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I. Introduction 

Text processing in Information Retrieval (IR) requires text documents as primary data sources. 
However, not all words in the text document are used. Some words often appear in text documents 
and do not have meaning called stopword [1], stored in a stopword list called a stopword database 
(corpus) [2][3]. The stopword removal approach depends on this Corpus to remove unnecessary 
words on the text [4]. The formed word list must be in the same language [1][5]. Various stopword 
list has been developed for popular languages such as English, Chinese [6], Sanskrit [7], Arab [8], 
Gujarati [9], and Indonesia [10]. However, a stopword list for low resources language such as 
Javanese is not available yet. 

Javanese is one of the traditional languages in Indonesia [11]. Javanese language has a level of 
politeness or known as unggah-ungguh, namely Ngoko, Madya and Krama [12][13]. Many 
historical documents, news, and stories are written in Javanese. Since the use of Javanese tends to 
become unpopular, retrieving information from such language could be difficult. The use of 
stopword removal may ease the IR process on Javanese text. Despite its benefit, list generation is 
quite complicated. In general, linguists manually label the substantial Corpus and store and send the 
result to separate storages. Therefore, an alternative to stopword list generation is badly needed. 

This paper aims to explore the use of the clustering approach for creating a stopword list in 
Javanese. The words are excluded from the bag of words to speed up the text classification process 
[14]. The clustering method used is K-means, one of the fast algorithms in the big data processing. 
The method classifies a given set of data through a certain number of K clusters [15]. Determination 
of words included in the Stopword list is done by grouping words based on each word frequency. 
Clustering eases the way to determine the threshold of words that include stopwords. 
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Stopword removal necessary in Information Retrieval. It can remove frequently 
appeared and general words to reduce memory storage. The algorithm eliminates 
each word that is precisely the same as the word in the stopword list. However, 
generating the list could be time-consuming. The words in a specific language and 
domain must be collected and validated by specialists. This research aims to develop 
a new way to generate a stop word list using the K-means Clustering method. The 
proposed approach groups words based on their frequency. The confusion matrix 
calculates the difference between the findings with a valid stopword list created by a 
Javanese linguist. The accuracy of the proposed method is 78.28% (K=7). The result 
shows that the generation of Javanese stopword lists using a clustering method is 
reliable. 
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II. Materials and Methods 

The goal of this study is to generate a stopword list from the Javanese stopword corpus. The 
selected Javanese level of politeness is Ngoko, due to its usage and vocabularies [11][12]. Figure 1 
shows the four stages in conducting this research. 

The first stage is data collection. The dataset used was taken from the website Ki-demang.com in 
the Javanese Short Stories category. The data consists of 106 stories without considering page 
numbers and titles. The collection of stories is combined into a text document, used as the stopword 
generation dataset. 

The second stage is data preprocessing: case folding, punctuation removal, tokenizing, and 
filtering. The first preprocessing, case folding, changes uppercase letters into lowercase letters. The 
punctuation removal deletes the punctuation characters and numbers from the dataset. Furthermore, 
the tokenizing step spits the dataset into a single word. This step produces 17,763 types of words 
and their frequency. The result of tokenizing is words, cleared from typographical errors, words 
without meaning, names, and non-Ngoko words, resulting in 14,384 types. This deletion is based on 
a Javanese-Indonesian and Indonesian Javanese translation dictionary. Table 1 shows examples of 
deleted words. 

The dataset of 14,384 different words is submitted to Javanese linguists. The linguists group the 
dataset into two classes, namely stopwords and non-stopwords. Furthermore, general words 
(conjunction) considered as stopwords are 3,224 words. The non-stop words consist of 11,160 
specific words: noun, verb, and adjectives. Table 2 shows the example of two categories. 

The third stage is clustering the 14,384 unique words and their frequency. Figure 2 shows the 
pseudocode of the k-means clustering method [16]. 

The first k-means clustering stage determines the k value or the number of clusters. In the study, 
the k value is k=3, k=5, k=7, k=9, k=11, k=13, and k=15 [17]. The next step calculates the distance 
between data and centroid using Euclidean Distance [18]. 

Here, the results of each case are recognized in two classes: stopwords and non-stopwords. All 
words in cluster 0 are labeled as non-stopwords, while stopword is all words in other clusters. For 
example, if k=7, each word in the cluster 1 to 6 are stopwords, while the rest (in cluster 0) is non-
stop words. This first assumption is based on the observation that words with high frequency [19] 
are outside cluster 0. Table 3 illustrates one example of the frequency distribution of stopwords 
when k=7. In this case, 680 words is labeled as stop words, where 13704 words are non-stopwords. 

 

Fig. 1. Research stages 

Table 1. Examples of deleted words 

Typographical errors  Words without meaning  Names Non-Ngoko words 

lungaa lha Ezza wontening 

rilaaaaa we Sukartiah inbox 

ã³mongan lur Yono  meresahkan 

ewosemono aaaaaaaa Inah mengganggu  

senaosa loh Sumantri  pusaraning  

banjarpetambakan dhuk Laras  out 

sesambhungane ugh Yani awalnya 

ampuunn sttt Irvan berbincang 
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The fourth stage is evaluation, which aims to test the performance of the proposed method. The 
opinion of experts is used as a reference. A confusion matrix is applied to calculate accuracy and 
precision [20]. At this stage, all cases are tested to decide the best stopwords set based on the k-
means clustering technique. 

The accuracy is obtained by dividing the number of only correct documents by all documents 
[21]. The true value means that the clustering results have the same class as the reference. On the 
other hand, precision is the comparison of true positive (TP) with the total of true positive and false 
positive (FP) [21]. TP means that when the result of clustering is a stopword and it is the same as the 
reference. FP means that the predicted result is stopwords while the reference is non-stopwords. 

Table 2. Example of linguists’ classified words 

Stopwords Non-stopwords 

aku artane 

ana birahine 

apa cungkup 

dadi dhialog 

iki endhog 

ing garwamu 

kang jaitan 

sing karak 

wae langgananku 

yen macak  

 

Table 3. Stopwords and non –stopwords when K=7 

k Frequency distribution Number of stopwords Number of Non-stopwords 

0 1-25 0 13704 

1 2000-3000 3  

2 650-1050 13  

3 290-600 28  

4 1100-1600 5  

5 26-100 531  

6 105-290 100  

 Total 680 13704 

 

 

Input: 

D = {d1, d2 … dn}       Data used. 

k = {2, 3, 4 … n)      Desired number of clusters 

Output:  

One set  k cluster. 

Steps 1:  

Randomly select k centroid from D as the initial 

centroid (center of the initial cluster) 

Step 2: 

Determine each item in the cluster that has the closest 

cluster center; Calculate new averages for each cluster; 

Step 3: 

Repeat step 2 until the centroid cluster value does not 

change or until the maximum number of iterations is 

reached 

Fig. 2. K-means clustering algorithm 
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III. Results and Discussions 

Table 4 shows the performance of the stopword list using k-means algorithm. The accuracy and 
precision represent the method performance by comparing the result with Javanese linguists’ manual 
classification.  

In Table 4, the highest accuracy is 78.2%, with 57.3% precision. The cluster supports this result 
with a value of k = 7. The result consists of 680 stopwords and 13704 non-stopwords, while the 
experts identify 3,224 and 11,160 of the same categories. The cluster can correctly indicate 11,030 
of 14,384 words, which is dominated by non-stopwords category. Figure 3 shows the distribution of 
the word based on the first assumption that the first cluster is the non-stopwords. 

As seen in Figure 3, experts recognize most words as non-stop words. The k-means wrongly 
categorized the non-stopwords into stopwords category (area within the grey line). On the other 
hand, the precision is 57.3% of the orange and gray areas, which means that most stopwords are 
categorized as non-stopwords. The lowest performance is when k=5. The accuracy is 25 %, and the 
precision 21.7%. Only 3089 is true stopwords, and 65 words are true non-stopwords.  

The second assumption is then applied for comparison. Table 5 shows the result, assuming the 
first cluster is the stopwords, while the rest is non-stopwords.  

Table 4. Stopword generator performance with the first asumption 

k Stopwords Non-stopwords Accuracy Precision 

3 49 14335 77.9% 100.0% 

5 14184 200 21.9% 21.7% 

7 680 13704 78.2% 57.3% 

9 13281 1103 25.0% 21.5% 

11 1500 12884 75.6% 40.6% 

13 2145 12239 73.4% 36.1% 

15 1750 12634 74.9% 39.2% 

 

Table 5. Stopword generator performance with the second assumption 

k Stopwords Non Stopwords Accuracy Precision 

3 14335 49 22.07% 22.1% 

5 200 14184 78.07% 67.5% 

7 13704 680 21.7% 20.68% 

9 1103 13281 74.9% 32.6% 

11  12884 1500 24.3% 20.2% 

13 12239 2145 26.5% 20.0% 

15 12634 1750 25.02% 20.08% 

 

 

Fig. 3. Words distribution based on the first assumption 
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The best performance in Table 5 is when k = 5, where the accuracy value is 78.07% and the 
precision value is 67.5%. This case indicates 135 true stopwords and 11095 true non-stopwords. The 
obtained precision is 67.5%, which is equal to 135 of 200 stopwords. 

The accuracy of both scenarios (Table 4 and Table 5) is similar. However, the precision of the 
best scenario (k=5) in Table 5 is higher than the best of Table 4 (k=3). It means that the performance 
second assumption is more promising than the first in recognizing the stopwords. Therefore, k-
means locates stopwords in the first cluster while the-nonstopwords are in other clusters. 

IV. Conlusion 

K-means is applicable for Javanese stopwords list generation. The algorithm indicates the 
stopword location is in the first cluster of the words list. However, the current promising result is 
still possible to be improved. Further research should consider the balance of frequency distribution 
and the implementation of word stemming in the preprocessing. The use of more training data may 
balance the frequency, while the stemming may combine the unique words and unites the 
occurances of combined words.  
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