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I. Introduction 

One of the inevitable disasters is a natural disaster. It may come without prior notice and has 
been responsible for the massive scale of deaths [1]. Centre for Research on Epidemiology of 
Disasters (CRED) reported an average of 77.144 deaths per year caused by natural disasters since 
2000 to 2017 [2]. The natural disaster caused by seismic activities (earthquakes, tsunamis, and 
volcanic activities) disrupted 3.4 million lives in 2018 [2]. Earthquakes have caused the most deaths 
every year compared to other types of natural disasters, such as drought, flood, landslide, wildfire, 
and many more—with a toll of 46.173 lives [2]. 

Even though it is inevitable, but it can be anticipated to minimize damage and casualties. Past 
research has been conducted to predict the level of impact caused by earthquakes in real-time [2]. 
One of those past research is about an early earthquake warning system (EEWS), which will give an 
alert when it detects an earthquake [3]. Numerous architectures and algorithms have been developed 
in those studies. Various research is the utilization of neural network trained with backpropagation 
algorithm and optimized using Levenberg (LOM) to predict hypocenter location, moment 
magnitude, and the expansion of the earthquake [4], modification of LOM to minimize error on 
EEWS [3], and utilization of neural tree to predict P and S waves [5]. 

Until now, to the knowledge of the author, the study of using a backpropagation (BP) algorithm 
to predict earthquake magnitude and grid-based location in Indonesia has not been conducted yet. 
This algorithm is chosen because it has been proven to perform well in broad types of problems, 
such as regression, pattern recognition, and prediction [6][7][8][9]. In this paper, the study aims to 
measure the performance of neural network trained using backpropagation algorithm in predicting 
earthquakes magnitude and grid-based location based on earthquakes magnitude and location data in 
Indonesia recorded from 2000 to 2019. 

ARTICLE INFO AB S TR AC T   

Article history: 

Received 30 June 2020 

Revised 2 July 2020 

Accepted 15 July 2020 

Published online 17 August 2020 

 

Earthquakes, a type of inevitable natural disaster, is responsible for the highest 
average death toll per year compared to other types of a natural disaster. Even 
though it is inevitable, but it can be anticipated to minimize damage and casualties, 
such as predicting the earthquake‘s magnitude using a neural network. In this study, 
a backpropagation algorithm is used to train the multilayer neural network to weekly 
predict the average magnitude of earthquakes in grid-based locations in Indonesia. 
Based on the findings in this research, the neural network is able to predict the 
magnitude of earthquakes in grid-based locations across Indonesia with a minimum 
error rate of 0.094 in 34.475 seconds. This best result is achieved when the neural 
network is trained for 210 epochs, with 16 neurons used in the input and output 
layer, one hidden layer consisted of 5 neurons and a learning rate of 0.1. This result 
showed backpropagation has pretty good generalization capability in order to map 
the relations between variables when mathematical function is not explicitly 
available. 

This is an open access article under the CC BY-SA license 

(https://creativecommons.org/licenses/by-sa/4.0/). 

Keywords: 

Neural network 

Resilient backpropagation 

Prediction 

Magnitude 

Earthquake  

mailto:baguspria@student.ub.ac.id
mailto:wayanfm@ub.ac.id
mailto:m_arif@ub.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


 B. Priambodo et al. / Knowledge Engineering and Data Science 2020, 3 (1): 28–39 29 

 

II. Methods 

Numerous studies on the application of neural networks to predict incoming natural disasters 
have been conducted before. One of them is to predict seismic activities (magnitude and other 
seismic activities on a large scale—more than 5 Ritcher scale) [6]. The findings of that research 
show acceptable performance (in terms of accuracy) of a 3-layer perceptron neural network model 
trained using backpropagation, which achieved an accuracy of 80.55%. The other research done is 
tsunami forecasting [10] using multi-layered perceptron neural networks and backpropagation 
algorithm. The study shows that the backpropagation algorithm is a lot faster than many other 
conventional models, and produced high accuracy in terms of predicting height and travel time of 
tsunami based on earthquake location and size. Often neural networks are hybridized with other 
techniques or algorithms. One example is the study done in 2006 [5], which used a neural tree to 
pick up P and S waves faster, and more accurately: with precision score achieved is 0.96. 

Numerous studies showed the performance of neural networks in predicting earthquakes. Neural 
networks have been applied to an early earthquake warning system (EEWS), which is trained using 
backpropagation with modified Levenberg-Marquardt algorithm to minimize the error rate in the 
EEWS [3]. The error rate that was tried to be minimized was the error on seismic data amplitude 
prediction based on the Chi-chi earthquake in Taiwan in 1999. Other studies showed increased 
reliability dan responsiveness of EEWS when a neural network is applied [11]. A theoretical study 
by [4] showed a prediction of hypocenter location, moment magnitude, and rupture size of an 
earthquake is generated almost instantaneously as soon as the P wave is picked up. 

A. Neural Network and Backpropagation 

A neural network is a network that consists of connected neurons (to process inputs) whose job is 
to produce an activation value [12]. This network mimics the structure and the ways of how the 
human brain works, hoping it can be an artificial intelligence that is almost as intelligent as human—
by receiving, adapting, and transferring known and new knowledge and skills, as a lifelong learning 
action [13]. A neural network consists of an input layer, zero or more hidden layer, and an output 
layer. Information on neurons will be propagated through each layer, starting from the input layer, 
all the way to the output layer [14][15]. The propagation is done by calculating the weighted sum on 
each neuron, which then used as the input value for the activation function used. The result of the 
activation function is then propagated to neurons in the next layer as inputs [11]. A common 
example of activation function is sigmoid function (1) and hyperbolic tangent (tanh) function (2) 
[16]. 

   ( )  
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The backpropagation helped a neural network to learn the relationship between variables, without 
explicitly defining the mathematical function that defines that relationship [17]. A neural network 
trained using backpropagation is based on gradient descent [14]. In the backpropagation algorithm, 
each neuron in the hidden and output layer will process its own inputs using the sum product of each 
neuron‘s input value and weight of each neuron, respectively, which then processed through an 
activation function (most popular used is sigmoid activation function) [17]. Then the error will be 
calculated backward from the output layer to the input layer for the weight update process—this is 
called: backpropagation. This weight update process usually used gradient descent to direct the 
weight changes towards the minimum error [18]. During the weight update process, a parameter 
called the learning rate (η), will determine the ―step width‖ of the updated value, which will finally 
update the weight in order to upgrade the neural network‘s performance in terms of its 
generalization capability. In the backpropagation process, the derivative of activation function and 
error function is needed to calculate the weight change. In (3) and (4) each is the derivative of 
sigmoid and tanh function, respectively. 
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The algorithm starts with the initialization phase. In this phase, all of the weights between 
neurons will be randomly initialized (between 0 and 1). The learning rate will also be initialized, 
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which is usually set to be 0.1. After the initialization phase, the first data will be used as input to the 
neural network, feedforward is then performed, which is calculating the weighted sum as input to 
activation function on the next layer. This process is repeated until the output layer has produced the 
predicted value. After the output layer has produced an output, the neural network will then begin its 
backpropagation phase. 

During the backpropagation phase, the partial derivative of the error function with respect to each 
weight will be calculated, as the weights are directly contributed to the error. From the output layer 
point of view, the weight from the hidden layer to the output layer contributed to input for activation 
function in the output layer, resulting in a contribution to the error. From the hidden layer point of 
view, the weight from the input layer to the hidden layer contributed to input for activation function 
in the hidden layer, finally contributes to the error. Therefore, (5) will be used to calculate the 
gradient/partial derivative of the error with respect to weights between the hidden and output layer, 
and (6) will be used for the calculation of partial derivative with respect to weights between input 
and hidden layer. 
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In (5), 
  

    
 is the partial derivative of error concerning weights between the hidden and output 

layer. It consists of 
   

    
 which is the partial derivative of input to the output layer (the weighted 

sum value) for weight, and 
   

   
 is the partial derivative of the activation function in the output layer 

to input on the output layer, while 
  

   
 is the partial derivative of error function to the output. When 

each component is broken down, the final result of the formula is as in (5), the product of the output 
of the hidden layer (  ), a derivative of activation function in the output layer (for example the 
derivative of sigmoid;     (  )) and derivative of the error function (10). Equation (6) is similar to 
(5), but it showed the partial derivative for weights between input and hidden layer. When the 
formula is broken down, the components are input value (input from training data;   ), the partial 
derivative of activation function in the hidden layer (    (  )), and the partial derivative of error 
concerning output of the hidden layer will need further calculation steps. For partial derivative of the 
error to the output of the hidden layer, it is the sum of all (written as ― ‖ which represents the 
number of output neurons) partial derivative of the error with respect to particular output neurons 
from neurons in the hidden layer. Thus, this component is actually the product of weights between 

the hidden and output layer with 
    

   
 from (5). The partial derivative for biases is calculated likewise 

(as in (5) and (6)), but    in (5) and    in (6) is changed into 1, because it is the derivative with 
respect to bias. 

     {
                

                
  

The derivative of the error function used in this study (MAE) is shown in (7). This function can 
only be differentiated only when the difference in predicted, and the target value is not 0. In the 
context of (5), only one prediction and target value each used because in (5), it is only differentiated 
with respect to one output neuron only. Later for programming purposes, to eliminate the possibility 
of the unhandled case, the derivative will be 1 when the prediction is bigger or equal to the target 
value. 

After partial derivative for each weight (biases included), the weight will then be updated. The 
weight update will follow the equation written in (8). The new weight for the next iteration (   (  
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 )) will be the current weight    ( ) reduced by the product of learning rate (η) and the partial 

derivative of the error 
  

    
( ). This feedforward, backpropagation, and weight update process will 

be repeated until the maximum epoch has been reached, where one epoch is counted when all of the 
training data has been fed to the neural network. 

   (   )     ( )   
  

    
 (8) 

B. Feature Extraction of Earthquakes 

Earthquake is a geological phenomenon that happened because of the shifting of earth‘s plates, 
caused by excessive pressure which the earth‘s crust cannot handle [19]. This excessive pressure 
results in energy release in the form of waves that propagate through the earth‘s crust, causing 
shockwave people can felt [20]. Those waves are picked up by seismographs. There are two types of 
waves, P wave (the fastest wave), which will be received first by the seismograph, then followed by 
a stronger wave, S wave, but slower than the P wave [21]. 

In seismograph, these two waves will produce data in 3 components: vertical, north-south, and 
east-west motion. [22]. Based on data of P wave, S wave, epicenter, magnitude, and peak ground 
acceleration (PGA), an early warning to civilians can be done, and emergency action can be 
conducted earlier; this can be done with a tool: early earthquake warning system (EEWS). 

In this study, the magnitude and location of earthquakes that happened in Indonesia, starting 
from January 1 2000 until December 31 2019, will be used as an input feature. It was chosen based 
on a previous study done by [23]. In that study, [23] used four features: earthquake number, location 
(represented in numbers corresponding to grids), magnitude, and hypocenter depth. Date and time 
are not used in that study because preliminary statistical analysis on the data used showed date and 
time is not representative enough as a feature. In fact, it had too much unrelated/unneeded 
information. Detailed location data—coordinates—is simplified into grids representing an area that 
has been divided into 16 areas. Thus, the location feature consists of an integer number, ranging 
from 0 to 15. Based on this, the current study also divides the location data used in this study into 16 
grids, represented using an integer from 0 to 15, as seen in Figure 1. The area is divided into 16 
rectangles with every rectangle has the almost equal area. There will be 2 rows and 8 columns used, 
where starting from latitude of -10.909° to 5.907° will be divided into 2 sectors, and from longitude 
of 95.206° to 140.976° will be divided into 8 sectors. 

In another study, the magnitude of past earthquakes is used to predict earthquake magnitude for 
the following day [6]. In that study, location is not used as a feature because it was assumed already 
known beforehand. Therefore, magnitude and location (represented in grid numbers) of an 
earthquake will be used as an input feature in this study. 

Magnitude will be normalized using minmax normalization to match the characteristics of 
sigmoid and tanh function, resulting in the more appropriate value. The result can then be 
denormalized to get the actual predicted magnitude value by RB algorithm. 
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Fig. 1. Grid-numbering as location feature 
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In (9), the minmax normalization equation is shown. Variable x is the magnitude value that will 
be normalized, min(x) is the minimum magnitude over all the data, and max(x) is the maximum 
magnitude over all of the data. Based on (9), the denormalization equation can be inferred as in (10). 

    *   ( )     ( )+      ( ) (10) 

C. Evaluation Metrics 

There are many methods that can be used to evaluate the performance of a neural network. In this 
study, Mean Absolute Error (MAE) will be used as evaluation metrics. This metric calculates the 
distance of predicted value and the target value. This metric is used based on a study done in [6] and 
[23]. The equation for MAE can be seen in (11). 
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In (13), n represents the feature count,  
     

 represents target value of ith feature, and  
     

 represents 

the predicted value of ith feature. 

D. Proposed Method 

The data is queried from United States Geological Survey (USGS) website and obtained in a 
comma-separated value (CSV) file. The data collected is earthquake data that happened in 
Indonesia, specifically inside these boundaries: latitude of -10.909° to 5.907°, and longitude of 
95.206° to 140.976°. Earthquake events from January 1 2000 up to January 1 2019 will be used as 
training data (36,453 records) and earthquake events from January 2 2019 up to December 31 2019 
will be used as testing data (2,358 records). The data obtained (total of 38,811 records) is presented 
as seismic data with 22 columns/attributes, and 4 of them will be taken as features in this study. 
Those 4 attributes are detailed in Table 1. 

After the data is obtained, there is two phases of preprocessing that will be done. First, ‗id‘ 
attribute will be added as feature to index each data. Then, the data on ‗time‘ column will be 
changed to ‗date‘, because only the dates will be taken as the feature. The ‗latitude‘ and ‗longitude‘ 
feature will then be mapped into grid numbers (as explained before) and represented as ‗grid‘ 
feature. The last feature is taken as it is, which is the ‗mag‘ that represents the magnitude of the 
event. A snippet of first 5 data after this first phase of preprocessing can be seen in Table 2. 

After the preliminary phase of preprocessing has been done, the final phase will be done to create 
a dataset that is ready to be used by the neural network. In this phase, each event will be grouped 
into weekly-period data, and for each week, the average magnitude will be calculated for each grid. 
This will be ‗avg_mag‘ feature. Then, this will be normalized using minmax normalization. The 
final feature added will be the ‗target‘ feature, which is the ‗avg_mag‘ on the following week. 

Table 1. Data attributes details 

No Name Description Data Type Value 

1 time Date and time in milliseconds &  

UTC when the even occured. 

Long integer [2000-01-02T12:46:58.770Z,  

2019-12-31T09:50:41.876Z] 

2 latitude Decimal degrees latitude. Decimal [-90,0, 90,0] 

3 longitude Decimal degress longitude. Decimal [-180,0, 180,0] 

4 mag Magnitude of the event. Decimal [-1,0, 10,0] 

 

Table 2. Preliminary phase of preprocessing on the first 5 data 

Id Date Grid Mag 

1 1/2/2000 6 4.9 

2 1/2/2000 6 4.4 

3 1/3/2000 6 4.7 

4 1/4/2000 14 4.4 

5 1/4/2000 5 3.9 
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Snippet on first week data that has been preprocessed (earthquake events from January 2 2000 to 
January 8 2000) can be seen in Table 3. 

The neural network built will consist of 16 neurons in the input and output layer and one hidden 
layer. The reason only one hidden layer is used is based on numerous study that has shown the good 
result of approximation on any continuous function [17]. Each neuron in the input and output layer 
represents the average magnitude in each grid. The input layer will receive data of the average 
magnitude of earthquake events in a week, and the output layer will predict the average magnitude 
for each grid in the following week. Each neuron in the hidden and output layer will have a bias with 
uniform-value: 1. 

III. Results and Discussions 

In order to achieve the best result, there will be four components of the neural network 
configuration that will be tested. The first one is to find the best maximum epochs allowed, then the 
learning rate, the number of neurons needed in the hidden layer, and lastly, which activation 
function will be used: sigmoid or tanh function. 

In the maximum Epochs Testing testing, the maximum epochs allowed will be tested from 50, 
then increased by 10 until no significant error rate change occurred. For current testing, the neural 
network will use 5 neurons in the hidden layer, trained using the sigmoid function, a learning rate of 
0.1, and all of the weights (except the biases) will be initialized with uniform value: 0.5. For each 
number of maximum epochs tested, it will be tested ten times, and the average will be taken. The 
average error rate and training duration will be measured to determine how many epochs that will 
produce the best result. Figure 2 showed the lowest average error rate achieved is 0.093 when the 
neural network is trained for 210 epochs, while the highest average error rate achieved is 0.094 
when it is trained for 160 epochs. Figure 3 showed when a neural network is trained for 50 epochs, it 
only took 12.93 seconds, but it took 134.49 seconds to complete training for 500 epochs. 

Another parameter that may contribute to the performance of the neural network‘s generalization 
capability is the learning rate. If it is too big, it may miss the optimal accuracy. If it is too small, the 
learning process would be too slow. In the learning rate testing, the learning rate will be tested from 
0.1, then increased by 0.1 until no significant error rate change occurred. For current testing, the 
neural network will be trained using sigmoid function in 210 epochs (the best result achieved from 
the last testing) using 5 neurons in the hidden layer, and all of the weights (except the biases) will be 
initialized with uniform value: 0.5. For each learning rate tested, it will be tested ten times, and the 
average will be taken. Figure 4 showed the lowest average error rate achieved is 0.093 when the 

Table 3. Final phase of preprocessing on the first week data 

Grid Avg_mag Target 

1 0.699 0.000 

2 0.000 0.000 

3 0.000 0.000 

4 0.000 0.000 

5 0.582 0.000 

6 0.627 0.594 

7 0.658 0.603 

8 0.000 0.637 

9 0.000 0.000 

10 0.767 0.616 

11 0.676 0.621 

12 0.651 0.000 

13 0.000 0.000 

14 0.589 0.548 

15 0.562 0.644 

16 0.616 0.000 
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neural network is trained using 0.1 as the learning rate, while the highest average accuracy achieved 
is 0.103 when it is trained using 1.0 as the learning rate. The average training duration is not tested 
in the current testing phase, as the learning rate does not affect directly to the training duration in 
terms of computation time.  

The next test measures the number of neurons needed in the hidden layer will be tested from 5 
neurons, then increased by 2 until no significant error rate change occurred. For current testing, the 
neural network will be trained using a sigmoid function in 210 epochs (the best result achieved from 
the last testing) with a learning rate of 0.1, and all of the weights (except the biases) will be 
initialized with uniform value: 0.5. For each number of neurons tested, it will be tested ten times, 
and the average will be taken. The average error rate and duration will be measured to determine 
how many neurons in the hidden layer that will produce the best result. Figure 5 showed the lowest 
average error rate achieved is 0.093 when the neural network is trained using 5 neurons in the 
hidden layer, while the highest average error rate achieved is 0.095 when it is trained using 23 
neurons in the hidden layer. The average duration for training, as shown in Figure 6 is similar to the 
result in the last testing: as the number of neurons increased, the training duration also increased. 
The best training time achieved is 57.23 seconds when trained using 5 neurons only, and the worst 
result is 75.06 when trained using 23 neurons. 

 

Fig. 2.The average testing error rate for each maximum epochs value 

 

 

Fig. 3. Average training duration for each maximum epochs value 
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Fig. 4. The average testing error rate for each learning rate value 

 

 

Fig. 5. Average testing accuracy for each neuron count in the hidden layer 

 

 

Fig. 6. Average training duration for each neuron count in the hidden layer 
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The Activation Function Testing used a sigmoid function or tanh function. For current testing, 
the neural network will be trained in 210 epochs, the learning rate of 0.1, using 5 neurons in the 
hidden layer (the best result achieved from the last testing), but all of the weights (except the biases) 
will be initialized with a random value. For each number of maximum epochs tested, it will be tested 
ten times, and the average will be taken. The sigmoid function produced an average error rate of 
0.094, which is better than the tanh function, which produced an average error rate of 0.881. The 
sigmoid function is also better than tanh function in terms of training duration, which only took 
60.81 seconds compared to 60.91 seconds when trained using tanh function. Thus, the sigmoid 
function will be used as the activation function. 

Based on the testing results, when the neural network is trained with sigmoid as the activation 
function in 210 epochs using 5 neurons in the hidden layer and 0.1 as learning rate, it achieves its 
best performance with an error rate of 0.094 in 60.81 seconds. As shown in Figure 2, there is a 
tendency in the beginning that as the number of maximum epochs increased, the average accuracy 
also increased. This is also shown in Figure 7. Figure 7 shows the error rate of the neural network on 
the training data for each epoch. It is shown that as it learns the data over and over at each epoch, it 
became better in terms of error rate. This proves that the backpropagation algorithm is able to adapt 
to the nature of data more accurately as it received more training [24]. This is where the weight 
adaptation process in backpropagation takes part. Through the weight adaptation process, it finally 
produces weights that are well-suited to the training data and reached better generalization capability 
when tested against new data in the testing phase. 

As the learning rate increases, it is shown that the performance of the neural network is getting 
worse. This may happen because of the step width is too large that the local minimum may be 
missed. It is also shown that as the number of neurons in the hidden layer increases, the performance 
is not getting better. This may be the result of overfitting, a condition where the neural network 
generalization capability became weak, and only achieve a good result when tested to the training 
data only. Therefore, when the neural network is tested using the testing data, the error rate is higher. 

The duration needed for the neural network to predict earthquake event magnitude (for events in 
2019) is the total duration from training phase until testing phase; the prediction duration. The 
average prediction duration is 0.005 seconds. Thus, overall duration needed is 60.81 seconds 
(average training duration) plus 0.005 seconds (prediction duration): 60.815 seconds. This is the 
total duration needed to predict 51 rows of data earthquake event magnitude based on training result 
on 988 rows of data, with 16 features each. 

As shown in Table 4, it is a snippet of prediction and target comparison for the first two weeks. 
In prediction result, there are 12.99% (106 events) of the prediction that missed the target by 1 up to 
5.2, and the others (about 87.01%—710 events) missed the target less than 1, with minimum error 
recorded is 2.56 × 10

-4
. 

 

Fig. 7. Error rate during training on each epoch 
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IV. Conclusion 

There are two key findings in this study. First, to build input features based on magnitude and 
location of earthquake event, detailed information of location (such as latitudes and longitudes) 
needed to be mapped into grids, then the magnitude will be averaged weekly for each grid number. 
The average magnitude weekly and based on each grid will be the input features. Secondly, the 
lowest error rate achieved by backpropagation algorithm (when trained in 210 epochs using sigmoid 
activation function, 5 neurons in the hidden layer and 0.1 as learning rate) to predict the magnitude 
of earthquake event in the following week is 0.094, with 60.815 seconds needed for the neural 
network to learn from 988 rows of data and predict 51 rows of data. Based on those key findings, it 
is recommended to further studying the importance and impact of other input features, configuration 
of the neural network, and hybridizing with other algorithms, which can further maximize the 
performance in predicting earthquakes more accurately and in the small-time window to increase 
preparedness. 

Table 4. Comparison of prediction and target produced by resilient backpropagation algorithm 

Date Grid Prediction Target 

1/9/2019 1 4.524 4.767 

1/9/2019 2 0.001 0.000 

1/9/2019 3 0.001 0.000 

1/9/2019 4 0.001 0.000 

1/9/2019 5 4.398 4.200 

1/9/2019 6 4.571 4.467 

1/9/2019 7 0.004 4.400 

1/9/2019 8 0.005 0.000 

1/9/2019 9 0.002 0.000 

1/9/2019 10 4.510 5.000 

1/9/2019 11 4.285 4.300 

1/9/2019 12 4.317 0.000 

1/9/2019 13 4.482 4.540 

1/9/2019 14 4.350 4.488 

1/9/2019 15 4.308 4.467 

1/9/2019 16 4.515 0.000 

1/16/2019 1 4.519 4.300 

1/16/2019 2 0.001 4.300 

1/16/2019 3 0.001 0.000 

1/16/2019 4 0.001 0.000 

1/16/2019 5 4.386 4.433 

1/16/2019 6 4.568 4.688 

1/16/2019 7 0.003 0.000 

1/16/2019 8 0.004 0.000 

1/16/2019 9 0.001 0.000 

1/16/2019 10 4.542 4.350 

1/16/2019 11 4.302 4.300 

1/16/2019 12 4.410 4.200 

1/16/2019 13 4.499 4.975 

1/16/2019 14 4.364 4.443 

1/16/2019 15 4.316 4.450 

1/16/2019 16 4.475 0.000 
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