the advantage of google forms for teachers to do daily assessments is that it is more than time-saving, does not need corrections, can immediately see their student's grades, and is easier and more practical to use. other applications besides google forms to conduct daily assessments are google classroom and quizizz. the shortcomings of the google form for teachers to conduct daily assessments are that teachers cannot monitor children's work directly and cannot know whether the child has done it or not before the child submits. in addition, the daily assessment is also used to fill in student biodata, practice questions, and quizzes (rijali, 2018; sani et al., 2021). from the results of collecting questionnaire data on students of sd galatia 3, totaling 77 students, there were several demographic categories of respondents, namely: table 1. demographics of respondents no category limitation sum overall number percentage 1 age 6-7 years 24 students 77 students 31,2% 8-9 years 23 students 29,9% 10-12 years 30 students 39% 2 gender man 43 students 77 students 55,8% woman 34 students 44,2% 3 class 1 sd 18 students 77 students 23,4% 2 sd 9 students 11,7% p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.439 jurnal riset informatika vol. 4, no. 4 september 2022 accredited rank 3 (sinta 3), an excerpt from the decree of the minister of ristek-brin no. 200/m/kpt/2020 424 no category limitation sum overall number percentage 3 sd 12 students 15,6% 4 sd 15 students 19,5% 5 sd 11 students 14,3% 6 sd 12 students 15,6% 4 are you guys able to use yes 74 students 77 students 96,1% no 3 students 3,9% 5 whether in using google forms to do daily assessments, you are still accompanied by parents? yes 40 students 77 students 52% no 37 students 48,1% 6 are there any network constraints when working on the daily assessment in google form? yes 36 students 77 students 46,8% no 41 students 53,2% 7 do you use a device in the form of a cellphone in filling out the daily assessment on google form? yes 64 students 77 students 83,1% no 13 students 16,9% 8 do you use a device in the form of a laptop to fill out the daily assessment on google form? yes 13 students 77 students 16,9% no 64 students 83,1% 9 whether the device you are using is your own? yes 71 students six students 77 students 92,2% 7,8% no based on the table above, the demographic categories of respondents' data are viewed based on age, gender, class, and demographic categories of respondents in terms of application can be seen based on six questions, namely, can you use google form? is it in using google forms to do the daily assessment? do your parents still accompany you?, are there any network problems when working on the daily assessment on google form?, do you use a device in the form of a cellphone in filling out the daily assessment on google form?, do you use a device in the form of laptop in filling out the daily assessment in google form?, and is the device you are using its own?. described according to the data obtained from respondents, namely the age of 6-7 years, totaling 24 students with a percentage of 31.2%, aged 8-9 years, totaling 23 students with a percentage of 29.9%, aged 10-12 years totaling 30 students with a percentage of 39%. then the male sex amounted to 43 students, the percentage was 55.8%, and the female sex was 34 students, 44.2%. furthermore, in grade 1 elementary school, there are 18 students with a percentage of 23.4%, grade 2 elementary schools are nine students with a percentage of 11.7%, grade 3 elementary schools are 12 students with a percentage of 15.6%, classes four elementary schools totaled 15 students with a percentage of 19.5%, grade 5 elementary schools totaled 11 students with a percentage of 14.3%, and finally, grade 6 elementary schools totaled 12 students with 15.6%. in terms of application, as many as 74 students can use google form with a percentage of 96.1%, so it concluded that most elementary school students could use google forms well. then the students whose parents accompanied them in using the google form to work on the daily assessment 40 students, with a percentage of 52%, and those whose parents did not attend as many as 37 students, with a percentage of 48.1%, so concluded that most elementary school students are still accompanied when using google form to do the daily assessment. furthermore, as many as 36 students experienced network problems when working on the daily assessment on google forms, 46.8%, and those who did not experience network problems amounted to 41 students, 53.2%. hence, it concluded that most elementary school students do not experience network problems when working on the daily assessment on google forms. then as many as 64 students used cell phone devices to fill out the no category limit total number percentage 9. is the device you are using your own? yes, 71 students, 77 students 92.2% not six students 7.8%47 daily assessment on google form with a percentage of 83.1% and in addition to mobile phones, the devices used to fill out the daily assessment on google form are laptops totaling 13 students with a percentage of 16.9%, so concluded that most elementary school students use mobile jurnal riset informatika vol. 4, no. 4 september 2022 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.439 accredited rank 3 (sinta 3), an excerpt from the decree of the minister of ristek-brin no. 200/m/kpt/2020 425 phones in filling out the daily assessment on google form. the devices used are mostly owned by themselves, with 92.2% of 71 students. procedure in the initial procedure, this research went through several stages: the permit process, data collection, questionnaires, distributing questionnaires, and conducting interviews (sani et al., 2020, 2022). the author gets a letter of application for a research permit for practical work students from the campus to be given to the galatians 3 elementary schools so that the author is granted permission to conduct research at the galatians 3 elementary school. at the beginning of this permit process, the author requests and fills out a form already available at baak to participate in the practical work lecture activities. then the author asked for a reply letter from the galatian 3 elementary school that the school invited the author to conduct research at galatian 3 elementary school. this reply letter is given to the author to be handed back to baak. the school allowed the authors to research at galatian 3 elementary school within four months. some of these processes can see in the flowchart in figure 2 below. figure 2 permit process flowchart figure 3 data retrieval process flowchart the process of collecting data starts with the author asking permission from the wakasek to ask for the data needed by the author, and then the wakasek provides the data. after the author gets these data, figure 4 flowchart of questionnaire making in the process of making a questionnaire, starting from the author make a questionnaire with as many as 20 questions made in the form of a google form figure 5 flowchart of questionnaire division the questionnaire process starts with asking permission from the vice principal to distribute the questionnaire link to elementary school students in grades 1-6. the author gives the questionnaire link to the vice principal. then the vice principal shares the link with the teacher in grades 1-6, then the teacher in grades 1-6 shares the link with his students and the students fill out the questionnaire. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.439 jurnal riset informatika vol. 4, no. 4 september 2022 accredited rank 3 (sinta 3), an excerpt from the decree of the minister of ristek-brin no. 200/m/kpt/2020 426 moreover, the author's next task is periodically checking the questionnaire results. figure 6 interview process flowchart the interview process starts with the author asking permission for the vice principal to interview teachers in grades 1-6. the author shares the interview form directly if the teacher is at school (kurniasi et al., 2020). meanwhile, if the teacher is not current at school, the author provides an interview link through a google form. after that, the teacher fills out the interview form data collection techniques, instruments, and data tam method indicators based on variables from the tam method used in making questionnaire questions about the use of google form to conduct a daily assessment distributed to students in grades 1-6 of galatian 3 elementary school, there are several indicators adjusted to the questionnaire questions regarding perceived ease of use, perceived usefulness, attitude toward using, attitude toward using, and behavioral intention to use. each of these variables has its indicators, which are described in table 2 below: table 2. tam method indicators variable indicator perceived ease of use (peu) peu1 easy to use peu2 very helpful peu3 easy to remember peu4 it can be done anywhere peu5 it does not require much effort perceived usefulness (pu) pu1 help facilitate pu2 very helpful pu3 increase productivity variable indicator pu4 feel faster pu5 improve the performance attitude toward using (atu) atu1 like to use atu2 enthusiasm in using atu3 can be done independently atu4 feel bored atu5 feeling happy behavioral intention to use (biu) biu1 will use continuously biu2 intend to continue to use biu3 wanting to access other systems the following is the test of the questionnaire results on students in grades 1-6 of galatia 3 elementary school, totaling 77 students, tested with four tam method variables to determine whether the use of google form as a medium for daily assessment has been accepted or not by users, which described on table 3 below. table 3. overall results of questionnaire calculations using the tam method no variable average criteria 1 perceived ease of use 86,49% excellent 2 perceived usefulness 84,99% excellent 3 attitude toward using 78,75% good 4 behavioral intention to use 75,41% good total 325,64% average 81,41% (good) based on the results above, it can be seen that the average respondent's answer score from 5 questions perceived user convenience. the result obtained was 86.49% which is classified as "excellent." it shows that the daily assessment using google forms is quite good. results and discussion hypothesis test between variables in order to ascertain the link between two variables, hypothesis testing is used. figure 7 below illustrates the size of the relationship between these variables as a percentage. jurnal riset informatika vol. 4, no. 4 september 2022 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.439 accredited rank 3 (sinta 3), an excerpt from the decree of the minister of ristek-brin no. 200/m/kpt/2020 427 figure 7 relationships between variables based on the picture above, the author took a hypothesis in the study, namely: 1) h1: is there a relationship between the perceived ease of use variable and perceived usefulness? 2) h2: is there a relationship between the perceived usefulness variable and the attitude toward using? 3) h3: is there a relationship between the perceived ease of use variable and the attitude toward using? 4) h4: is there a relationship between the attitude toward using a variable and the behavioral intention to use it? table 4. hypothesis test results hypothesis significance r square h1 0,00 0,518 (51,8%) h2 0,00 0,502 (50,2%) h3 0,00 0,272 (27,2%) h4 0,00 0,441 (44,1%) it can be concluded that the first hypothesis has a relationship between the perceived ease of use variable and perceived usefulness with a significance value of 0.00 (<0.05), whose relationship percentage is 51.8%. the two variables have a relationship because the daily assessment using google forms is very helpful and easy to use to improve student's performance and productivity in learning. in addition, the steps to fill out the google form to do the daily assessment questions are easy to remember, do not require hard effort, and can be done anywhere. therefore, students feel that it is faster to do the daily assessment, and google form helps facilitate online learning for students. the second hypothesis is the relationship between the perceived usefulness variable and the attitude toward using with a significance value of 0.00 (<0.05), whose relationship percentage is 50.2%. the two variables have a relationship because google form helps help to facilitate online learning, so students feel happy and enthusiastic about using google forms for online learning. the third hypothesis is the relationship between the perceived ease of use variable and the attitude toward using with a significance value of 0.00 (<0.05), whose relationship percentage is 27.2%. these two variables have a relationship because students do not need much effort to do the daily assessment questions on the google form and the steps are easy to remember. therefore, students can do it independently and like to use google forms in online learning. however, the percentage of the relationship between these two variables is the lowest compared to the percentage of relationships of other variables, and this may be because some students feel bored using google forms in online learning. the fourth hypothesis is the relationship between the attitude toward using the variable and the behavioral intention to use it with a significance value of 0.00 (<0.05), whose relationship percentage is 44.1%. these two variables have a relationship because students like to use google forms in online learning, so students intend to continue using google forms to support the learning process conclusions and suggestions conclusion the conclusions from the results of the questionnaire obtained are as follows: based on testing using the spss application, in the validity test, two questions were eliminated, namely biu4 and biu5, because they had a significance value of > 0.05, namely 0.36 and 0.84 so that the two questions are not processed further from valid items, a reliability test was then carried out, and cronbach's alpha results were obtained above 0.7 which means that the questionnaire filled out by respondents had a good level of consistency. from the results of the questionnaire that the author got to find out the attitude of student admissions towards using google forms in conducting a daily assessment, the author got an average result of 81.41%, which is relatively good. the average result is taken from the four variables of the tam method. one variable has a connection with the results of hypothesis tests using the spss application (hasyim & listiawan, 2014). the relationship between the perceived ease of use variables with perceived usefulness was 51.8%, perceived usefulness with attitude toward using was 50.2%, perceived ease of use with attitude toward using63 was 27.2%, and attitude toward using with the behavioral intention to use was 44.1%. responses from teachers and students regarding google forms are very effective despite shortcomings. for example, teachers cannot directly monitor the results of children's work. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i4.439 jurnal riset informatika vol. 4, no. 4 september 2022 accredited rank 3 (sinta 3), an excerpt from the decree of the minister of ristek-brin no. 200/m/kpt/2020 428 suggestion the advice from the author regarding the research that the author conducted on daily assessments using google forms in online learning at sd galatia 3 is that in conducting daily assessments using google forms, teachers should use additional applications such as zoom or google meet to monitor children's work directly. teachers should brief parents, especially in grades 1-3, to get their children used to being independent in doing daily assessments through google forms so that they are purely the result of children's work. in the validity test, there are two invalid questions. in this study, there are still two invalid questions. the statement is retested. acknowledgments researchers would like to express their gratitude to the ministry of education and culture, drpm, and lldikti region 3 for financing the novice lecturer research grant for the fiscal year 2022 for the 2022 implementation year, with contract number 403 / ll3 / ak. 04/vi/2022, as well as stmik widuri, who has facilitated lecturers to carry out and participate in activities in the pdp scheme through bima. references ayuni, d., marini, t., fauziddin, m., & pahrul, y. (2020). kesiapan guru tk menghadapi pembelajaran daring masa pandemi covid-19. jurnal obsesi : jurnal pendidikan anak usia dini, 5(1), 414. https://doi.org/10.31004/obsesi.v5i1.579 baety, d. n., & munandar, d. r. (2021). analisis efektifitas pembelajaran daring dalam menghadapi wabah pandemi covid-19. edukatif: jurnal ilmu pendidikan, 3(3), 880– 989. darna, n., & herlina, e. (2018). memilih metode penelitian yang tepat: bagi penelitian bidang ilmu manajemen. jurnal ekonologi ilmu manajemen, 5(1), 287–292. erawati, i., darwis, m., & nasrullah, m. (2017). efektivitas kinerja pegawai pada kantor kecamatan pallangga kabupaten gowa. jurnal office, 3(1), 13–18. fatmawati, e. (2015). technology acceptance model (tam) untuk menganalisis sistem informasi perpustakaan. iqra’: jurnal perpustakaan dan informasi, 9(1), 1–13. handarini, o. i., & wulandari, s. s. (2020). pembelajaran daring sebagai upaya study from home (sfh). jurnal pendidikan administrasi perkantoran (jpap), 8(3), 465– 503. hasyim, m., & listiawan, t. (2014). penerapan aplikasi ibm spss untuk analisis data bagi pengajar pondok hidayatul mubtadi’in ngunut tulungagung demi meningkatkan kualitas pembelajaran dan kreativitas karya ilmiah guru. jurnal pengabdian kepada masyarakat, 2(1), 28–35. kurniasi, e. r., farisma, s., & hartati, s. (2020). analisis soal ulangan harian matematika sma negeri 2 sungaiselan kelas xi mipa 1. wilangan: jurnal inovasi dan riset pendidikan matematika, 1(1), 106–113. mulatsih, b. (2020). penerapan aplikasi google classroom, google form, dan quizizz dalam pembelajaran kimia di masa pandemi covid19 application of google classroom, google form and quizizz in chemical learning during the covid-19 pandemic. jurnal karya ilmiah guru, 5(1), 19–35. munawaroh, r. z., prastowo, a., & nurjanah, m. (2021). efektivitas penilaian pembelajaran menggunakan google form pada pembelajaran daring. jisip (jurnal ilmu sosial dan pendidikan), 5(3). https://doi.org/10.36312/jisip.v5i3.2152 rijali, a. (2018). analisis data kualitatif ahmad rijali uin antasari banjarmasin. 17 (33), 81–95. eissn. sani, a., aisyah, s., budiyantara, a., doharma, r., hindardjo, a., & frieyadie, f. (2022). readiness technology and success model information technology in implementation between smes in jakarta. jitk (jurnal ilmu pengetahuan dan teknologi komputer), 7(2), 111–118. sani, a., husain, t., budiyantara, a., & wiliani, n. (2020). influences of the environmental context on the it adoption and technology acceptance model (tam) among smes. sani, a., wibawa, a. p., pusparini, n. n., rusyid, a., & hindardjo, a. (2021). the effect of student behavior on the use of campus journals by adopting the tam method. jitk (jurnal ilmu pengetahuan dan teknologi komputer), 6(2), 187–194. jurnal riset informatika vol. 1, no. 4 september 2019 p-issn: 2656-1743 e-issn: 2656-1735 205 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional perancangan dan penerapan metode weighted product dalam sistem pendukung keputusan pembelian laptop nur sumarsih program studi sistem informasi stmik nusa mandiri www.nusamandiri.ac.id nursumarsih8@gmail.com abstrak konsumen pada saat membeli laptop biasanya bertujuan sekedar mengerjakan pekerjaan sekolah atau kantor yang sebagian besar hanya untuk mengetik laporan atau mencari informasi lewat internet. pasar di indonesia sangat besar, sehingga berbagai merk dan jenis laptop yang tersedia saat ini dijual dengan harga yang bervariasi dan kompetitif, sehingga para calon pembeli menjadi tambah bingung untuk membeli. kebanyakan para pembeli, membeli laptop dengan spesifikasi yang tidak disesuaikan dengan kegunaannya. pendekatan yang digunakan untuk memecahkan masalah tersebut menggunakan metode weighted product. penelitian ini bertujuan untuk membantu konsumen dalam pemilihan laptop melalui kriteria-kriteria yang telah ditentukan. hasil perhitungan pemilihan laptop dengan metode weighted product yang didapat dengan hasil nilai tertinggi adalah laptop toshiba satellite c55 dan hasil terendah adalah laptop acer aspire e1-470. kata kunci: metode weighted product, pemilihan laptop, penunjang keputusan abstract consumers when buying a laptop usually aims just to do school or office work, mostly just to type reports or find information via the internet. the market in indonesia is very large, so that various brands and types of laptops available today are sold at varied and competitive prices, so potential buyers are even more confused about buying. most buyers, buy laptops with specifications that are not adapted for their use. the approach used to solve the problem uses the weighted product method. this study aims to assist consumers in choosing a laptop through predetermined criteria. the results of the calculation of the selection of laptops with the weighted product method obtained with the highest value is the toshiba satellite c55 laptop and the lowest result is the acer aspire e1-470 laptop. keywords: weighted product method, laptop selection, decision support pendahuluan pesatnya pasar laptop membuat para produsen saling berebut untuk menjadi pemimpin pasar laptop. dengan munculnya berbagai kompetitor membuat produsen berlomba-lomba memberikan produk terbaik kepada konsumen melalui produk yang mereka tawarkan, sehingga menimbulkan persaingan yang lebih kompetitif. biasanya konsumen membeli laptop hanya sekedar mengerjakan pekerjaan sekolah atau kantor yang sebagian besar hanya untuk mengetik laporan atau mencari informasi lewat internet, dengan kebutuan yang ada kita bisa membeli laptop yang berspesifikasi menengah. saat ini berbagai merk dan jenis laptop yang ada pasar indonesia, dijual dengan harga yang bervariasi dan kompetitif, sehingga para calon pembeli menjadi tambah bingung untuk memilihnya (khairina, ivando, & maharani, 2016), (saputra, sari, & mesran, 2017), dan kesulitan dalam menentukan pilihan (n. syafitri, syafitri, sutardi, & dewi, 2016) yang sesuai dengan kebutuhannya. banyak juga para pembeli, membeli laptop dengan spesifikasi yang tidak disesuaikan dengan kegunaannya (n. syafitri et al., 2016). terkadang konsumen, tentunya terkadang kita kesulitan dalam memilih laptop disesuaikan dengan anggaran yang ada. sesuai dengan permasalahan yang sudah dikemukakan diatas, pada penelitian yang penulis lakukan, menggunakan metode weighted product (wp), dikarenakan berdasarkan penelitian sebelumnya, yang dilakukan oleh syafitri (2016), memberikan solusi dari 5 (lima) laptop (n. a. syafitri, sutardi, & dewi, 2016) yang menjadi pilihan didapatkan akurasi yang baik dengan metode wp tersebut. begitu juga penelitian oleh rani (2014) dengan pemilihan sepeda motor http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 4 september 2019 206 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional dengan metode wp, menghasilkan hasil yang baik dalam pemilihan sepeda motor (rani, 2014). ruang lingkup pembahasannya dimulai dari menentukan kriteria yang dipakai dalam penelitian ini adalah harga, jenis processor, kapasias ram, hardisk, dan vga (video graphics accelerator), menentukan alternatif berupa laptop dengan beberapa merk, dan sistem ini akan menghasilkan penilaian pemilihan laptop yang nantinya akan menghasilkan ranking dari nilai terbesar ke terkecil. tujuan penelitian ini untuk membantu konsumen dalam pemilihan laptop melalui kriteriakriteria yang telah ditentukan. adanya sistem pendukung keputusan dengan metode weighted product ini konsumen dapat memilih laptop yang sesuai dengan kebutuhan. metode penelitian penelitian ini kriteria yang digunakan sebanyak 5 (lima) kriteria, yaitu : a. harga pada dasarnya adalah sebagai tolak ukur terpenting bagi sebagian besar calon pembeli. b. ram (random access memory) sebagai media penyimpanan temporer dalam sebuah computer, menjadi pertimbangan penting, dikarenakan ram sangat mempengaruhi kinerja dari sebuah computer. semakin besar kapasitas dan seamakin tinggi kecepatan dari ram sebuah laptop, semakin bagus dan cepat pula kinerja laptop tersebut. c. processor sebagai otak dari komputer merupakan salah satu pertimbangan penting dalam pemilihan laptop. processor dengan kecepatan yang inggi mempu memproses dan melakukan perhitungan dengan cepat pula. d. hardisk sebagai media penyimpanan semi-permanen menjadi pertimbangn penting, dimana semakin besar kapasitas harddisk sebuah laptop, semakin banyak pula data-data yang bisa disimpan oleh penggunanya. e. vga (video graphics accelerator) sebagai pengolah data grafis dalam sebuah laptop menjadi pertimbangan penting, khususnya bagi calon pembeli laptop yang bertujuan untuk menggunakan laptopnya sebagai media bermain game ataupun sebagai media bekerja yang menggunakan aplikasi-aplikasi multimedia yang berat. sedangkan untuk alternatif pilihan produk dari toko penjual laptop adalah sebagai berikut : a. acer aspire one z1402 b. lenovo s400 c. toshiba satellite c55 d. acer aspire e1-470 e. asus s46cb skala pengukuran yang digunakan dalam observasi kepada responden adalah skala likert, dimana akan didapat jawaban berupa sangat setuju, setuju, netral, tidak setuju, dan sangat tidak setuju. dalam penelitian ini analisa yang digunakan adalah analisis data kuantitatif, karena data yang didapat berupa simbol angka atau bilangan yang dapat menghasilkan suatu kesimpulan yang berlaku di dalam suatu parameter. metode weighted product (wp) metode weighted product menggunakan teknik perkalian untuk menghubungkan ratingattribute, dimana rating tiap atribut harus dipangkatkan terlebih dahulu dengan atribut bobot yang bersangkutan (kusumadewi, hartati, harjoko, & wardoyo, 2006). . dalam penelitian ini akan menggunakan metode weighted product dimana di dalam penentuan sebuah keputusan dengan cara perkalian untuk menghubungkan rating atribut, dimana rating setiap atribut dipangkatkan dulu dengan bobot atribut yang bersangkutan. langkah-langkah yang dilakukan dalam penyelesaian masalah menggunakan metode weighted product seperti dibawah ini. 1. normalisasi atau perbaikan bobot 𝑊𝑗 = 𝑊𝑗 ∑ 𝑤𝑗 ..................................................................... (1) melakukan normalisasi atau perbaikan bobot untuk menghasilkan nilai 𝑤𝑗 = 1 dimana 1, 2, …, n adalah banyak alternatif dan ∑ 𝑤𝑗 adalah jumlah keseluruhan nilai bobot. 2. menentukan nilai vektor (s) 𝑆𝑖 = ∏ 𝑋𝑖𝑗 𝑊𝑗 ∏ 𝑋𝑖𝑗 𝑊𝑗 𝑛 𝑗−1 𝑛 𝑗−1 ............................. (2) , dengan i = 1, 2, ..., n 3. menentukan nilai vector (s) dengan cara mengalikan seluruh kriteria dengan alternatif hasil normalisasi atau perbaikan bobot yang berpangkat positif untuk kriteria keuntungan (benefit) dan yang berpangkat negatif untuk kriteria biaya (cost). dimana (s) merupakan preferensi kriteria, (x) merupakan nilai kriteria dan (n) merupakan banyaknya kriteria. 4. menentukan nilai vektor (v) 𝑉𝑖 = ∏ 𝑥𝑖𝑗 𝑤𝑗 𝑛 𝑗=1 ∏ (𝑋𝑗 𝑤)𝑛𝑗=1 𝑤𝑗 .......................................................... (3) http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 4 september 2019 p-issn: 2656-1743 e-issn: 2656-1735 207 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional , dengan i = 1, 2, ..., n (3) menentukan nilai vector (v) dimana vector (v) merupakan preferensi alternatif yang akan digunakan untuk perangkingan dari masing-masing jumlah nilai vector (s) dengan jumlah seluruh nilai vector (s) . start input nilai aternatif, input kriteria (c), input kriteria, bobot (w) perbaikan bobot kriteria pemangkatan vektor s terhadap bobot kriteria vektor v proses alternatif keputusan output alternatif keputusan end gambar 1. algortima metode weighted product bobot kriteria tersebut yang dijadikan pengujian didapat dari hasil kuesioner dimana responden memilih tingkat kepentingan sesuai dengan kebutuhan yang sesuai dalam melakukan pemilihan laptop, kemudian dilakukan normalisasi bobot atau perbaikan bobot dengan menentukan vektor s yaitu nilai dari setiap alternatif, perhitungan ini dilakukan dimana data yang akan dikalikan yang sebelumnya dilakukan pemangkatan dengan bobot masing–masing kriteria. setelah masing–masing vektor s mendapatkan nilai langkah selanjutnya adalah menentukan nilai vektor v yang digunakan untuk perangkingan alternatif. setelah perhitungan menggunakan vektor v selesai, langkah selanjutnya adalah memasukan semua hasil perhitungan ke dalam tabel sesuai nilai tertinggi dari nilai vektor v, maka akan didapatkan hasil perhitungan yang menunjukkan perangkingan nilai vektor v yang terbesar hingga terkecil, sehingga didapat alternatif terbaik rekomendasi pemilihan laptop berdasarkan nilai tertinggi vektor v. hasil dan pembahasan a. data penelitian pada tahap ini penulis mengumpulkan data pemilihan laptop yang diperlukan dalam melakukan perhitungan menggunakan metode weighted product. berikut ini adalah kriteria yang dijadikan acuan dalam memilih laptop dengan menggunakan metode weighted product. tabel 1. kriteria kriteria simbol harga c1 ram c2 processor c3 hardisk c4 vga c5 dari tabel tersebut, maka ditentukan suatu tingkatan kepentingan kriteria berdasarkan nilai bobot pada setiap kriteria dengan nilai bobot 1 sampai dengan 5, pembobotan ini mengacu pada skala likert, yaitu: tabel 2. nilai bobot pernyataan bobot sangat tidak penting 1 tidak penting 2 cukup penting 3 penting 4 sangat penting 5 b. data pengujian pada tahap ini akan dilakukan pengujian dengan menggunakan metode weighted product untuk pengolahan data menentukan keputusan pemilihan laptop. 1. metode weighted product ada beberapa langkah untuk melakukan perhitungan menentukan keputusan pemilihan laptop dengan menggunakan metode weighted product adalah sebagai berikut. a. menentukan alternatif menentukan alternatif yang akan digunakan dalam perhitungan. pada pengujian ini akan digunakan 5 sampel data laptop. tabel 3. data laptop no laptop spesifikasi kode harga ram processor hdd vga 1 acer aspire one z1402 4.390.000 2gb intel core i3 500 gb intel hd 5.500 a 2 lenovo s400 3.900.000 4gb intel core i3 500 gb amd radeon hd 7450 b 3 toshiba satellite 6.390.000 4gb intel core i3 1tb intel hd c http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 4 september 2019 208 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional no laptop spesifikasi kode harga ram processor hdd vga c55 5.500 4 acer aspire e1-470 5.490.000 2gb intel core i3 500 gb intel hd 4000 d 5 asus s46cb 7.102.000 4gb intel core i3 500 gb nvidia geforce gt 740 e b. menentukan perbaikan bobot kriteria menetukan bobot preferensi atau menentukan tingkat kepentingan berdasarkan tingkat kepentingan masing-masing kriteria. berikut adalah nilai bobot yang diberikan oleh responden, yaitu: tabel 4. masukkan responden kriteria nilai harga 5 kapasitas ram 3 jenis processor 4 kapasitas hardisk 3 vga 2 selanjutnya akan dilakukan perbaikan bobot terlebih dahulu dengan bobot awal w= (5, 3, 4, 3, 2), dengan w adalah bobot masing-masing kriteria yang responden berikan. berikut adalah hasil dari perhitungan perbaikan bobot kriteria. tabel 5. perbaikan bobot kriteria kriteria nilai bobot harga 5 0,294 ram 3 0,176 processor 4 0,235 hardisk 3 0,176 vga 2 0,118 menentukan bobot setiap alternatif langkah selanjutnya adalah memberikan bobot kriteria untuk masing-masing data laptop yang terdapat pada tabel 3 data laptop. berikut adalah bobot kriteria setiap laptop, yaitu tabel 6. bobot kriteria setiap laptop kriteria alternatif a b c d e harga 4 5 3 4 3 ram 1 2 2 1 2 processor 5 5 5 5 5 hardisk 3 3 5 3 3 vga 3 3 3 2 5 menghitung vector s setelah mendapatkan perhitungan nilai perbaikan bobot kriteria, maka langkah berikutnya adalah menghitung vector s dimana perhitungan ini akan dikalikan tetapi sebelumnya dilakukan pemangkatan dengan bobot masing-masing kriteria. dengan bobot sebagai pangkat positif untuk kriteria yang menguntungkan dan bobot negatif untuk kriteria biaya. berikut adalah hasil dari perhitungan vector s, yaitu: tabel 7. perhitungan vector s alternatif bobot a 1,339 b 1,417 c 1,798 d 1,276 e 1,746 menentukan vector v setelah mendapatkan nilai vector s, langkah selanjutnya adalah menentukan perangkingan alternatif laptop dengan cara membagi nilai vector v yang digunakan untuk perankingan bagi setiap alternatif dengan nilai total dari semua nilai alternatif vector s. setelah perhitungan menggunakan vector v selesai, langkah selanjutnya adalah memasukkan semua hasil perhitungan ke dalam table sesuai nilai tertinggi dari vector v, maka akan didapat nilai tertinggi sebagai nilai rekomendasi. tabel 8. nilai hasil alternatif nilai a 0,176 b 0,187 c 0,237 d 0,168 e 0,230 maka hasil dari perhitungan pemilihan laptop dengan menggunakan metode weighted product menyatakan bahwa nilai tertinggi adalah alternatif c laptop toshiba satellite c55, kedua alternatif e laptop asus s46cb, ketiga alternatif b laptop lenovo s400, ke empat alternatif a laptop acer aspire one z1402 dan terendah adalah alternatif d laptop acer aspire e1-470. setelah dilakukan perhitungan secara manual, maka selanjutnya akan dilakukan perhitungan dengan menggunakan microsoft excel. berikut adalah perhitungan yang telah dilakukan, yaitu tabel 9. perbaikan bobot kriteria kriteria harga ram prosesor hardisk vga cost/benefit cost benefit benefit benefit benefit bobot 5 3 4 3 2 jumlah bobot 17 perbaikan bobot 0,2941 0,1765 0,23529 0,1765 0,1176 http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 4 september 2019 p-issn: 2656-1743 e-issn: 2656-1735 209 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional pada tabel 9 diatas dapat dilihat bahwa nilai yang dihasilkan dengan menggunakan microsoft excel tidak jauh berbeda dengan hasil yang dilakukan dengan menggunakan perhitungan manual. tabel 10. perhitungan vector s alternatif / kriteria harga ram prosesor hardisk vga vector s acer aspire one z1402 4 1 5 3 3 1,34189 lenovo s400 5 2 5 3 3 1,42016 toshiba satellite c55 3 2 5 5 3 1,80608 acer aspire e1 470 4 1 5 3 2 1,27938 asus s46cb 3 2 5 3 5 1,75261 selanjutnya hasil dari perhitungan vector s hasilnya pun tidak jauh berbeda dengan hasil yang dilakukan dengan perhitungan manual. tabel 11. perhitungan vector v alternatif vector v acer aspire one z1402 0,1766 lenovo s400 0,1869 toshiba satellite c55 0,2376 acer aspire e1 470 0,1683 asus s46cb 0,2306 berdasarkan perhitungan dengan microsoft excel, maka hasil yang didapat sama dengan perhitungan secara manual dimana nilai tertinggi adalah alternatif c laptop toshiba satellite c55, kedua alternatif e laptop asus s46cb, ketiga alternatif b laptop lenovo s400, ke empat alternatif a laptop acer aspire one z1402 dan terendah adalah alternatif d laptop acer aspire e1-470. gambar 1. grafik hasil nilai perhitungan weighted product kesimpulan untuk menggunakan metode weighted product dibutuhkan kriteria yang akan dijadikan pertimbangan, kriteria yang telah ditentukan adalah harga, kapasitas ram, jenis processor, kapasitas hardisk, dan vga. membangun sistem pendukung keputusan pemilihan laptop menggunakan metode weighted product, langkah pertama yang dilakukan adalah menentukan kriteria dan alternatif laptop yang akan dibandingkan, kemudian data terebut akan dihitung dengan menggunakan metode weighted product. hasil perhitungan pemilihan laptop dengan metode weighted product yang didapat dengan hasil nilai tertinggi adalah laptop toshiba satellite c55 dan hasil terendah adalah laptop acer aspire e1-470. daftar referensi khairina, d. m., ivando, d., & maharani, s. (2016). implementasi metode weighted product untuk aplikasi pemilihan smartphone android. jurnal infotel, 8(1), 16–23. retrieved from http://ejournal.st3telkom.ac.id/index.php/in fotel/article/view/47 kusumadewi, s., hartati, s., harjoko, a., & wardoyo, r. (2006). fuzzy multi-attribute decision making (fuzzy madm). yogyakarta: graha ilmu. rani, s. (2014). sistem pendukung keputusan pemilihan sepeda motor berbasis webdengan metode weighted product. pelita informatika budi darma, 7(3), 62–66. saputra, i., sari, s. i., & mesran, m. (2017). penerapan elimination and choice translation reality (electre) dalam penentuan kulkas terbaik. komik (konferensi nasional teknologi informasi dan komputer), 1(1), 295–305. https://doi.org/10.30865/komik.v1i1.512 syafitri, n. a., sutardi, s., & dewi, a. p. (2016). penerapan metode weighted product dalam sistem pendukung keputusan pemilihan laptop berbasis web. semantik, 2(1), 169–176. retrieved from http://ojs.uho.ac.id/index.php/semantik/arti cle/view/762 syafitri, n., syafitri, n. a., sutardi, s., & dewi, a. p. 0 0,05 0,1 0,15 0,2 0,25 acer aspire one z1402 lenovo s400 toshiba satellite c55 acer aspire e1 470 asus s46cb http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 4 september 2019 210 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional (2016). penerapan metode weighted product dalam sistem pendukung keputusan pemilihan laptop berbasis web. semantik, 2(1), 169–176. retrieved from http://ojs.uho.ac.id/index.php/semantik/arti cle/view/762 http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 1 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. sistem pendukung keputusan pemilihan penerima piala 5 tingkat efl di kumon danau sunter dengan metode ahp frieyadie1; lenny purnawati2 program studi sistem informasi stmik nusa mandiri frieyadie@nusamandiri.ac.id; lennypurnawati22@gmail.com abstract kumon gave awards in the form of trophies as a form of appreciation for the achievements shown by kumon students. this is also expected to increase the motivation of kumon students to work on worksheets according to their level independently. at lake sunter kumon, there are 2 levels of trophies given to students, namely 3-level trophies and 5 levels. each kumon must select several students who meet the criteria set by the head office. these criteria include attitudes and behaviors while in class, levels achieved and abilities possessed by the student. the number of students who are increasing every year causes the process of determining students who are entitled to receive trophies 5 levels in the efl kumon lake sunter class is still not optimal which can hinder the performance of decision makers. this is because at this time the assessment process for each student's development is still in hardcopy. the problem solving method used is the ahp method. the purpose of the research was to optimize the process of determining 5 efl level trophy recipient students at lake sunter kumon. facilitate decision makers in determining 5-level efl trophy recipients in lake sunter kumon. speed up the search process for data on students who meet the criteria and provide valid results regarding students who are entitled to receive 5 efl trophies at kumon lake sunter. keywords: english as foreign language (efl), kumon, ahp abstrak kumon memberikan penghargaan berupa piala sebagai bentuk penghargaan atas prestasi yang ditunjukkan siswa kumon. hal ini juga diharapkan dapat meningkatkan motivasi siswa kumon dalam mengerjakan lembar kerja sesuai tingkatan levelnya secara mandiri. di kumon danau sunter, terdapat 2 tingkatan piala yang diberikan kepada siswa yaitu piala 3 tingkat dan 5 tingkat. setiap kumon harus memilih beberapa siswa yang memenuhi kriteria-kriteria yang sudah ditetapkan oleh kantor pusat. kriteria-kriteria tersebut diantaranya adalah sikap dan perilaku selama berada di kelas, level yang dicapai dan kemampuan yang dimiliki siswa tersebut. jumlah siswa yang semakin bertambah setiap tahunnya menyebabkan proses penentuan siswa yang berhak menerima piala 5 tingkat di kelas efl kumon danau sunter masih kurang optimal yang dapat menghambat kinerja dari para pengambil keputusan. hal ini dikarenakan pada saat ini proses penilaian perkembangan setiap siswa masih dalam bentuk hardcopy. metode pemecahan masalah yang digunakan metode ahp. tujuan penelitian yang dilakukan untuk mengoptimalkan proses penentuan siswa penerima piala 5 tingkat efl di kumon danau sunter. mempermudah para pengambil keputusan dalam menentukan siswa penerima piala 5 tingkat efl di kumon danau sunter. mempercepat proses pencarian data-data siswa yang memenuhi kriteria dan memberikan hasil yang valid mengenai siswa yang berhak menerima piala 5 tingkat efl di kumon danau sunter. kata kunci: english as foreign language (efl), kumon, ahp pendahuluan pendidikan di sekolah formal pada saat ini masih dirasa kurang cukup dalam meningkatkan prestasi anak bagi kebanyakan orangtua murid. karena hal itu pula, bimbingan belajar dijadikan salah satu solusi alternatif bagi orangtua yang ingin meningkatkan prestasi dan kualitas belajar anaknya di sekolah. kumon merupakan salah satu dari begitu banyak tempat bimbingan belajar non formal di indonesia. kumon menawarkan 2 (dua) mata pelajaran unggulan yang menjadi fokus utama, yaitu math (matematika) dan reading program. sedangkan di indonesia, reading program lebih dikenal dengan sebutan english as foreign language (efl). program kumon terdiri dari rangkaian lembar kerja (worksheet) yang memiliki beberapa tingkatan level. lembar http://creativecommons.org/licenses/by-nc/4.0/ mailto:lennypurnawati22@gmail.com issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 2 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. kerjanya telah dirancang sedemikian rupa sehingga siswa dapat memahami sendiri bagaimana cara menyelesaikan soal-soal yang ada. lembar kerja kumon dipersiapkan dalam bentuk yang sangat small-steps, hal ini memungkinkan setiap siswa untuk maju dengan lancar dari soal yang mudah ke soal yang lebih sulit dan akhirnya mencapai materi tingkat sma. versi internasional program matematika (math) terdiri dari 20 level (dari level 6a sampai level o) dan 5 level pilihan, sehingga total ada 4.420 lembar kerja bolak-balik. sedangkan program english as foreign language (efl) terdiri dari 21 level (dari level 7a sampai level o), sehingga total ada 4.200 lembar kerja bolak-balik. dengan lembar kerja dalam bentuk small-steps ini, siswa kumon juga diharapkan dapat menggali kemampuan pemahaman mereka secara mandiri dengan melihat contoh soal yang ada sebelumnya. jika siswa terus belajar dengan kemampuannya sendiri, maka ia akan mampu mengejar bahan pelajaran yang setara dengan tingkatan kelasnya dan bahkan melampauinya. pembelajaran kooperatif dapat meningkatkan kinerja siswa, interaksi, dan kemampuan berfikir kritis (bliss & lawrence, 2009) tujuan pembelajaran kooperatif adalah melatih siswa memanajemen waktu dan saling ketergantungan positif antarkelompok (kupczynski, mundy, goswami, & meling, 2012). pembelajaran dengan metode kumon mengaitkan antarkonsep, ketrampilan, kerja individual, dan menjaga suasana nyaman dan menyenangkan, sehingga siswa menjadi lebih mandiri untuk mengerjakan soal. pertama kali yang ditekankan pada pembelajaran kali ini suasana pembelajaran yang nyaman dan menyenangkan (tiyanto, binadja, & santoso, 2014) dalam jangka waktu satu tahun sekali, kumon memberikan penghargaan berupa piala sebagai bentuk penghargaan atas prestasi yang ditunjukkan siswa kumon. hal ini juga diharapkan dapat meningkatkan motivasi siswa kumon dalam mengerjakan lembar kerja sesuai tingkatan levelnya secara mandiri. di kumon danau sunter, terdapat 2 tingkatan piala yang diberikan kepada siswa yaitu piala 3 tingkat dan 5 tingkat. setiap kumon harus memilih beberapa siswa yang memenuhi kriteria-kriteria yang sudah ditetapkan oleh kantor pusat. kriteria-kriteria tersebut diantaranya adalah sikap dan perilaku selama berada di kelas, level yang dicapai dan kemampuan yang dimiliki siswa tersebut. jumlah siswa yang semakin bertambah setiap tahunnya menyebabkan proses penentuan siswa yang berhak menerima piala 5 tingkat di kelas efl kumon danau sunter masih kurang optimal yang dapat menghambat kinerja (darmanto, latifah, & susanti, 2014) dari para pengambil keputusan. hal ini dikarenakan pada saat ini proses penilaian perkembangan setiap siswa masih dalam bentuk hardcopy (rijayana & okirindho, 2012) berbentuk folder. dengan jumlah siswa yang banyak juga menyebabkan proses yang cukup lama (lemantara, setiawan, & aji, 2013) dalam mencari data-data siswa yang memenuhi kriteria-kriteria tersebut dan hasilnya kurang valid (suryati & purnama, 2010). oleh karena itu, perlu adanya sistem yang mendukung proses penentuan penerima piala 5 tingkat di kelas efl kumon danau sunter sehingga dapat memudahkan dan mempersingkat waktu yang dibutuhkan dalam penyeleksian. berdasarkan permasalahan peneltian dapat dirumuskan beberapa masalah diantaranya, kurang optimalnya proses pemilihan penerima (widhianto, 2015) piala 5 tingkat efl di kumon danau sunter, menghambat kinerja dari para pengambil keputusan(umar, fadlil, & yuminah, 2018), membutuhkan waktu yang cukup lama dalam mencari data-data siswa yang memenuhi kriteria, hasil dari proses penentuan siswa penerima piala 5 tingkat efl di kumon danau sunter saat ini kurang valid. tujuan penelitian yang dilakukan untuk mengoptimalkan proses penentuan siswa penerima piala 5 tingkat efl di kumon danau sunter. mempermudah para pengambil keputusan dalam menentukan siswa penerima piala 5 tingkat efl di kumon danau sunter. mempercepat proses pencarian data-data siswa yang memenuhi kriteria dan memberikan hasil yang valid mengenai siswa yang berhak menerima piala 5 tingkat efl di kumon danau sunter. metodologi penelitian a. metode pengumpulan data pengumpulan data bertujuan untuk mendapatkan data yang berkaitan dengan penelitian. metode pengumpulan data menjadi tolak ukur benar atau tidaknya suatu penelitian tersebut dilakukan. teknik pengumpulan data dilakukan untuk mengamati variabel yang akan diteliti melalui metode tertentu. adapun teknik pengumpulan data yang dilakukan dalam penelitian penentuan siswa yang menerima piala 5 tingkat efl di kumon danau sunter adalah sebagai berikut: 1. metode observasi adapun observasi yang dilakukan penulis termasuk dalam jenis observasi partisipasif. yaitu penulis terlibat langsung dengan kegiatan seharihari orang yang sedang diamati atau yang digunakan sebagai sumber data penelitian. sambil http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 3 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. melakukan pengamatan, penulis ikut melakukan apa yang dikerjakan oleh sumber data. 2. metode wawancara dalam menggunakan metode ini peneliti mengadakan tanya jawab secara langsung dengan membawa instrumen penelitian sebagai pedoman pertanyaan tentang hal-hal yang akan ditanyakan dengan cara menanyakan beberapa pertanyaan untuk mencari data tentang pengaruh metode kumon terhadap tingkat kemandirian anak. 3. studi pustaka studi pustaka dilakukan untuk memperoleh informasi dalam rangka menganalisa permasalahan melalui penelaahan terhadap berbagai sumber tertulis melalui pendapatpendapat para ahli yang ada dalam buku atau jurnal, juga untuk menunjang instrumen pengumpulan data dan memperdalam kajian terhadap permasalahan penelitian. hal ini dapat menunjang solusi terhadap permasalahan dan dapat dijadikan acuan dalam bentuk teori yang berisi tentang sistem pendukung keputusan menggunakan metode ahp (analytical hierarchy process) yang digunakan untuk mengolah data siswa-siswa yang berhak menerima piala 5 tingkat efl di kumon danau sunter. dari ketiga metode pengumpulan data di atas, maka akan didapatkan data yang berisi informasi mengenai objek yang akan diteliti. data terdiri dari 2 macam, yaitu: 1. data primer data primer merupakan data yang didapat secara langsung di lapangan. dalam penelitian ini, data primer dikategorikan sebagai data penunjang. adapun data primer yang didapat adalah informasi mengenai kumon danau sunter seperti sejarah dan struktur organisasinya. 2. data sekunder data sekunder adalah data yang didapat dari perusahaan, dimana data tersebut merupakan data yang sudah ada sebelumnya dan sebagai arsip perusahaan. dalam penelitian ini, data sekunder dijadikan sebagai data utama. data sekunder didapatkan dari hasil observasi dan wawancara yang dilakukan kepada pembimbing kumon, kepala asisten dan kepala asisten efl. data sekunder yang didapat dalam penelitian ini adalah data yang mengenai kriteria apa saja yang dijadikan sebagai tolak ukur pemilihan siswa yang berhak menerima piala 5 tingkat, daftar nama siswa yang masih aktif serta level yang sudah mereka capai saat ini. sedangkan dari metode studi pustaka, diperoleh informasi-informasi mengenai metode ahp (analytical hierarchy process) yang akan digunakan peneliti dalam mengolah data yang sudah diperoleh dalam penelitian ini. b. populasi dan sampel penelitian sugiyono (2010:80) menyatakan bahwa “populasi adalah wilayah generalisasi yang terdiri atas: obyek atau subyek yang mempunyai kualitas dan karakteristik tertentu yang ditetapkan oleh penulis untuk dipelajari dan kemudian ditarik kesimpulannya”. sedangkan sugiyono (2010:81) berpendapat bahwa “sampel adalah bagian dari jumlah dan karakteristik yang dimiliki oleh populasi tersebut”. jika populasi yang akan dipelajari penulis terlalu besar dan penulis tidak mampu untuk mempelajari dari keseluruhan populasi, maka penulis dapat menggunakan sampel dari populasi tersebut sebagai bahan penelitian. dalam penelitian penentuan penerima piala 5 tingkat ini, penulis menggunakan sampel yang diambil dari populasi asisten pengajar di kumon danau sunter yang berjumlah 12 orang. penulis mengambil 5 responden yang terdiri dari kepala asisten, kepala asisten efl, asisten pengajar efl dan pembimbing. c. metode analisis data ada beberapa dasar yang harus dipahami dalam menyelesaikan persoalan dengan menggunakan metode ahp, diantaranya: 1. decompotition mendefinisikan persoalan dengan cara memecah persoalan yang utuh menjadi unsurunsur dan digambarkan dalam bentuk hirarki. 2. comparative judgement langkah pertama menentukan prioritas elemen dengan membuat perbandingan berpasangan, yaitu membandingkan elemen secara berpasangan sesuai kriteria yang diberikan. matriks perbandingan berpasangan diisi menggunakan bilangan untuk membuat penilaian tentang kepentingan relatif dua elemen dan dituliskan dalam bentuk matriks perbandingan berpasangan (pairwise comparison). 3. syntesis of priority dari matriks pairwise comparison kemudian dicari eigen vektor untuk mendapatkan local priority. pertimbangan terhadap perbandingan berpasangan disintesis untuk memperoleh global priority. hal-hal yang dilakukan dalam langkah ini adalah: a. menjumlahkan nilai dari setiap kolom pada matriks. b. membagi setiap nilai dari kolom dengan total kolom yang bersangkutan untuk memperoleh normalisasi matriks. c. menjumlahkan nilai dari setiap baris dan membagi dengan jumlah elemen untuk mendapatkan nilai rata-rata. 4. consistency http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 4 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. dalam pembuatan keputusan, mengetahui seberapa baik konsistensi merupakan hal yang penting karena penelitian tidak menginginkan keputusan berdasarkan pertimbangan dengan konsistensi yang rendah. untuk itu, beberapa hal yang dilakukan dalam langkah ini adalah sebagai berikut: a. lakukan perkalian setiap nilai pada kolom pertama dengan prioritas relatif elemen pertama, nilai pada kolom kedua dengan prioritas relatif elemen kedua dan begitu seterusnya. b. jumlahkan setiap baris yang ada. c. hasil dari penjumlahan baris dibagi dengan elemen prioritas relatif yang besangkutan. d. jumlahkan hasil bagi dengan banyaknya elemen yang ada, kemudian hasilnya disebut λ maks e. hitung consistency index (ci) dengan rumus keterangan: n = banyaknya elemen f. hitung consistency ratio (cr) dengan rumus cr = ci/ri keterangan: cr = consistency ratio ci = consistency index ri = random consistency index g. memeriksa konsistensi hierarki. jika nilainya lebih dari 10%, maka penilaian data judgement harus diperbaiki. namun jika ratio konsistensi (ci/ri) kurang atau sama dengan 0,1 maka hasil perhitungan dapat dinyatakan benar. hasil dan pembahasan metode analytical hierarchy process (ahp) digunakan untuk menentukan hasil penelitian dan pembahasan. prinsip-prinsip dasar dari metode analytical hierarchy process (ahp) adalah decompotition, comparative judgement, synthesis of priority, dan consistency. decompotition suatu tahap dimana persoalan yang utuh didefinisikan dan disederhanakan menjadi persoalan yang lebih kecil. persoalan digambarkan dalam bentuk hierarki, dan dikelompokkan menjadi tiga bagian, yaitu tujuan, kriteria dan alternatif. tiga kriteria yang digunakan dalam penelitian ini adalah level, kelas dan kemampuan. kriteria pertama adalah level, hal ini dapat dilihat dari nilai, ketangkasan, ketepatan dan swp (standar waktu penyelesaian) saat siswa tersebut mengerjakan soal. kriteria kedua adalah kelas, yang dinilai dari kriteria ini yaitu kehadiran, kerajinan, sikap belajar dan alur kelas yang dilakukan siswa tersebut saat proses belajar mengajar di kelas berlangsung. sedangkan kriteria ketiga adalah kemampuan, kriteria ini dinilai dari pemahaman, orc (oral reading comprehension) dan kemandirian siswa selama mengerjakan soal . kriteria dan alternatif penilaian penerima piala 5 tingkat efl dijelaskan pada gambar struktur hierarki berikut ini: pemilihan penerima piala level kelas kemampuan nilai ketangkasan ketepatan swp kehadiran kerajinan sikap belajar alur kelas pemahaman orc mandiri salista ivana sayesha tujuan kriteria sub kriteria alternatif sumber: (frieyadie & purnawati, 2017) gambar 1. hirarki penilaian prestasi hirarki diatas menjelaskan pemecahan masalah yang terdiri dari tujuan, kriteria, sub kriteria, dan alternatif. kriteria yang digunakan pada hirarki di atas dijelaskan pada tabel 1 berikut ini: tabel 1. penjelasan kriteria pemilihan penerima piala 5 tingkat efl kriteria penjelasan level menilai tingkatan level yang sudah dicapai siswa kelas menilai sikap siswa tersebut selama berada di kelas kemampuan menilai tingkatan kemampuan yang dimiliki siswa sumber: (frieyadie & purnawati, 2017) sub kriteria yang digunakan dalam hirarki sebelumnya dijelaskan pada tabel 2 berikut ini: tabel 2. penjelasan sub kriteria pemilihan penerima piala 5 tingkat efl sub kriteria penjelasan nilai dilihat dari nilai yang diperoleh siswa tersebut ketangkasan menilai tingkat konsentrasi siswa tersebut saat mengerjakan soal ketepatan menilai tingkat ketepatan siswa saat menjawab soal http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 5 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. swp menilai standar waktu penyelesaian siswa dalam menyelesaikan setiap soal kehadiran menilai jumlah kehadiran siswa dalam mengikuti kelas kerajinan menilai tingkat kerajinan siswa dalam membuat homework (pekerjaan rumah) sikap belajar menilai sikap belajar siswa selama mengerjakan soal di kelas alur kelas menilai urutan alur kelas yang dilakukan siswa, mulai dari siswa datang sampai siswa pulang pemahaman menilai tingkat pemahaman siswa terhadap materi yang diberikan orc menilai tingkat kelancaran siswa dalam berbicara bahasa inggris mandiri menilai tingkat kemandirian siswa saat mengerjakan soal sumber: (frieyadie & purnawati, 2017) consistency tahap consistency ini bertujuan untuk menentukan kebenaran nilai eigen vektor yang diperoleh dari proses synthesis of priority yang telah dibuat sebelumnya. tahap consistency ini dilakukan sebanyak 15 kali, diantaranya sebagai berikut: a. level 1 berdasarkan kriteria utama hasil nilai dari λ maksimum didapatkan: (3.004 + 3.003 + 3.004) / 3 = 3.0037 menghitung indeks konsistensi ci = ( 3.0037 – 3 ) / ( 3 – 1 ) = 0.0018 menghitung rasio konsistensi (consistency ratio) tabel 3. random consistency index size 1 2 3 4 5 6 7 8 9 ri 0 0 0,58 0,9 1,12 1,24 1,32 1,41 1,49 sumber: (frieyadie & purnawati, 2017) cr = ci / ri = 0.0018 / 0.58 = 0.0032 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. b. level 2 berdasarkan kriteria level hasil dari λ maksimum didapatkan (4.402 + 4.187 + 4.243 + 4.250) / 4 = 4.2706 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 4.2706 – 4 ) / ( 4 – 1 ) = 0.0902 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0902 / 0.9 = 0.1 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. c. level 2 berdasarkan kriteria kelas hasil nilai dari λ maksimum didapatkan. λ = (4.052 + 4.033 + 4.045 + 4.032) / 4 = 4.0408 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 4.0408 – 4 ) / ( 4 – 1 ) = 0.0136 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0136 / 0.9 = 0.0151 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. d. level 2 berdasarkan kriteria kemampuan hasil nilai dari λ maksimum didapatkan. λ = (3.003 + 3.001 + 3.003) / 3 = 3.0024 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.0024 – 3 ) / ( 3 – 1 ) = 0.0012 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0012 / 0.58 = 0.0021 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 6 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. konsisten dan eigen vektor yang dihasilkan dapat diandalkan. e. level 3 berdasarkan sub kriteria nilai hasil nilai dari λ maksimum didapatkan. λ = (3.018 + 3.008 + 3.005) / 3 = 3.0106 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.0106 – 3 ) / ( 3 – 1 ) = 0.0053 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0053 / 0.58 = 0.0091 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. f. level 3 berdasarkan sub kriteria ketangkasan hasilnya adalah nilai dari λ maksimum. (3.000 + 3.000 + 3.000) / 3 = 3.000 tahap kedua dari proses consistency adalah menguji konsistensi hirarki, dengan cara: menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.000 – 3 ) / ( 3 – 1 ) = 0.0000 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0000 / 0.58 = 0.0000 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. g. level 3 berdasarkan sub kriteria ketepatan hasil nilai dari λ maksimum didapatkan. λ = (3.191 + 3.082 + 3.129) / 3 = 3.1342 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.1342 – 3 ) / ( 3 – 1 ) = 0.0671 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0671 / 0.58 = 0.1157 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. h. level 3 berdasarkan sub kriteria swp (standar waktu penyelesaian) hasil nilai dari λ maksimum didapatkan. λ = (3.030 + 3.022 + 3.073) / 3 = 3.0415 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.0415 – 3 ) / ( 3 – 1 ) = 0.0207 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0207 / 0.58 = 0.0358 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. i. level 3 berdasarkan sub kriteria kehadiran hasil nilai dari λ maksimum didapatkan. λ = (3.058 + 3.039 + 3.008) / 3 = 3.0349 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.0349 – 3 ) / ( 3 – 1 ) = 0.0175 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0175 / 0.58 = 0.0301 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 7 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. konsisten dan eigen vektor yang dihasilkan dapat diandalkan. j. level 3 berdasarkan sub kriteria kerajinan hasil nilai dari λ maksimum didapatkan. λ = (3.006 + 3.004 + 3.007) / 3 = 3.0057 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.0057 – 3 ) / ( 3 – 1 ) = 0.0029 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0029 / 0.58 = 0.0049 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. k. level 3 berdasarkan sub kriteria sikap belajar hasil nilai dari λ maksimum didapatkan. λ = (3.095 + 3.027 + 3.085) / 3 = 3.0690 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.0690 – 3 ) / ( 3 – 1 ) = 0.0345 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0345 / 0.58 = 0.0595 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. l. level 3 berdasarkan sub kriteria alur kelas hasil nilai dari λ maksimum didapatkan. λ = (3.020 + 3.009 + 3.022) / 3 = 3.0169 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.0169 – 3 ) / ( 3 – 1 ) = 0.0084 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0084 / 0.58 = 0.0145 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. m. level 3 berdasarkan sub kriteria pemahaman hasil nilai dari λ maksimum didapatkan. λ = (3.010 + 3.007 + 3.014) / 3 = 3.0101 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.0101 – 3 ) / ( 3 – 1 ) = 0.0050 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0050 / 0.58 = 0.0087 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. n. level 3 berdasarkan sub kriteria orc (oral reading comprehension) hasil nilai dari λ maksimum didapatkan. λ = (3.000 + 3.000 + 3.000) / 3 = 3.0000 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.0000 – 3 ) / ( 3 – 1 ) menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0000 / 0.58 = 0.0000 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 8 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. o. level 3 berdasarkan sub kriteria mandiri hasil nilai dari λ maksimum didapatkan. λ = (3.007 + 3.002 + 3.007) / 3 = 3.0054 menghitung indeks konsistensi (consistency index) ci = ( λ maksimum – n ) / ( n – 1 ) = ( 3.0054 – 3 ) / ( 3 – 1 ) = 0.0027 menghitung rasio konsistensi (consistency ratio) cr = ci / ri = 0.0027 / 0.58 = 0.0046 jika nilai cr < 0.1 (10%) maka dapat diterima, yang berarti matrik perbandingan berpasangan level 1 berdasarkan kriteria utama telah diisi dengan pertimbangan-pertimbangan yang konsisten dan eigen vektor yang dihasilkan dapat diandalkan. setelah proses consistency dilakukan, tahap selanjutnya adalah melakukan perhitungan untuk pengambilan keputusan. langkah-langkahnya sebagai berikut: a. gabungan eigen vektor pada level 3 (level alternatif) dikali dengan eigen vektor pada level 2 (level sub kriteria). tabel 4. eigen vektor keputusan kriteria level nilai ketangkasan ketepatan swp eigen vektor ev keputusan salista 0,562 0,553 0,443 0,225 0,301 0,454 ivana 0,277 0,174 0,204 0,191 x 0,218 = 0,216 sayesha 0,161 0,273 0,353 0,584 0,256 0,330 0,225 sumber: (frieyadie & purnawati, 2017) tabel 5. eigen vektor keputusan kriteria kelas kehadiran kerajinan sikap belajar alur kelas eigen vektor ev keputusan salista 0,576 0,362 0,487 0,408 0,398 0,469 ivana 0,343 0,228 0,137 0,177 x 0,320 = 0,254 sayesha 0,081 0,410 0,376 0,415 0,119 0,276 0,163 sumber: (frieyadie & purnawati, 2017) tabel 6. eigen vektor keputusan kriteria kemampuan pemahaman orc mandiri eigen vektor ev keputusan salista 0,318 0,176 0,450 0,380 0,354 ivana 0,227 0,176 0,132 x 0,169 = 0,175 sayesha 0,455 0,648 0,418 0,451 0,471 sumber: (frieyadie & purnawati, 2017) b. hasil operasi perkalian dari ketiga kriteria tersebut selanjutnya dikalikan dengan eigen vektor pada level 1 (level kriteria). tabel 7. eigen vektor keputusan level kelas kemampuan eigen vektor ev kepututsan salista 0,454 0,469 0,354 0,376 0,421 ivana 0,216 0,254 0,175 x 0,256 = 0,211 sayesha 0,330 0,276 0,471 0,368 0,368 sumber: (frieyadie & purnawati, 2017) c. hasil operasi perkalian tersebut disebut sebagai eigen vektor keputusan, keputusan ditentukan oleh nilai yang mempunyai jumlah paling besar. dari eigen vektor keputusan terlihat bahwa: a. salista memiliki bobot prioritas tertinggi yaitu 0.421 b. sayesha memiliki bobot prioritas kedua yaitu 0.368 c. ivana memiliki bobot prioritas terendah yaitu 0.211 jika digambarkan dalam bentuk grafik maka dapat dilihat jumlah prosentasenya sebagai berikut: http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 1 desember 2018 issn: 2656-1743 9 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. sumber: (frieyadie & purnawati, 2017) gambar 2. presentase eigen vektor keputusan berdasarkan hasil presentase diketahui bahwa penerima piala 5 tingkat efl berdasarkan kriteria-kriteria yang telah ditentukan oleh kantor pusat kumon adalah salista. setelah menentukan penerima piala dilakukan perhitungan untuk pengujian rasio konsistensi hirarki (crh). rumus yang digunakan untuk pengujian crh adalah sebagai berikut: 𝐶𝑅𝐻 = 𝑀 �̅� 𝐶𝑅𝐻 = {𝐶𝐼 𝐿𝑒𝑣𝑒𝑙 1 + (𝐸𝑉 𝐿𝑒𝑣𝑒𝑙 1)(𝐶𝐼 𝐿𝑒𝑣𝑒𝑙 2)} {𝑅𝐼 𝐿𝑒𝑣𝑒𝑙 1 + (𝐸𝑉 𝑙𝑒𝑣𝑒𝑙 1)(𝑅𝐼 𝐿𝑒𝑣𝑒𝑙 2)} 𝐶𝑅𝐻 = 0.0018 + (0.376 0.256 0.368) ( 0.0902 0.0136 0.0021 ) 0.58 + (0.376 0.256 0.368) ( 0.90 0.90 0.58 ) 𝐶𝑅𝐻 = 0.0396 1.362 = 0.0291 hasil perhitungan crh diketahui bahwa nilai crh kurang dari 0,1 atau kurang dari 10%, berarti hirarki secara keseluruhan konsisten sehingga dapat disimpulkan keputusan yang ditetapkan dapat diandalkan. kesimpulan pemilihan penerima piala 5 tingkat efl (english as foreign language) di kumon danau sunter dengan menggunakan metode ahp (analytical hierarchy process) di software expert choice 11 dapat mengoptimalkan proses pengambilan keputusan dalam memilih siswa yang memenuhi kriteria. seiring dengan proses pengambilan keputusan yang lebih optimal, hal ini akan berdampak pada meningkatnya kinerja dari pengambil keputusan. selain itu, waktu yang diperlukan dalam mengambil keputusan juga menjadi lebih cepat dari sebelumnya. dari hasil penelitian dengan menggunakan software expert choice 11, dapat disimpulkan bahwa salista menjadi solusi terbaik dari kedua alternatif yang disajikan dengan presentase sebesar 42,09% referensi bliss, c. a., & lawrence, b. (2009). is the whole greater than the sum of its parts? a comparison of small group and whole class discussion board activity in online courses. journal of asynchronous learning networks, 13(4), 25– 40. darmanto, e., latifah, n., & susanti, n. (2014). penerapan metode ahp (analythic hierarchy process) untuk menentukan kualitas gula tumbu. simetris : jurnal teknik mesin, elektro dan ilmu komputer, 5(1), 75. https://doi.org/10.24176/simet.v5i1.139 frieyadie, f., & purnawati, l. (2017). laporan akhir penelitian mandiri “sistem pendukung keputusan pemilihan penerima piala 5 tingkat efl di kumon danau sunter dengan metode ahp.” jakarta. kupczynski, l., mundy, m. a., goswami, j., & meling, v. (2012). cooperative learning in distance learning: a mixed methods study. international journal of instruction, 5(2), 81– 90. lemantara, j., setiawan, n. a., & aji, m. n. (2013). rancang bangun sistem pendukung keputusan pemilihan mahasiswa berprestasi menggunakan metode ahp dan promethee. jurnal nasional teknik elektro dan teknologi informasi (jnteti), 2(1). https://doi.org/10.22146/jnteti.v2i1.24 rijayana, i., & okirindho, l. (2012). sistem pendukung keputusan pemilihan karyawan berprestasi berdasarkan kinerja menggunakan metode analityc hierarcy process. seminar nasional informatika (semnasif), 1(3), c48–c53. retrieved from http://jurnal.upnyk.ac.id/index.php/semnas if/article/view/1053 suryati, s., & purnama, b. e. (2010). seminar nasional aplikasi teknologi informasi 42,09% 21,10% 36,81% hasil ev keputusan salista ivana sayesha http://creativecommons.org/licenses/by-nc/4.0/ issn: 2656-1743 jurnal riset informatika vol. 1, no. 1 desember 2018 10 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. (snati). speed sentra penelitian engineering dan edukasi , 2(4), 32–41. retrieved from http://portal.ejurnal.net/index.php/speed/a rticle/view/406 tiyanto, w., binadja, a., & santoso, n. b. (2014). chemistry in education. chemistry in education (vol. 3). retrieved from https://journal.unnes.ac.id/sju/index.php/c hemined/article/view/1763 umar, r., fadlil, a., & yuminah, y. (2018). sistem pendukung keputusan dengan metode ahp untuk penilaian kompetensi soft skill karyawan. khazanah informatika: jurnal ilmu komputer dan informatika, 4(1), 27. https://doi.org/10.23917/khif.v4i1.5978 widhianto, a. (2015). sistem penunjang keputusan kelayakan penerima jamkesmas (jaminan kesehatan masyarakat) dengan metode saw di kecamatan singosari berbasis web. j-intech, 3(01), 60–66. retrieved from http://jurnal.stiki.ac.id/jintech/article/view/99 http://creativecommons.org/licenses/by-nc/4.0/ 177 comparison of breast cancer classification using decision tree id3 and k-nearest neighbors algorithm to predict the best performance of algorithm zyhan faradilla daldiri 1*) , desti fitriati 2 informatics engineering 1,2 universitas pancasila 1,2 jakarta, indonesia zyhandilla1308@gmail.com 1*) , desti.fitriati@univpancasila.ac.id 2 (*) corresponding author abstract one of the leading causes of death is cancer. the most common cancer in women is breast cancer. breast cancer (carcinoma mammae) is a malignant neoplasm originating from the parenchyma. breast cancer ranks first in terms of the highest number of cancers in indonesia and is among the first contributors to cancer deaths. globocan data in 2020 shows that the number of new breast cancer cases reached 68,858 (16.6%) of the total 396,914 new cancer cases in indonesia. meanwhile, deaths reached more than 22 thousand cases (romkom, 2022). this death rate is increasing due to insufficient information about breast cancer’s early symptoms and dangers. of this lack of information, a system is needed that can provide information about breast cancer, such as early diagnosis. several parameters and classification data mining techniques can predict which patients will develop breast cancer and which do not. in this study, a comparison of the classification of breast cancer using the decision tree id3 algorithm and the k-nearest neighbors algorithm will be carried out. attribute data consists of menopause, tumor-size, node-caps, deg-malig, breast-squad, and irradiant. the main objective of this study is to improve classification performance in breast cancer diagnosis by applying feature selection to several classification algorithms. the decision tree id3 algorithm has an accuracy rate of 93.333%, and the k-nearest neighbors algorithm has an accuracy rate of 76.6667%. keywords: breast cancer; woman; classification; comparison; decision tree algorithm; k-nearest neighbors algorithm abstrak salah satu penyebab kematian yang utama adalah kanker. kanker yang paling umum pada wanita adalah kanker payudara. kanker payudara (carcinoma mammae) didefinisikan sebagai suatu penyakit neoplasma ganas yang berasal dari parenchyma. kanker payudara menempati urutan pertama terkait jumlah kanker terbanyak di indonesia serta menjadi salah satu penyumbang kematian pertama akibat kanker. data globocan tahun 2020, jumlah kasus baru kanker payudara mencapai 68.858 kasus (16,6%) dari total 396.914 kasus baru kanker di indonesia. sementara itu, untuk jumlah kematiannya mencapai lebih dari 22 ribu jiwa kasus(romkom,2022). angka kematian ini meningkat karena kurangnya informasi tentang gejala awal dan bahaya dari kanker payudara itu sendiri. dari kurangnya informasi tersebut, maka dibutuhkan sebuah sistem yang dapat memberikan informasi tentang penyakit kanker payudara seperti diagnosa secara dini. teknik data mining klasifikasi dapat digunakan untuk memprediksi pasien mana yang terkena kanker payudara dan tidak dengan beberapa parameter yang ada. dalam penelitian ini akan dilakukan perbandingan klasifikasi penyakit kanker payudara dengan menggunakan algoritma decision tree id3 dan algoritma k-nearest neighbors. atribut data yang digunakan terdiri dari menopause, tumor-size, node-caps, deg-malig, breast, breast-squad dan irradiant. tujuan utama penelitian ini adalah untuk meningkatkan peforma klasifikasi pada diagnosis kanker payudara dengan menerapkan seleksi fitur pada beberapa algoritma klasifikasi. algoritma decision tree id3 memiliki tingkat akurasi yaitu 93,333% dan algoritma k-nearest neighbors memilki tingkat akurasi yaitu 76,6667%. kata kunci : kanker payudara; wanita; klasifikasi; perbandingan; algoritma decision tree; algoritma knearest neighbors 178 introduction information technology continues to progress from time to time. information technology has provided various helpful information and data for people’s lives. technology also plays a role in advancing various institutions, one of which is health agencies. the data generated in the health sector can be in the form of data about diseases that are considered deadly such as cancer, which of course this data can be used to dig deeper into information related to cancer itself, both for the treatment or prevention of patients who have not or have experienced cancer (ramadhan & kurniawati, 2020). information from the data can be used to find new patterns of information by processing or extracting information. this new pattern can be used to classify cancer patients based on recurrence or non-recurrence of the disease. this knowledge can help the medical side handle patients to minimize the number of cancer patients who experience recurrence of the disease. currently, breast cancer is a type of cancer that is very frightening for women around the world, and this also applies in indonesia. cancer prevention can be done early by being aware of cancer at its initial appearance so that it can have a high cure rate (hasanah, 2018). therefore, it is necessary to carry out prevention efforts to increase public awareness in recognizing the symptoms and risks, especially breast cancer, in determining appropriate preventive measures and early detection. breast cancer is a malignant tumor formed from breast cells that grow and develop uncontrollably so that it can spread to organs near the breast or to other parts of the body (buana briliant, 2020). breast cancer is still a disease with a high mortality rate in women. based on data from the who (world health organization), in 2020, the number of breast cancer cases will reach 68,858 (16.6%) of 396,914 new cancer cases in indonesia. meanwhile, deaths reached more than 22 thousand cases (kementrian kesehatan indonesia, 2022). judging the significant mortality rate in indonesia makes us aware of the importance of knowing the symptoms of breast cancer to prevent increased deaths caused by breast cancer. the research data is used to test the accuracy of breast cancer diagnosis using public data from the uci machine learning repository breast cancer dataset. the dataset is tested by processing the data using data mining. data mining is a series of processes to find values in data sets that are not known manually (prakarsya & prambayun, 2020). so that the breast cancer dataset that has extensive data can be analyzed in making decisions using data mining. one of the data mining methods in the data exploration process is the data classification technique. with this data classification technique, it is possible to classify the breast cancer dataset using the id3 decision tree algorithm and the k-nearest neighbors algorithm with the results of the accuracy of the classification of each of these algorithms. this study will be compared for the best performance evaluation in breast cancer detection. thus, the results of this comparison can be used as a reference for diagnosing breast cancer at an early stage. research objectives and methods used 1. to find out which algorithm performance produces higher accuracy. 2. to improve classification performance in breast cancer diagnosis. benefits of research 1. assist in developing further research related to algorithm comparison problems. 2. it can be used as a reference in research on breast cancer. research contribution this study can provide knowledge about the results of research that has been carried out in obtaining information about comparing the kneirest neighbors algorithm and the id3 decision tree algorithm in classifying breast cancer. research methods types of research the data obtained in this study were sourced from the uci machine learning repository website, entitled breast cancer dataset. the data taken is data randomly seen from the classification results obtained. research time and place the study was conducted for two weeks, the first week at the end of may 2022 and the second week at the beginning of june 2022. the study was carried out at home by analyzing and calculating the data obtained. data mining data mining is looking for information models that can be useful in database storage. data mining is one of a series of knowledge search processes in a database known as knowledge discovery in database (kdd). kdd relates to integration techniques and scientific discoveries for interpretation and visualization so that they are easy to understand (zulfa et al., 2020). some techniques frequently mentioned in the data mining 179 literature include clustering, classification, association rule mining, and neural networks. classification classification is a data processing technique that determines data into predetermined groups or classes (bahri & lubis, 2020). this method helps produce functions or models that explain classes in data used to predict classes of objects that have not been labeled (arie wijaya et al., 2021). the classification method refers to forming data groups by applying algorithms in the classification process. decision tree decision tree id3 is a tree modeling technique that can implement a series of decisions. the id3 decision tree has tree nodes that represent the attributes that have been tested, and each branch is a division of the test results, and leaf nodes represent certain class groups (setio et al., 2020). the process in the id3 decision tree is to change the form of a data table into a tree model (rionaldi, 2022). in the calculation phase using the decision tree id3 algorithm, there are several stages, namely: 1. specifies attribute data with data values in the dataset. 2. looking for the same data. 3. searching for data is false. 4. searching for data is accurate. 5. calculate entropy with the following formula (1): entropy (s) = − 𝑁𝑚𝑗 𝑁 ∑𝑖 𝑃𝑚𝑗 (𝑖) 𝑙𝑜𝑔2 𝑃𝑚𝑗 (𝑖) ...................... (1) 6. add up the entropy results. 7. make a decision tree according to the results obtained. k-nearest neighbors the k-nearest neighbor (knn) algorithm is a case search approach that calculates the closeness between new and old cases based on matching the weights of several existing features (setiawan et al., 2020). k in k-nn is the number of neighbors that will be taken to determine decisions (mustafa & wayan simpen, 2019). the k-nn algorithm in this study has several steps, which are as follows: 1. converting qualitative data into quantitative data. 2. calculate using the euclidean formula on the data. the euclidean formula is as follows: 𝑑(𝑝, 𝑞) = √∑ (𝑞𝑖 − 𝑝𝑖)2𝑛𝑖=1 ........................................ (2) 3. determine the closest distance from the results of the euclidean formula calculation (2). 4. determine the k to be taken. 5. determine the existing prediction results by the taken k. procedure in this study, a comparison was made between the decision tree id3 algorithm and the knearest neighbors algorithm to get the best classification results. the stages used in this research are: 1. dataset processing. 2. calculations using the decision tree id3 algorithm. 3. calculations using the k-nn algorithm. 4. perform data comparisons using the two algorithms. 5. calculate the accuracy (3) of the two algorithms with the following formula: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁 𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 𝑥100% ............................... (3) data, instruments, and data collection techniques this study uses primary data and as many as 30 test data. the technique of collecting criteria and alternative data to be used in system testing was obtained by taking a dataset from the uci machine learning repository site, namely https://archive.ics.uci.edu/ml/datasets/breast+ca ncer. for information on breast cancer data, this study used six attributes, namely menopause, tumor-size, node-caps, deg-malig, breast, breastsquad, and irradiant. data analysis technique the data in this study consisted of quantitative and qualitative data. for qualitative data, researchers convert them into numbers (quantitative data) to make it easier to calculate both manual and system calculations. results and discussion based on the research stages, the first step is processing breast cancer datasets. the attributes of the dataset can be seen in table 1. table 1. attributes of the breast cancer dataset attribute menopause 180 attribute tumor size node caps deg malig breast breast squad from these attributes, 30 data samples were taken randomly to be tested. the sample data can be seen in table 2. table 2. breast cancer sample data menopause tumor size invnodes nodecaps degmalig breast breast squad irradiat ge40 15-19 0-2 no 2 right left_up no ge40 25-29 0-2 no 3 left right_up no ge40 30-34 0-2 no 1 right right_up no ge40 30-34 0-2 no 2 left left_low yes ge40 25-29 0-2 no 3 left right_low yes ge40 30-34 0-2 no 3 right left_up yes ge40 15-19 0-2 no 3 right left_up yes ge40 30-34 0-2 no 1 right central no ge40 15-19 0-2 no 1 left right_low no ge40 20-24 0-2 no 1 left left_low no ge40 15-19 0-2 no 3 right left_up yes ge40 15-19 0-2 no 2 left left_up yes ge40 30-34 0-2 yes 2 right right_up yes lt40 30-34 0-2 no 1 left left_low no lt40 15-19 0-2 no 2 left left_low no lt40 30-34 0-2 no 3 right left_up no lt40 15-19 0-2 no 3 right left_up no premeno 30-34 0-2 no 2 right right_up yes premeno 20-24 0-2 no 3 right left_low yes premeno 35-39 0-2 yes 3 right left_up yes premeno 35-39 0-2 yes 3 right left_low yes premeno 25-29 0-2 no 1 right left_low yes premeno 25-29 0-2 no 2 left left_up yes premeno 20-24 0-2 no 2 left right_low no premeno 30-34 0-2 no 3 right left_up yes premeno 20-24 0-2 no 1 left right_low no premeno 15-19 0-2 no 1 left left_low no premeno 20-24 0-2 no 2 left central no premeno 35-39 0-2 no 2 right right_up no premeno 20-24 0-2 no 3 left left_up yes after taking the test data, the next step is calculating the data classification using the decision tree id3 algorithm. the first stage in decision tree id3, which determines data attributes with values in the test data, can be seen in table 3. table 3. value data based on attributes attribute (m) value data (j) menopause ge40; lt40; premeno tumor size 15-19; 20-24; 25-29 30-34; 35-39 node caps yes; no deg malig 1; 2; 3 breast left; right breast squad left low; left up; central right low; right up after determining the value of the test data according to the attributes, calculations can be made to determine the same data, determine false data, determine accurate data, calculate entropy, and add up the results of the entropy values in each of the data attributes with n as the amount of data being tested. the results can be seen in table 4. table 4. entropy calculation results m j nmj/n false true entropy menopause ge40 13/30 6/13 7/13 0,4314818959 0,848017758 181 m j nmj/n false true entropy lt40 4/30 4/4 0/4 0 premeno 13/30 5/13 8/13 0,416535862 tumor size 15-19 8/30 5/8 3/8 0,2545157341 0,9354977189 20-24 6/30 4/6 2/6 0,1836591668 25-29 4/30 1/4 3/4 0,1081704166 30-34 9/30 4/9 5/9 0,297322818 35-39 3/30 1/3 2/3 0,09182958341 node-caps yes 3/30 0/3 3/3 0 0,8919684539 no 27/30 15/27 12/27 0,8919684539 deg-malig 1 8/30 7/8 1/8 0,1449505182 0,8027951013 2 10/30 5/10 5/10 0,3333333333 3 12/30 3/12 9/12 0,3245112498 breast left 14/30 9/14 5/14 0,438800114 0,9478315823 right 16/30 6/16 10/16 0,5090314682 breastsquad left low 8/30 4/8 4/8 0,2666666667 0,8466241924 left up 11/30 3/11 8/11 0,3099620101 central 2/30 2/2 0/2 0 right low 4/30 3/4 1/4 0,1081704166 right up 5/30 3/5 2/5 0,1618250991 from the results of the entropy calculation, tree data from deg-malig can be taken because the results obtained have the smallest value. then proceed with calculating the entropy again based on the data from the deg-malig with value = 1, which can be seen in table 5. table 5. data based on deg malig attribute with value=1 menopause tumor size inv-nodes node-caps deg-malig breast breast squad irradiat ge40 30-34 0-2 no 1 right right_up no ge40 30-34 0-2 no 1 right central no ge40 15-19 0-2 no 1 left right_low no ge40 20-24 0-2 no 1 left left_low no lt40 30-34 0-2 no 1 left left_low no premeno 25-29 0-2 no 1 right left_low yes premeno 20-24 0-2 no 1 left right_low no premeno 15-19 0-2 no 1 left left_low no from this data, entropy calculations can be made based on the values in the deg-malig attribute data. the results of the calculation of the deg-malig attribute data with value = 1 can be seen in table 6. table 6. entropy calculation results based on deg malig data with value=1 m j nmj/n false true entropy menopause ge40 4/8 4/4 0/4 0 0,3443609378 lt40 1/8 1/1 0/1 0 premeno 3/8 2/3 1/3 0,3443609378 tumor size 15-19 2/8 2/2 0/2 0 0 20-24 2/8 2/2 0/2 0 25-29 1/8 0/1 1/1 0 30-34 3/8 3/3 0/3 0 breast left 5/8 5/5 0/5 0 0,3443609378 right 3/8 2/3 1/3 0,3443609378 breast-squad left low 4/8 3/4 1/4 0,4056390622 0,4056390622 central 1/8 1/1 0/1 0 right low 2/8 2/2 0/2 0 right up 1/8 1/1 0/1 0 repeated patterns can be used to calculate the entropy of the deg-malig attribute data with value=2 and value=3. after these calculations, the tree results will be obtained as in figure 1. 182 figure 1. classification of id3 decision tree results furthermore, testing the existing data with the knn algorithm by performing the steps on the mentioned methodology by changing the qualitative data into quantitative ones. the data is as in table 7. table 7. changes in value data attribute value (qualitative) value (quantitative) menopause ge40 lt40 premeno 1 2 3 tumor size 15-19 20-24 25-29 30-34 35-39 1 2 3 4 5 node caps yes no 1 2 breast left right 1 2 breast squad left low left up central right low right up 1 2 3 4 5 after changing the value of the data, the test dataset will be like in table 8. table 8. data changes based on quantitative value data menopause tumor size inv-nodes node-caps deg-malig breast breast squad 1 1 0-2 2 2 2 2 1 3 0-2 2 3 1 5 1 4 0-2 2 1 2 5 1 4 0-2 2 2 1 1 1 3 0-2 2 3 1 4 1 4 0-2 2 3 2 2 1 1 0-2 2 3 2 2 1 4 0-2 2 1 2 3 1 1 0-2 2 1 1 4 1 2 0-2 2 1 1 1 1 1 0-2 2 3 2 2 1 1 0-2 2 2 1 2 1 4 0-2 1 2 2 5 2 4 0-2 2 1 1 1 2 1 0-2 2 2 1 1 2 4 0-2 2 3 2 2 2 1 0-2 2 3 2 2 3 4 0-2 2 2 2 5 3 2 0-2 2 3 2 1 3 5 0-2 1 3 2 2 3 5 0-2 1 3 2 1 3 3 0-2 2 1 2 1 3 3 0-2 2 2 1 2 3 2 0-2 2 2 1 4 3 4 0-2 2 3 2 2 3 2 0-2 2 1 1 4 3 1 0-2 2 1 1 1 3 2 0-2 2 2 1 3 3 5 0-2 2 2 2 5 3 2 0-2 2 3 1 2 the change in the data value can be calculated using the euclidean formula, determining the closest distance in ascending order and the 183 result of the specified k. the results of these calculations are as follows. table 9. knn calculation results with 1st data trial menopause tumor size invnodes nodecaps degmalig breast breast squad irradiat euclidean nearest distance (k) k=5 classify 1 1 0-2 2 2 2 2 n 0 1 y n 1 3 0-2 2 3 1 5 n 15 24 n 1 4 0-2 2 1 2 5 n 19 25 n 1 4 0-2 2 2 1 1 y 11 18 n 1 3 0-2 2 3 1 4 y 10 14 n 1 4 0-2 2 3 2 2 y 10 14 n 1 1 0-2 2 3 2 2 y 1 2 y y 1 4 0-2 2 1 2 3 n 11 18 n 1 1 0-2 2 1 1 4 n 6 8 n 1 2 0-2 2 1 1 1 n 4 7 n 1 1 0-2 2 3 2 2 y 1 2 y y 1 1 0-2 2 2 1 2 y 1 2 y y 1 4 0-2 1 2 2 5 y 19 25 n 2 4 0-2 2 1 1 1 n 13 22 n 2 1 0-2 2 2 1 1 n 3 6 n 2 4 0-2 2 3 2 2 n 11 18 n 2 1 0-2 2 3 2 2 n 2 5 y n 3 4 0-2 2 2 2 5 y 22 27 n 3 2 0-2 2 3 2 1 y 7 9 n 3 5 0-2 1 3 2 2 y 22 27 n 3 5 0-2 1 3 2 1 y 23 29 n 3 3 0-2 2 1 2 1 y 10 14 n 3 3 0-2 2 2 1 2 y 9 13 n 3 2 0-2 2 2 1 4 n 10 14 n 3 4 0-2 2 3 2 2 y 14 23 n 3 2 0-2 2 1 1 4 n 11 18 n 3 1 0-2 2 1 1 1 n 7 9 n 3 2 0-2 2 2 1 3 n 7 9 n 3 5 0-2 2 2 2 5 n 29 30 n 3 2 0-2 2 3 1 2 y 7 9 n judging from table 9, the knn calculation is based on the test data on the first data to find out the prediction results obtained in the knn classification. in this study, 30 existing data will be tested using the knn algorithm so that the calculation is repeated with test data on the 2nd to 30th data. after calculating the knn classification data on the 30 data, the knn classification can be generated in table 10. table 10. knn calculation classification results no menopause tumor size invnodes nodecaps degmalig breast breast squad irradiat result 1 ge40 15-19 0-2 n 2 right left_up n y 2 ge40 25-29 0-2 n 3 left right_up n y 3 ge40 30-34 0-2 n 1 right right_up n n 4 ge40 30-34 0-2 n 2 left left_low y n 5 ge40 25-29 0-2 n 3 left right_low y y 6 ge40 30-34 0-2 n 3 right left_up y y 7 ge40 15-19 0-2 n 3 right left_up y y 8 ge40 30-34 0-2 n 1 right central n n 9 ge40 15-19 0-2 n 1 left right_low n n 10 ge40 20-24 0-2 n 1 left left_low n n 11 ge40 15-19 0-2 n 3 right left_up y y 12 ge40 15-19 0-2 n 2 left left_up y y 13 ge40 30-34 0-2 y 2 right right_up y y 14 lt40 30-34 0-2 n 1 left left_low n y 184 no menopause tumor size invnodes nodecaps degmalig breast breast squad irradiat result 15 lt40 15-19 0-2 n 2 left left_low n n 16 lt40 30-34 0-2 n 3 right left_up n y 17 lt40 15-19 0-2 n 3 right left_up n y 18 premeno 30-34 0-2 n 2 right right_up y y 19 premeno 20-24 0-2 n 3 right left_low y y 20 premeno 35-39 0-2 y 3 right left_up y y 21 premeno 35-39 0-2 y 3 right left_low y y 22 premeno 25-29 0-2 no 1 right left_low y y 23 premeno 25-29 0-2 no 2 left left_up y y 24 premeno 20-24 0-2 no 2 left right_low n n 25 premeno 30-34 0-2 no 3 right left_up y y 26 premeno 20-24 0-2 no 1 left right_low n n 27 premeno 15-19 0-2 no 1 left left_low n y 28 premeno 20-24 0-2 no 2 left central n n 29 premeno 35-39 0-2 no 2 right right_up n n 30 premeno 20-24 0-2 no 3 left left_up y y this study compared test data using the decision tree id3 algorithm and the knn algorithm as the classification method. the results of the predictions using the decision tree id3 algorithm and the knn algorithm are equated with the results of the existing test data so that the data is obtained, like in table 11. table 11. data comparison no menopause tumor size invnodes nodecaps degmalig breast breast squad irradiat id3 knn 1 ge40 15-19 0-2 no 2 right left_up no no yes 2 ge40 25-29 0-2 no 3 left right_up no yes yes 3 ge40 30-34 0-2 no 1 right right_up no no no 4 ge40 30-34 0-2 no 2 left left_low yes yes no 5 ge40 25-29 0-2 no 3 left right_low yes yes yes 6 ge40 30-34 0-2 no 3 right left_up yes yes yes 7 ge40 15-19 0-2 no 3 right left_up yes yes yes 8 ge40 30-34 0-2 no 1 right central no no no 9 ge40 15-19 0-2 no 1 left right_low no no no 10 ge40 20-24 0-2 no 1 left left_low no no no 11 ge40 15-19 0-2 no 3 right left_up yes yes yes 12 ge40 15-19 0-2 no 2 left left_up yes no yes 13 ge40 30-34 0-2 yes 2 right right_up yes yes yes 14 lt40 30-34 0-2 no 1 left left_low no no yes 15 lt40 15-19 0-2 no 2 left left_low no no no 16 lt40 30-34 0-2 no 3 right left_up no no yes 17 lt40 15-19 0-2 no 3 right left_up no no yes 18 premeno 30-34 0-2 no 2 right right_up yes yes yes 19 premeno 20-24 0-2 no 3 right left_low yes yes yes 20 premeno 35-39 0-2 yes 3 right left_up yes yes yes 21 premeno 35-39 0-2 yes 3 right left_low yes yes yes 22 premeno 25-29 0-2 no 1 right left_low yes yes yes 23 premeno 25-29 0-2 no 2 left left_up yes yes yes 24 premeno 20-24 0-2 no 2 left right_low no no no 25 premeno 30-34 0-2 no 3 right left_up yes yes yes 26 premeno 20-24 0-2 no 1 left right_low no no no 27 premeno 15-19 0-2 no 1 left left_low no no yes 28 premeno 20-24 0-2 no 2 left central no no no 29 premeno 35-39 0-2 no 2 right right_up no no no 30 premeno 20-24 0-2 no 3 left left_up yes yes yes the accuracy between the algorithms is calculated from the comparison data to determine which algorithm is more accurate. the accuracy test is carried out to measure how much accuracy is obtained from the tests carried out. accuracy can be calculated using the formula (3) above. by calculating the accuracy, the accuracy of the 185 decision tree id3 algorithm is 93.333%, while the accuracy of the knn algorithm is 76.6667%. conclusions and suggestions conclusions from this research, it can be concluded that the classification calculation using the decision tree id3 algorithm has more accurate results than the classification calculation using the knn algorithm on the breast cancer dataset. these results can be seen through the accuracy value obtained by calculating the classification using the decision tree id3 algorithm, which results in 93.333% having a more excellent accuracy value than the knn algorithm, which results in 76.6667%. so it can be said that using decision tree id3 classification calculations on breast cancer estimates has accurate results on the incidence of breast cancer so that it can be used as a reference in predicting and preventing breast cancer early. suggestions in further research, the classification algorithm with decision tree id3 is expected to be used in the health sector and other fields by recomparing other classification algorithms to find the best accuracy results. reference arie wijaya, y., bahtiar, a., kaslani, k., & r, n. (2021). analisa klasifikasi menggunakan algoritma decision tree pada data log firewall. jurnal sistem informasi dan manajemen, 9(3), 256– 264. https://ejournal.stmikgici.ac.id/index.php/ju rsima/article/view/303/196 bahri, s., & lubis, a. (2020). metode klasifikasi devision tree untuk memprediksi juara english premier league. jurnal sintaksis: pendidikan guru sekolah dasar, ipa, ips, dan bahasa indonesia, 2(1), 63–70. https://jurnal.stkipalmaksum.ac.id/index.ph p/sintaksis/article/view/47 buana briliant, j. (2020). proses asuhan gizi terstandar dan kualitas hidup pada pasien kanker payudara di rs panti rapih yogyakarta. http://eprints.poltekkesjogja.ac.id/id/eprint /2734 hasanah, a. (2018). gambaran faktor yang mempengaruhi pemeriksaan diri ke pelayanan kesehatan pada penderita kanker payudara. http://repository.unair.ac.id/id/eprint/7325 0 kementrian kesehatan indonesia. (2022, february 4). kanker payudara paling banyak di indonesia, kemenkes targetkan pemeratan pelayanan kesehatan. https://www.kemkes.go.id/article/view/2 2020400002/kanker-payudara-palingbanyak-di-indonesia-kemenkes-targetkanpemerataan-layanan-kesehatan.html. mustafa, syukri. m., & wayan simpen, i. (2019). implementasi algoritma k-nearest neighbor (knn) untuk memprediksi pasien terkena penyakit diabetes pada puskesmas manyampa kabupaten bulukumba. pro siding seminar ilmiah sistem informasi dan teknologi informasi, viii(1), 1–10. https://ejurnal.dipanegara.ac.id/index.php/s isiti/article/view/1%20-10 prakarsya, a., & prambayun, a. (2020). implementasi data mining untuk prediksi pembayaran virus hiv/aids di bandar lampung dengan teknik decision tree. jurnal siskomti, 3(2), 18–26. https://www.ejournal.lembahdempo.ac.id/in dex.php/siskomti/article/download/120/9 3/ ramadhan, i., & kurniawati, k. (2020). data mining untuk klasifikasi penderita kanker payudara berdasarkan data dari university medical center menggunakan algoritma naïve bayes. jurikom (jurnal riset komputer), 7(1), 21–27. https://doi.org/10.30865/jurikom.v7i1.1755 rionaldi, r. (2022, july 24). klasifikasi data mining menggunakan algoritma decision tree. https://lab_adrk.ub.ac.id/id/klasifikasidata-mining-menggunakan-algoritmadecision-tree/. setiawan, a., a. i. nahusuly, b. j., aulia yuliandi putri, f., raditya, a., & susrama mas diyasa, i. g. (2020). case based reasoning menggunakan algoritma k-nearest neigbors untuk penanganan penyakit ikan cupang hias. jurnal teknologi informasi dan komunikasi, xv(2), 1– 5. https://doi.org/https://doi.org/10.33005/sc an.v15i2.2082 setio, p. b. n., saputro, d. r. s., & winarno, b. (2020). klasifikasi dengan pohon keputusan berbasis algoritme c4.5. prosiding seminar nasional matematika 3, 3, 64–71. https://journal.unnes.ac.id/sju/index.php/pr isma/ zulfa, i., rayuwati, r., & koko, k. (2020). implementasi data mining untuk menentukan strategi penjualan buku bekas dengan pola pembelian konsumen menggunakan metode apriori. teknika: jurnal sains dan teknologi, 16(1), 69–82. https://doi.org/10.36055/tjst.v16i1.7601 jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 147 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional sistem informasi evaluasi karyawan berbasis web pada pt praweda ciptakarsa informatika jakarta susi susanti program studi sistem informasi stmik nusa mandiri www.nusamandiri.ac.id susisr.praweda@gmail.com abstrak proses evaluasi pada pt. praweda ciptakrsa informatika masih bersifat konvensional. selama ini cara berkompetensi yang ada pada pt. praweda ciptakarsa informatika masih belum sesuai dengan pengharapan karyawan, karena masih adanya penilaian yang tidak transparan yang dilakukan saat penilaian kinerja. untuk menjawab permasalahan diatas, perusahaan membutuhkan suatu sistem yang dapat menyimpan data dan informasi mengenai parameter evaluasi kinerja, menyimpan hasil evaluasi, serta membantu tim leader dalam melaksanakan proses evaluasi kinerja karyawan. sistem informasi karyawan dapat menghasil laporan hasil evaluasi karyawan, yang dapat membantu atasan dalam pengambilan penilaian terhadap karyawan yang bersangkutan secara transparan. kata kunci: sistem informasi evaluasi, evaluasi karyawan, web base abstract the evaluation process at pt. praweda ciptakrsa informatika is still conventional. during this time the competency methods in pt. praweda ciptakarsa informatika is still not in line with employee expectations, because there are still non-transparent assessments made during performance appraisals. to answer the above problems, companies need a system that can store data and information about performance evaluation parameters, store evaluation results, and assist team leaders in carrying out employee performance evaluation processes. employee information systems can produce employee evaluation reports, which can help superiors in making evaluations of the employees concerned transparently. keywords: evaluation information system, employee evaluation, web base pendahuluan perusahaan sebagai salah satu organisasi berkaitan erat dengan lingkungan yang ada disekitarnya, baik internal maupun ekternal perusahaan. semakin pesatnya persaingan di dunia bisnis membuat perusahaan dituntut untuk dapat mempertahankan keberadaannya. maka dari itu perusahaan perlu mengembangkan kualitas dalam memanfaatkan segala kesempatan dan menghadapi tantangan-tantangan yang ada. dalam lingkungan internal, karyawan menjadi aset penting dalam menjalankan segala aktifitas yang terjadi di perusahaan. hal ini membuat perusahaan perlu melakukan pengembangan karyawan yang ada di dalamnya. karyawan yang berkualitas dan dapat berkembang akan membuat perusahaan semakin berkembang dan berkualitas pula. pt. praweda ciptakarsa informatika merupakan salah satu perusahaan yang bergerak di bidang teknologi informasi. dalam mengembangkan perusahaan, kinerja karyawan menjadi aspek yang perlu diperhatikan. jika kinerja karyawan baik maka akan berpengaruh baik pula bagi perkembangan perusahaan, namun jika kinerja karyawan dibawah standar perusahaan maka perusahaan perlu melakukan pembinaan dan pengembangan terhadap karyawan tersebut. untuk mengetahui sejauh mana kinerja dari karyawan, maka perusahaan memerlukan suatu sistem yang dapat mengevaluasi kinerja karyawan. proses evaluasi pengembangan karyawan pt. praweda ciptakarsa informatika, penilaian tersebut dirasa masih bersifat subjektif (saefudin & wahyuningsih, 2017), turunnya motivasi kerja karyawan, hingga tingginya intensi turnover karyawan (evita, muizu, & atmojo, 2017), sementara ini masih penilaian evaluasi pengembangan dilakukan oleh pimpinan ditulis pada kertas penilaian kinerja karyawan, kemudian hitungan hasil penilian ditulis pada kertas tersebut, hal ini bisa saja terjadi salah hitung, apa bila lembar penilaian tersebut bisa saja tercecer dan hilang (natanael & mulyono, 2017). http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 148 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional evaluasi karyawan belum memiliki skema data untuk menyimpan data pada periode penilaian kinerja sebelumnya. masih ditemukannya kelemahan (septiani, syafi’i, & rasyidi, 2015) dalam penyampaian informasi kegiatan pembelajaran dan evaluasi yang terdapat pada perusahaan tersebut. selama ini proses evaluasi pada pt. praweda ciptakrsa informatika masih bersifat konvensional (adhar, 2014) selama ini cara berkompetensi yang ada pada pt. praweda ciptakarsa informatika masih belum sesuai dengan pengharapan karyawan, karena masih adanya penilaian yang kurang objektif (mahdang, lamangida, & mohi, 2016) yang dilakukan saat penilaian kinerja. untuk menjawab permasalahan diatas, perusahaan membutuhkan suatu sistem yang dapat menyimpan data dan informasi mengenai parameter evaluasi kinerja, menyimpan hasil evaluasi, serta membantu tim leader dalam melaksanakan proses evaluasi kinerja karyawan. dan berdasarkan observasi dan wawancara dilapangan maka diperlukan aplikasi evaluasi kinerja karyawan. tujuan penelitian ini untuk mewujudkan suatu program apalikasi sistem informasi evaluasi berbasis web guna membantu dalam pemahaman materi yang diberikan oleh perusahaan itu sendiri. sistem informasi evaluasi karyawan berbasis web ini dirancang untuk mengelola karyawan agar dapat berprestasi dan berkompentensi dengan baik dan transparan. sistem informasi evaluasi karyawan yang akan membantu tim leader serta karyawan dalam melakukan proses evaluasi dan melihat kinerja karyawan dari berbagai periode. selain itu sistem informasi dapat memberikan sumber data yang dapat digunakan untuk evaluasi kinerja metode penelitian jenis penelitian penelitian ini menggunakan pendekatan penelitian rancangan eksperimental (experimental design) sistem informasi waktu dan tempat penelitian tempat penelitian pada pt. praweda ciptakarsa informatika yang beralamat di rukan permata senayan blok a 07 lt. 04 grogol utara, kebayoran lama, jakarta selatan. target/subjek penelitian target/subjek penelitian pada aplikasi yang berfokus pada metode kegiatan evaluasi, serta materi yang harus dipahami karyawan. aplikasi hanya membuat proses kegiatan menjadi lebih mudah dari segi efisiensi waktu. data, intrumen, dan teknik pengumpulan data tahap pengumpulan data adalah pengumpulan data dari tempat penelitian sesuai yang dibutuhkan dalam membangun aplikasi pengkajian. a. observasi proses observasi dilakukan dengan mengamati secara langsung proses evaluasi kerja karayawan di cabang pt. praweda ciptakarsa informatika yang beralamat di rukan permata senayan blok a 07 lt. 04 grogol utara, kebayoran lama, jakarta selatan, telepon 021-5328575. dengan mengamati semua proses yang berjalan. b. wawancara wawancara adalah pengumpulan data dengan cara tanya jawab kepada bapak suhud arifin, selaku tim leader dari divisi terkait yang dilakukan langsung di pt. praweda ciptakarsa informatika. c. studi pustaka pengumpulan data yang bersumber dari bebagai buku yang menjadi referensi dan pencarian dengan media internet untuk memperoleh data-data tambahan dalam rangka melengkapi penulisan penelitian. studi literatur adalah pengumpulan data melalui buku-buku, jurnal dan bacaan bacaan yang ada kaitannya dengan judul penelitian. teknik analisis sistem informasi tahap yang dilakukan untuk pembuatan aplikasi ini adalah menggunakan metode waterfall. dimana tahap demi tahap proses yang dilalui harus menunggu selesainya tahap sebelumnya dan berjalan berurutan. adapun penjelasannya adalah sebagai berikut: a. analisa kebutuhan sistem tahap analisa kebutuhan sistem mempelajari proses yang berlangsung antar muka, yaitu admin dapat melihat seluruh data yang ada pada aplikasi tersebut dan dapat melakukan edit serta input seperti edit materi, edit soal evaluasi, edit id user dan cetak laporan nilai. sedangkan untuk user atau karyawan yang menjadi peserta evaluasi dapat melihat data user itu sendiri, materi, data tugas evaluasi, data nilai dan data pribadi. b. design pada tahap ini, penulis mendesain sistem dengan hubungan antar entitas yang ada dalam sistem dijabarkan dalam software arsitektur menggunanakan uml (use case diagram, activity http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 149 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional diagram, squence diagram, class diagram, component diagram dan deployment diagram) sedangkan desain database menggunakan erd (entity relationship diagram) dan lrs (logical record structure). adapun untuk merancang user interface meggunakan codeigniter dengan tampilan sederhana agar mudah digunakan oleh pengguna. c. code generation pada penelitian ini, bahasa pemograman yang akan digunakan adalah php dan codeignter dengan teknik pemrograman oop (object oriented programming) serta mysql sebagai software untuk membangun database-nya. d. testing dalam penelitian ini penggunakan metode pengujian yang digunakan yaitu black box testing, pengujian ini akan dilakukan meliputi halaman login, registrasi, materi yang diberikan perusahaan dan form evaluasi. jika hasil pengujian sesuai dengan yang diharapkan maka dapat digunakan. e. support sistem yang telah diuji kemudian diserahkan ke pengguna untuk dioperasikan sesuai kebutuhanya. tahapan perawatan dibutuhkan dalam masa itu dengan dilakukan pengecekan kesalahan operasionalnya. hasil penelitian dan pembahasan a. analisis kebutuhan softrware berikut ini spesifikasi kebutuhan (system requirement) dari sistem informasi evaluasi pegawai. halaman tim leader a1. tim leader dapat melakukan login kedalam sistem a2. tim leader dapat menegelola data pegawai a3. tim leader dapat mengelola data pengajar a4. tim leader dapat mengelola data tugas atau evaluasi a5. tim leader dapat mengelola data materi a6. tim leader dapat mengelola mata pelajaran departemen a7. tim leader dapat mengelola laporan evaluasi halaman pegawai b1. pegawai harus melakukan register b2. pegawai harus melakukan login b3. pegawai dapat melihat dan membuat pesan b4. pegawai dapat mengelola profil b6. pegawai dapat melihat jadwal kegiatan b7. pegawai dapat mengerjakan tugas atau evaluasi b. desain 1. desain sistem a. desain sistem menggunakan use case diagram 1) use case diagram tim leader tim leader mengelola data pegawai mengelola data pengajar mengelola data tugas evaluasi mengelola materi mengelola data nilai mengelola laporan kinerja login kedalam sistem gambar 1. use case diagram tim leader 2) use case diagram pegawai pegawai registrasi login melihat pesan mengelola profile pegawai melihat jadwal kegiatan mengerjakan evaluasi melihat hasil evaluasi gambar 2. use case diagram pegawai a) deskripsi use case mengerjakan evaluasi tabel 1. deskripsi use case mengerjakan evaluasi use case mengerjakan evaluasi requirements pegawai sudah terdaftar sebagai peserta. goal pegawai dapat mengerjakan soalsoal evaluasi yang diberikan dengan benar. pre –conditions pegawai sudah login post –conditions jika valid makan masuk kedalam ruang evaluasi failed end condition gagal masuk kedalam ruang evaluasi primary actors pegawai main flow / basic path 1. pegawai membuka ruang evaluasi 2. membukan menu tugas dan melihat list tugas yang tersedia http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 150 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional 3. membuka link tugas yang tersedia 4. mulai mengerjakan soal dan menjawab soal evaluasi invariant b. desain sistem menggunakan activity diagram memilih soal pada list tugas pesan untuk melanjutkan pengerjaan soal mengerjakan soal evaluasi simpan evaluasi kerjakan? merge kerjakan? gambar 3. use case diagram pegawai c. desain sistem menggunakan class diagram +tambah() +ubah() +hapus() +simpan() +update() -id_pegawai : string -nip : string -nama_peg : string -tmp_lhr_peg : string -tgl_lhr_peg : date -jns_kel_peg : string -agama_peg : string -alamat_peg : string -status_peg : string -foto_peg : string pegawai +tambah() +ubah() +hapus() +simpan() +update() -id_pegawai : string -id_materi : string -id_evaluasi : string -id_pengajar : string -nilai_evaluasi : decimal -tgl_evaluasi : date -tgl_bual : date -judul_evaluasi : string -informasi : string -durasi : integer evaluasi 1 1..* +tambah() +ubah() +hapus() +simpan() +update() -id_materi : string -judul_materi : string -konten_materi : string -file_materi : string -status_publish : char -id_pengajar : string materi 1..* 1 +tambah() +ubah() +hapus() +simpan() +update() -id_pengajar : string -nip : string -nama_peg : string -tmp_lhr_peg : string -tgl_lhr_peg : date -jns_kel_peg : string -agama_peg : string -alamat_peg : string -status_peg : string -foto_peg : string pengajar 1..* 1 1..* 1 -id_pengumuman : string -tgl_pengumuam : date -judul_pengumuam : string -kontent_pengumuam : string -tgl_buka : date -tgl_tutup : date -id_pengajar : string pengumuman 1..* 1 gambar 4. class diagram sistem informasi evaluasi d. desain sistem menggunakan sequence diagram pegawai form login valdasi login message1 login(uname, pass) pegawai querylogin() infoquerylogin()infologin() gambar 5. sequence diagram sistem informasi evaluasi 2. desain database rancangan diagram data model sistem informasi evaluasi akan digunakan sebagai database sistem informasi evaluasi dan table-tabel yang akan digunakan pada sistem informasi evaluasi ini. pegawai pk id_pegawai nip nama_peg temp_lahir_peg tgl_lahir_peg agama_peg jenis_kel_peg alamat_peg status_peg foto_peg evaluasi pk id_evaluasi tgl_buat judul_evaluasi durasi informasi pengajar pk id_pengajar nip nama_peg temp_lahir_peg tgl_lahir_peg agama_peg jenis_kel_peg alamat_peg status_peg foto_peg evaluasi_pegawai fk1 id_pegawai fk2 id_evaluasi fk4 id_materi tgl_evaluasi nilai_evaluasi materi pk id_materi judul_materi konten_materi file_materi status_publish fk1 id_pengajar pengumuman pk id_pengumuman tgl_pengumuman judul_pengumuman konten_pengumuman tgl_buka tgl_tutup fk1 id_pengajar gambar 6. diagram data model sistem informasi evaluasi 3. desain user interface a. rancangan halaman login rancangan halaman login ini digunakan untuk para pegawai yang menjadi peserta evaluasi dapat masuk kedalam sistem informasi evaluasi. berikut adalah tampilan halaman karyawan saat akan login, masukan username dan password klik login. gambar 7. halaman login evaluasi pegawai b. rancangan halaman tugas pegawai rancangan halaman tugas pegawai digunakan untuk supaya pegawai yang sudah masuk kedalam sistem informasi evaluasi dapat memilih tugas apa yang harus dikerjakan saat ini. http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 1, no. 3 juni 2019 p-issn: 2656-1743 e-issn: 2656-1735 151 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional gambar 8. tampilan halaman tugas pegawai c. rancangan halaman evaluasi pegawai rancangan halaman evaluasi pegawai digunakan pegawai untuk melakukan evaluasi yang dilaksanakannya gambar 9. halaman pada saat melakukan evaluasi c. code pada pembahasan ini penulis menggunakan web framework codeigniter, dengan teknik pemrograman objek oriented programming (oop). bahasa script programming yang digunakan yaitu php. d. pengujian (testing) penelitian ini penggunakan metode pengujian yang digunakan yaitu black box testing. a. pengujian form login tabel 2. hasil pengujian black box testing form login user n o skenario pengujian test case hasil yang diharap kan hasil peng ujian kesim pulan 1 mengoson gkan semua isian data login, lalu langsung mengklik username : (kosong) password : (kosong) sistem akan menola k akses login dan menam sesua i hara pan valid tombol ‘login’. pilkan pesan “userna me (email) dibuthk an” 2 hanya mengisi data nama admin dan mengoson gkan data kata sandi, lalu langsung mengklik tombol ‘login’. username : (susi.susanti@ praweda.co.id) password : (kosong) sistem akan menola k akses login dan menam pilkan pesan “userna me (email) dibutuh kan” sesua i hara pan valid 3 hanya mengisi data kata sandi dan mengoson gkan data nama admin, lalu langsung mengklik tombol ‘login’. username : (kosong) password: (1) sistem akan menola k akses login dan menam pilkan pesan “userna me (email) dibutuh kan” sesua i hara pan valid 4 menginpu tkan dengan kondisi salah satu data benar dan satu lagi salah, lalu langsung mengklik tombol ‘login’. username : (susi.susanti@ praweda.co.id) password : (1) sistem meneri ma akses login dan kemudi an langsun g menam pilkan berand a pegawa i. sesua i hara pan valid e. support tahapan support diperlukan untuk mendukung sistem penerimaan pegawai berbasis web pada pt. ugasan berkat jaya. agar sistem dapat dibangun dan terus berjalan dengan baik melalui dukungan hardware dan software yang sesuai dengan kebutuhan sistem. 1. publikasi web untuk website sistem informasi evaluasi karyawan pada pt. praweda ciptakrsa informatika ini tidak dipublikasikan, karena sistem informasi ini masih terbatas, hanya intranet saja. 2. spesifikasi hardware dan software http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 1, no. 3 juni 2019 152 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional pada pembuatan aplikasi ini dibutuhkan dua perangkat, yaitu perangkat keras (hardware) dan perangkat lunak (software) dengan spesifikasi sebagai berikut: tabel 1. spesifikasi hardware dan software no. kebutuhan keterangan 1 sistem operasi windows xp atau di atasnya 2 processor lga 3.0 ghz 3 ram 512 mb atau di atasnya 4 harddisk 80 gb atau di atasnya 5 cd-rom 52x 6 monitor svga 14” 7 key board 107 key 8 printer deskjet atau di atasnya 9 mouse standard mouse 10 browser mozilla firefox, google chrome, internet explorer 11 software php, codeigniter, mysql simpulan dan saran simpulan sistem informasi evaluasi karyawan yang dibuat dapat membantu dalam kegiatan evaluasi kinerja karyawan dan dapat digunakan sebagai indikator untuk meningkatkan kualitas karyawan dimasa yang akan datang dapat dijadikan solusi alternatif untuk membantu dalam proses evaluasi karyawan. sistem informasi karyawan dapat menghasil laporan hasil evaluasi karyawan, yang dapat membantu atasan dalam pengambilan penilaian terhadap karyawan yang bersangkutan secara transparan. saran sistem yang dibangun masih memiliki beberapa kekurangan dan keterbatasan, oleh sebab itu ada beberapa hal yang perlu dikembangkan selanjutnya agar menjadi lebih baik, antara lain: harus adanya perluasan lingkup materi yang diberikan, serta ruang lingkup pengujian tidak hanya pada satu divisi saja, tetapi semua divisi dalam perusahaan tersebut. sistem yang dibangun dikembangkan dapat berupa web berbasis internet, bukan intranet saja, agar cakupan untuk mengkasenya lebih luas dan mudah, tidak harus dilingkungan kantor saja tetapi dapat diakses dimana saja dan kapan saja. update merupakan hal penting dalam suatu website, sehingga informasi yang disampaikan dapat terus disesuaikan dengan perkembangan perusahaan. daftar referensi adhar, d. (2014). sistem pendukung keputusan pengangkatan jabatan karyawan pada pt.ayn dengan metode profile matching. jatisi (jurnal teknik informatika dan sistem informasi), 1(1), 16–29. https://doi.org/10.35957/jatisi.v1i1.18 evita, s. n., muizu, w. o. z., & atmojo, r. t. w. (2017). penilaian kinerja karyawan dengan menggunakanmetodebehaviorally anchor rating scale dan management by objectives (studi kasus pada pt qwords company international. pekbis jurna, 9(1), 18–32. retrieved from https://ejournal.unri.ac.id/index.php/jpeb/ article/view/4051 mahdang, a., lamangida, t., & mohi, w. k. (2016). analisis pelaksanaan penilaian kinerja pegawai negeri sipil di lingkungan sekretariat dewan provinsi gorontalo. publik (jurnal ilmu administrasi), 5(1), 1–9. https://doi.org/10.31314/pjia.5.1.1-9.2016 natanael, b., & mulyono, h. (2017). analisis dan perancangan sistem informasi penilaian kinerja karyawan pada pt. bpr universal sentosa. informasi, jurnal manajemen sistem, 2(1), 295–302. retrieved from http://ejournal.stikomdb.ac.id/index.php/manajemensisteminform asi/article/view/440 saefudin, s., & wahyuningsih, s. (2017). sistem pendukung keputusan untuk penilaian kinerja pegawai menggunakan metode analytical hierarchy process (ahp) pada rsud serang. jsii (jurnal sistem informasi), 1(0). https://doi.org/10.30656/jsii.v1i0.78 septiani, a. h., syafi’i, a., & rasyidi, a. (2015). penerapan audit operasional atas manajemen fungsi sdm untuk menilai kinerja karyawan pada pt.pioneer flour mill industries sidoarjo. equity, 1(2), 32–41. retrieved from http://fe.ubhara.ac.id/ojs/index.php/equity/ article/view/57 http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 2, no. 1 desember 2019 p-issn: 2656-1743 e-issn: 2656-1735 23 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional sistem pendukung keputusan untuk menentukan jurusan pada sman 1 bawang jawa tengah dengan topsis galih pramoda dibya ardana1, frisma handayanna2 program studi teknik informatika sekolah tinggi manajemen informatika dan komputer nusa mandiri http://www.nusamandiri.ac.id *1galihpramoda97@gmail.com; 2frisma.fha@nusamandiri.ac.id abstrak sma negeri 1 bawang adalah sekolah menengah atas negeri yang berada di jawa tengah, setiap tahunnya sma negeri 1 bawang membuka penerimaan siswa baru, setiap siswa sma negeri 1 bawang akan ditempatkan pada kelas jurusan sesusai bidang atau kemampuan masing-masing siswa, salah satu contoh masalah yang penulis ambil adalah disekolah tersebut terdapat 2 jurusan yaitu ipa dan ips yang dimana pihak sekolah mengalami kesulitan untuk menentukan jurusan setiap siswanya, karena seiring berjalannya waktu siswa yang mendaftar di sma negeri 1 bawang bertambah banyak. untuk meringankan pihak sekolah dalam menentukan jurusan siswa, maka penulis melakukan penelitian spk menggunakan metode topsis untuk membantu pihak sekolah menentukan penjurusan setiap siswanya. dalam penelitian ini data dikumpulkan dari data sekunder dalam bentuk rekap nilai ujian nasional siswa, peneliti akan melakukan perhitungan data nilai rekap nilai ujian siswa sesuai bobot kriteria mata pelajaran, dikarenakan jumlah populasi data yang dikumpukan peneliti terlalu banyak yaitu 156 data digunakanlah rumus slovin untuk mendapatkan sampel penelitian menjadi 61 data dan software microsoft excel untuk menghindari kesalahan pehitungan serta mempercepat perhitungan, hasil yang didapat dari penelitian ini adalah dari banyaknya sampel yaitu 61 data ditentukanlah bahwa 37 siswa masuk pada jurusan ipa dan 24 siswa masuk pada jurusan ips. kata kunci: metode topsis, menentukan jurusan, spk abstract bawang 1 public high school is a state high school located in central java. every year sma 1 bawang opens new admissions, every student of bawang 1 high school will be placed in a class according to their respective fields or abilities. one example of a problem the authors take is in the school there are 2 majors namely science and social sciences where the school has difficulty in determining the direction of each student, because as time goes by students who enroll in sma 1 bawang increase. to relieve the school in determining the student's majors, the authors conducted spk research using the topsis method to help the school determine the direction of each student. in this study data were collected from secondary data in the form of national exam scores recap, students will calculate the value of student exam value recap according to the criteria weight of the subjects, because the population of data collected by researchers is too much, 156 data used slovin formula to get samples the study became 61 data and microsoft excel software to avoid accounting errors and speed up calculations. the results obtained from this study were that from the number of samples, 61 data determined that 37 students entered the science department and 24 students entered the social studies department. keywords: topsis method, determining department, spk pendahuluan sma negeri 1 bawang adalah sekolah menengah atas negeri yang berada di jawa tengah, setiap tahunya sma negeri 1 bawang membuka penerimaan siswa baru, setiap siswa sma negeri 1 bawang akan ditempatkan pada kelas jurusan sesusai bidang atau kemampuan masing-masing siswa, seiring berjalanya waktu siswa yang mendaftar di sma negeri 1 bawang bertambah banyak, disekolah tersebut terdapat 2 jurusan yaitu ipa dan ips yang dimana pihak sekolah mengalami kesulitan untuk menentukan jurusan setiap siswanya, oleh karena itu penulis melakukan penelitian spk menggunakan metode topsis (mardiana & tanjung, 2019) untuk http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 2, no. 1 desember 2019 24 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional membantu pihak sekolah menentukan penjurusan setiap siswanya. adapun kriteria-kriteria yang dibutuhkan dalam proses penentuan jurusan ini antara lain nilai ujian nasional smp siswa yang telah diajukan kepada pihak sma sebagai syarat pendafaran sekolah. teknik topsis (trchnique for order preference by similiarity to ideal solution) telah berjalan dengan baik dan dapat menghasilkan bobot kriteria penilaian dan informasi yang jelas dan cepat dibandingkan dengan perhitungan manual sehingga sd negeri kebalen 07 dapat menggunakannya sebagai alat untuk membuat keputusan yang tepat (susliansyah et al., 2019) algoritma topsis merupakan sebuah metode yang digunakan untuk membuat urutan ranking berdasarkan hasil perhitungan, dengan penilaian bobot kriteria yang di tentukan (dashti et al., 2010). jurusan siswa man ii yogyakarta yaitu ipa, ips, bahasa, dan agama. sistem ini dapat menentukan jurusan siswa yang tepat berdasarkan ranking dari hasil perhitungan algoritma topsis dan kuota kelas (prayoga & pradnya, 2017) metode topsis diharapkan mampu menyeleksi keputusan terbaik dari beberapa keputusan yang diharapkan dalam pemberian bonus tahunan karyawan. topsis menggunakan prinsip bahwa alternatif yang terpilih harus mempunyai jarak terdekat dari solusi ideal positif dan jarak terpanjang (terjauh) dari solusi ideal negatif dari sudut pandang geometris dengan menggunakan jarak euclidean (jarak antara dua titik) untuk menentukan kedekatan relatif dari suatu alternatif (agusli et al., 2017). metode penelitian mengindentifikasi masalah dalam penentuan jurusan di sman 1 bawang. adapun metode penelitian yang digunakan adalah: teknik pengumpula data a. observasi pada tahap observasi mendapatkan data-data dan fakta dari pengamatan langsung di sman 1 bawang. b. wawancara pada tahap wawancara mengadakan atau melakukan wawancara langsung dengan guru bk dan bagian penerimaan siswa baru, untuk mendapatkan keterangan-keterangan yang diperlukan sebagai bahan penulisan laporan seperti kriteria-kriteria apa saja untuk penentuan jurusan siswa pada sekolah sman 1 bawang. hipotesa h0 : tidak adanya validitas data kriteria pada nilai siswa yang digunakan untuk menentukan jurusan yang diminati siswa dengan metode topsis. h1 : adanya validitas data kriteria pada nilai siswa yang digunakan untuk menentukan jurusan yang diminati siswa dengan metode topsis. tahap penelitian tahapan yang dilakukan dalam penelitian ini digambarkan dalam bagan sebagai berikut: gambar 1. tahapan dalam penelitian hasil penelitian dan pembahasan populasi populasi merupakan wilayah generalisasi yang terdiri dari obyek/subyek yang memiliki kuantitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulannya (siyoto & sodik, 2015). populasi juga bukan hanya sekedar jumlah yang ada pada obyek maupun subyek yang dipelajari, populasi dalam penelitian ini adalah seluruh siswa yang ada di sma negeri 1 bawang yang berjumlah 156. karena jumlah anggota populasi terlalu banyak, maka dapat dilakukan penentuan sampel. http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 2, no. 1 desember 2019 p-issn: 2656-1743 e-issn: 2656-1735 25 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional sampel sampel adalah sebagian dari jumlah dan karakteristik yang dimiliki oleh populasi tersebut, ataupun bagian kecil dari anggota populasi yang diambil menurut prosedur tertentu sehingga dapat mewakili populasinya (siyoto & sodik, 2015). untuk menentukan sampel pada penelitian ini penulis menggunakan rumus slovin untuk menghitung jumlah sampel minimal 𝑛 = n 1+𝑁𝑒2 .......................................................... (1) keterangan: n= sampel minimal n= populasi e= error margin penyelesainnya: n = 156/(1+(156 x 0,12) n = 156/(1+(156 x 0,01) n = 156/ (1 + 1,56) n = 156/(2,56) n = 60,93. jadi sampel minimalnya adalah 61 penentuan kriteria dan bobot penilaian a. kriteria penilaian tabel 1. kriteria penilaian aspek kriteria kriteria bahasa indonesia c1 bahasa inggris c2 matematika c3 ipa c4 un c5 menjelaskan tentang kriteria penilaian yang ada di sma negeri 1 bawang, sebagai acuan penentuan penjurusan siswa. b. bobot penilaian pemberian bobot pada setiap kriteria sebagai berikut: 1. nilai bobot bahasa indonesia tabel 2. bobot penilaian bahasa indonesia nilai bobot keterangan 9.30-11.25 5 sangat penting 7.30-9.25 4 penting 5.30-7.25 3 cukup penting 3.30-5.25 2 kurang penting 1.25-3.25 1 sangat kurang penting merupakan kriteria nilai bobot yang berfungsi untuk dapat mengukur kriteria bahasa indonesia yang sudah ditentukan 2. nilai bobot bahasa inggris tabel 3. bobot penilaian bahasa inggris nilai bobot keterangan 9.30-11.25 5 sangat penting 7.30-9.25 4 penting 5.30-7.25 3 cukup penting 3.30-5.25 2 kurang penting 1.25-3.25 1 sangat kurang penting merupakan kriteria nilai bobot yang berfungsi untuk dapat mengukur kriteria bahasa inggris yang sudah ditentukan 3. nilai bobot matematika tabel 4. bobot penilaian matematika nilai bobot keterangan 9.30-11.25 5 sangat penting 7.30-9.25 4 penting 5.30-7.25 3 cukup penting 3.30-5.25 2 kurang penting 1.25-3.25 1 sangat kurang penting merupakan kriteria nilai bobot yang berfungsi untuk dapat mengukur kriteria matematika yang sudah ditentukan 4. nilai bobot ipa tabel 5. bobot penilaian ipa nilai bobot keterangan 9.30-11.25 5 sangat penting 7.30-9.25 4 penting 5.30-7.25 3 cukup penting 3.30-5.25 2 kurang penting 1.25-3.25 1 sangat kurang penting merupakan kriteria nilai bobot yang berfungsi untuk dapat mengukur kriteria ipa yang sudah ditentukan 5. nilai bobot ujian nasional tabel 6. bobot penilaian ujian nasional nilai bobot keterangan 31.60-35.50 5 sangat penting 27.60-31.50 4 penting 23.60-27.50 3 cukup penting 19.60-23.50 2 kurang penting 15.50-19.50 1 sangat kurang penting merupakan kriteria nilai bobot yang berfungsi untuk dapat mengukur kriteria ujian nasional yang sudah ditentukan 6. nilai bobot setiap kriteria tabel 7. bobot penilaian setiap kriteria kriteria jurusan ipa ips c1= bahasa indonesia 4 4 c2= bahasa inggris 4 4 http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 2, no. 1 desember 2019 26 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional c3= matematika 5 5 c4= ipa 5 4 c5= un 5 5 merupakan kriteria nilai bobot yang berfungsi untuk dapat mengukur setiap kriteria yang sudah ditentukan pada setiap jurusan. data sekunder data sekunder adalah data yang di dapat dan digunakan oleh peneliti berasal dari lembaga tertentu. lembaga ini bisa berupa apaan juga, seperti biro pusat statitistik, bank indonesia atau lembaga penyedia data lainnya. data nilai ujian nasional smp ini di dapatkan dari sma negeri 1 bawang pada bagian tata usaha, setiap siswa yang ingin mendaftar di sma negeri 1 bawang diwajibkan menyerahkan data nilai ujian nasional smp sebagai syarat pendaftaran dan data tersebut di olah dan dikumpulkan oleh bagian tata usaha dengan tujuan untuk menentukan jurusan masing-masing siswa. adapun sampel yang ditampilkan dari data 1 sampai 10 dan 61 sebagai berikut: tabel 8. data nilai sma negeri 1 bawang no nama ind ing mtk ipa nun 1 rulita lailan fajrin 8.60 5.60 9.25 6.50 29.95 2 ilma yang fauni 8.80 7.20 6.50 6.25 28.75 3 nata syafaatul udhma 7.80 5.20 8.50 7.25 28.75 4 ilma fitriyana 9.20 6.20 7.25 5.25 27.90 5 maya wulandari 7.60 4.80 8.00 5.00 25.40 6 heni ekawati 8.40 7.20 5.00 6.25 26.85 7 melsha yunita 7.40 6.60 7.00 5.00 26.00 8 yeni nur asih 9.20 5.00 7.00 5.50 26.70 9 sitoresmi idayani 8.40 7.00 4.75 6.50 26.65 10 olivia hapsari 8.20 4.80 5.75 6.00 24.75 61 antonius felik 7.25 5.25 5.00 3.25 20.75 topsis menggunakan prinsip bahwa alternatif yang terpilih harus mempunyai jarak terdekat dari solusi ideal positif dan jarak terpanjang (terjauh) dari solusi ideal negatif dari sudut pandang geometris dengan menggunakan jarak euclidean (jarak antara dua titik) untuk menentukan kedekatan relatif dar suatu alternatif (nofriansyah, 2014) langkah penyelesaian metode topsis a. membuat matriks keputusan yang ternormalisasi. 𝑟𝑖𝑗 = xij √ ∑m 𝑖=1 𝑥2𝑖𝑗 . (2) keterangan: rij = matrik ternormalisasi [i][j] xij = matrik keputusan [i][j] r11 = x11 √x11 + x21 + x31+x41 + x51 + ⋯ n |𝑋1| = √42 + 32 + 42 + 32 + 42 = 8,124 𝑟11 = 𝑋11 𝑋1 = 4 8,124 = 0,492 𝑟21 = 𝑋21 𝑋1 = 3 8,124 = 0,369 𝑟31 = 𝑋31 𝑋1 = 4 8,124 = 0,492 𝑟41 = 𝑋41 𝑋1 = 3 8,124 = 0,369 𝑟51 = 𝑋51 𝑋1 = 4 8,124 = 0,492 tabel.9 hasil perhitungan matriksternormalisasi no c1 c2 c3 c4 c5 1 0,492 0,369 0,492 0,369 0,492 2 0,544 0,272 0,408 0,408 0,544 3 0,512 0,256 0,512 0,384 0,512 4 0,544 0,408 0,408 0,272 0,544 5 0,571 0,286 0,571 0,286 0,429 6 0,583 0,438 0,292 0,438 0,438 7 0,583 0,438 0,438 0,292 0,438 8 0,583 0,292 0,438 0,438 0,438 9 0,583 0,438 0,292 0,438 0,438 10 0,583 0,292 0,438 0,438 0,438 61 0,640 0,426 0,426 0,213 0,426 merupakan hasil perhitungan dari matriks keputusan yang ternormalisasi dari data siswa berjumlah 61 orang dan yang ditampilkan hanya dari data ke 1 sampai ke 10 dan 61. b. membuat matriks keputusan yang ternormalisasi terbobot v selanjutnya menghitung proses ternormalisasi v, dimana setiap alternatif diambil berdasarkan nilai dari kriteria nilai bobot dikali dengan kriteria hasil normaliasasi. rumus nilai matriks keputusan ternormalisasi terbobot v diambil berdasarkan: 𝑉𝑖𝑗 = 𝑤𝑖 𝑟𝑖𝑗 (3) dengan i= 1,2....,m;dan j =1,2,.....n. keterangan: http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 2, no. 1 desember 2019 p-issn: 2656-1743 e-issn: 2656-1735 27 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional vij = elemen dari matriks keputusan yang ternormalisasi terbobot v wi = bobot dari kriteria ke-j rij = elemen matriks keputusan yang ternormalisasi r. 1. jurusan ipa 𝑉1.1 = 𝑊1. 𝑅11 = 4 𝑥 0,492 = 1,969 𝑉2.1 = 𝑊1. 𝑅21 = 4 𝑥 0,369 = 1,477 𝑉3.1 = 𝑊1. 𝑅31 = 5 𝑥 0,492 = 2,462 𝑉4.1 = 𝑊1. 𝑅41 = 5 𝑥 0,369 = 1,846 𝑉5.1 = 𝑊1. 𝑅51 = 5 𝑥 0,492 = 2,462 tabel.10 hasil perhitungan ternormalisasi dengan bobot v jurusan ipa no c1 c2 c3 c4 c5 1 1,969 1,477 2,462 1,846 2,462 2 2,177 1,089 2,041 2,041 2,722 3 2,049 1,024 2,561 1,921 2,561 4 2,177 1,633 2,041 1,361 2,722 5 2,286 1,143 2,857 1,429 2,143 6 2,334 1,750 1,459 2,188 2,188 7 2,334 1,750 2,188 1,459 2,188 8 2,334 1,167 2,188 2,188 2,188 9 2,334 1,750 1,459 2,188 2,188 10 2,334 1,167 2,188 2,188 2,188 61 2,558 1,706 2,132 1,066 2,132 merupakan hasil perhitungan ternormalisasi dengan bobot v jurusan ipa dari data siswa berjumlah 61 orang dan yang ditampilkan hanya dari data ke 1 sampai ke 10 dan 61. 2. jurusan ips 𝑉1.1 = 𝑊1. 𝑅11 = 4 𝑥 0,492 = 1,969 𝑉2.1 = 𝑊1. 𝑅21 = 4 𝑥 0,369 = 1,477 𝑉3.1 = 𝑊1. 𝑅31 = 5 𝑥 0,492 = 2,462 𝑉4.1 = 𝑊1. 𝑅41 = 4 𝑥 0,369 = 1,477 𝑉5.1 = 𝑊1. 𝑅51 = 5 𝑥 0,492 = 2,462 tabel.11 hasil perhitungan ternormalisasi dengan bobot v jurusan ips no c1 c2 c3 c4 c5 1 1,969 1,477 2,462 1,477 2,462 2 2,177 1,089 2,041 1,633 2,722 3 2,049 1,024 2,561 1,536 2,561 4 2,177 1,633 2,041 1,089 2,722 5 2,286 1,143 2,857 1,143 2,143 6 2,334 1,750 1,459 1,750 2,188 7 2,334 1,750 2,188 1,167 2,188 8 2,334 1,167 2,188 1,750 2,188 9 2,334 1,750 1,459 1,750 2,188 10 2,334 1,167 2,188 1,750 2,188 61 2,558 1,706 2,132 0,853 2,132 merupakan hasil perhitungan ternormalisasi dengan bobot v jurusan ips dari data siswa berjumlah 61 orang dan yang ditampilkan hanya dari data ke 1 sampai ke 10 dan 61. c. solusi ideal positif a+ dan solusi ideal negatif a 𝐴+ = (𝑌1 +, 𝑌2 +, … . 𝑌𝑛 + (4) 𝐴− = (𝑌1 −, 𝑌2 −, … . 𝑌𝑛 − (5) keterangan: vj = maxyij, jika j adalah atribut keuntungan min yij, jika j adalah atribut biaya 1. jurusan ipa tabel 12. solusi ideal positif a+ dan solusi ideal negatif a ipa c1 c2 c3 c4 c5 a+ 3,336 2,449 2,857 2,739 2,722 a1,696 0,834 0,700 0,737 0,981 merupakan hasil solusi ideal positif a+ dan solusi ideal negatif a pada jurusan ipa dilihat dari semua data ke 1 sampai ke 61. pada a+ dilihat nilai yang paling besar pada setiap kriteria sedangkan pada a dilihat nilai paling kecil pada setiap kriteria 2. jurusan ips tabel 13. solusi ideal positif a+ dan solusi ideal negatif a ips c1 c2 c3 c4 c5 a+ 3,336 2,449 2,857 2,191 2,722 a1,696 0,834 0,700 0,590 0,981 merupakan hasil solusi ideal positif a+ dan solusi ideal negatif a pada jurusan ips dilihat dari semua data ke 1 sampai ke 61. pada a+ dilihat nilai yang paling besar pada setiap kriteria sedangkan pada a dilihat nilai paling kecil pada setiap kriteria d. perhitungan jarak ai dengan solusi ideal positif d+ dan solusi ideal negatif d 𝐷𝑖 + = √∑ (𝑌𝑖𝑗 − 𝑌𝑗 +)2𝑛𝑗=𝑛 (6) keterangan: di+ = jarak alternatif ai dengan solusi ideal positif yj+ = solusi ideal positif [i] yij = matriks normalisasi [i][j] 1. perhitungan solusi ideal positif d+ jurusan ipa http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 2, no. 1 desember 2019 28 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional 𝐷1 + = √ (1,969 − 3,336)2 + (1,477 − 2,449)2 +(2,462 − 2,857)2 + (1,846 − 2,739)2 + (2,462 − 2,722)2 = 3, 833 𝐷2 + = √ (2,177 − 3,336)2 + (1,089 − 2,449)2 +(2,041 − 2,857)2 + (2,041 − 2,739)2 + (2,722 − 2,722)2 = 4,345 𝐷3 + = √ (2,049 − 3,336)2 + (1,024 − 2,449)2 +(2,561 − 2,857)2 + (1,921 − 2,739)2 + (2,561 − 2,722)2 = 4,471 𝐷4 + = √ (2,177 − 3,336)2 + (1,633 − 2,449)2 +(2,041 − 2,857)2 + (1,361 − 2,739)2 + (2,722 − 2,722)2 = 4,573 𝐷5 + = √ (2,286 − 3,336)2 + (1,143 − 2,449)2 +(2,857 − 2,857)2 + (1,429 − 2,739)2 + (2,143 − 2,722)2 = 4,862 2. perhitungan solusi ideal positif djurusan ipa 𝐷1 − = √ (1,969 − 1,969)2 + (1,477 − 0,834)2 +(2,462 − 0,700)2 + (1,846 − 0,737)2 + (2,462 − 0,981)2 = 7, 016 𝐷2 − = √ (2,177 − 1, 696)2 + (1,089 − 0, 834)2 +(2,041 − 0, 700)2 + (2,041 − 0, 737)2 + (2,722 − 0, 981)2 = 6, 826 𝐷3 − = √ (2,049 − 1, 696)2 + (1,024 − 0, 834)2 +(2,561 − 0, 700)2 + (1,921 − 0, 737)2 + (2,561 − 0, 981)2 = 7, 519 𝐷4 − = √ (2,177 − 1, 696)2 + (1,633 − 2,449)2 +(2,041 − 0, 700)2 + (1,361 − 0, 737)2 + (2,722 − 0, 981)2 = 6, 088 𝐷5 − = √ (2,286 − 1, 696)2 + (1,143 − 2,449)2 +(2,857 − 0, 700)2 + (1,429 − 0, 737)2 + (2,143 − 0, 981)2 = 6, 925 tabel 15. hasil perhitungan solusi ideal positif d+ dan positif djurusan ipa no nama di+ di 1 rulita lailan fajrin 3,833 7,016 2 ilma yang fauni 4,345 6,826 3 nata syafaatul udhma 4,471 7,519 4 ilma fitriyana 4,573 6,088 5 maya wulandari 4,862 6,925 6 heni ekawati 4,037 5,384 7 melsha yunita 3,864 5,438 8 yeni nur asih 3,684 6,294 9 sitoresmi idayani 4,037 5,384 10 olivia hapsari 3,684 6,294 61 antonius felik 4,830 4,987 merupakan hasil perhitungan solusi ideal positif d+ dan solusi ideal negatif d pada jurusan ipa dilihat dari semua data ke 1 sampai ke 61. 3. perhitungan solusi ideal positif d+ jurusan ips 𝐷1 + = √ (1,969 − 3,336)2 + (1,477 − 2,449)2 +(2,462 − 2,857)2 + (1,447 − 2,191)2 + (2,462 − 2,722)2 = 3, 833 𝐷2 + = √ (2,177 − 3,336)2 + (1,089 − 2,449)2 +(2,041 − 2,857)2 + (1,633 − 2,191)2 + (2,722 − 2,722)2 = 4,345 𝐷3 + = √ (2,049 − 3,336)2 + (1,024 − 2,449)2 +(2,561 − 2,857)2 + (1,536 − 2,191)2 + (2,561 − 2,722)2 = 4,471 𝐷4 + = √ (2,177 − 3,336)2 + (1,633 − 2,449)2 +(2,041 − 2,857)2 + (1,089 − 2,191)2 + (2,722 − 2,722)2 = 4,573 𝐷5 + = √ (2,286 − 3,336)2 + (1,143 − 2,449)2 +(2,857 − 2,857)2 + (1,143 − 2,191)2 + (2,143 − 2,722)2 = 4,862 4. perhitungan solusi ideal positif d+ jurusan ips 𝐷1 − = √ (1,969 − 1,969)2 + (1,477 − 0,834)2 +(2,462 − 0,700)2 + (1,477 − 0,590)2 + (2,462 − 0,981)2 = 6, 572 𝐷2 − = √ (2,177 − 1, 696)2 + (1,089 − 0, 834)2 +(2,041 − 0, 700)2 + (1,633 − 0,590)2 + (2,722 − 0, 981)2 = 6, 213 𝐷3 − = √ (2,049 − 1, 696)2 + (1,024 − 0, 834)2 +(2,561 − 0, 700)2 + (1,536 − 0, 590)2 + (2,561 − 0, 981)2 = 7, 014 𝐷4 − = √ (2,177 − 1, 696)2 + (1,633 − 2,449)2 +(2,041 − 0, 700)2 + (1,089 − 0,590)2 + (2,722 − 0, 981)2 = 5, 551 𝐷5 − = √ (2,286 − 1, 696)2 + (1,143 − 2,449)2 +(2,857 − 0, 700)2 + (1,143 − 0,590)2 + (2,143 − 0, 981)2 = 6, 526 tabel 16. hasil perhitungan solusi ideal positif d+ dan positif djurusan ips no nama di+ di 1 rulita lailan fajrin 3,546 6,572 2 ilma yang fauni 4,170 6,213 3 nata syafaatul udhma 4,229 7,014 4 ilma fitriyana 3,889 5,551 5 maya wulandari 4,243 6,526 6 heni ekawati 3,927 4,625 7 melsha yunita 3,274 5,002 8 yeni nur asih 3,575 5,535 9 sitoresmi idayani 3,927 4,625 10 olivia hapsari 3,575 5,535 61 antonius felik 3,822 4,662 merupakan hasil perhitungan solusi ideal positif d+ dan solusi ideal negatif d pada jurusan ips dilihat dari semua data ke 1 sampai ke 61. e. nilai preferensi untuk setiap alternatif (vi ) http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 2, no. 1 desember 2019 p-issn: 2656-1743 e-issn: 2656-1735 29 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional 𝑉𝑖 = 𝐷𝑖− 𝐷𝑖− + 𝐷𝑖+ (7) i = 1,2,....m vi = kedekatan tiap alternatif terhadap solusi ideal di+ = jarak alternatif ai dengan solusi ideal positif di = jarak alternatif ai dengan solusi ideal negatif nilai vi yang lebih besar menunjukan bahwa alternatif ai lebih dipilih. 1. perhitungan nilai preferensi untuk setiap alternatif (vi) jurusan ipa 𝑉1 = 7,016 7,016 + 3,833 = 7,016 10,849 = 0,647 𝑉2 = 6,826 6,826 + 4,345 = 6,826 11,172 = 0,611 𝑉3 = 7,519 7,519 + 4,471 = 7,519 11,990 = 0,627 𝑉4 = 6,088 6,088 + 4,573 = 6,088 10,661 = 0,571 𝑉5 = 6,925 6,925 + 4,862 = 6,925 11,786 = 0,588 tabel 17. hasil perhitungan nilai preferensi untuk setiap alternatif (vi) jurusan ipa no nama vi 1 rulita lailan fajrin 0,647 2 ilma yang fauni 0,611 3 nata syafaatul udhma 0,627 4 ilma fitriyana 0,571 5 maya wulandari 0,588 6 heni ekawati 0,572 7 melsha yunita 0,585 8 yeni nur asih 0,631 9 sitoresmi idayani 0,572 10 olivia hapsari 0,631 61 antonius felik 0,508 merupakan hasil perhitungan nilai preferensi untuk setiap alternatif (vi) pada jurusan ipa dilihat dari semua data ke 1 sampai ke 61. 2. perhitungan nilai preferensi untuk setiap alternatif (vi) jurusan ips 𝑉1 = 6,572 6,572 + 3,546 = 6,572 10,118 = 0,650 𝑉2 = 6,213 6,213 + 4,170 = 6,213 10,383 = 0,598 𝑉3 = 7,014 7,014 + 4,229 = 7,014 11,244 = 0,624 𝑉4 = 5,551 5,551 + 3,889 = 5,551 9,440 = 0,588 𝑉5 = 6,526 6,526 + 4,243 = 6,526 10,769 = 0,606 tabel 18. hasil perhitungan nilai preferensi untuk setiap alternatif (vi) jurusan ips no nama vi 1 rulita lailan fajrin 0,650 2 ilma yang fauni 0,598 3 nata syafaatul udhma 0,624 4 ilma fitriyana 0,588 5 maya wulandari 0,606 6 heni ekawati 0,541 7 melsha yunita 0,604 8 yeni nur asih 0,608 9 sitoresmi idayani 0,541 10 olivia hapsari 0,608 61 antonius felik 0,549 merupakan hasil perhitungan nilai preferensi untuk setiap alternatif (vi) pada jurusan ips dilihat dari semua data ke 1 sampai ke 61. hasil penelitian tabel 19. perbandingan hasil perhitungan nilai preferensi setiap alternatif (vi) vi ipa vi ips hasil 0,647 0,650 ips 0,611 0,598 ipa 0,627 0,624 ipa 0,571 0,588 ips 0,588 0,606 ips 0,572 0,541 ipa 0,585 0,604 ipa 0,631 0,608 ipa 0,572 0,541 ipa 0,631 0,608 ipa 0,584 0,607 ips 0,518 0,537 ips 0,572 0,541 ipa 0,518 0,537 ips 0,572 0,533 ipa 0,640 0,626 ipa 0,640 0,626 ipa 0,663 0,636 ipa 0,406 0,441 ips 0,572 0,541 ipa 0,585 0,604 ipa 0,446 0,419 ipa 0,585 0,604 ipa 0,572 0,541 ipa 0,585 0,604 ipa 0,631 0,608 ipa 0,585 0,616 ips 0,631 0,608 ipa 0,518 0,537 ips 0,606 0,570 ipa 0,584 0,607 ips 0,317 0,337 ipa 0,317 0,337 ipa 0,563 0,561 ipa 0,535 0,508 ipa http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 2, no. 1 desember 2019 30 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional vi ipa vi ips hasil 0,508 0,549 ips 0,535 0,508 ipa 0,398 0,372 ipa 0,430 0,384 ipa 0,345 0,320 ipa 0,430 0,384 ipa 0,336 0,306 ipa 0,445 0,483 ips 0,430 0,384 ipa 0,345 0,320 ipa 0,426 0,369 ipa 0,627 0,624 ipa 0,480 0,502 ips 0,631 0,608 ipa 0,590 0,540 ipa 0,487 0,494 ips 0,504 0,502 ips 0,504 0,502 ips 0,504 0,502 ips 0,504 0,502 ips 0,504 0,502 ips 0,504 0,502 ips 0,615 0,555 ipa 0,563 0,561 ips 0,508 0,549 ips 0,508 0,549 ips hasil penelitian dari perbandingan hasil perhitungan nilai preferensi setiap alternatif (vi) dari 61 siswa tersebut yaitu telah ditentukan bahwa 37 siswa masuk pada jurusan ipa dan 24 siswa masuk pada jurusan ips. simpulan dan saran simpulan hasil perhitungan dari preferensi alternatif v dari jurusan ipa dan ips diperbandingkan, apabila hasil perhitungan nilai ipa lebih besar dari pada ips maka siswa tersebut akan masuk jurusan ipa dan sebaliknya jika hasil perhitungan nilai ips lebih besar dari pada ipa maka siswa tersebut akan masuk jurusan ips hasil perhitungan dari seluruh data sampel dengan kriteria masingmasing jurusan telah ditentukan bahwa dari 61 data sampel ada sebanyak 37 siswa yang masuk pada jurusan ipa dan 24 siswa masuk pada jurusan ips. saran terkait dengan penelitian ini perlu dilakukan studi lebih lanjut mengenai data yang digunakan untuk penelitian, misalnya menggunakan data primer atau kueisioner yang dibagikan kepada siswa untuk menanyakan minat siswa dalam mengambil jurusan sehingga penentuan jurusan bukan hanya ditentukan dari pihak sekolah atau nilai ujian nasional. untuk penelitian selanjutnya peneliti diharapakan membuat aplikasi penghitung cepat sederhana untuk menyempurnakan penelitian ini. sistem pendukung keputusan dibangun pada sma tersebut dapat dikembangkan dengan metode fdam lain seperti ahp, saw, wp dan profile matching. daftar referensi agusli, r., dzulhaq, m. i., & khasanah, u. (2017). sistem pendukung keputusan pemberian bonus tahunan karyawan menggunakan metode topsis. jurnal sisfotek global. dashti, z., pedram, m. m., & shanbehzadeh, j. (2010). a multi-criteria decision making based method for ranking sequential patterns. proceedings of the international multiconference of engineers and computer scientists 2010, imecs 2010, i, 611–614. mardiana, t., & tanjung, s. s. (2019). sistem pendukung keputusan pemilihan perguruan tinggi swasta menggunakan topsis. jurnal riset informatika, 1(2), 25–34. https://doi.org/10.34288/jri.v1i2.30 nofriansyah, d. (2014). konsep data mining vs sistem pendukung keputusan. deepublish. prayoga, b. s., & pradnya, w. m. (2017). sistem pendukung keputusan jurusan di man ii yogyakarta menggunakan algoritma topsis. semnasteknomedia online, 5(1), 55–60. siyoto, s., & sodik, m. a. (2015). dasar metodologi penelitian. literasi media publishing. susliansyah, s., rahadjeng, i. r., sumarno, h., & deleaniara. m, c. m. (2019). penerapan metode topsis dalam penilaian kinerja guru tetap sd negeri kebalen 07. jurnal pilar nusa mandiri, 15(1), 7–14. https://doi.org/10.33480/pilar.v15i1.2 http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 5, no. 2. maret 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.512 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 237 clustering the impacts of the russia-ukraine war on personnel and equipment wargijono utomo sistem informasi universitas krisnadwipayana jakarta, indonesia https://unkris.ac.id/ wargiono@unkris.ac.id abstract in post-pandemic recovery efforts, uncertainty arose due to the unresolved conflict between the russiaukraine war. this conflict impacts world security stability and affects the economic, energy, and food sectors. this conflict also impacts humanity by causing death to civilians and military personnel, including children in ukraine. the clustering analysis results of the impact of the russian-ukrainian war show losses and losses in personnel and war equipment, with three cluster optimization methods used through kmeans. of the two methods that can be recommended, namely elbow and silhouette, both produce k=3. the profiling results show that losses or losses in ukrainian personnel and war equipment are categorized into three clusters, with cluster one being the lowest category, cluster two being the very high category, and cluster three being the moderate category. this research is helpful for state agencies, international organizations (ngos), and other stakeholders. keywords: clustering; k-means; elbow; silhouette; gap statistics abstrak dalam upaya pemulihan pascapandemi, ketidakpastian muncul akibat konflik yang belum terselesaikan antara perang rusia-ukraina. konflik ini berdampak pada stabilitas keamanan dunia, dan juga mempengaruhi sektor ekonomi, energi dan pangan. konflik ini juga berdampak pada kemanusiaan dengan menyebabkan kematian warga sipil dan personel militer, termasuk anak-anak di ukraina. hasil analisis clustering dampak perang rusia-ukraina menunjukkan kerugian dan kerugian personel dan peralatan perang, dengan tiga metode optimasi cluster yang digunakan melalui k-means. dari dua metode yang dapat direkomendasikan yaitu elbow dan silhouette, keduanya menghasilkan k=3. hasil profiling menunjukkan bahwa kerugian atau kehilangan personel dan peralatan perang ukraina dikategorikan menjadi tiga klaster, dengan klaster satu kategori paling rendah, klaster dua kategori sangat tinggi, dan klaster tiga kategori sedang. penelitian ini bermanfaat bagi lembaga negara, organisasi internasional (lsm), dan pemangku kepentingan lainnya. kata kunci: clustering; k-means; elbow; silhouette; gap statistics introduction in post-pandemic joint recovery efforts, the world is uncertain due to the implications of the conflict between russia and ukraine, which has not been resolved to date. the conflict that is still happening has an impact on the world, security stability, and its impact on the economy, energy, and food which one day will have an indirect impact on defense and security(darmayadi & megits, 2023; nerlinger & utz, 2022; paul, 2015). in addition, the outbreak of the russian-ukrainian military conflict had implications for humanity, resulting in the deaths of civilians, military personnel, and even children in ukraine(haque et al., 2022; osokina et al., 2022). statista.com, quoted from the office of the un high commissioner for human rights (ohchr), verified 6,952 civilian deaths during the russian invasion of ukraine as of january 9, 2023. of these, 431 were children. subsequently, 11,144 people were reported injured. various studies that have been conducted on the impact of the russian and ukrainian wars include the eu in the south caucasus and the impact of the russia-ukrainewar with a qualitative approach(paul, 2015), the impact of the russiaukraine war on the cryptocurrency market with the iv-gmm method, the impact of the russia-ukraine p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.512 jurnal riset informatika vol. 5, no. 2. maret 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 238 conflict on energy firms: a capital market perspective using the average abnormal returns (aar) method(nerlinger & utz, 2022), the human toll and humanitarian crisis of the russia-ukraine war: the first 162 days using the descriptive statistics method(haque et al., 2022). based on various previous studies, this paper aims to cluster the impact of the russian war on ukraine on the human side, such as the number of deaths and losses in armament using the k-means algorithm and cluster optimization using three methods, including elbow, silhouette, and gap statistics while clustering data processing using r programming(sinaga & yang, 2020). clustering is an unsupervised learning method that allows the grouping of objects based on different characteristics(yuan & yang, 2019). the purpose of cluster analysis is to discover the structure in forming groups of similar cluster objects. clustering is needed to identify the structure of the data. this research can contribute to state agencies, international organizations (ngos), and stakeholders. this paper is organized into four parts to be systematic, including the first part of the research background, the second part of the research methodology, the third part of the results and discussion, and the fourth part of the conclusions. research methods studies on the impact of the russianukrainian war on personnel and war equipment are carried out using structured, planned, and systematic quantitative methods to make it better. the research process involves several stages, as shown in figure 1. figure 1. research methodology clustering clustering is a method in data mining that aims to group (or classify) items in data into several groups (or clusters) based on similarities in their features. the goal of clustering is to discover hidden structures in data and understand how items are related to one another. clustering is an unsupervised machine-learning technique that involves grouping similar data points based on similarity or distance metrics. the goal of clustering is to identify natural groupings within a dataset that can be used for further analysis or to gain insight into the underlying structure of the data. clustering algorithms typically require no prior knowledge of the data or its structure and instead attempt to partition the data into distinct clusters based on their similarity or dissimilarity. there are many different clustering algorithms, including k-means, hierarchical, and density-based clustering, each with strengths and weaknesses. clustering is widely used in many applications, such as image and text processing, marketing segmentation, customer profiling, bioinformatics, and anomaly detection, to name a few the k-means algorithm k-means is one of the most popular clustering algorithms. this algorithm divides data into k adjacent groups based on the distance between data points. this process is done by determining k central points or centroids representing each group and then placing each data point into the closest group based on the shortest distance to the nearest centroid. given a set of objects, the primary aim of the k-means clustering is to optimize the following objective function(cohn & holm, 2021; govender & sivakumar, 2020): 𝐽 = ∑ ∑ ‖𝑥𝑖 −𝑖 𝜖 𝑐 𝑗 𝑐𝑗 ‖ 2𝑘 𝑗=1 .............................................. (1) the formula involves a criterion function (represented by "j") and various variables, including the i-th observation (represented by "xi"), the j-th cluster center (represented by "cj"), the set of objects in the j-th cluster (represented by "cj"), and the number of clusters (represented by "k"). the distance between the data object and the cluster's center is represented by a norm denoted by "‖∗‖." the goal of the criterion function is to minimize the distance between each data point and the cluster center it is located in. the k-means iterative clustering method is commonly executed in the following manner: 1. please select a value for k and use it to establish the initial set of k centroids. 2. group each object with the centroid nearest to it. 3. calculate the mean of the cluster members to determine the new centroids for each k cluster. 4. iterate steps 2 and 3 until there is no modification in the criterion function after an iteration. the elbow, silhouette, gap statistic elbow method: the elbow method is a clustering evaluation method that plots the number jurnal riset informatika vol. 5, no. 2. maret 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.512 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 239 of clusters against the within-cluster-sum-ofsquared-errors (wcss) values (sinaga & yang, 2020). the basic idea of this method is to choose the number of clusters that give the best results in terms of wcss. in the wcss plot versus the number of clusters, the "elbow" point on the graph indicates the optimal number of clusters to choose from. silhouette score: silhouette score is a clustering evaluation metric that considers the distance between data points and centroids of other clusters. silhouette scores range between -1 and 1, with a value of 1 indicating that the data point is strongly related to the current cluster and not related to other clusters, while a value of -1 indicates that the data point is better moved to another cluster. gap statistics: gap statistics is a clustering evaluation method comparing actual data distribution with the same random distribution. this method measures how well the clustering algorithm separates data into clusters and evaluates the optimal number of clusters. a higher gap statistic value indicates that the clustering algorithm better separates data into clusters. r-programming language r is a programming language for data analysis, visualization, and statistical modeling [16]. developed in 1993, r has a very active community and has thousands of packages that can assist in performing data analysis tasks, from data cleaning to statistical modeling (peng, 2015). the advantages of the r programming language are open-source, compatibility with various systems, and thousands of packages available(mailund, 2017). powerful visualization capabilities: r has many packages that allow easy and efficient data visualization. while it has many advantages, r also has some disadvantages, such as r has many features and packages that make it very powerful, but it also makes the learning curve quite steep. slower performance compared to other programming languages: because it was written in an interpretive language, r's performance is sometimes slower than other compilation-oriented programming languages. in general, r is a compelling and flexible programming language used by data analysts and statisticians to tackle data analysis and statistical modeling tasks results and discussion this study used the dataset from kaggle.com, which was accessed on january 8, 2023, and consisted of two excel format files, namely losses equipment, and personnel, each of which was 319 data consisting of 18 for equipment variables and five variables for personnel, which can be seen from table 1. from the dataset tables 1 and 2, cleaning and unifying the data consists of one personnel attribute and eight equipment attributes, then transformed into one dataset consisting of 9 attributes and 319 data, as shown in figure 2. table 1. personnel dataset table 2. dataset of equipment losses date day aircraft helicopter … 2/25/2022 2 10 7 … 2/26/2022 3 27 26 … ⋮ ⋮ ⋮ ⋮ ⋮ 1/7/2023 318 285 272 … 1/8/2023 319 285 272 … before processing k-means clustering data using r-studio, install the required library packages such as tidyverse, cluster, factoextra, and dplyr to be used (dmitry & yerkebulan, 2022; zhu, idemudia, & feng, 2019). in the first stage, create scripts or code to import excel datasets from the r studio application, which can be used. as seen in code 1, then the results of the import dataset can be seen in figure 2. code_1_import dataset excel library(readxl) data_ukraina data_ukraina_scale print(data_ukraina_scale) # determining the number of clusters >fviz_nbclust(data_ukraina_scale, kmeans, method = "wss") # metode elbow >fviz_nbclust(data_ukraina_scale, kmeans, method = "silhouette") # metode silhouette >fviz_nbclust(data_ukraina_scale, kmeans, method = "gap_stat") # metode gap_stat data normalization in r studio converts data from different scales to a uniform or the same scale(kaparang, moningkey, & sumual, 2021; shelly et al., 2020). normalization is done to correct differences in scale between variables that can affect the statistical analysis and predictive models that are performed. scale: this function is used to standardize data by converting data values into zscores, which are an average value of zero and a standard deviation of one, and the result is that not all of the data can be displayed because there are many, as shown in figure 3. figure 3. data normalization with scale next, in the third stage, determine the number of clusters using the elbow, silhouette, and statistical gaps to determine the most optimal number of clusters. then coding can be seen in code 2. significantly towards four and then bends or forms an elbow, so it can be concluded that the optimal number of clusters k = 3 can be seen in figure 4a. furthermore, the silhouette method with an average value approach is used to estimate the quality of the clusters formed, and the higher the average value, the better the quality. from the results of this analysis, several clusters are considered optimal, namely k = 3 and k = 5, which can be seen in figure 4b, because they have the highest average silhouette value compared to the number of other clusters a. elbow b. silhouette c. gap statistic figure 4. determining the number of clusters: a. elbow, b. silhouette, and c. gap statistics. the statistical gap method is a cluster quality evaluation method used to determine the optimal number of clusters in cluster analysis. this method compares the statistical gap value between the actual data and the data generated randomly, which is at k=1. it can be seen in graph 4c. based on the test of the three methods, two methods can be used to determine the optimal cluster, including elbow and silhouette. code_3_the application of k-means, visualization, and profiling # application of k-means clustering >final fviz_cluster(final, data_ukraina_scale) # group profiling >data_ukraina %>% mutate(cluster = final$cluster) %>% group_by(cluster) %>% summarise_all("mean") jurnal riset informatika vol. 5, no. 2. maret 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.512 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 241 figure 5. application of k-means clustering in the fourth stage of implementing kmeans[18]–[20], based on figure 5, there are 3 clusters with details 67, 106, and 145. where for the average value of the variable clusters personnel, aircraft, helicopters, tanks, apcs, field artillery, mrl, drones, and the naval ship can be seen in clusters 1, 2, and 3. figure 6. data visualization in addition, in clusters, the number of squares indicates the distance between objects in the cluster. it can be seen that the distance for cluster 1 is 136.39153, for cluster 2 is 97.69972, and for cluster 3 is 135.63607. therefore, the distance value for each cluster is 87.0%. in the fifth stage, from the results of the cluster analysis using the k-means algorithm, the results are in the form of three clusters as shown in the visualization of figure 6, namely the results of the k-means clustering visualization plot which consists of three clusters distinguished between three colors, namely red, blue and green. the red color describes the results of cluster 1, the blue color describes the results of cluster 2, and the green color explains the results of cluster 3. it can be seen that each plot color has a different number of members. the following is a display of k-means clustering results. figure 7. group profiling p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.512 jurnal riset informatika vol. 5, no. 2. maret 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 242 based on the results above, the last stage can be profiling (figure 7) for each group formed (chantaramanee et al., 2022; lee & chung, 2016). cluster 1 has the lowest category of loss or loss of personnel and war equipment compared to other groups. cluster 2 has a very high category of loss and loss of personnel and war equipment. meanwhile, cluster 3 experienced moderate category losses and losses of personnel and war equipment in ukraine. conclusions and suggestions conclusion based on the results of a clustering analysis of the impact of russia's war on ukraine, there were losses in personnel and war equipment. three cluster optimization methods are used using kmeans, where two methods can be recommended for analysis: elbow, which produces k=3, and silhouette, which also produces k=3. the profiling results show that losses or losses in ukrainian personnel and war equipment are categorized into three clusters. cluster one is in the lowest category, cluster two is in the very high category, and cluster three is in the medium category. suggestion in order to broaden the scope of further research and make it more objective, the dataset must also use datasets originating from russia. in addition, other techniques can be combined with this research to find a more optimal k value or compare it with other clustering methods. references chantaramanee, a., nakagawa, k., yoshimi, k., nakane, a., yamaguchi, k., & tohara, h. (2022). comparison of tongue characteristics classified according to ultrasonographic features using a k-means clustering algorithm. diagnostics, 12(2). https://doi.org/10.3390/diagnostics120202 64 cohn, r., & holm, e. (2021). unsupervised machine learning via transfer learning and k-means clustering to classify materials image data. integrating materials and manufacturing innovation, 10(2), 231–244. https://doi.org/10.1007/s40192-02100205-8 darmayadi, a., & megits, n. (2023). the impact of the russia-ukraine war on the european union economy. journal of eastern european and central asian research, 10(1), 46–55. https://doi.org/10.15549/jeecar.v10i1.1079 dmitry, n., & yerkebulan, b. (2022). clustering of dark patterns in the user interfaces of websites and online trading portals (ecommerce). mathematics, 10(18). https://doi.org/10.3390/math10183219 govender, p., & sivakumar, v. (2020). application of k-means and hierarchical clustering techniques for analysis of air pollution: a review (1980–2019). in atmospheric pollution research (vol. 11). turkish national committee for air pollution research and control. https://doi.org/10.1016/j.apr.2019.09.009 haque, u., naeem, a., wang, s., espinoza, j., holovanova, i., gutor, t., … nguyen, u. s. d. t. (2022). the human toll and humanitarian crisis of the russia-ukraine war: the first 162 days. bmj global health, 7(9), 1–11. https://doi.org/10.1136/bmjgh-2022009550 kaparang, d. r., moningkey, m. j. m., & sumual, h. (2021). the distribution pattern of new students admissions using the k-means clustering algorithm. international journal of information technology and business, 3(2), 52–60. retrieved from https://ejournal.uksw.edu/ijiteb/article/vie w/4632 lee, c., & chung, m. (2016). digital forensic for location information using hierarchical clustering and k-means algorithm. journal of korea multimedia society, 19(1), 30–40. https://doi.org/10.9717/kmms.2016.19.1.03 0 mailund, t. (2017). beginning data science in r. in beginning data science in r. https://doi.org/10.1007/978-1-4842-26711 nerlinger, m., & utz, s. (2022). the impact of the russia-ukraine conflict on energy firms: a capital market perspective. finance research letters, 50(may), 103243. https://doi.org/10.1016/j.frl.2022.103243 osokina, o., silwal, s., bohdanova, t., hodes, m., sourander, a., & skokauskas, n. (2022). impact of the russian invasion on mental health of adolescents in ukraine. journal of the american academy of child and adolescent psychiatry, 1–9. https://doi.org/10.1016/j.jaac.2022.07.845 paul, a. (2015). the eu in the south caucasus and the impact of the russia-ukraine war. international spectator, 50(3), 30–42. https://doi.org/10.1080/03932729.2015.10 54223 jurnal riset informatika vol. 5, no. 2. maret 2022 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.512 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 243 peng, r. d. (2015). r programming for data science. the r project; r foundation, 132. https://doi.org/10.1073/pnas.0703993104 shelly, z., burch, r. f. v., tian, w., strawderman, l., piroli, a., & bichey, c. (2020). using k-means clustering to create training groups for elite american football student-athletes based on game demands. international journal of kinesiology and sports science, 8(2), 47–63. https://doi.org/10.7575//aiac.ijkss.v.8n.2p.4 7 sinaga, k. p., & yang, m. s. (2020). unsupervised kmeans clustering algorithm. ieee access, 8, 80716–80727. https://doi.org/10.1109/access.2020.2988 796 yuan, c., & yang, h. (2019). research on k-value selection method of k-means clustering algorithm. j, 2(2), 226–235. https://doi.org/10.3390/j2020016 zhu, c., idemudia, c. u., & feng, w. (2019). improved logistic regression model for diabetes prediction by integrating pca and kmeans techniques. informatics in medicine unlocked, 17(january), 100179. https://doi.org/10.1016/j.imu.2019.100179 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.512 jurnal riset informatika vol. 5, no. 2. maret 2022 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 244 jurnal riset informatika vol. 5, no. 2. march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.507 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 195 comparative analysis of using word embedding in deep learning for text classification mukhamad rizal ilham1, arif dwi laksito2*) fakultas ilmu komputer universitas amikom yogyakarta yogyakarta, indonesia mukhamad.ilham@students.amikom.ac.id1, arif.laksito@amikom.ac.id2*) (*) corresponding author abstract a group of theory-driven computing techniques known as natural language processing (nlp) are used to interpret and represent human discourse automatically. from part-of-speech (pos) parsing and tagging to machine translation and dialogue systems, nlp enables computers to carry out various natural languagerelated activities at all levels. in this research, we compared word embedding techniques fasttext and glove, which are used for text representation. this study aims to evaluate and compare the effectiveness of word embedding in text classification using lstm (long short-term memory). the research stages start with dataset collection, pre-processing, word embedding, split data, and the last is deep learning techniques. according to the experiments' results, it seems that fasttext is superior compared to the glove technique. the accuracy obtained reaches 90%. the number of epochs did not significantly improve the accuracy of the lstm model with glove and fasttext. it can be concluded that the fasttext word embedding technique is superior to the glove technique. keywords: word embedding; sentiment analysis; deep learning; lstm abstrak natural language processing (nlp) adalah seperangkat teknik komputasi yang didorong oleh teori untuk secara otomatis menganalisis dan mewakili bahasa manusia. nlp memungkinkan komputer untuk melakukan berbagai tugas terkait bahasa alami di semua tingkatan, mulai dari penguraian dan penandaan part -ofspeech (pos) hingga machine translation dan sistem dialog. dengan banyaknya data dan peningkatan jumlah dokumen yang signifikan per hari, klasifikasi teks menjadi semakin penting karena digunakan dalam berbagai aplikasi seperti penyaringan informasi, penyaringan spam, hingga mengkategorikan text. tujuan dari penelitian ini untuk menganalisis perbandingan performa kinerja word embedding glove dan fasttext pada klasifikasi text. dalam penelitian ini juga menggunakan model deep learning algoritma lstm (long short term memory). berdasarkan hasil eksperiman metodologi fasttext lebih unggul dibanding dengan teknik glove akurasi yang didapatkan mencapai 90% dengan menggunakan pelatihan di semua epoch dan perbandingan akurasi masing masing epoch tidak kelihatan signifikan. dapat disimpulkan bahwa teknik word embedding fasttext lebih unggul dibanding dengan teknik glove. kata kunci: word embedding; sentiment analisis; deep learning; lstm introduction a group of theory-driven computing techniques known as natural language processing (nlp) are used to interpret and represent human discourse automatically. nlp research has evolved from punch cards and batch processing, where decoding a single sentence took up to seven minutes, to an era like google, where millions of web pages can be processed in less than a second (young, hazarika, poria, & cambria, 2018). from part-of-speech (pos) parsing and tagging to machine translation and dialogue systems, nlp enables computers to carry out various natural language-related activities at all levels. text categorisation, which is used in various applications, including information filtering, spam filtering, and text categorisation, is becoming more and more crucial due to the vast quantity of data and considerable growth in the number of documents produced daily. the main research topics include efficient document text mailto:mukhamad.ilham@students.amikom.ac.id mailto:arif.laksito@amikom.ac.id p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.507 jurnal riset informatika vol. 5, no. 2. march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 196 representation and the selection of better deep learning algorithms. the technique of automatically comprehending, gathering, and analysing textual data to extract sentiment information from views expressed in text is known as sentiment analysis or opinion mining (wang, nulty, & lillis, 2020). one technique to convert words into continuous vectors of a certain length is word embedding. word embedding converts words into vectors that summarise their syntactic and semantic information. therefore, word embedding is considered suitable as a feature representation in neural network models for natural language processing (nlp) tasks (deho, agangiba, aryeh, & ansah, 2018). word weighting is a pre-processing data strategy that assigns an appropriate weight to each term to represent the term's relevance to the text. this model plays a vital role in improving text classification with high efficiency. word embedding is a crucial technique in deep learning since it can analyse the text as an input for the deep learning model. deep learning is a technique for feature extraction, pattern recognition, and classification that involves employing several layers of processing to build different models and execute classification tasks from the gathered data (imaduddin, widyawan, & fauziati, 2019). the deep learning algorithm used in this research is lstm (long short-term memory), one of the variations of rnn (recurrent neural network). lstm can be used to overcome the weakness of rnn, which is its inability to store data during learning if too much data has to be stored. the bag of words technique, the first technique created for encoding words into vector form, marked the beginning of the development of word embedding. in 1972 karen spärck jones introduced the tf-idf (term frequency inverse document frequency) technique, a combination of tf (term frequency) and idf (inverse document frequency) is a statistical measure that describes the words in several documents (jones, 1972). to build practical neural network-based word insertion training in 2013, tomas mikolov and his colleagues at google created the new word2vec approach (mikolov, chen, corrado, & dean, 2013). after a year, jeffrey penington and his colleagues created the glove (global vectors) technique, an extension of the effective word2vec learning technology (brennan, loan, watson, bhatt, & bodkin, 2017). the last technique, fasttext, was developed by facebook in 2017, which is very fast and effective in learning word representation and text classification (bojanowski, grave, joulin, & mikolov, 2017). there have been numerous studies in the area of sentiment analysis that used word embedding techniques like bag of word (imaduddin et al., 2019; marukatat, 2020), word2vec (alsurayyi, alghamdi, & abraham, 2019; imaduddin et al., 2019; kilimci & akyokus, 2019; marukatat, 2020; rahman, sari, & yudistira, 2021), doc2vec (imaduddin et al., 2019), glove (alsurayyi et al., 2019; imaduddin et al., 2019; kilimci & akyokus, 2019), and fasttext (kilimci & akyokus, 2019; marukatat, 2020). those word embedding approaches were then evaluated using rnn (kilimci & akyokus, 2019; rahman et al., 2021), cnn(kilimci & akyokus, 2019), lstm (kilimci & akyokus, 2019; rahman et al., 2021), naïve bayes (rahman et al., 2021). a study by (deho et al., 2018) offered word embedding to identify the polarity of sentiment (positive, negative, or neutral) from existing text. this improved the accuracy of sentiment categorisation. additionally, a new technique, known as improved word vector (iwv), was presented by (bojanowski et al., 2017) to increase the precision of pre-trained word embedding in sentiment analysis. the study's findings indicate that the word embedding technique can increase the precision of text classification (deho et al., 2018). the iwv approach significantly improves the researcher's proposed sentiment analysis technique (rezaeinia, ghodsi, & rahmani, 2017). the performance of word embedding word2vec continuous bag of words (cbow), word2vec, doc2vec, glove, and fastext was compared by other researchers in addition to new approaches being suggested and word embedding techniques being identified. accuracy of 95.52% on the domain of hotel reviews from the traveloka site with a total of 5,000 reviews. the glove method has the highest accuracy rate compared to other methods (imaduddin et al., 2019). this research is similar to previous research (kamiş & goularas, 2019) that glove can improve almost all configuration performance. the effectiveness of deep learning has been compared in another research. previous research by (alsurayyi et al., 2019) compared rnn combined with lstm, rnn combined with bi-lstm (bidirectional lstm), and cnn (convolutional neural networks) for word representation using word2vec and glove techniques. the results showed that rnn combined with bi-lstm using the glove technique got better accuracy than other methods. this study used the domain of restaurant reviews from yelp. researchers (rahman et al., 2021) compared lstm, naïve bayes, rnn, and word representation using the word2vec technique. the jurnal riset informatika vol. 5, no. 2. march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.507 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 197 outcomes demonstrated that lstm was better than other approaches. this study uses glove and fasttext word embedding in the lstm model for text representation. this research aims to analyse and compare the effectiveness of word embedding on text represented by lstm deep learning architecture. research methods this research is expected to provide highaccuracy text classification and good performance between word embedding gloves and fasttext techniques evaluated using lstm. to achieve the expected research objectives, we used the methodology shown in figure 1. figure 1. flowchart data collection and labelling the spotify application review dataset from the kaggle.com website is used in this study. the datasets of our study can be downloaded from the url: https://www.kaggle.com/datasets/ mfaaris/spotify-app-reviews-2022. spotify app reviews on google play store were collected from january 1, 2022, to july 9, 2022. the dataset consists of 5 columns, namely time_submitted, review, rating, total_thumbsup, replay, and 61,594 rows. however, the columns used for this study are the review column and the rating column. pre-processing before the data is used for sentiment analysis, several preparatory processes must be done to get the best classification results. in the first stage, symbols, punctuation marks, and emojis are removed from the data set. the second stage, tokenisation and case folding is breaking down the sentences in the dataset into words, also known as tokens, and converting all capital letters into lowercase letters. the third step is filtering or removing stop words, taking important words and discarding words that are unimportant or have no meaning. figure 2. percentage of labelling data the library used for filtering is nltk (natural language toolkit), developed by steven bird and edward loper at the university of pennsylvania in 2001 (botrè, lucarini, memoli, & d’ascenzo, 1981). the fourth step is stemming, converting unstandardised words into common words or removing affixes. the last step is labelling data. the data is grouped into positive and negative sentiments based on application ratings, as in the research (alsurayyi et al., 2019; imaduddin et al., 2019), which only uses positive sentiments and negative sentiments in data labelling. this study's total percentage of labelling data is shown in figure 2. word embedding a. glove word embedding converts words into a continuous vector form with a predefined text length. many methods have been developed to convert words into vectors, including a bag of words, tf-idf (jones, 1972), word2vec (mikolov et al., 2013), glove (brennan et al., 2017), and fasttext (bojanowski et al., 2017). glove is a method that combines local context-based learning in word2vec p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.507 jurnal riset informatika vol. 5, no. 2. march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 198 with global statistical matrix factorisation techniques like lsa (brennan et al., 2017). matrix factorisation and the skip-gram method are combined in the glove methodology. the cooccurrence matrix created by glove (word context x) is used for prediction and calculation outside the existing corpus (imaduddin et al., 2019). 𝐽0 ∑ 𝑓(𝑋𝑖𝑗 )(𝑤𝑖 𝑇 𝑤�̃� + 𝑏𝑖 + 𝑏�̃� − 𝑙𝑜𝑔𝑋𝑖𝑗 ) 2𝑣 𝑖,𝑗=1 ........... (1) where each element 𝑋𝑖𝑗 indicates the number of times the word appears in word j, for 𝑤𝑗 is a vector for the context word 𝑤𝑖 vector of the main word and 𝑏𝑖 , 𝑏𝑗 scalar bias for the main word and context (kilimci & akyokus, 2019). b. fasttext fasttext, an open-source project from facebook research is a fast and efficient technique for learning word representations and performing text classification often used for nlp. the primary function of fasttext insertion is to analyse the internal structure of words. this works particularly well in morphologically complex languages as it allows learning of self-representations for various word morphologies (bojanowski et al., 2017). 𝑠(𝑤, 𝑐) = ∑ 𝑍𝑔 𝑇 𝑣𝑐𝑔𝜖𝑔𝜔 .................................................... (2) the word2vec-proposed negative sampling skip-gram model is implemented by fasttext using a modified skip-gram function. the word score is calculated by adding the vector representation of the n-grams in the set 𝐺𝑤 ⊂ {1, … , 𝐺}, which is the set of n-grams found in the word w. split dataset the data set is divided into training and testing data to train the machine learning model. in this experiment, the data is divided into a ratio of 80:20, with 80% of the data used to train the model and 20% used to test it. lstm long short-term memory (lstm) networks are a complex deep learning approach. lstm works very well on various problems and is widely used by many researchers (alsurayyi et al., 2019). due to its complex dynamics, lstm may quickly "memorise" data over a lengthy period. in a vector of memory cells called 𝑐𝑡 𝑙 ∈ 𝑅𝑛 , the "longterm" memory is stored. although different lstm designs vary in terms of connection layout and activation function. all lstm architectures have explicit memory cells that can store data for long periods of time. the lstm has the option of replacing, retrieving, or storing the memory cell for later (zaremba, sutskever, & vinyals, 2014). there are three gates for storing information for an extended period. the forget gate removes information from the cell that is not needed. the input gate adds beneficial information. the output gate pulls valuable information from the cell state for output values. through gates that let information flow through or are blocked by the lstm unit, the lstm unit decides what to store and when to permit reads, writes, and deletions(kilimci & akyokus, 2019) figure 3. lstm a collection of lstm architectures or memory cells are shown in figure 3. 𝑖𝑡 = 𝜎(𝑊𝑥𝑖 𝑥𝑡 + 𝑊ℎ𝑖 ℎ𝑡−1 + 𝑊𝑐𝑖 𝑐𝑡−1𝑏𝑖 ) ..................... (3) 𝑓𝑡 = 𝜎(𝑊𝑥𝑓 𝑥𝑡 + 𝑊ℎ𝑓 ℎ𝑡−1 + 𝑊𝑐𝑓 𝑐𝑡−1 + 𝑏𝑓 ) ........... (4) 𝑐𝑡 = 𝑓𝑡 𝑐𝑡−1 + 𝑖𝑡 𝑡𝑎𝑛ℎ (𝑊𝑥𝑐 𝑥𝑡 + 𝑊ℎ𝑐 ℎ𝑡−1 + 𝑏𝑐 ......... (5) ot = σ(wxoxt + whoht−1 + wcoct + bo) ................. (6) ℎ𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ(𝑐𝑡 ) ................................................................ (7) where 𝑖𝑡 = input gate. 𝑓𝑡 = forget gate. 𝑜𝑡 = output gate. 𝑐𝑡 = sell activation vector. 𝑋𝑡 = the input at time t. ℎ𝑡−1= the previous state. 𝐶𝑡−1= the previous state memory. 𝐶𝑡 = current memory state. ℎ𝑡 = the current state. jurnal riset informatika vol. 5, no. 2. march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.507 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 199 evaluation the evaluation stage is a step to check the accuracy of the experimental results and measure the performance of the model that has been produced. the performance of the algorithm is measured in this study using a confusion matrix, and the metrics utilised for assessment are true positive (tp), true negative (tn), false positive (fp), and false negative (fn). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁 𝑇𝑃+𝑇𝑁+𝐹𝑃 .................................................... (8) 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑇𝑃 𝑇𝑃+𝐹𝑃 ......................................................... (9) 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 𝑇𝑃+𝐹𝑁 ................................................................ (10) 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ...... (11) results and discussion in this section, we analyse and compare how well word embedding represented by lstm architecture performs. this research was conducted using phyton version 3.10.7 and jupyter notebook version 6.4.11 and a device with an intel core i38100 processor, 8 gb ram and windows ten pro operating system. the dataset used in this study consists of 61,594 spotify application reviews from the google play store that have gone through preprocessing and labelling. as shown in figure 2, the dataset is divided into positive and negative sentiments, with negative sentiments based on reviews with ratings 1-2 and positive sentiments based on reviews with ratings 4-5. after pre-processing phase, word embedding techniques were employed to convert words into vector form with a predetermined length. in this step, we compared glove and fasttext in the english language with 300 dimensions. it took about 2 minutes 30 seconds to fetch 4.7 gb of glove data, while it took 5 minutes 50 seconds to load 4.2 gb of fasttext data. table 1. classification accuracy of the word embedding glove deep learning model glove accuracy time epoch 50 89% 33 minute 11 second epoch 100 89% 1 hour 7 minute 45 second epoch 200 89% 2 hour 16 minute 6 second table 2. classification accuracy of the word embedding fasttext deep learning model fasttext accuracy time epoch 50 90% 34 minute 15 second epoch 100 90% 1 hour 7 minute 22 second epoch 200 90% 2 hour 14 minute 56 second further, the dataset is split into training and testing data in a ratio of 80:20, with 80% of the data used to train the model and 20% to test it. to make the data more balanced, random oversampling (ros) was used to double the minority class and add it to the training dataset before starting the data split. the positive and negative opinions were 29,937 and 24,771 before the ros process. consequently, the number of labels in the minority (negative) was set at 29,937, which was also the number in the majority (positive). in this study, we used a single lstm architecture or one layer, 64 units, adam optimiser, and the learning rate is 0.001. the training was performed in three iterations of 50, 100, and 200 epochs. figures 4 to 6 illustrate the lstm in three epochs using the glove word embedding approach. training and validation have a wide gap in accuracy and loss. (a) (b) figure 4. training (a) accuracy and (b) loss using lstm and glove at 50 epochs p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.507 jurnal riset informatika vol. 5, no. 2. march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 200 (a) (b) figure 5. training (a) accuracy and (b) loss using lstm and glove at 100 epochs (a) (b) figure 6. training (a) accuracy and (b) loss using lstm and glove at 200 epochs figures 7 to 9 depict the accuracy and loss during lstm training using fasttext word embedding with epochs of 50, 100, and 200. the fasttext word embedding technique is superior to all epochs compared to the glove technique, as seen in table 2. however, the training and validation have a wide gap in accuracy and loss, similar to glove word embedding. (a) (b) figure 7. training (a) accuracy and (b) loss using lstm and fasttext at 50 epochs (a) (b) figure 8. training (a) accuracy and (b) loss using lstm and fasttext at 100 epochs jurnal riset informatika vol. 5, no. 2. march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.507 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 201 (a) (b) figure 9. training (a) accuracy and (b) loss using lstm and glove at 200 epochs conclusions and suggestions bag of word, tf-idf, word2vec, glove and fasttext are some word embedding methods to display words in vector form. in this study, we compare glove and fasttext word embedding, two state-of-the-art word representation algorithms that use deep learning lstm architecture. according to the experiments' results, it seems that fasttext is superior compared to the glove technique. the accuracy obtained reaches 90%. the number of epochs did not significantly improve the accuracy of the lstm model with glove and fasttext. for all the scenarios tested, the training and validation have a wide gap in the model's accuracy and loss. it seems that model improvement is needed for future research. moreover, the early stop method for model training is crucial for overfitting and underfitting. the early stops technique can also achieve model convergence in the precise number of epochs. references alsurayyi, w. i., alghamdi, n. s., & abraham, a. (2019). deep learning with word embedding modeling for a sentiment analysis of online reviews. international journal of computer information systems and industrial management applications, 11, 227–241. retrieved from http://www.mirlabs.org/ijcisim/regular_pap ers_2019/ijcisim_22.pdf bojanowski, p., grave, e., joulin, a., & mikolov, t. (2017). transactions of the association for computational linguistics. transactions of the association for computational linguistics, 5, 135–146. retrieved from https://transacl.org/ojs/index.php/tacl/arti cle/view/999 botrè, c., lucarini, c., memoli, a., & d’ascenzo, e. (1981). 397 on the entropy production in oscillating chemical systems. bioelectrochemistry and bioenergetics, 8(2), 201–212. https://doi.org/10.1016/03024598(81)80041-4 brennan, p. m., loan, j. j. m., watson, n., bhatt, p. m., & bodkin, p. a. (2017). pre-operative obesity does not predict poorer symptom control and quality of life after lumbar disc surgery. british journal of neurosurgery, 31(6), 682– 687. https://doi.org/10.1080/02688697.2017.13 54122 deho, o. b., agangiba, w. a., aryeh, f. l., & ansah, j. a. (2018). sentiment analysis with word embedding. 2018 ieee 7th international conference on adaptive science & technology (icast), 1–4. https://doi.org/10.1109/icastech.2018.85 06717 imaduddin, h., widyawan, & fauziati, s. (2019). word embedding comparison for indonesian language sentiment analysis. 2019 international conference of artificial intelligence and information technology (icaiit), 426–430. https://doi.org/10.1109/icaiit.2019.88345 36 jones, k. s. (1972). a statistical interpretation of term specificity and its application in retrieval. journal of documentation, 28(1), 11– 21. https://doi.org/10.1108/eb026526 kamiş, s., & goularas, d. (2019). evaluation of deep learning techniques in sentiment analysis from twitter data. 2019 international conference on deep learning and machine learning in emerging applications (deep-ml), 12–17. https://doi.org/10.1109/deepml.2019.00011 kilimci, z. h., & akyokus, s. (2019). the evaluation of word embedding models and deep learning algorithms for turkish text classification. 2019 4th international p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.507 jurnal riset informatika vol. 5, no. 2. march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 202 conference on computer science and engineering (ubmk), 548–553. ieee. https://doi.org/10.1109/ubmk.2019.89070 27 marukatat, r. (2020). a comparative study of using bag-of-words and word-embedding attributes in the spoiler classification of english and thai text. in studies in computational intelligence (vol. 847). springer international publishing. https://doi.org/10.1007/978-3-030-252175_7 mikolov, t., chen, k., corrado, g., & dean, j. (2013). efficient estimation of word representations in vector space. 1st international conference on learning representations, iclr 2013 workshop track proceedings, 1–12. retrieved from https://arxiv.org/abs/1711.08609 rahman, m. z., sari, y. a., & yudistira, n. (2021). analisis sentimen tweet covid-19 menggunakan word embedding dan metode long short-term memory (lstm). jurnal pengembangan teknologi informasi dan ilmu komputer, 5(11), 5120–5127. retrieved from http://j-ptiik.ub.ac.id rezaeinia, s. m., ghodsi, a., & rahmani, r. (2017). improving the accuracy of pre-trained word embeddings for sentiment analysis. arxiv, 1– 15. retrieved from https://arxiv.org/abs/1711.08609 wang, c., nulty, p., & lillis, d. (2020). a comparative study on word embeddings in deep learning for text classification. proceedings of the 4th international conference on natural language processing and information retrieval, 37–46. https://doi.org/10.1145/3443279.3443304 young, t., hazarika, d., poria, s., & cambria, e. (2018). recent trends in deep learning based natural language processing [review article]. ieee computational intelligence magazine, 13(3), 55–75. https://doi.org/10.1109/mci.2018.2840738 zaremba, w., sutskever, i., & vinyals, o. (2014). recurrent neural network regularization. arxiv, (2013), 1–8. retrieved from http://arxiv.org/abs/1409.2329 jurnal riset informatika vol. 5, no. 2 march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.516 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 211 the implementation of c4.5 algorithm for determining the department of vocational high school mirza sutrisno1, jefri kusuma rambe2, asruddin3, ade davy wiranata4 teknik informatika, universitas muhammadiyah jakarta jakarta indonesia mirza.sutrisno@umj.ac.id*) ilmu komputer, universitas budi luhur jakarta indonesia jefriekussuma@gmail.com sistem komputer, universitas bung karno jakarta indonesia asruddin69@gmail.com teknik informatika, universitas muhammadiyah prof. dr. hamka jakarta indonesia adedavy@uhamka.ac.id (*)corresponding author abstract the selection of departments in vocational high schools (smk) is a must for students to determine the concentration of student learning interest for three years in a school. the lack of student knowledge and outreach about this department caused many students to choose their majors by the most choices and following other students. this problem can cause some difficulties for the students to participate in learning, and most fail. students must select their major based on their interests, abilities, and talents because every student has different abilities and talents. the c4.5 algorithm can provide convenience in grouping students based on majors. using the decision tree method with attributes such as grades in mathematics, english, interests, and talents, the system can recommend majors based on students' interest levels. the results of this study are the determination of the departments with the accuracy of the calculation using the confusion matrix method with a 98,55% accuracy rate and 100% recall rate value. keywords : vocational school; recommendation system; department selection; c4.5 algorithm abstrak pemilihan jurusan di sekolah menengah atas (smk) adalah sebuah keharusan bagi peserta didik dalam menentukan konsentrasi peminatan belajar siswa selama tiga tahun di sekolah. kurangnya pengetahuan siswa dan sosialisasi tentang jurusan ini menyebabkan tidak sedikit dari siswa menetukan pilihan berdasarkan pilihan terbanyak dari rekan sesama pelajar yang mengakibatkan kesulitan dalam mengikuti peminatan pembelajaran dan tidak sedikit yang gagal. setiap siswa perlu menemukan jurusan yang sesuai dengan minat, kemampuan, dan bakat mereka. dikarenakan setiap siswa memiliki kemampuan untuk berpikir serta bakat yang berbeda. algoritma c4.5 dapat memberikan kemudahan dalam pengelompokan mahasiswa berdasarkan jurusan. menggunakan metode decision tree dengan atribut-atribut yang digunakan seperti nilai matematika, bahasa inggris, minat dan bakat, sistem dapat merekomendasikan pilihan jur usan berdasarkan tingkat peminatan siswa. hasil dari penelitian ini adalah menentukan jurusan dengan akurasi perhitungan menggunakan metode confusion matrix yang dengan tingkat akurasi 98,55% dan nilai recall rate 100. kata kunci : smk; sistem rekomendasi; pemilihan jurusan; algoritma c4.5 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.516 jurnal riset informatika vol. 5, no. 2 march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 212 introduction the students who continue to vocational high school (smk) level often struggle to determine the department and concentration of study choice. the various departments are not offered to the students who want to continue to the vocational level. the appropriate selection in the vocational will give the students some motivation and interest in learning. the students' mistakes in determining a department will impact problems such as failure and lost time, energy, and mind. the students must choose a department that suits their interests, abilities, and talent. students have different thinking skills and talents to do something (khairina et al., 2015). for selecting study programs in senior high school (shs), they have also developed a system for helping students select study programs. the cases used in the study include results of the intelligence test, students’ interests, and grades in several subjects (mulyana et al., 2015). an intelligent knowledge-based system was also developed to provide appropriate and accurate recommendations for determining student learning levels based on the assessment criteria in english language course (sutrisno & budiyanto, 2019). this research implements a systematic method for providing departmental recommendations for vocational high school (smk) students based on the specified criteria. data mining uses statistics, mathematics, artificial intelligence, and machine learning to extract and identify useful information and related knowledge from various large databases (turban et al., 2007). data mining has some functions for processing in several applications, such as description, estimation, prediction, classification, clustering, and association (larose, 2005). data mining is a series of processes to extract added value in the form of information that has not been known manually from a database. the resulting information is obtained by extracting and recognizing important or interesting patterns from the data contained in the database (soufitri et al., 2021). the algorithm of c4.5 determines the students who take the department according to their educational background, interests, and abilities of students. the major's selection parameter is a grade passing academy (gpa) in semesters 1 and 2. this research produces the experiments and evaluations showing that the accurate decision tree c4.5 algorithm is applied for determining the suitability of student majors with 93.31% accuracy and departmental recommendations of 82.64% (swastina, 2018). the other fields of education also use the c4.5 algorithm to classify the students’ successful predicates. the analysis used data mining using the c4.5 method, and the process used rapidminer software to make decision trees (luvia et al., 2017). the decision tree model uses the c4.5 algorithm to develop an effective selection system for vocational schools. the input variables were: interest, academic talent, national exam score, and gender. the input variables are interest, academic talent, national exam score, and gender. the c4.5 algorithm was used to build decision trees to describe the relationship between the input variables and the target variable in patterns. the patterns were used to classify the input variables into the target variable. the system results provide appropriate recommendations for up to 83.33% of the 48 tested data (prabowo & subiyanto, 2017). the algorithm of c4.5 with the decision tree method can provide predictive rule information to describe the association process with the predictions of the students who repeat their studies. the characteristics of classified data can be obtained through decisions and the rule of tree structures, so the testing phase with weka software can help predict that students will repeat the course (azwanti, 2018). the c4.5 algorithm can change a considerable fact into a decision tree representing the rule to determine prospective students' prediction retirement. the result of the research is that the application can classify the new students in a tree structure to produce a rule and predict the possibility of the retirement of new students (darmawan, 2018). the algorithm of c4.5 is used to classify students in determining majors by looking for patterns of rules based on supporting variables in the form of junior high school (smp) average report cards, academic test scores such as natural sciences (ipa) grades, social sciences (ips) grades, and language scores. the results of this study are in the form of a data mining application with the c4.5 algorithm to predict majors in science, social studies, or language. the level of accuracy obtained is 97.42% (kurniasari & fatmawati, 2019). classification with the c4.5 algorithm and the forward selection method to determine factors of late coming to school. the sample used was questionnaire data for class viii (eight) state junior high school students 271, totalling 270 students. using training data, specific attributes are determined to form a classifier model. the results of this study are the results of the accuracy of the c4.5 method of 60.74%, with the results of the tree showing congestion is a factor of school delay and jurnal riset informatika vol. 5, no. 2 march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.516 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 213 the results accuracy of 65.93% for forward selection and getting the three best attributes (puspitasari, 2020). implementing the decision tree method can be used in determining student majors using the c4.5 algorithm. data mining is a gain ratio of student report cards, interests, and talents. testing the c4.5 decision tree algorithm results can make more accurate predictions in research on department management and department recommendations for students (baktiar, 2022). research methods c 4.5 algorithm the algorithm of c4.5 is one of the algorithms applied in the data mining process. the c4.5 algorithm is an extension of quinlan's own id3 algorithm to generate a decision tree. like cart, the c4.5 algorithm recursively visits each decision node, and chooses optimal separation, until there is no further separation (larose, 2005). decision tree a decision tree is a very well-known method of classification and prediction. the decision tree method converts facts into decision trees that represent rules. the rules can be easily understood with natural language and expressed in database languages such as sql ( structured query language ) to find records in specific categories (luvia et al., 2017). the provisions of the c4.5 algorithm for building a decision tree are as follows: a. determining the highest gain value as the root b. creating the branches for each attribute c. sharing the cases in the branches d. repeat the process for each branch until all the cases in the branch have the same class. the stages calculation of the c4.5 decision tree algorithm has several stages : 1. preparing the data training. 2. the tree's root was determined from the highest gain value. 3. calculating the entropy value (larose, 2005) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = ∑ −𝑛𝑖=1 𝑝𝑖 ∗ 𝑙𝑜𝑔2 𝑝𝑖 .......................... (1) 4. calculating the gain value. 𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝑆 − ∑ |𝑆𝑖| |𝑆| 𝑛 𝑖=1 ∗ 𝑆𝑖 .................................. (2) 5. after the gain value is found, it will continue in the decision tree process. the research method consists of some steps from figure 1. figure 1. research’s step data collection the data collection technique uses secondary data from a study of the journal of determining majors using the naïve bayes method (khairina et al., 2015). the authors develop the data into 2000 data sets. data sets are presented in table 1. table 1. data set no mtk eng minat bakat jurusan 1 >75 >75 rpl multimedia rpl 2 >75 >75 rpl programing rpl 3 >75 >75 rpl teknik komputer rpl 4 >75 >75 mm multimedia mm 5 >75 >75 mm programing mm 6 >75 >75 mm teknik komputer mm 7 >75 >75 tkj multimedia tkj 8 >75 >75 tkj programing tkj 9 >75 >75 tkj teknik komputer tkj 10 >75 >75 rpl no rpl 11 >75 >75 mm no mm 12 >75 >75 tkj no tkj 13 >75 70-75 rpl multimedia rpl 14 >75 70-75 rpl programing rpl 15 >75 70-75 rpl teknik komputer rpl 16 >75 70-75 mm multimedia mm 17 >75 70-75 mm programing rpl p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.516 jurnal riset informatika vol. 5, no. 2 march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 214 no mtk eng minat bakat jurusan 18 >75 70-75 mm teknik komputer mm 19 >75 70-75 tkj multimedia tkj 20 >75 70-75 tkj programing tkj 21 >75 70-75 tkj teknik komputer tkj 22 >75 70-75 rpl no rpl 23 >75 70-75 mm no mm 24 >75 70-75 tkj no tkj 25 70-75 >75 rpl multimedia rpl 26 70-75 >75 rpl programing rpl 27 70-75 >75 rpl teknik komputer tkj 28 70-75 >75 mm multimedia mm 29 70-75 >75 mm programing mm 30 70-75 >75 mm teknik mm 31 70-75 >75 tkj multimedia tkj 32 70-75 >75 tkj programing tkj 33 70-75 >75 tkj teknik tkj 34 70-75 >75 rpl no rpl 35 70-75 >75 mm no mm 36 70-75 >75 tkj no tkj 37 70-75 70-75 rpl multimedia mm 38 70-75 70-75 rpl programing rpl 39 70-75 70-75 rpl teknik tkj 40 70-75 70-75 mm multimedia mm 41 70-75 70-75 mm programing mm 42 70-75 70-75 mm teknik komputer mm 43 70-75 70-75 tkj multimedia tkj 44 70-75 70-75 tkj programing tkj 45 70-75 70-75 tkj teknik komputer tkj 46 70-75 70-75 rpl no rpl 47 70-75 70-75 mm no mm 48 70-75 70-75 tkj no tkj data processing data is processed and classified based on four criteria to calculate the entropy value and gain—data criteria in table 2. table 2. criteria criteria description mtk value of mathematics eng value of english minat interest of students bakat talent of students results and discussion the modelling of the c4.5 algorithm uses several stages, first calculating the entropy value and then the gain values from the training data. after obtaining the highest gain value, it will be converted into the decision tree. the calculation of the value is represented in node 1 table 3. table 3. counting from node 1 criteria sub criteria total case rpl mm tkj entropy gain total 2000 586 668 746 1,57801 mtk value > 75 1008 377 295 336 1,57778 0,0235157 value 70-75 992 209 373 410 1,53083 eng value > 75 1008 292 338 378 1,57703 1,1156631 value 70-75 992 294 330 368 1,57893 minat rpl 670 534 48 88 0,91799 1,2704865 mm 666 47 615 4 0 tkj 664 5 5 654 0 bakat multimedia 502 125 211 166 1,55295 0,1189128 programing 500 210 124 166 1,55265 teknik komputer 374 84 124 166 1,5321 no 498 167 167 164 1,58491 teknik 126 0 42 84 0 all criteria can represent the calculations with the calculations: jurnal riset informatika vol. 5, no. 2 march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.516 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 215 entropy total = (-total rpl / total case) * imlog2 (total rpl/ total case) + (-mm / total case) *imlog2 (total mm / total case) + (-tkj/total case) * imlog2 (total tkj / total case) (-586/2000)*imlog2(586/2000) + (-668/2000) *imlog2 (668/2000) + (-668/2000) * imlog2 (746/2000) = 1,57801 gain criteria value of mtk: (entropy total)-(total case criteria value > 75 / total case)* (entropy value > 75) ((total case value 70-75/total case)* entropy value 70-75) = (1,57801)-(1008/2000)*1,57778) ((992/2000)* 1,53083)= 0,0235157 gain criteria value of eng: (entropy total)-(total case criteria value > 75 / total case)* (entropy value > 75) ((total case value 70-75/total case)* entropy value 70-75) = (1,57801)-(292/2000)*1,57703) ((294/2000)* 1,57893)= 1,1156631 gain criteria value of minat: (entropy total)-(total case criteria value rpl/ total case)* (entropy rpl) ((total case value mm/total case)* entropy value mm) )-(total case criteria value tkj/ total case)* (entropy tkj) = (1,57801)-(670/2000)*0,91799) ((666/2000)*0) -(664/2000)* 0) = 1,2704865 gain criteria value of bakat: (entropy total)-(total case criteria value multimedia/ total case)* (entropy multimedia) ((total case value programming/total case)* entropy value programming) )-(total case criteria value teknik komputer/ total case)* (entropy teknik komputer) -(total case criteria value no/ total case)* (entropy no) -(total case criteria value teknik / total case)* (entropy teknik) = (1,57801)-(502/2000)*1,55295) ((500/2000)* 1,55265) -(374/2000)*1,5321) (498/2000)* 1,58491) -(126/2000)* 0)= 0,1189128 it can be seen that the gain value of the 4 attributes is: 1. mtk : 0,0235157 2. eng : 1,1156631 3. minat : 1,2704865 4. bakat : 0,1189128 moreover, the highest gain value is the minat criteria of 1,2704865, representing a decision tree. decision tree the decision tree formed from node one is represented in figure 2 by using rapid miner software. figure 2. the decision tree in addition to graphs, the decision tree can also be described as follows: minat = mm | eng = 70-75 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.516 jurnal riset informatika vol. 5, no. 2 march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 216 | | bakat = multimedia: mm {rpl=0, mm=84, tkj=0} | | bakat = no: mm {rpl=3, mm=77, tkj=2} | | bakat = programing | | | mtk = 70-75: mm {rpl=0, mm=40, tkj=0} | | | mtk = >75: rpl {rpl=42, mm=0, tkj=0} | | bakat = teknik komputer: mm {rpl=0, mm=82, tkj=0} | eng = >75: mm {rpl=2, mm=332, tkj=2} minat = rpl | mtk = 70-75 | | bakat = multimedia | | | eng = 70-75: mm {rpl=0, mm=42, tkj=0} | | | eng = >75: rpl {rpl=41, mm=1, tkj=0} | | bakat = no: rpl {rpl=78, mm=2, tkj=2} | | bakat = programing: rpl {rpl=84, mm=0, tkj=0} | | bakat = teknik: tkj {rpl=0, mm=0, tkj=42} | | bakat = teknik komputer: tkj {rpl=0, mm=0, tkj=42} | mtk = >75: rpl {rpl=331, mm=3, tkj=2} minat = tkj: tkj {rpl=5, mm=5, tkj=654} the “minat” criteria produce the highest gain value with a result of 1,2704865, calculated in table 4 node 1.2. table 4. counting from node 1.2 crite ria jurus an total case r pl m m t kj entro py gain min at rpl 670 53 4 48 88 0,917 99 1,2704 865 mm 666 47 61 5 4 0 tkj 664 5 5 65 4 0 the decision tree formed from node 1.1 is represented in figure 3 using rapidminer software. figure 3. decision tree node 1.1 in addition to graphs, the decision tree can also be described as follows: tree minat = mm: mm {rpl=47, mm=615, tkj=4} minat = rpl: rpl {rpl=534, mm=48, tkj=88} minat = tkj: tkj {rpl=5, mm=5, tkj=654} confusion matrix testing a confusion matrix is a table that states the classification of the amount of data correct test and the number of incorrect test data (normawati & prayogi, 2021). the tests of data sets used 2000 data with the confusion matrix method tested using weka software to calculate the accuracy and recall value. the calculation of the confusion matrix is in table 5. table 5 confusion matrix classification actual value prediction true false a c tu a l v a lu e true 1971 (tp) 29 (fp) false 0 (fp) 0 (tn) 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝑡𝑝 + 𝑡𝑛 𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛 𝑋 100% = 1971 + 0 1971 + 0 + 29 + 0 𝑋 100% = 𝟗𝟖, 𝟓𝟓% 𝑹𝒆𝒄𝒂𝒍𝒍 = 𝑡𝑝 + 𝑡𝑛 𝑓𝑛 + 𝑡𝑝 𝑋 100% = 2000 0 + 2000 𝑋 100% = 𝟏𝟎𝟎% the results of confusion matrix testing using weka software with 10-fold validation can be seen in figure 4. figure 4. weka testing result the test results are also represented as area under curve (auc) in figure 5. the curve shows that of the 2000 data tested, 1971 data (98,55%) are correctly classified. jurnal riset informatika vol. 5, no. 2 march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.516 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 217 figure 5. area under curve (auc) conclusions and suggestions conclusion based on the description, explanation, and testing, the conclusions are that the c4.5 algorithm method can provide convenience for grouping students based on the departments. using the decision tree method with the attributes used, such as the value of mathematics, english, interests, and talents, produce a tkj department with the highest level of specialization. determining the departments in vocational high school can use the rapidminer application using the decision tree method and the c4.5 algorithm with the calculation accuracy using the confusion matrix method that has been done by using weka software with a 98,55% accuracy rate—and 100% recall rate value. suggestion the following research can try to add other criteria in determining student majors. the next researcher can use more collections of data sets and then test the result with different testing methods on more varied users. references azwanti, n. (2018). algoritma c4.5 untuk memprediksi mahasiswa yang mengulang mata kuliah (studi kasus di amik labuhan batu). simetris: jurnal teknik mesin, elektro dan ilmu komputer, 9(1), 11–22. https://doi.org/10.24176/simet.v9i1.1627 baktiar, a. (2022). decission tree sebagai metode penentuan penjurusan perguruan tinggi berdasarkan minat dan bakat melalui data raport dengan uji algoritma c4 . 5. jurnal pilar teknologi, 7(1), 40–45. https://doi.org/10.33319/piltek.v7i1.110 darmawan, e. (2018). c4.5 algorithm application for prediction of self candidate new students in higher education. jurnal online informatika, 3(1), 22. https://doi.org/10.15575/join.v3i1.171 khairina, d. m., ramadhani, f., maharani, s., & hatta, h. r. (2015). department recommendations for prospective students vocational high school of information technology with naïve bayes method. 2nd international conference on information technology, computer, and electrical engineering (icitacee), 92–96. https://doi.org/10.1109/icitacee.2015.743 7777 kurniasari, r., & fatmawati, a. (2019). penerapan algoritma c4.5 untuk penjurusan siswa sekolah menengah atas. jurnal ilmiah komputer dan informatika (komputa), 8(1), 19–27. https://doi.org/10.34010/komputa.v8i1.3 045 larose, d. t. (2005). discovering knowledge in data: an introduction to data mining. in discovering knowledge in data: an introduction to data mining (2nd ed., pp. 1– 222). john willey & sons inc. https://doi.org/10.1002/0471687545 luvia, y. s., windarto, a. p., solikhun, s., & hartama, d. (2017). penerapan algoritma c4.5 untuk klasifikasi predikat keberhasilan mahasiswa di amik tunas bangsa. jurasik (jurnal riset sistem informasi dan teknik informatika), 1(1), 75–79. https://doi.org/10.30645/jurasik.v1i1.12 mulyana, s., hartati, s., wardoyo, r., & winarko, e. (2015). case-based reasoning for selecting study program in senior high school. international journal of advanced computer science and applications, 6(4), 136–140. https://doi.org/10.14569/ijacsa.2015.06041 8 normawati, d., & prayogi, s. a. (2021). implementasi naïve bayes classifier dan confusion matrix pada analisis sentimen berbasis teks pada twitter. jurnal sains komputer & informatika (j-sakti, 5(2), 697– 711. http://ejurnal.tunasbangsa.ac.id/index.php/j sakti/article/view/369 prabowo, i. m., & subiyanto, s. (2017). sistem rekomendasi penjurusan sekolah menengah kejuruan dengan algoritma c4.5. jurnal kependidikan, 1(1), 139–149. https://doi.org/10.21831/jk.v1i1.8964 puspitasari, c. (2020). implementation of c4.5 method to determine the factor of being late for coming to school. jurnal riset informatika, 2(3), 115–120. https://doi.org/10.34288/jri.v2i3.132 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v5i2.516 jurnal riset informatika vol. 5, no. 2 march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 218 soufitri, f., purwawijaya, e., hasibuan, e. h., & singarimbun, r. n. (2021). testing c4.5 algorithm using rapidminer applications in determining customer satisfaction levels. jurnal infokum, 9(2), 510–517. https://infor.seaninstitute.org/index.php/inf okum/article/view/198 sutrisno, m., & budiyanto, u. (2019). intelligent system for recommending study level in english language course using cbr method. international conference on electrical engineering, computer science and informatics (eecsi), 153–158. https://doi.org/10.23919/eecsi48112.2019. 8977047 swastina, l. (2018). penerapan algoritma c4 . 5 untuk penentuan jurusan mahasiswa. gema aktualita, 2(1), 93–98. https://doi.org/10.24252/insypro.v6i2.7912 turban, e., e. aronson, j., & liang, t.-p. (2007). decision support systems and business intelligence. decision support and business intelligence systems, 7/e, 1–35. https://doi.org/10.1017/cbo978110741532 4.004 jurnal riset informatika vol. 5, no. 2. march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i1.506 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 245 decision support system for selection of the best fuel for households using the weighted product (wp) method yasmin khairunnisa-1*), dewi primasari-2, nurul kamilah-3 fakultas teknik & sains, program studi teknik informatika, information systems concentration universitas ibn khaldun bogor, indonesia yasminkhairunnisa1@gmail.com-1*), dewiprimasari9@gmail.com-2, nurul.kamilah@uika-bogor.ac.id-3 (*) corresponding author abstract fuel is one of the most critical needs for the community in carrying out various household activities dominated by fuel oil. meanwhile, the availability of fuel is increasingly running low. most people in the botumoito area in gorontalo province work in the agricultural sector with low local income. availability of fuels such as kerosene and gas there is quite challenging because there is no source or supply of gas either directly from the gas field or terminal. the government needs to make the right policy on fuel selection according to the problems in the region. this research aims to design and build a decision support system for selecting the best fuel and implementing the weighted product (wp) method into the system. the method used in designing and manufacturing this system is the waterfall method. this research results in a decision support system that can help fuel ranking. the ranking results are based on the magnitude of the vector (v) value obtained from testing ten alternative fuels. bioethanol occupies the top priority with a vector value of 0.152. this research can help consultants, fuel experts, and local governments speed up their work in determining the best household fuel according to their respective regions. keywords: fuels; decision support systems; weighted products. abstrak bahan bakar merupakan salah satu kebutuhan yang paling penting bagi masyarakat dalam melakukan berbagai aktivitas rumah tangga yang didominasi oleh bahan bakar minyak (bbm). sementara itu, ketersediaan bbm semakin lama semakin menipis. sebagian besar penduduk di daerah botumoito di provinsi gorontalo bekerja di sektor pertanian dengan pendapatan warga setempat tidak terlalu tinggi. ketersediaan bahan bakar seperti minyak tanah dan gas disana cukup sulit diperoleh karena belum terdapat sumber atau pasokan gas baik secara langsung dari lapangan gas maupun terminal. pemerintah perlu membuat kebijakan yang tepat pada pemilihan bahan bakar sesuai dengan masalah yang ada di daerah. tujuan dari penelitian ini yaitu merancang dan membangun sistem pendukung keputusan dalam pemilihan bahan bakar terbaik serta mengimplementasikan metode weighted product (wp) kedalam sistem. metode yang digunakan dalam perancangan dan pengembangan sistem ini yaitu menggunakan metode waterfall. hasil dari penelitian ini yaitu sebuah sistem pendukung keputusan yang dapat membantu perankingan bahan bakar. hasil perankingan berdasarkan besarnya nilai vektor (v) yang didapatkan dari pengujian 10 alternatif bahan bakar, bioetanol menempati prioritas utama dengan nilai vektor 0,152. penelitian ini membantu konsultan, pakar bahan bakar dan pemerintah daerah dalam menentukan bahan bakar rumah tangga terbaik sesuai dengan wilayahnya masing-masing. kata kunci: bahan bakar; sistem pendukung keputusan; weighted products. introduction fuel is a material that can be converted into energy and is one of the most essential needs for society. most of the fuel is used in various household activities such as lighting, cooking, heating, cooling, and other household activities (rohim & triani, 2021). generally, the fuel used by indonesians for household activities is still dominated by fuel oil (ridlo al hakim, 2020). meanwhile, the availability of fuel is getting less and less along with the increasing population, accompanied by increasing demand and energy consumption. this is a concern in the context of mailto:yasminkhairunnisa1@gmail.com mailto:dewiprimasari9@gmail.com p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i1.506 jurnal riset informatika vol. 5, no. 2. march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 246 energy security, given that indonesia's oil production continues to decline (umam et al., 2018). therefore, the government places restrictions on fuel subsidies as an essential step to increase efficiency in fuel use (afriyanti et al., 2018). the government needs to make the right policies on fuel selection for their respective regions. this decision is hoped to benefit the local community regarding price, environmental friendliness, availability, infrastructure, safety, and ease of use. many household fuel choices exist, such as lpg, kerosene, biogas, city gas, bioethanol, and others. each of these fuels has its advantages and disadvantages according to local conditions. therefore, the local government must be selective in choosing fuel according to the conditions of each area. the botumoito area in the province of gorontalo is the area that will be used in this study. this sub-district has an area of 486.23 km2, and the distance between the village of botumoito and the capital is about 2.5 km. the total population of botumoito itself is around 2,685 people, and from the employment perspective, most of the population of botumoito works in the agricultural sector. residents' income in this area is low, around 500,000 to 1 million monthly rupiahs per capita. the availability of fuels such as kerosene and gas there is quite challenging because there is no source or supply of gas either directly from the gas field or terminal. another cause is that national production has been reduced and sold in certain places (bps, 2018). in order to decide to choose the best fuel for an area, it is necessary to consult with experts. the expert needs to have a system that can help provide calculation output for fuel selection. decision support systems (dss) are interactive computer-based systems that help decision-makers utilize data and models to solve unstructured and semi-structured problems (limbong et al., 2020). dss requires a method to find alternative solutions to problems that occur. the dss method used in this study is weighted product (wp). the wp method is calculated based on the level of importance. this method is more efficient because the time needed in the calculation is shorter (susliansyah et al., 2019). the wp method is a settlement method that uses multiplication to connect attribute ratings where the rating must be raised to the first power along with the weight of the attribute in question (aldo, 2019). so the wp method does not allow for the same vector values for different criteria (anggraeni, 2017). the use of the wp method is expected to answer the needs of policymakers in determining the most appropriate type of fuel to use in an area. making the right decision can be one of the efforts to ensure energy security to support economic growth. this study applies the wp method because of the simple calculation concept for determining the weights of almost the same value criteria. research methods types of research this research uses a quantitative method that is systematic and uses mathematical models. time and place of research the research starts from june 2021 to may 2022. the research location is at the center for research and development of oil and gas technology "lemigas," at jl. ciledug raya, kav. 109, cipulir, kebayoran lama, south jakarta. research target this study aims to design and build a decision support system for choosing the best fuel for households using the weighted product (wp) method. therefore, it is hoped that this will help consultants, fuel experts, and local governments speed up work in determining the best household fuel according to their respective regions. then, the interview stages are carried out to collect alternative data, criteria, and weights. procedure this research uses the waterfall method, one of the sdlc models often used in developing information systems or software. this method uses a systematic and sequential approach (wahid, 2020). the early stage of this research method is analysis consisting of data collection and weighted product method. data collection begins with the stages of observation, interviews, and the application of literary studies to produce output in the form of criteria data, data on alternative fuels, and their weights which are then calculated using the weighted product method to produce recommendation values. the next step is system design, which is to build a program applying object-oriented programming through the unified modeling language (uml) design process to produce use cases, activities, sequences, and class diagrams. the next stage is coding in implementing web-based programs using html programming languages, php, mysql databases, and web browsers using chrome. furthermore, black box testing is carried jurnal riset informatika vol. 5, no. 2. march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i1.506 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 247 out at the testing stage so that the system can run properly. figure 1. research method data, instruments, and data collection techniques based on the results of interviews conducted with a fuel expert at lembaga minyak dan gas (lemigas), data that will be used in calculating the weighted product method can be compiled. this study will use ten alternative fuels as samples, as shown in table 1. table 1. alternative data alternative code alternative name a1 gas city a2 lpg alternative code alternative name a3 biogas a4 bioethanol a5 kerosene a6 dimethyl ether (dme) a7 coal briquettes a8 coconut shell briquettes a9 rice husk briquettes a10 electricity criteria values and weights were obtained from fuel experts. in the weighted product method, there are two types of criteria, namely price and benefits criteria. the benefit criterion is that the greater the value, the more selected, and the price criterion, namely, the smaller the value, the more selected (widaningsih & manggala, 2020). the criteria, weight, and type can be seen in table 2. table 2. criteria data and weight code criteria weigh t type k1 price 30 cost k2 availability 25 benefit k3 infrastructure 10 benefit k4 safety 15 benefit k5 ease of use 15 benefit k6 pollution level 5 benefit total 100 the quantitative values of the criteria for each of the alternatives used are as follows ; the price criterion (k1) is obtained based on the price consumers must pay for the fuel if the fuel is available in the area. if the fuel is unavailable, then the price obtained is based on market prices. the availability criteria (k2) are obtained based on the ease with which the community obtains fuel in the area. the ease is measured based on the amount of fuel compared to the needs and mileage of taking the fuel from sources available in the area. the rating is in table 3. table 3. availability criteria (k2) description value very difficult 1 difficult 2 easy 3 quite easy 4 very easy 5 the infrastructure criteria (k3) are measured based on fuel facilities or infrastructure to reach the consumer. the rating is in table 4. p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i1.506 jurnal riset informatika vol. 5, no. 2. march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 248 table 4. infrastructure criteria (k3) description value very difficult 1 difficult 2 easy 3 quite easy 4 very easy 5 the safety criteria (k4) are measured based on the flammability of the fuel and the ease of detecting the presence of the fuel. the rating is in table 5. table 5. safety criteria (k4) description value not safe 1 less safe 2 safe 3 safe enough 4 very safe 5 the criteria for convenience (k5) are measured by consumers or the community, starting from turning on the stove to turning it off. the rating is in table 6. table 6. convenience criteria (k5) description value very difficult 1 difficult 2 easy 3 quite easy 4 very easy 5 the criteria level of pollution (k6) is measured by the results of burning these fuels, which damage human health. the rating is in table 7. table 7. criteria the level of pollution (k6) description value very high 1 high 2 medium 3 low 4 very low 5 if the value of each criterion has been determined, a matching rating table, as in table 8, is created. table 8. matching rating for each alternative alternative criteria k1 k2 k3 k4 k5 k6 a1 50000 1 1 1 5 5 a2 90000 3 3 3 5 4 a3 110000 2 2 2 4 5 a4 56000 5 4 4 2 4 a5 90000 3 3 4 3 3 a6 60000 1 3 2 5 5 a7 100000 2 4 5 1 1 a8 300000 2 4 5 1 1 a9 360000 2 4 5 1 1 a10 110000 3 3 4 3 5 data analysis technique weighted product (wp) calculates based on the level of importance and can evaluate a collection of attributes by multiplying all criteria with alternative results and ranking between weights and alternative multiplication results. the data from the conformity assessment results in table 8. that have been obtained will be processed using the weighted product method to produce the best alternative fuel recommendations. first, make improvements to the value of the weight of the criteria by adding up the weight of each criterion, then each initial weight of the criteria is divided by the sum of the weights of the criteria using the following formula 1. 𝑊𝑗 = 𝑊𝑗 ∑𝑊𝑗 .............................................................................. (1) description: 𝑊 : criteria weight 𝑗 : criteria next, calculate the s vector for each fuel alternative by multiplying all the attributes for an alternative with the weight as a positive exponent for the benefit attribute and a negative exponent for the cost attribute using formula 2. 𝑆𝑖 = ∏ 𝑋𝑖𝑗 𝑊𝑗𝑛 𝑗=1 ................................................................. (2) description: 𝑖 : alternative 1,2,…,m. jurnal riset informatika vol. 5, no. 2. march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i1.506 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 249 𝑆 : vector s 𝑋 : criteria value 𝑊 : criteria weight 𝑗 : criteria 𝑛 : the number of criteria after obtaining the value of vector s, calculate vector (v). that is, divide the preferences of each alternative by the total number of vectors (s) with the following formula 3. v𝑖 = 𝑆𝑖 ∑ 𝑆𝑖 .............................................................................. (3) description: 𝑖 : alternative 1,2,…,m. 𝑉 : vector v 𝑆 : vector s 𝑋 : criteria value 𝑊 : criteria weight 𝑗 : criteria 𝑛 : the number of criteria * : the number of criteria that have been assessed on the s vector after the value of the vector v is obtained, sort it based on the most significant value of v. a sequence of the best alternative fuels is found, which will be the decision. results and discussion the weighted product method calculates the best alternative fuel recommendation value for households. the process begins with alternative data, criteria, and weights as input. then, it calculates the improvement of the criterion weights. at this stage, the criterion weights from k1 to k6 will be corrected for the weight values. the result table can be seen in table 9. table 9. the improvement weights code old weight new weight k1 30 0,3 k2 25 0,25 k3 10 0,1 k4 15 0,15 k5 15 0,15 k6 5 0,05 furthermore, the next step is to run the program using a web-based programming language, php, with a mysql database. the code can be seen in pseudocode_ improvement weights. pseudocode_ improvement weights $numb = 1; foreach ($kriteria as $k) : $numb++ $k['normalisasi_bobot'] $bobot = 0; $no = 1; foreach ($kriteria as $kb) : $bobot = $bobot + $kb['normalisasi_bobot'] if ($no++ == sizeof($kriteria)) : $kb['normalisasi_bobot'] else $kb['normalisasi_bobot'] endif endforeach $k['normalisasi_bobot'] $bobot $k['normalisasi_bobot'] if ($k['jenis_kriteria'] == 'benefit') : $hasil = $k['normalisasi_bobot'] * 1 $k['normalisasi_bobot'] * (1) else : $hasil = $k['normalisasi_bobot'] * -1 $k['normalisasi_bobot'] ?> * (-1) endif $hasil $this->db->where('id', $k['id']); $this->db->update('kriteria', ['hasil' => $hasil]); endforeach next calculates vector s at this stage, and it calculates the value of vector s from alternative fuels a1 to a10. the result table can be seen in table 10. table 10. vector s si w1 w2 w3 w4 w5 w6 result s1 0,039 1 1 1 1,27 1,08 0,054 s2 0,033 1,32 1,12 1,18 1,27 1,07 0,077 s3 0,030 1,19 1,07 1,11 1,23 1,08 0,057 s4 0,038 1,50 1,15 1,23 1,11 1,07 0,095 s5 0,033 1,32 1,12 1,23 1,18 1,06 0,074 s6 0,037 1 1,12 1,23 1,18 1,06 0,063 s7 0,032 1,19 1,15 1,27 1 1 0,055 s8 0,023 1,19 1,15 1,27 1 1 0,040 s9 0,022 1,19 1,15 1,27 1 1 0,037 s10 0,031 1,32 1,12 1,23 1,18 1,08 0,071 total 0,622 the code that calculates vector s can be seen in pseudocode_ vectors. pseudocode_ vectors foreach ($kriteria as $krt) : ?> 100 / (sizeof($kriteria)) $krt['nama_kriteria'] $krt['normalisasi_bobot'] ?>) endforeach ?> foreach ($nilai_kriteria_alternatif as $alt => $value): $no =1 ; $hasil = 1; foreach ($value['nilai'] as $nilai_kriteria): 100 / (sizeof($value['nilai'])) % print_r($this->uri->segment(4) . ' here');die; // $getnilai = $this->db>get_where('nilai_kriteria_alternatif', ['wilayah_id' => $this->uri->segment(2), 'kriteria_id' => $krit['id'], 'alternatif_id' => $alt['id']])->row_array(); p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i1.506 jurnal riset informatika vol. 5, no. 2. march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 250 $hasil = $hasil * (pow($nilai_kriteria['nilai'], $nilai_kriteria['kriteria_hasil'])); $nilai_kriteria['nilai'] $nilai_kriteria['kriteria_hasil'] if ($no++ < sizeof($value['nilai'])): else: endif ?> if (is_infinite($hasil) || is_nan($hasil)) $hasil = 0; $where = ['wilayah_id' => $this->uri->segment(4), 'alternatif_id' => $nilai_kriteria['alternatif_id']]; $cekhasil = $this->db-> get_where('hasil_normalisasi', $where)-> row_array(); if ($cekhasil) $this->db-> update('hasil_normalisasi', ['hasil' => $hasil], $where); else { $where['hasil'] = $hasil; $this->db->insert('hasil_normalisasi', $where); } endforeach $hasil = number_format($hasil, 3) endforeach after obtaining the value of vector s1 to s10, calculate vector (v). from the results of the v vector, the recommendations are ranked from the largest to the smallest. the ranking table can be seen in table 11. table 11. the ranking table vi fuel score rank v4 bioethanol 0,152 1 v2 lpg 0,124 2 v5 kerosene 0,118 3 v10 electricity 0,114 4 v6 dimethyl ether (dme) 0,101 5 v3 biogas 0,092 6 v7 coal briquettes 0,088 7 v1 gas city 0,086 8 v8 coconut shell briquettes 0,064 9 v9 rice husk briquettes 0,060 10 then the recommended result is bioethanol fuel with the most significant vector v value of 0.152. the code calculates vector v can be seen in the pseudocode_ vector. pseudocode_ vectorv $alternatif = $this->db->select(" alternatif.nama_alternatif, hasil_normalisasi.*")>join("alternatif", "alternatif.id = hasil_normalisasi.alternatif_id")>get_where('hasil_normalisasi', ['wilayah_id' => $this>uri->segment(4)]); $num = 1; foreach ($alternatif->result() as $rank) : rank->nama_alternatif number_format($rank->hasil, 3) $jumlah = 0; $no = 1; foreach ($alternatif->result() as $ar) : $jumlah = $jumlah + $ar->hasil ?> if ($no++ == $alternatif->num_rows()) number_format($ar->hasil, 3) ?> else : number_format($ar->hasil, 3) ?>+ endif endforeach $hasil = $rank->hasil <= 0 ? 0 : $rank->hasil / $jumlah number_format($rank->hasil, 3 number_format($jumlah, 3) number_format($hasil, 3) $this->db->where('id_hasil', $rank->id_hasil); if (is_infinite($hasil) || is_nan($hasil)) $hasil = '0'; $this->db->update('hasil_normalisasi', ['hasil_wp' => $hasil]); endforeach ?> system displays this displays the calculation results and ranking of the best fuel priorities. the chart results of the method can be shown in figure 11. figure 11. chart results page the ranking of the best fuel priorities page can be shown in figure 12. figure 12. the ranking page 0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 n il a i v e k to r v bahan bakar gas kota lpg biogas biotanol minyak tanah dimetil eter (dme) briket batubara briket batok kelapa briket sekam padi listrik jurnal riset informatika vol. 5, no. 2. march 2023 p-issn: 2656-1743 |e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i1.506 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 251 conclusions and suggestions conclusion this study concludes that the wp system has been successfully developed to assist consultants, experts, and local governments in determining fuel in their regions. the weighted product method using five criteria of price, pollution level, availability, infrastructure, safety, and ease of use produces a ranking according to the magnitude of the vector (v) value obtained from testing ten alternative fuels, namely: (1) bioethanol (2) lpg (3) kerosene, (4) electricity, (5) dimethyl ether, (6) biogas, (7) coal briquettes, (8) city gas (9) coconut shell briquettes, and (10) rice husk briquettes. the system is designed using uml diagrams and built using a web programming language, php. system testing uses the black box method so that the system can run properly. suggestion this decision support system can be developed by comparing it with other methods, such as topsis or fuzzy logic, to support the accuracy of the data. the wp method can also support policymakers in making a policy for the best product among many products in some criteria. references afriyanti, y., sasana, h., & jalunggono, g. (2018). analisis faktor-faktor yang mempengaruhi konsumsi energi terbarukan di indonesia. directory journal of economics, 2(3), 865–884. https://doi.org/10.31002/dinamic.v2i3.142 8 aldo, d. (2019). pemilihan bibit lele unggul dengan menggunakan metode weighted product. jurnal teknologi dan open source, 2(1), 15– 23. https://doi.org/10.36378/jtos.v2i1.138 aliman, w. (2021). perancangan perangkat lunak untuk menggambar diagram berbasis android. jurnal ilmiah indonesia, 6(6), 3091– 3098. https://doi.org/10.36418/syntaxliterate.v6i6.1404 anggraeni, i. (2017). analisis perbandingan metode saw dan weight product pada pemilihan calon ketua badan eksekutif mahasiswa (bem) universitas pakuan. jurnal komputer terapan, 3(2), 203–212. https://jurnal.pcr.ac.id/index.php/jkt/articl e/view/1532 bps-badan pusat statistik kabupaten boalemo. (2018). kabupaten boalemo dalam angka 2017. diakses tanggal 8 desember 2021. from https://bps.go.id. laila, f., & rms, a. s. (2019). penentuan supplier bahan baku restaurant xo suki menggunakan metode weighted product. jurnal teknologi dan ilmu komputer prima, 2(1), 1–4. https://doi.org/10.34012/jutikomp.v2i1.412 limbong, t., muttaqin, iskandar, a., & simarmata, j. (2020). sistem pendukung keputusan: metode & implementasi (1st ed.). medan: yayasan kita menulis. mira yunita, a., nurafliyan susanti, e., & rizky, r. (2020). implementasi metode weight product dalam penentuan klasifikasi kelas tunagrahita. jurnal sistem informasi, 7(2), 78–82. https://doi.org/10.30656/jsii.v7i2.2408 pamungkas, c. a. (2017). pengantar dan implementasi basis data (1st ed.). yogyakarta: deepublish. pressman, r. s., & maxim, b. r. (2015). software engineering : a practitioner’s approach (8th ed.). new york: mcgrawhill education. ridlo al hakim, r. (2020). model energi indonesia, tinjauan potensi energy terbarukan untuk ketahanan. jurnal pengabdian kepada masyarakat. 1(1), 1–11. rohim & triani, m. (2021). faktor-faktor yang mempengaruhi konsumsi gas di indonesia. jurnal kajian ekonomi dan pembangunan, 3(2), 69-76. http://dx.doi.org/10.24036/jkep.v3i3.12364 sonata, f.-. (2019). pemanfaatan uml (unified modeling language) dalam perancangan sistem informasi e-commerce jenis customer-to-customer. jurnal komunika : jurnal komunikasi, media dan informatika, 8(1), 22-32. https://doi.org/10.31504/komunika.v8i1.18 32 soufitri, f. (2019). perancangan data flow diagram untuk sistem informasi sekolah (studi kasus pada smp plus terpadu). ready star, 2(1), 240–246. sugianto, r. a., roslina, r., & situmorang, z. (2021). kombinasi metode simple additive weigthing dan weigthed product untuk seleksi proposal program kreatifitas mahasiswa. jurnal media informatika budidarma, 5(2), 564-572. http://dx.doi.org/10.30865/mib.v5i2.2929 susliansyah, s., aria, r., & susilowati, s. (2019). sistem pemilihan laptop terbaik dengan menggunakan metode weighted product (wp). jurnal techno nusa mandiri, 16(1), 15– 20. https://doi.org/10.33480/techno.v16i1.105 https://doi.org/10.31002/dinamic.v2i3.1428 https://doi.org/10.31002/dinamic.v2i3.1428 https://doi.org/10.36418/syntax-literate.v6i6.1404 https://doi.org/10.36418/syntax-literate.v6i6.1404 https://doi.org/10.34012/jutikomp.v2i1.412 https://doi.org/10.30656/jsii.v7i2.2408 http://dx.doi.org/10.24036/jkep.v3i3.12364 https://doi.org/10.31504/komunika.v8i1.1832 https://doi.org/10.31504/komunika.v8i1.1832 http://dx.doi.org/10.30865/mib.v5i2.2929 https://doi.org/10.33480/techno.v16i1.105 p-issn: 2656-1743 | e-issn: 2656-1735 doi: https://doi.org/10.34288/jri.v4i1.506 jurnal riset informatika vol. 5, no. 2. march 2023 accredited rank 3 (sinta 3), excerpts from the decision of the minister of ristek-brin no. 200/m/kpt/2020 252 umam, m., muhammad, f., adityama, d., & purba, d. (2018). tantangan pengembangan energi panas bumi dalam perannya terhadap ketahanan energi di indonesia. swara patra : majalah ilmiah ppsdm migas, 8(3), 48–65. http://ejurnal.ppsdmmigas.esdm.go.id/sp/in dex.php/swarapatra/article/view/6 wahid, a. a. (2020). analisis metode waterfall untuk pengembangan sistem informasi. jurnal ilmu-ilmu informatika dan manajemen stmik, november, 1–5. widaningsih, s., & manggala, s. b. r. (2020). sistem pendukung keputusan pemilihan proyek perangkat lunak dengan menggunakan metode weighted product. media jurnal informatika, 12(2), 69–76. https://doi.org/10.35194/mji.v12i2.1198 widhyaestoeti, d., iqram, s., mutiyah, s. n., & khairunnisa, y. (2021). black box testing equivalence partitions untuk pengujian front-end pada sistem akademik sitoda. jurnal ilmiah teknologi infomasi terapan, 7(3), 211–216. https://doi.org/10.33197/jitter.vol7.iss3.20 21.626 https://doi.org/10.35194/mji.v12i2.1198 jurnal riset informatika vol. 2 no. 1 desember 2019 p-issn: 2656-1743 e-issn: 2656-1735 1 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. rancang bangun sistem informasi manajemen skripsi berbasis web menggunakan model waterfall ibnu rusdi, indra febria widy, noviyanti peratiwi 1teknik informatika sekolah tinggi manajemen informatika dan komputer nusa mandiri www.nusamandiri.ac.i ibnu.ibr@nusamandiri.ac.id 2,3teknik informatika sekolah tinggi teknik cendekia jl. islamic raya kompleks pendidikan islamic village kelapa dua tangerang www.cendekia.ac.id 2 indra.febria@cendekia.ac.id, 3 novi.per4tiwi@gmail.com abstrak dalam tulisan ini akan dibahas mengenai proses pembuatan manajemen skripsi berbasis web. penulis mengangkat tema ini karena saat ini mahasiswa sering sekali menjumpai permasalahan terhadap penulisan skripsi yang dimana membutuhkan banyak waktu dan juga membutuhkan banyak kertas untuk revisi dari dosen pembimbing. konfirmasi penulisan sangatlah penting bagi para mahsiswa dalam proses pembuatan penulisan mahasiswa, yang akan dilakukan penilaian oleh para dosen pembimbing yang dimana kreatifitas mahasiswa terlihat dalam tahap-tahap proses pembuatan penulisan skripsi nanti. model yang penulis gunakan menunjang sistem life development sistem (sdlc) yaitu model waterfall (air terjun) diharapkan dengan kemudahan dalam mengembangkan perangkat lunak (software) pada setiap tahap yang dikerjakan saling mendukung satu sama lain. tahapan pengerjaan dalam tulisan ini dimulai dari pengumpulan sumber permasalahan proses pembuatan penulisan mahasiswa dan menemukan tujuan untuk mempermudah mahasiswa dalam berkomunikasi dengan dosen pembimbing. dengan adanya manajemen skripsi ini diharapkan bisa digunakan sebagai data dalam membantu penulisan mahasiswa, dan membuat mahasiswa tidak harus menghamburkan kertas dalam revisi-revisi dari para dosen pembimbing. kata kunci: sistem informasi, manajemen skripsi, model waterfall abstract in this paper we will discuss the process of making a web-based thesis management. the author raises this theme because currently students often encounter problems with thesis writing which requires a lot of time and also requires a lot of paper for revision from the supervisor. writing confirmation is very important for students in the process of making student writing, which will be assessed by supervisors where student creativity is seen in the later stages of the thesis writing process. the model that the author uses supports the sistem life development system (sdlc), namely the waterfall model (waterfalls), which is expected to be easy in developing software (software) at each stage that is done mutually supporting one another. stages of work in this paper starts from gathering the source of the problem of the process of making student writing and finding a goal to facilitate students in communicating with the supervisor. with the management of this thesis it is hoped that it can be used as data in assisting students' writing, and making students not have to waste paper in the revisions of the supervisors. keywords: information sytems, thesis management, waterfall model pendahuluan dalam dunia pendidikan perlu adanya pengendalian informasi yang terkomputerisasi untuk mendukung penyampaian informasi yang lebih cepat, tepat, dan terpusat sehingga mengharuskan kebutuhan ini untuk direalisasikan dalam segala bidang. teknologi informasi dan komunikasi sebagai bagian dari ilmu pengetahuan dan teknologi secara umum adalah semua http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 2 no. 1 desember 2019 2 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional teknologi yang berhubungan dengan pengambilan,pengumpulan,pengolahan,penyimpa nan,penyebaran, dan penyajian informasi (abyzar, 2019). pada penelitian sebelumnya dengan adanya sistem monitoring ini pihak akademik stikom bali akan dengan mudah mengetahui perkembangan skripsi mahasiswa, sehingga jika terjadi kendala yang dihadapi oleh mahasiswa dalam pengerjaan skripsi maka pihak akademik dengan mudah dapat mencarikan solusinya(ramayasa & arwana, 2015). penulis mencoba merancang sebuah sistem agar mempermudah dosen dalam melakukan pemeriksaan skripsi mahasiswa dan memudahkan dosen untuk selalu berinteraksi ke mahasisawa tanpa harus mertemu langsung dengan siswa. diharapkan sistem yang akan dikembangkan ini menjadi salah satu bentuk komputerisasi sistem konvensional untuk memberikan kemudahan dalam melakukan studi, dengan menggunakan teknologi secara optimal (constantianus & suteja, 2005). sistem yang dapat memudahkan mahasiswa untuk memanajement skripsi dan memberikan approval kepada mahasiswa bimbingan, tanpa harus bertemu langsung dengan dosen. penulis dalam merancang sistem menggunakan berbasis web agar dapat diakses secara mudah dan dibuat dengan user interface dinamis. model pengembangan sistem yang digunakan dalam penelitian ini yaitu model waterfall (aediyansyah, 2018). tujuan dikembangkan aplikasi manajemen skripsi agar dosen dan mahasiswa dapat berinteraksi secara interaktif sehingga kendala dosen yang sulit dihubungi dan sebagainya dapat berkurang dan memudahkan dalam proses pengontrolan dari bidang akademik. metode penelitian jenis penelitian penelitian ini menggunakan pendekatan kuantitatif dan terapan. suatu proses menemukan pengetahuan yang menggunakan data berupa angka sebagai alat menganalisis keterangan mengenai apa yang ingin diketahui (hidayat, 2012). target/subjek penelitian (untuk penelitian kualitatif) atau populasi-sampel (untuk penelitian kuantitatif) perlu diurai dengan jelas dalam bagian ini(friyadie & fatayat, 2019) . model pengembangan sistem model waterfall atau air terjun menyediakan pendekatan alur hidup perangkat lunak secara sekuensial atau terurut dimulai dari analisis, desain, pengkodean, pengujian, dan tahap pendukung (support) (sukamto & salahudin, 2018). berikut tahapan-tahapan yang akan penulis kerjakan dengan metode pengembangan software waterfall: 1. analisis kebutuhan software pada tahap ini dilakukan eksplorasi mengenai kebutuhan dari pengguna (user). yaitu dengan cara melakukan observasi pada stt cedndikia mengenai masalah-masalah yang perlu diselesaikan seputar manajemen skripsi dan kebutuhan yang diperlukan bidang akademik. diharapkan dengan pengembangan sistem ini diharapkan memudahkan proses monitoring, serta bagi dosen dengan mahasiswa proses bimbingan skripsi lebih interaktif. 2. desain setelah kebutuhan dari pengembangan sistem informasi manajemn skripsi ini telah diketahui, maka akan dilakukan desain sistem. desain sistem menggunakan uml (activity diagram, usecase diagram, deployment diagram) untuk desain database menggunakan entity relationship diagram (erd) dan logical record structure (lrs). 3. code generation (implementasi) pada tahap ini penulis menggunakan bahasa pemrograman php, html dan database phpmyadmin sedangkan dalam proses pemrograman menggunakan framework codeigniter dengan fitur tampilan web dinamis dan user friendly. 4. testing pada tahap ini penulis mendeskripsikan proses pengujian yang akan dilakukan dengan menggunakan blackbox testing untuk meminimalisir kesalahan (error) dan memastikan keluaran yang dihasilkan sesuai dengan yang diharapkan selain itu penulis menggunakan software uantuk menguji kemanan dari aplikasi web menggunakan acunetix threat. 5. support dalam mendukung sistem informasi yang akan dikerjakan diperlukan perangkat keras (hardware) yaitu peralatan dalam bentuk fisik yang menjalankan perangkat lunak (software) dan peralatan ini berfungsi untuk menjalankan instruksi yang diberikan dan mengeluarkannya dalam bentuk informasi. gambar 1. ilustrasi model waterfall http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 2 no. 1 desember 2019 p-issn: 2656-1743 e-issn: 2656-1735 3 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. data, intrumen, dan teknik pengumpulan data untuk menunjang penelitian ini, penulis penulis menggunakan teknik pengumpulan data sebagai berikut: 1. observasi metode ini dilakukan dengan pengamatan langsung terhadap sistem manajemen skripsi yang digunakan oleh sekolah tinggi teknik (stt) cendekia. 2. wawancara metode ini merupakan suatu bentuk pengumpulan data dengan mengadakan tanya jawab langsung kepada bidang akademik sekolah tinggi teknik (stt) cendekia seputar objek yang akan diteliti. wawancara ini digunakan untuk mengumpulkan informasi yang tidak mungkin diperoleh lewat observasi. 3. studi pustaka pada teknik ini, penulis mencari atau menggali informasi atau pengetahuan dari berbagai referensi yang bersumber dari buku, jurnal dan lainnya yang berkaitan dengan objek penelitian yang dibahas dalam penulisan. hasil penelitian dan pembahasan analisa kebutuhan perangkat lunak langkah pertama yang dilakukan pada rancangan manajemen skripsi yang diterapkan, penulis mengidentifikasi kebutuhan yang diperoleh berdasarkan kebutuhan pengguna dan kebutuhan sistem. halaman ini terbagi menjadi tiga tampilan. tampilan pertama untuk administrator, yang kedua halaman untuk dosen, dan yang ketiga halaman untuk mahasiswa. 1. halaman untuk bagian admin a. mengelola data mahasiswa. b. mengelola data dosen . 2. halaman untuk dosen a. dosen dapat melakukan login. b. pada halaman ini dosen dapat mengelola data status penulisan yang disetujui . c. dosen dapat mengelola data status pengajuan yang belum disetujui. 3. halaman untuk mahasiswa a. pada halaman ini pengunjung dapat mahasiswa melihat status penulisan. b. mahasiswa melakukan login. c. mahasiswa melakukan pengajuan perancangan penulisan. perancangan perangkat lunak 1. perancangan sistem perangkat lunak perancangan sistem informasi manajemen skripsi ini dengan menggunakan use case diagram. use case diagram menggabarkan hubungan antara aktor dan kegiatan yang dapat dilakukannya terhadap aplikasi (sukamto & salahudin, 2018). gambar 2. use case diagram rancang bangun skripsi tabel 1. sekenario use case login use case name : login untuk mengakses sistem use case description : pengguna login ke dalam sistem untuk mengakses fungsifungsi sistem actors : admin, dosen, mahasiswa pre-condition : pastikan jaringan internet terkoneksi agar tidak ada kendala dalam mengakses sistem postcondition : sistem akan menampilkan popup setelah berhasil login, sesuai dengan hak akses main scenarios serial step (tahap/langkah) actor 1 input username, input password 2 validasi username dan password 3 jika benar diberikan akses ke sistem sesuai hak akses extension 2a invalid username, menampilkan popup pesan username salah http://creativecommons.org/licenses/by-nc/4.0/ p-issn: 2656-1743 e-issn: 2656-1735 jurnal riset informatika vol. 2 no. 1 desember 2019 4 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional 2b invalid password, menampilkan popup pesan password salah 2. perancangan database perancangan basis data utama dengan menggunakan entity ralationship diagram (erd), dengan mengidentifikasi jenis entitas dan attribut. jurusan jurusan_id nama dosen user_accountmahasiswa mahasiswa_list skripsi punya jurusan_id dosen_id nama telpon email nip siswa_id status create_dateperiode posisi foto siswa_id dosen_id list_id remark status skripsi_id siswa_id judul file deskripsi nama id nip email user_password type nama nim telepon foto create_date kelolapunya kelola lakukan 1 m 11 1 m m n m 1 gambar 3. entity relationship diagram (erd) aplikasi manajemen skripsi perancangan logical record structure (lrs), menjelaskan tentang alur dari suatu record. mahasiswa_list pk list_id dosen_id siswa_id periode status created_date skripsi pk skripsi_id siswa_id judul file deskripsi status created_date remark dosen pk dosen_id nama nip telpon email posisi created_date jurusan_id foto skripsi_detail pk skripsi_det_id skripsi_id judul file deskripsi status nilai jurusan pk jurusan_id nama user_account pk id nama nip email user_password type mahasiswa pk siswa_id nama nip jurusan_id telpon created_date foto gambar 4. logical record structure aplikasi manajemen skripsi 3. perancangan navigasi a. navigasi halaman pengguna manajemen skripsi. gambar 5. struktur navigasi aplikasi manajemen skripsi 4. rancangan user interface a. halaman login pengguna pada halam ini pengguna diinstruksikan memasukan atau input data dengan benar agar dapat mengakses sistem gambar 6. tampilan awal login pengguna b. tampilan data mahasiswa yang akan skripsi data mahasiswa yang sudah memenuhi criteria untuk mengikuti skripsi pada semester berjalan akan ditampilkan gambar 7. tampilan data mahasiswa yang skripsi http://creativecommons.org/licenses/by-nc/4.0/ jurnal riset informatika vol. 2 no. 1 desember 2019 p-issn: 2656-1743 e-issn: 2656-1735 5 ciptaan disebarluaskan di bawah lisensi creative commons atribusi-nonkomersial 4.0 internasional. c. tampilan data dosen pembimbing skripsi data dosen pembimbing yang telah memenuhi syarat membimbing mahasiswa untuk skripsi pada stt cendekia. gambr 8. tampilan data dosen pada gambar 8 diatas, menampilkan daftar dosen stt cendekia yang telah memenuhi syarat menjadi dosen pembimbing skripsi mahasiswa. d. tampilan pengajuan skripsi ke dosen oleh mahasiswa gambar 9. tampilan pengajuan judul mahasiswa pada gambar 9 diatas, menampilkan bentuk konsultasi mahasiswa kepada dosen pembimbing skripsi melalui aplikasi manajemen skripsi. e. tampilan detail skripsi mahasiswa gambar 10. tampilan detail skripsi mahasiswa pada gambar 10 diatas, mahasiswa stt cendekia mengajukan per bab yang terdapat dalam skripsi. sehingga dosen pembimbing dapat melihat dan mengecek file yang telah diajukan serta dosen diharapkan memberikan catatan terhadap pengajuan tersebut agar mahasiswa mengetahui yang harus diperbaiki atau revisi. f. tampilan persetujuan (approve it) skripsi mahasiswa pada tampilan berikut akan menampilkan data pesetujuan dosen kepada mahasiswa yang telah selesai mengerjakan skripsi dan berinteraksi aktif dalam aplikasi manajemen skripsi. gambar 11. tampilan approve it (persetujuan) dosen pada gambar 11 diatas, apabila mahasiswa telah diperiksa semua pengajuan bab dan telah memperbaiki serta telah sesuai kaidah penulisan. dosen pembimbing dapat memberikan persetujuan melalui aplikasi manajemen skripsi dan mahasiswa diwajibkan menemui serta meminta tanda tangan dosen pembimbing secara langsung. code perangkat lunak
nama)?>
nip : nip)?>
list judul skripsi