JURNAL RISET INFORMATIKA 
Vol. 2, No. 4 September 2020 

P-ISSN: 2656-1743 |E-ISSN: 2656-1735 
DOI: https://doi.org/10.34288/jri.v2i4.159 

 

 
233 

 

 
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License 

IMPLEMENTATION OF DATA MINING TO DETERMINE THE 
ASSOCIATION BETWEEN BODY CATEGORY FACTORS BASED ON BODY 

MASS INDEX 
 

Desti Fitriati1, Bima Putra Amiga2 
 

Program Studi Teknik Informatika1,2  
Universitas Pancasila1,2 

desti.fitriati@univpancasila.ac.id1, bimaamg@gmail.com2 

 
Abstrak 

Perkembangan arus globalisasi yang semakin meningkat dalam bidang ilmu pengetahuan dan teknologi 
serta peningkatan pendapatan telah memberikan dampak pada berkurangnya aktivitas fisik masyarakat 
yang mengakibatkan penyimpangan pola makan dan aktivitas fisik yang membuat seseorang tidak 
memperhatikan bentuk tubuhnya. Metode perhitungan Indeks Massa Tubuh ini dapat digunakan untuk 
menentukan bentuk tubuh seseorang. Terdapat beberapa faktor yang dapat mempengaruhi nilai Indeks 
Massa Tubuh diantaranya adalah faktor individu, pola konsumsi, dan kurangnya aktivitas fisik yang 
mengarah pada  pola  hidup sedentaris (sedentary lifestyle). Faktor-faktor tersebut dijadikan menjadi 69 
itemset yang akan dijadikan dasar pertanyaan dalam kuesioner untuk mengumpulkan dataset yang 
nantinya akan diolah menggunakan algoritma FP-Growth dan dicari aturan asosiasi yang memiliki nilai 
support x confidence tertinggi. Dari 490 data hasil perhitungan dikategorikan menjadi 10 masing-masing 
adalah Laki-Laki dengan Indeks Massa Tubuh (IMT) Sangat Kurus dengan nilai support x confidence 
tertinggi sebesar 39,56%, Laki-Laki dengan IMT Kurus sebesar 55,90%, Laki-Laki dengan IMT Normal 
sebesar 70%, Laki-Laki dengan IMT Gemuk sebesar 49,23%, Laki-Laki dengan IMT Obesitas sebesar 41,34%, 
Perempuan dengan IMT Sangat Kurus sebesar 41,37%, Perempuan dengan IMT Kurus sebesar 37,21%, 
Perempuan dengan IMT Normal sebesar 68,83%, Perempuan dengan IMT Gemuk sebesar 41,65%, dan 
Perempuan dengan IMT Obesitas sebesar 42,91%. 
 
Kata kunci: Algoritma  FP-Growth, Data Mining, Asosiasi, Indeks Massa Tubuh, IMT 
 

Abstract 
The development of the increasing flow of globalization in the field of science and technology as well as 
increased income has resulted in reduced physical activity of the community which results in diverging 
diet and physical activity which makes a person not pay attention to his body shape. This method of 
calculating the Body Mass Index can be used to determine a person's body shape. Several factors can affect 
the value of the Body Mass Index, including individual factors, consumption patterns, and lack of physical 
activity which leads to a sedentary lifestyle. These factors are made into 69 itemsets which will be used as 
the basis for questions in the questionnaire to collect a dataset that will later be processed using the FP 
Growth algorithm and looking for association rules that have the highest support x confidence value. From 
the 490 calculation data, the results are categorized into 10, each of which is Men with a Very Thin BMI 
with the highest support x confidence value of 39.56%, Men with a Thin BMI of 55.90%, Men with a 
Normal BMI of 70%, men with a fat BMI of 49.23%, men with an obese BMI of 41.34%, women with a very 
thin BMI of 41.37%, women with a thin BMI of 37.21%, Normal BMI is 68.83%, women with obese BMI 
are 41.65%, and women with obese BMI are 42.91%. 
 
Keywords: FP-Growth Algorithm, Data Mining, Associations, Body Mass Index, IMT 
 
 

PENDAHULUAN 
 
The development of the increasing flow of 

globalization in the field of science and technology 
as well as increasing incomes have had an impact 
on changes in lifestyle, behavior, and situations in 
the community (Ayuni, Suharso, & Sukidin, 2019). 

These changes have an impact on reduced physical 
activity (Suryadinata & Sukarno, 2019) a society 
which results in divergent eating patterns and 
physical activities that make a person not pay 
attention to his body shape (Rahmayanti, 2016) 

Some people feel their body is fat when in 
fact they are not fat or vice versa (Ariati, Gumala, & 

http://creativecommons.org/licenses/by-nc/4.0/
mailto:desti.fitriati@univpancasila.ac.id1


P-ISSN: 2656-1743 | E-ISSN: 2656-1735 
DOI: https://doi.org/10.34288/jri.v2i4.159 

JURNAL RISET INFORMATIKA 
Vol. 2, No. 4 September 2020 

 

 
234 

 

 
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License 

Nursanyoto, 2017). This perception arises because 
a person does not know how to categorize his body 
shape (Nahdiyah, 2015) in the right way. One way 
to find out a person's body shape is by calculating 
the Body Mass Index method.  

This method of calculating the Body Mass 
Index can be used to determine a person's 
nutritional status (Kusuma & Pinandita, 2011), 
(Syahputra & Muhathir, 2018). The results of the 
calculation of the Body Mass Index can be 
categorized into very thin, skinny, normal, 
overweight, and obese body shapes. (Putra & 
Solichathi Rizqi, 2018). Among the Body Mass 
Index categories, obesity is a problem (Dewi & 
Mahmudiono, 2013) where people who are 
categorized by body shape have excess nutrition 
(Dewi & Mahmudiono, 2013). In public life, the 
term obesity is usually called overweight. This 
obesity phenomenon is the result of an unbalanced 
excessive intake of nutrients (Mahdali, 2019) by 
expending energy and can cause health problems 
(Hasanah & Febrianti, 2012). A high Body Mass 
Index (BMI) value is indicated by a bodyweight 
above the average due to the accumulation of 
excess fat in the body over a long period. (Jannah & 
Utami, 2018) 

In 2016, WHO stated that the prevalence 
of obesity in the world has more than doubled 
since 1980. In 2014, more than 1.9 billion adults 
aged 18 years and older were overweight, and 600 
million among them are obese. Some of the factors 
associated with high Body Mass Index include high 
dietary habits and lack of physical activity which 
leads to a sedentary lifestyle such as watching 
television and playing computer/video games. 
This study aims to examine the relationship 
between the factors that influence body shape 
based on a person's BMI which includes individual 
factors, physical activity, eating habits, sedentary 
behavior, and stress factors at work using the FP-
Growth algorithm data mining method. Also, this 
study provides guidelines and guidelines to 
determine what factors influence body shape based 
on BMI. 
 

RESEARCH METHODS 
 
Types of research 

This research is a type of experimental 
quantitative research, where the conclusion of this 
study is based on the results of the calculation trial 
which is selected the best. 
 
Time and Place of Research 

The data collection time in this study was 
October 2019. 
 

Research Target / Subject 
In this study using non-physical data by 
distributing questionnaires that have been 
compiled based on the results of a literature study. 
Then the questionnaire was distributed to general 
people using Google Form. The completed 
questionnaires will be collected in a file with the 
XLS extension. Subjects were taken randomly to 
get various types of body categories. 
 
Procedure 

The FP-Growth algorithm uses the concept 
of building a tree, which is commonly called the FP-
Tree, in searching for Frequent itemsets instead of 
generating candidates as is done in the Apriori 
Algorithm. By using this concept, the FP-Growth 
algorithm is faster than the Apriori algorithm 
(Anggraeni, Iha, Erawati, & Khairunnas, 2019). The 
following are the steps for the FP-Growth 
algorithm. 
 
1. Determine the minimum support and 

minimum confidence. 
2. Create an Fp-Tree based on the sorted itemset. 

Fp-Tree is formed by a root labeled Null, a 
group of trees whose members are certain 
items. Each node in the Fp-Tree contains three 
important information, namely the item label, 
informing the type of item the node represents, 
support count, representing the number of 
transaction paths that go through the node, 
and a pointer  (Muliono, 2017). 

3. Create a Conditional Pattern Base. Conditional 
Pattern Base is a sub-database that contains a 
prefix path and a pattern suffix. Generating the 
Conditional Pattern Base is obtained through 
the previously built Fp-Tree. The Conditional 
Pattern Base is obtained from the FP-tree. 

4. Create a Conditional Fptree. At this stage, the 
support count of each item in each Conditional 
Pattern Base is added up, then each item that 
has a support count greater than the minimum 
support count will be generated with a 
conditional FP-tree. The conditional Fp.tree 
was obtained from the established fp.tree 
(Lestari, 2015). 

5. Create a Frequent Pattern. The Frequent 
itemset Search Stage If the Conditional Fp-Tree 
is a single path, then the Frequent itemset is 
obtained by doing a combination of items for 
each conditional FP-tree. If it is not a single 
track, a Frequent Pattern will be generated. 
Frequent Patterns are obtained from the 
Conditional Fp-Tree 

6. Create association rules. The results of the 
Association Rules are obtained from the 
conditional Frequent pattern which is entered 

http://creativecommons.org/licenses/by-nc/4.0/


JURNAL RISET INFORMATIKA 
Vol. 2, No. 4 September 2020 

P-ISSN: 2656-1743 |E-ISSN: 2656-1735 
DOI: https://doi.org/10.34288/jri.v2i4.159 

 

 
235 

 

 
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License 

into the support, confidence, lift ratio formula. 
Lift ratio is an important parameter besides 
support and confidence in the association rule. 
The lift ratio measures how important the rule 
is based on the value of support and 
confidence. The lift ratio is a value that 
indicates the validity of the transaction process 
and provides information on whether product 
A has a relationship with product B. If the 
calculation results are looking for lift ratio> 1, 
then we can determine a valid rule. The results 
of the Association Rules are obtained from the 
conditional Frequent pattern. And to find out 
the validation of the results of the association 
rules, the Support, Confidence, and Lift ratio 
values can be calculated. 

 
Data, Instruments, and Data Collection 
Techniques 

The data used in this study are primary, that is, 
the data is taken and processed by the researcher. 
The data collection technique used was a randomly 
distributed questionnaire form, where the 
instrument used was the Google Form. 
 
Data analysis technique 

The results of data processing using the FP 
Growth algorithm by setting a minimum support 
value which is determined based on the upper 
quartile calculation of the itemset frequency of 
each gender and BMI, and minimum confidence of 
80%. Where the minimum 80% confidence 
indicates the certainty that the data will appear in 
the item set. 

   
 

RESULTS AND DISCUSSION 
 
The results of the research are presented 

in graphical, tabular, or descriptive form. Analysis 
and interpretation of these results are required 
before the discussion. 

 
Data processing 

The data that will be used to predict this is 
obtained based on the results of the questionnaire 
that the respondents have filled in. The results of 
the questionnaire can be divided into 10 types of 
respondent characteristics based on gender and 
BMI category. The following is the distribution in 
Table 1 below. 

 
Table 1. Data Grouping by Gender and BMI 

No. Gender BMI 
1 Laki- Laki Sangat Kurus 
2 Laki- Laki Kurus 
3 Laki- Laki Normal 

No. Gender BMI 
4 Laki- Laki Gemuk 
5 Laki- Laki Obesitas 
6 Perempuan Sangat Kurus 
7 Perempuan Kurus 
8 Perempuan Normal 
9 Perempuan Gemuk 

 
For the itemset used, there were 69 

itemsets, among others, as shown in Table 2 below. 
 
Table 2. List of Itemset Categories 

No. Code Itemset 
1 A1 Remaja 
2 A2 Dewasa 
3 B1 Jawa dan Bali 
4 B2 Sumatra 
5 B3 Kalimantan 
6 B4 Papua 
7 B5 Sulawesi 
8 B6 Maluku 
9 B7 Nusa Tenggara 
10 B8 Pendatang 
11 C1 Tidak Berpendidikan 
12 C2 Pendidikan Terakhir SD atau yang 

Sederajat 
13 C3 Pendidikan Terakhir SMP atau yang 

Sederajat 
14 C4 Pendidikan Terakhir SMA atau yang 

Sederajat 
15 C5 Pendidikan Terakhir D3 
16 C6 Pendidikan Terakhir D4 
17 C7 Pendidikan Terakhir S1 
18 C8 Pendidikan Terakhir S2 
19 C9 Pendidikan Terakhir S3 
20 D1 Perokok Aktif 
21 D2 Perokok Pasif 
22 D3 Mantan Perokok 
23 D4 Tidak Rokok 
24 E1 Waktu Tidur Ideal 
25 E2 Waktu Tidur Tidak Ideal 
26 F1 Makan Pagi Sering 
27 F2 Makan Pagi Sebagian Besar Waktu 
28 F3 Makan Pagi Jarang 
29 F4 Makan Pagi Tidak Pernah 
30 G1 Makan Siang Sering 
31 G2 Makan Siang Sebagian Besar Waktu 
32 G3 Makan Siang Jarang 
33 G4 Makan Siang Tidak Pernah 
34 H1 Makan Malam Sering 
35 H2 Makan Malam Sebagian Besar Waktu 
36 H3 Makan Malam Jarang 
37 H4 Makan Malam Tidak Pernah 
38 I1 Konsumsi Susu Sering 
39 I2 Konsumsi Susu Sebagian Besar 

Waktu 
40 I3 Konsumsi Susu Jarang 
41 I4 Konsumsi Susu Tidak Pernah 
42 J1 Konsumsi Buah Sering 
43 J2 Konsumsi Buah Sebagian Besar 

Waktu 
44 J3 Konsumsi Buah Jarang 

http://creativecommons.org/licenses/by-nc/4.0/


P-ISSN: 2656-1743 | E-ISSN: 2656-1735 
DOI: https://doi.org/10.34288/jri.v2i4.159 

JURNAL RISET INFORMATIKA 
Vol. 2, No. 4 September 2020 

 

 
236 

 

 
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License 

No. Code Itemset 
45 J4 Konsumsi Buah Tidak Pernah 
46 K1 Konsumsi Fast Food Sering 
47 K2 Konsumsi Fast Food Sebagian Besar 

Waktu 
48 K3 Konsumsi Fast Food Jarang 
49 K4 Konsumsi Fas Food Tidak Pernah 
50 L1 Konsumsi Makanan Kecil Sering 
51 L2 Konsumsi Makanan Kecil Sebagian 

Besar Waktu 
52 L3 Konsumsi Makanan Kecil Jarang 
53 L4 Konsumsi Makanan Kecil Tidak 

Pernah 
54 M1 Konsumsi Minuman Berasa Sering 
55 M2 Konsumsi Minuman Berasa Sebagian 

Besar Waktu 
56 M3 Konsumsi Minuman Berasa Jarang 
57 M4 Konsumsi Minuman Berasa Tidak 

Pernah 
58 N1 Konsumsi Soft Drink Sering 
59 N2 Konsumsi Soft Drink Sebagian Besar 

Waktu 
60 N3 Konsumsi Soft Drink Jarang 
61 N4 Konsumsi Soft Drink Tidak Pernah 
62 O1 Sedentary Behavior Rendah 
63 O2 Sedentary Behavior Tinggi 
64 P1 Aktivitas Fisik Ringan 
65 P2 Aktivitas Fisik Kuat 
66 P3 Aktivitas Fisik Sedang 
67 Q1 Stress Ringan 
68 Q2 Stress Sedang 
69 Q3 Stress Berat 

 
 

System Design 
The architecture of this system contains 

four kinds of data which can be seen in Figure 1, 
namely Login, category management, management 
dataset, and calculation of FP Growth. This login 
process is only done by the admin. Admin is 
required to log in before entering the system. The 
admin in this system is only one condition and 
cannot be added so that it does not require user 
management. 

There are two data management systems 
for this system, namely the management data 
category and the management dataset. Categorical 
data that contains factors that affect the value of 
the Body Mass Index. While the dataset contains 
data from the distribution of questionnaires filled 
out by respondents. 

Finally, the calculation of FP Growth, 
which contains the process of calculating FP-
Growth from the tb_relation data, which contains 
data from the results of the respondent's 
questionnaire and is related to tb_data and 
tb_category. The calculation of FP-Growth is 
carried out to see the results of the association 
between the factors that affect the Body Mass 
Index value. 

 

 
Figure 1. Software Architecture 

 
The following is a snippet of the FP-Growth 
program: 
 
<?php 

class Fpg extends CI_Controller { 

public function __construct() 

{ 

parent::__construct();    

 

if(!$this->session  

>userdata('login')) 

redirect('user/login'); 

 

$this->load->model('data_model');  

$this->load 

>model('kategori_model'); 

$this->load->helper('fpgrowth'); 

$this->load->model('relasi_model');   

} 

 

public function index() {   

$data['title'] = 'Perhitungan FP- 

Growth'; 

$this->form_validation->set_rules(  

'min_support', 'Minimal Support', 'required' 

); 

$this->form_validation->set_rules( 

'min_confidence', 'Minimal Confidence', 

'required' ); 

    

if ($this->form_validation->run()=== FALSE) 

{  

 load_view('fpg', $data);  

} 

else 

{  

$data['data'] = $this->relasi_model > 

get_relasi_filter($this->input->post('jk'), 

$this->input->post('imt')); 

$data['kategori'] = $this->kategori_model-

>tampil(); 

  

$this->load->view('header', $data); 

$this->load->view('fpg'); 

$this->load->view('fpg_hasil'); 

$this->load->view('footer'); 

}  

}  

} 
 

http://creativecommons.org/licenses/by-nc/4.0/


JURNAL RISET INFORMATIKA 
Vol. 2, No. 4 September 2020 

P-ISSN: 2656-1743 |E-ISSN: 2656-1735 
DOI: https://doi.org/10.34288/jri.v2i4.159 

 

 
237 

 

 
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License 

 
Implementation Program 
 
1. FP-Growth Calculation page 
 

 
Figure 2. FP-Growth Calculation Page Interface 

 
Figure 2 is the initial entry before calculating the 
FP Growth according to the selected category, 
where the entries include setting Gender, BMI 
Category, the minimum value of support, and 
minimum confidence. In this study, we will look 
for the associated value of the factors that affect 
the value of BMI based on gender and BMI 
category. 
 
2. The interface of FP-Growth for Ordered 

Itemset Stage 
 

 
Figure 3 Detailed Interface Implementation 

 
After making the initial settings, then the item 
combination process is carried out as seen in 
Figure 3 above. 
 
3. FP-Growth Calculation Interface for 

Conditional FP-Tree Stage 

 
Figure 4 FP-Growth Calculation Interface for 

Conditional FP-Tree Stage 
 
After obtaining an ordered itemset, the next step 
is to calculate the conditional pattern base and 
conditional FP-Tree to get the rules as shown in 
Figure 4. 
 
4. FP-Growth Calculation Interface Frequency 

Pattern Stage 
 

 
Figure 5 Formation Interface for FP-Growth Stage 

Frequency Pattern 
 
After getting the rules, then this algorithm starts 
making Frequency Patterns. Where at this stage 
you will see several itemsets that are always close 
together and the number of occurrences is 
calculated simultaneously. The frequency pattern 
stage can be seen in Figure 5 above. 
 
5. FP-Growth Calculation Interface Association 

Rules Stage 
 

http://creativecommons.org/licenses/by-nc/4.0/


P-ISSN: 2656-1743 | E-ISSN: 2656-1735 
DOI: https://doi.org/10.34288/jri.v2i4.159 

JURNAL RISET INFORMATIKA 
Vol. 2, No. 4 September 2020 

 

 
238 

 

 
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License 

 
Figure 6 The interface of FP-Growth Calculation of 

Association Rules Stage 
 
The last step to take is to find association rules that 
match the predetermined minimum support and 
minimum confidence. The results of the final 
association are taken for itemset that has a lift ratio 
value of more than 1. Figure 6 shows the results of 
the rules taken, where the itemset that is blocked 
or colored orange are itemsets that do not meet the 
requirements. 
 
Results Analysis 

Based on the test results by setting a minimum 
confidence value of 80%, the following results 
were obtained: 
1. The results of system testing for the male sex 

group with a very thin BMI category with a 
minimum support value of 16, the highest 
support x confidence results are 39.56% in the 
association rule "If you eat dinner often then 
ideal sleep time". 

2. the results of the system test for the male sex 
group with the thin BMI category with a 
minimum support value of 20, the highest 
support x confidence results are 55.90% in the 
association rules "If the last education is a high 
school or equivalent, then the adolescent age" 

3. the results of system testing for the male sex 
group with the Normal BMI category with a 
minimum support value of 20, the results 
obtained support x confidence of 70% in the 
association rules "If the Age is Adolescent then 
the Last Education is High School or the 
Equivalent" 

4. the results of the system test for the male sex 
group with the Fat BMI category with a 
minimum support value of 22, the highest 
support x confidence results are 49.23% on the 
association rule "If lunch is frequent, then 
adult age" 

5. the results of system testing for the male sex 
group with the category of BMI Obesity with a 
minimum support value of 23, the highest 
support x confidence results are 41.34% in the 
association rules "If you are a teenager then 
the last education is high school or equivalent" 

6. The results of system testing for the female sex 
group in the Very Thin BMI category with a 
minimum support value of 17, the highest 
support x confidence results are 41.37% in the 
association rule "If Sedentary Behavior is High, 
then Stress is Moderate" 

7. The results of system testing for the female sex 
group with the Normal BMI category with a 
minimum support value of 19, the highest 
support x confidence results are 37.21% in the 
association rule "If you consume milk most of 
the time then moderate stress" 

8. the results of the system testing for the female 
sex group with the thin BMI category with a 
minimum support value of 20, the highest 
support x confidence results are 68.83% in the 
association rules "If the last education is a high 
school or equivalent, then the teenage age" 

9. the results of system testing for the female sex 
group with the Fat BMI category with a 
minimum support value of 22, the highest 
support x confidence results are 41.65% in the 
association rules "If you are an adult then don't 
smoke" 

10. The results of system testing in the female sex 
group with the BMI category of Obesity with a 
minimum support value of 24 obtained the 
highest support x confidence results of 42.91% 
in the association rule "If it is ideal sleep time 
then the adult age" 

 
CONCLUSIONS AND SUGGESTIONS 

 
Conclusion 

From the 490 calculation data, the results 
are categorized into 10, each of which is Men with 
a Very Thin BMI with the highest support x 
confidence value of 39.56%, Men with a Thin BMI 
of 55.90%, Men with a Normal BMI of 70%, men 
with a fat BMI of 49.23%, men with an obese BMI 
of 41.34%, women with a very thin BMI of 41.37%, 
women with a thin BMI of 37.21%, Normal BMI is 
68.83%, women with obese BMI are 41.65%, and 
women with obese BMI are 42.91%. 
 
Suggestion 

It is necessary to distribute questionnaires 
more widely to add more data to obtain the results 
of the association rules which have a higher 
support x confidence value in each grouping based 
on the Gender and Body Mass Index Category. 

http://creativecommons.org/licenses/by-nc/4.0/


JURNAL RISET INFORMATIKA 
Vol. 2, No. 4 September 2020 

P-ISSN: 2656-1743 |E-ISSN: 2656-1735 
DOI: https://doi.org/10.34288/jri.v2i4.159 

 

 
239 

 

 
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License 

REFERENCE 
 
Anggraeni, S., Iha, M. A., Erawati, W., & Khairunnas, 

S. (2019). Analysis of Sales by Using Apriori 
and FP-Growth at PT. Panca Putra Solusindo. 
Riset Dan E-Jurnal Manajemen Informatika 
Komputer, 3(2), 41–46. Retrieved from 
https://jurnal.polgan.ac.id/index.php/remik/
article/view/10107 

 
Ariati, N. N., Gumala, N. M. Y., & Nursanyoto, H. 

(2017). HUBUNGAN KONSUMSI 
MAKRONUTRIEN DENGAN RESIKO 
PENUAAN DINI PADA LANSIA YANG 
MENGIKUTI SENAM LANSIA DI POSYANDU 
KABUPATEN GANYAR. Jurnal Sangkareang 
Mataram, 3(3), 34–37. Retrieved from 
http://untb.ac.id/wp-
content/uploads/2017/06/8.HUBUNGAN-
KONSUMSI-MAKRONUTRIEN-DENGAN-
RESIKO-PENUAAN-DINI-PADA-LANSIA-
Nengah-Ariati.pdf 

 
Ayuni, A., Suharso, P., & Sukidin, S. (2019). 

PERUBAHAN GAYA HIDUP MAHASISWI 
UNIVERSITAS ABDURACHMAN SALEH KOTA 
SITUBONDO (STUDI KASUS: PERILAKU 
KONSUMTIF MAHASISWI FAKULTAS 
EKONOMI JURUSAN MANAJEMEN 
ANGKATAN 2014 DALAM MENGGUNAKAN 
KOSMETIK BRANDED). JURNAL PENDIDIKAN 
EKONOMI: Jurnal Ilmiah Ilmu Pendidikan, 
Ilmu Ekonomi Dan Ilmu Sosial, 13(1), 58–65. 
https://doi.org/10.19184/jpe.v13i1.10421 

 
Dewi, A., & Mahmudiono, T. (2013). Hubungan Pola 

Makan, Aktivitas Fisik, Sikap, dan 
Pengetahuan Tentang Obesitas dengan Status 
Gizi Pegawai Negeri Sipil di Kantor Dinas 
Kesehatan Provinsi Jawa Timur. Jurnal Media 
Gizi Indonesia, 9(1), 42–48. 

 
Hasanah, D. N., & Febrianti, M. (2012). KEBIASAAN 

MAKAN MENJADI SALAH SATU PENYEBAB 
KEKURANGAN ENERGI KRONIS (KEK) PADA 
IBU HAMIL DI POLI KEBIDANAN RSI&A 
LESTARI CIRENDEU TANGERANG SELATAN. 
Jurnal Kesehatan Reproduksi, 3(3), 91–104. 
Retrieved from 
https://media.neliti.com/media/publications
/106703-ID-kebiasaan-makan-menjadi-
salah-satu-penye.pdf 

 
Jannah, M., & Utami, T. N. (2018). Faktor yang 

Memengaruhi Terjadinya Obesitas Pada Anak 
Sekolah di SDN 1 Sigli Kabupaten Pidie. Jurnal 
Kesehatan Global, 1(3), 110–118. 

https://doi.org/10.33085/jkg.v1i3.3928 
 
Kusuma, B. J., & Pinandita, T. (2011). Rancang 

Bangun Aplikasi Mobile Perhitungan Indeks 
Massa Tubuh dan Berat Badan Ideal. Juita, 
I(4), 157–168. Retrieved from 
https://www.neliti.com/publications/92701
/rancang-bangun-aplikasi-mobile-
perhitungan-indeks-massa-tubuh-dan-berat-
badan-id 

 
Lestari, Y. D. (2015). Penerapan Data Mining 

Menggunakan Algoritma Fp-Tree Dan Fp-
Growth Pada Data Transaksi Penjualan Obat. 
Seminar Nasional Teknologi Informasi Dan 
Komunikasi (SNASTIKOM 2015), 60–65. 
https://doi.org/10.31227/osf.io/t93uv 

 
Mahdali, I. (2019). NUTRITIONAL EDUCATION 

EFFECTS ON KNOWLEDGE CHANGE, 
ATTITUDE AND CHANGES IN CONSUMPTION 
PATTERNS AND OBESITY SEDENTARY 
ADOLESCENT ACTIVITIES. Universitas Negeri 
Gorontalo, 1(1), 33–46. Retrieved from 
http://ejurnal.ung.ac.id/index.php/jjsc/articl
e/view/2011 

 
Muliono, R. (2017). Analisis Efisiensi Algoritma 

Data Mining. Semantika (Seminar Nasional 
Teknik Informatika), 1(1), 978–602. 
Retrieved from 
http://fimi.ua.ac.be/data/.[12] 

 
Nahdiyah, I. (2015). Hubungan antara body image 

dengan kepuasan hidup pada remaja yang 
mengalami obesitas di Komunitas KAGUMI 
(Ikatan Wanita Gemuk Indonesia) 
(Universitas Islam Negeri Maulana Malik 
Ibrahim Malang). Universitas Islam Negeri 
Maulana Malik Ibrahim Malang. Retrieved 
from http://etheses.uin-malang.ac.id/1531/ 

 
Putra, Y. W., & Solichathi Rizqi, A. (2018). INDEX 

MASSA TUBUH (IMT) MEMPENGARUHI 
AKTIVITAS REMAJA PUTRI SMP NEGERI 1 
SUMBERLAWANG. Gaster | Jurnal Ilmu 
Kesehatan, 16(1), 105–115. 
https://doi.org/10.30787/gaster.v16i1.233 

 
Rahmayanti, D. (2016). Pola Makan Anak Dengan 

Status Gizi Anak Usia 6-8 Tahun Di SD 
Wilayah Kelurahan Cempaka. Dunia 
Keperawatan, 4(1), 8–13. Retrieved from 
https://ppjp.ulm.ac.id/journal/index.php/JD
K/article/view/2504/ 

 
Suryadinata, R. V., & Sukarno, D. A. (2019). 

http://creativecommons.org/licenses/by-nc/4.0/


P-ISSN: 2656-1743 | E-ISSN: 2656-1735 
DOI: https://doi.org/10.34288/jri.v2i4.159 

JURNAL RISET INFORMATIKA 
Vol. 2, No. 4 September 2020 

 

 
240 

 

 
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License 

PENGARUH AKTIVITAS FISIK TERHADAP 
RISIKO OBESITAS PADA USIA DEWASA. In 
The Indonesian Journal of Public Health (Vol. 
14). 
https://doi.org/10.20473/IJPH.V14I1.2019.1
04-114 

 
Syahputra, D., & Muhathir, M. (2018). Perhitungan 

Metode Fuzzy Sugeno Dan Antropometri 
Dalam Memprediksi Status Gizi Indeks Massa 
Tubuh. JOURNAL OF INFORMATICS AND 
TELECOMMUNICATION ENGINEERING, 2(1), 
16. https://doi.org/10.31289/jite.v2i1.1676 

 
 
 

http://creativecommons.org/licenses/by-nc/4.0/