
Knowledge Engineering and Data Science (KEDS) pISSN 2597-4602

Vol 6, No 2, October 2023, pp. 199–214 eISSN 2597-4637

https://doi.org/10.17977/um018v6i22023p199-214

©2023 Knowledge Engineering and Data Science | W : http://journal2.um.ac.id/index.php/keds | E : keds.journal@um.ac.id

This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

Recurrent Session Approach to Generative Association Rule
based Recommendation

Tubagus Arief Armanda a,1, , Ire Puspa Wardhani a,2, Tubagus M. Akhriza b,3,*, Tubagus M. Adrie
Admira a,4

a STMIK Jakarta STI&K

Jl. Bri Radio Dalam No.17, Jakarta Selatan 12140, Indonesia
b STMIK Pradnya Paramita (STIMATA)

Jl. Laksda Adi Sucipto 249A, Malang 65126, Indonesia
1 tb_armanda@yahoo.com; 2 irepuspa@gmail.com; 3 akhriza@stimata.ac.id*; 4adrie.admira@jak-stik.ac.id

* corresponding author

I. Introduction

The Recommendation System (RS) has become a mandatory feature in e-commerce [1][2][3].

This system principally filters large-scale transaction data to produce a list of items that e-commerce

application users might like or even buy. An RS generates personalized recommendations for

individual users, and this is effective if the user is logged in because the data regarding items that

have been purchased or rated by the user personally has been recorded so that the resulting

recommendations can be relevant to user preferences.

For personalized recommendations, an RS can be built with a collaborative approach by

measuring the similarity of item features that users U like with those of other users [4][5]; items that

have never been rated by U, but rated by other users will be offered to U. The preferences of U are

represented by the items vector, IU which contains the rating value given by U to each item. The

similarity of IU with IP, the items vector belonging to another user P, is calculated according to the

distance formula d(IU, IP). If there is no rating data, then the system utilizes the features of items that

U once liked or bought. For example, descriptions of films or books [6][7], or categories or

ingredients in food menus [8][9]. When U is looking for item X with a description of DX, the system

will look for other items, for example, Y, with a description of DY that is similar to DX. The similarity

is measured by a distance formula d(DY, DX). Here DX and DY are presented in feature vectors of the

items X and Y, respectively. Popular distance calculation formulas include Cosine, Euclidean,

Manhattan, and Jaccard coefficients. These collaborative and content filtering approaches are

practical if the user has logged into the system, where SR then scans the database of transactions the

user has made with items in the store.

ARTICLE INFO A B S T R A CT

Article history:

Received 09 July 2023

Revised 29 July 2023

Accepted 30 October 2023

Published online 02 November 2023

This article introduces a generative association rule (AR)-based recommendation
system (RS) using a recurrent neural network approach implemented when a user
searches for an item in a browsing session. It is proposed to overcome the limitations
of the traditional AR-based RS which implements query-based sessions that are not
adaptive to input series, thus failing to generate recommendations. The dataset used
is accurate retail transaction data from online stores in Europe. The contribution of the
proposed method is a next-item prediction model using LSTM, but what is trained to
develop the model is an associative rule string, not a string of items in a purchase
transaction. The proposed model predicts the next item generatively, while the
traditional method discriminatively. As a result, for an array of items that the user has
viewed in a browsing session, the model can always recommend the following items
when traditional methods cannot. In addition, the results of user-centered validation
of several metrics show that although the level of accuracy (similarity) of
recommended products and products seen by users is only 20%, other metrics reach
above 70%, such as novelty, diversity, attractiveness and enjoyability.

This is an open access article under the CC BY-SA license

(https://creativecommons.org/licenses/by-sa/4.0/).

Keywords:

Association Rules

Recommendation System

Recurrent Neural Network

Long-Short Term Memory

Session-Based Recommendation

http://u.lipi.go.id/1502081730
http://u.lipi.go.id/1502081046
http://journal2.um.ac.id/index.php/keds
mailto:keds.journal@um.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214 200

In case the application user is not logged in, then the Association Rule (AR)-based RS can be

applied where recommendations are generated from rules X→Y, mined out from transactional data

T [6][10]. X is called the antecedent, and Y is the consequent of the rule and in practice, X and Y are

presented as a bag of item IDs (itemID) or itemID vectors. In this article, itemID refers to an item

with a unique identity code. Item X and Y are associated not because of the similarity of their

descriptions or user-given ratings but on fulfilling two main interestingness metrics: Support and

Confidence. Consequently, AR-based RS provides a variety of item recommendations.

Support of X, written as Sup(X) as in (1), represents the number of transactions. 𝑡𝑖 in T that contain

itemset X; and length X can be one or more items. 𝑋 𝑡 ∈ 𝑇 indicates that the itemset X is a subset

of t, the records in T that in principle, are also an itemset.

𝑆𝑢𝑝(𝑋) =
|𝑡𝑖∈𝑇|

|𝑇|
; 𝑋 𝑡 (1)

Confidence X→Y, written as Conf(XY) as in (2), represents the probability that if X appears in

some transactions, then Y also appears.

𝐶𝑜𝑛𝑓(𝑋𝑌) =
𝑆𝑢𝑝(𝑋𝑌)

𝑆𝑢𝑝(𝑋)
; 𝑋, 𝑋𝑌 𝑡 ∈ 𝑇 (2)

Rules are mined from T if the minimum support (minsup) and minimum confidence (minconf)

thresholds set by the data miner are met. An itemset that satisfies minsup is called a frequent itemset,

and from the explanation above, the itemsets X and Y that make up the rules must be frequent

itemsets.

The problem of AR-based RS is that it does not personalize recommendations to users, thus

recommendations are general, monotonous, thus look unrelated to the item being browsed by U. To

improve this limitation, session-based RS is proposed, where the session is a virtual time-space

created when a user browses a web portal URL [11]–[16]. Within this time space, the items that the

user is or had been looking for, thus assumed as his/her preferences, can be temporarily recorded

locally [14]–[16]. Some methods use Markov chains [17]–[19], artificial neural networks [11], [20]–

[22], and association rule learning approaches [23]–[28] to develop session-based RS.

Implementing a session approach to AR-based RS produces several approaches, as explained in.

In the first approach, the rules database is generated from T. Items users have seen/purchased at

recent sessions, for example. 𝑞𝑈 = {𝑥1, 𝑥2, 𝑥3} are used as a query to the rules database to find rules

X→Y, where 𝑋 = {𝑥1, 𝑥2, 𝑥3}. The items Y obtained are recommended items if XY satisfied minsup

and minconf thresholds [23], [29].

In the second approach, the method used sequence itemsets that are mined not from T, but from

Q i.e., a set of sessions 𝑞𝑖 created by the user while browsing the items over some periods, thus 𝑄 =

{𝑞1, 𝑞2, . . . , 𝑞|𝑄|} [27], [28]. From the mining, a set of sequence itemsets is obtained and stored in SI =

{𝑝1, 𝑝2, ..., 𝑝|𝑆𝐼||}. Assumed, U is currently browsing the items 𝑥𝑖 thus creates a session 𝑞𝑈 =

 {𝑥1, 𝑥2, . . . , 𝑥𝑅}, and 𝑥𝑅 is the item U saw most recently. If 𝑥𝑅 ∈ 𝑞𝑈 and 𝑥𝑅 ∈ 𝑝 in SI, thus 𝑝 =

 {… , 𝑥𝑅, 𝑥𝑆, 𝑥𝑆+1, … } then p contains the order of items relevant to U's preference. All items that appear

after 𝑥𝑅, namely 𝑥𝑆, 𝑥𝑆+1 and so on are candidate items to be recommended.

However, the traditional query-based session approach for AR-based RS still suffers from some

problems. A large number of long frequent itemsets are required since some subsets of these itemsets

are expected to match 𝑞𝑈. Consequently, large enough memory is required to store long itemsets

because the amount is quite significant if the minsup threshold is minimal [30]. On the other side, if

the minsup is large, the resulting itemsets tend to be short and can result in no following items to be

recommended. Another problem, especially in the second approach, itemsets sequences are mined

only from Q which does not cover all items contained in T; consequently, many items in T are not

explored by U. In business, this situation is detrimental to e-commerce owners.

To sum up – traditional methods are not adaptive to a series of items the user visits, so

recommendations look monotonous. Traditional methods also cannot generate recommendations

201 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214

from a series of input items that are not frequent because they refer to the rule database, while rules

are composed of frequent itemsets only.

This study was conducted with the objectives of building a generative model based on Recurrent

Neural Network (RNN) and association rules which can predict the next item generatively from a

series of items that the user has visited in a browsing session even though this series of items is not

a frequent itemset.

Applying RNN to session and AR-based RS, this method is called the Recurrent-session approach

to AR-based RS, or RS-ARRS. The model is built using Long-Short-Term Memory (LSTM), a type

of layer in RNN, and dropout layers. The novelty of this model is that the dataset that is trained is

not a series of items that customers have purchased but a series of rules that are arranged according

to the Support and Confidence of the rules. The series of items visited by the user in a browsing

session is considered an input prompt for the model, and the model responds by generatively

predicting the items that will appear next.

The rest of the paper is structured as follows. In the Methods section, the proposed approach is

explained, followed by a discussion of generating a training set for the model. After that, the flow of

the model development cycle is explained, including the proposed model design. Experiments on

model benchmarking were organized with the aim of testing and comparing the performance of the

proposed model with traditional models. After that, the experimental results are discussed in the

Results and Discussion section. The article concludes with conclusions and recommendations for

future research.

II. Methods

A. Research Framework

The framework of the proposed method is explained using Figure 1, which is divided into four

main activities: a) generating the training dataset (trainDS), b) developing the proposed model, c)

determining the top-K recommendations, d) benchmarking the model and e) validating the

recommendation. Before explaining the steps for creating a training set, the basic idea of the proposed

approach is explained first.

Generating
Training
Dataset

Developing
Proposed

Model

Determining Top-K
Recommendation

Benchmarking
the Model

Validating the
Recommendation

Fig. 1. Research framework

RNN is usually used to estimate a next-value in the future by learning time series of data in the

past and present [17], [31], [32], so how does RNN predict the next term of a current sentence?

Intuitively, a sentence or phrase is made up of terms, and a term is made up of letters, which are

written or typed one letter at a time. As such, a text written can be assumed as time series data as

well. For example, large-scale textual paragraphs, such as a collection of scholarly publications on

deep learning, are used as a training set for model building. Given an input prompt such as "recurrent

neural net" to the model, the model predicts the appearance of the following letter or term, referring

to all the text in the dataset of deep learning publication. The nature of the prediction is generative

because the sentences formed are composed of new terms [33], [34]. While generative predictions

are formed by modeling the probability distribution of the entire input data domain, a discriminative

prediction aims to differentiate or classify input data into specific categories or labels [35]–[38].

Some examples include sentiment analysis or textual classification.

Several studies explain that RNN predicts the next item in a market basket. RNN that uses time

series data can be used to predict the next item with the assumption that the user picks up item by

item and puts it in the shopping cart following a particular time series [32], [33], [39], [40]. In another

perspective, items viewed sequentially within a browsing session can also be considered time-series

data [5], [17], [20], [41], [42]. However, the next-item prediction model that learns items that have

been purchased still have weaknesses, namely that the process of recording items by the cashier (both

 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214 202

in an offline and online store) is carried out randomly and ignores the order in which the customer

picks up the items. As a result, the time series nature of the items picked up by customers is lost.

In this study, as explained via Figure 2, a solution to this limitation is also included in the proposed

model generation. Time-series training data is not created from item purchase transaction data but

from associative rules mined from transaction data. The rules also form a predictive relationship via

the confidence metrics that if an item 𝑥1 is purchased, then 𝑥2 is purchased if 𝑥2 is purchased, then

so is 𝑥3, and so on. If it is sorted in such a way based on the highest support and confidence, then the

confidence relationship of this rule also forms an item series, namely 𝑥1 → 𝑥2 → 𝑥3. Similarly, a

model can be built to predict the next item if this rule series is trained to the RNN. There is no

percentage division between the training and testing set because it models the probability distribution

of the entire input data domain to form a generative model. The model then produces the probability

of all existing items as next-items with a total probability of one. By ranking these probabilities, top-

k item recommendations are obtained.

Fig. 2. Illustration of model development from series of rules

For illustration, as in Figure 2, the series of items visited by the user in a browsing session, e.g.

[𝑥1, 𝑥2, 𝑥4], is considered an input prompt for the model, and the model responds by generatively

predicting the items that will appear next, similar to how generative text-generation works. All items

have a certain probability of being the next-item, and a computer program will sort these probabilities

to get, for example, the top 3 items that are the next-item recommended to the user.

B. Generating Training Dataset

Training dataset generation is described in Figure 3. Process #1 is pre-processing of raw

transaction dataset T, including feature (column) selection which produces a dataset T1 consisting of

two columns: invoice number (invNo) and itemIDs purchased according to that number.

203 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214

Raw Dataset
T

#1
Pre-processing

InvNo, Bag of
itemID dataset

T1

#2
AR Mining

ruleDB,
with sorted

rules

#3
Training Set

Building

trainDS,
in the form of
[x1,…xSLen]:y

Fig. 3. Training dataset generation flow

Process #1 also generates a data dictionary containing the itemID and item’s description.

Examples of records in T1 are as follows:

invNo; itemIDs

000001; 𝑥1, 𝑥2, 𝑥3, 𝑥4

000002; 𝑥1, 𝑥3, 𝑥4, 𝑥5

Etc.

Process #2 is mining the association rules from the itemIDs column in T1, uses Apriori principles,

with mining parameters: minsup, minconf and maximum rule length. The found rules are sorted

based on the highest support and confidence and then stored in the rule database (ruleDB).

Process #3, forming a training set from ruleDB. The rules have been obtained and are sorted based

on the highest support and confidence as follows.

{𝑥1→𝑥2, 𝑥1→𝑥3, 𝑥2→𝑥4, 𝑥3→𝑥2, 𝑥4→𝑥5, 𝑥5→𝑥6}

After sorting, a series of rules are created with the following notes: 1) the consequence of the rule

in the i-th term becomes the antecedent for the (i+1)-th term. Rules can only be used once to construct

a series. An i-th series is made as long as possible by using as many rules as possible; after no more

rules can arrange the i-th series, the (i+1)-th series is the same way using the rest of the rules. From

the previous ordered rule example, the resulting rule series is as in (3) and (4).

𝑆1 = 𝑥1 → 𝑥2 → 𝑥4 → 𝑥5 → 𝑥6, or simplified 𝑆1 = [𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6] (3)

𝑆2 = 𝑥1 → 𝑥3 → 𝑥2, or simplified 𝑆2 = [𝑥1, 𝑥3, 𝑥2] (4)

An illustration of the rule series pattern handled by LSTM in the learning phase is given in Figure

4. The model learns the itemID flow pattern as arranged in the rule series in two parts: X and the

label of X, namely y. X has a dimension, which is also called series or sequence length (SLen), while

the y dimension is one. SLen represents the duration of a session that neurons can remember; in the

example above if SLen = 3, then in the first session [𝑥1, 𝑥2, 𝑥4] is X, and 𝑥5 is the y, which is the next

item of X.

As the session moves forward, X is now [𝑥2, 𝑥4, 𝑥5] and y is 𝑥6, while 𝑥1 is already out of session

and will be forgotten by neurons. In the illustration, the L box represents the LSTM layer, and F box

represents the output layer, which is fully connected to the total number of available next-items

(labels), i.e., all itemIDs in ruleDB.

If X is stored in an array or a list in Python language, then the above explanation also implies that

shifting the session forward (towards the right), algorithmically pops up the itemID on the leftmost

X, pushes itemID y to the rightmost X, and assigns a new next-item y as label for the new X. This

algorithm also describes the mechanism for forming a training dataset (trainDS) from series of rules

that have been built.

 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214 204

Fig. 4. Rule series patterns learned by the model

For given a series of rules S, Session duration SLen = 3, and ruleDB, do the following stages:

• Initialization: aims to create an initial record in the form X:y, with X’s length = SLen and y’s

length = 1. The following steps are performed

1. X = S[0 : SLen] #Python’s way to take S[0] to S[SLen-1] as X

2. y = S[SLen] # set S[SLen] as y.

3. idx = SLen # index last accessed from S

• Shifting: aims to generate the next record from the previous X by shifting the session forward:

1. X = X.pop(0) # pop the leftmost X value

2. X.append(y) # push y into the rightmost X

• Labelling: aims to labelling the new record X with y,

1. idx +=1 # increase index of S

2. y = S[idx] # set S[idx] as y

3. S = S[idx:] # trim S starting from index 0 to idx

S is trimmed so that the shifting step can be repeated. However, if all entries in S have been used

so that S becomes empty, then the formation of training data from a rule series S also ends.

The training data of a rule series is said to be complete if all Xs with length SLen and its label y

have been developed. However, in practice, because the value of SLen can vary (depending on the

needs of model development), all S entries have been accessed even though the length of X has not

yet reached SLen. An example of this case is 𝑆2 = [𝑥1, 𝑥3, 𝑥2], where all entries in 𝑆2 can only form

X, but it does not yet have a label y. When this case arises, the fourth stage must be done as follows:

• Padding: aims to complete entry X so that it has the length SLen, and has a label y. The steps are

as follows:

1. While the length of X < SLen:

1 Search for rules 𝑋́ → 𝑌́ in ruleDB, where 𝑋́ = X[-1].

2 If found: X.append(𝑌́).

2. If the length of X == SLen, then the formation of X is complete, and

i. Continue searching from the last position for the rule 𝑋́ → 𝑌́, if 𝑋́ = X[-1] then set label

y = 𝑌́

The result of the padding step for 𝑆2 is X = [𝑥1, 𝑥3, 𝑥2] and y = 𝑥4.

C. Developing Proposed Model

Like the text generator model, the proposed next-item prediction model is also generative – a

model that can generate predictions for next items for several sessions in the future. The flow of

model development in this study is given in Figure 5, which forms a cycle as described in [43]. The

trainDS and existing reference models are materials for designing and tuning models. Models that

have met the requirements regarding loss and accuracy will be deployed to an implementable

recommendation system. If it does not meet the requirements, then the model will be redesigned

205 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214

which includes the composition of the layers and neuron cells, as well as the number of epochs and

batches in the training process. The requirement is to have a model with a loss level < 0.5, and an

accuracy > 80%.

#1
Model

designing/
tuning

Model
specification

#2
Model

training

Training
results

#3
Model

deployment

Meet
requirement

?

No

trainDS,
in the form of
[x1,…xSLen]:y

Reference
model

Yes

Fig. 5. Model development lifecycle flow

The neural network layers that make up the model are divided into three parts where the term is

used about the Keras library for Python:

• Input layer with dimension (SLen, 1), with SLen = 3, which is the dimension of X, and 1 is the

dimension of y.

• Hidden layers, for observation purposes, one to three LSTM layers are used in the experiments,

where loss and accuracy are observed at each additional layer. Each LSTM layer is followed by

a dropout layer, which removes cells that contribute to overfitting. The number of neurons is set

to 256. The activation function applied is Tanh.

• Output layer, which uses the Dense layer after the LSTM layers. This layer is called the fully

connected layer to the output, which in this case, the output dimension is the number of itemIDs

as they are all potentially following items. The activation function used is Softmax.

LSTM is an RNN-type layer designed to handle time series data. LSTM has main components:

cell, input gate, output gate and forget gate [31], [32]. Cells have the function of remembering past

patterns in a series or sequence, is useful for remembering contexts that appeared in the past to be

combined with current information in order to forecast patterns that will occur in the future. The

memory duration that the LSTM layer will remember is specified in the sequence or series length.

LSTM can produce generative predictions, where the model can generate new samples from the same

data distribution [36], [37]. For example, given a reading book as training data, a generative model

for text-generator can generate several terms that will appear after a series of terms is given as a

trigger so that composed sentences look new. To do this, the model requires the entire training data

to be studied [34], [44].

The proposed model design is depicted in Figure 6, while a summary of the model using one layer

of LSTM + Dropout + Dense is also given in Figure 7. A summary of models using two and three

LTSM is not given, but intuitively it can be understood from such a figure. All itemID series in

trainDS are used as training data, without a test dataset because the model built is a generative model

that must learn the probability of each itemID in a series of itemID in a whole trainDS. The design

of this model is implemented with the Keras library using functional modeling. The layer

 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214 206

composition in each model is compiled by applying categorical cross-entropy loss, optimizer Adam.

After compilation, the model is fitted to all vectors X and y, with 1000 epochs in 8 batches.

LSTM Dense

Input

Output

LSTM
Drop
out

Drop
out

Fig. 6. Proposed model design

Fig. 7. Summary of model with one LSTM layer

D. Determining Top-K Recommendation

Briefly, the procedure carried out to generate next-items predictions is shown in Pseudocode 1.

PSEUDOCODE 1. LSTM and GRU Stack

1 Prepare the inputs:

a) matrix Xs of all arrays X in trainDS in which X has a shape (SLen, 1). If

the number of records in trainDS is N, then the Xs dimension is (N, SLen,

1)

b) Matrix Y i.e., X's label with shape (N, 1)

2 Compile the arrangement of the layers into a model M

3 Perform training by fitting data Xs to data Y with M, usually written M.fit(Xs,

Y, number of epochs, number of batches), save the fitting with the lowest

loss (along with accuracy) into M_best or an external file, such as “M.hdf5”

#M_best is now ready to predict any series of itemID as input

4 INPUT "enter a series of itemID as input"

5 PREDICTION = M_best.predict(INPUT)

6 PREDICTION is obtained in the form of a matrix containing the probability

predictions for each itemID to become the next-items

207 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214

The process of determining the top-K recommendations from prediction is given shown in

Pseudocode 2.

PSEUDOCODE 2. Generate next-items predictions

1. Determine the value of K;

2. Sort the probabilities in the PREDICTION array from the highest value,

noting that each element represents an itemID index in the itemID-

Description data dictionary.

3. Get the first K index of itemID in the array,

4. Print item descriptions in itemID order

5. K recommendation items obtained

E. Benchmarking the Model

The activity flow of benchmarking the model is given in Figure 8, which shows that the proposed

model is compared with the query-based session method. The aspect being compared is the ability

of the model always to be able to get predictions of the probabilities of all itemIDs to become the

next-item concerning the items that the user is looking for in a session. Two test scenarios were run

to examine both methods in terms of their adaptability in generating next-item recommendations.

#1
Proposed

Model testing

Input item
series, as in

some sessions

Next-items
prediction

#2
Query-based

method testing

Next-items
prediction

#3
Comparison

analysis

Analysis
results

Fig. 8. Model benchmarking flow

Test #1: the rule that produces the next-item in the query-based method is tested on the proposed

method. The steps are as follows:

1. Generate all rules X→Y with |X| = 3 and |Y| = 1,

2. Each X in the rules has at least one next-item Y

3. Enter all the Xs as the input for the proposed method and get the top-10 recommendations.

4. Count the number of X that have top-10 recommendations

5. If all X have top-10 recommendations, then the proposed model is adaptive to all query-based

method inputs

Test #2: combining several items that can produce recommendations through proposed items, then

used as a query to find recommendations in the traditional method.:

1. Simulate one 3-item series as input for the query-based method to find rules X→Y, where X is

equal to the respective 3-item series

 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214 208

2. If the traditional query-based method cannot produce recommendations, then it is not an adaptive

method.

F. Validating the Recommendation

The validity of the recommendation list can be confirmed through two approaches: system- or

user-centered validity [45]–[50]. The recommendation results are matched with a set of items

generated by the system, and here the validation results are objective. In the second approach, which

is the one used in this study, recommendations are validated based on the user's perspective because

in the end, users are expected to take action after seeing the contents of the recommendations. These

perspective metrics include accuracy, familiarity, attractiveness, enjoyability, novelty, diversity, and

context compatibility.

The number of 25 users were asked to evaluate seven metrics through one related question as

follows [49], [50]:

1. Accuracy: the recommended items match my interests and vice versa

2. Familiarity: some recommended items are familiar to me and vice versa.

3. Attractiveness: some recommended item to me is attractive and vice versa

4. Enjoyability: I enjoy the items recommended and vice versa

5. Novelty: the RS helps me discover new items and vice versa

6. Diversity: the items recommended to me are varied and vice versa

7. Context compatibility: recommended items take into account my personal context and vice versa

For each question, users give a rating of 1 to 3, where 1 means the user strongly agrees with the

question asked, 2 means a neutral perception, and 3 shows the user strongly disagrees. Users are

uniformly asked to rate the ten 3-items in the generated rules and are assumed to be viewed by the

user. The user validation table is described in Table 1.

Table 1. The user validation table

Description of items seen by user previously Illustration of item

Jumbo Bag Red Retro spot,

Jumbo Bag Woodland Animals,

Jumbo Storage Bag Suki

Top-10 recommendation by proposed method
User’s validation rate (1, 2, or 3) on

seven Metrics

Items recommended Illustration 1 2 3 4 5 6 7

3 Birds Canvas Screen

36 Doilies Vintage Christmas

Advent Calendar Gingham Sack

Antique Glass Heart Decoration

Assorted Color T-Light Holder

209 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214

III. Results and Discussions

The dataset used is Online retail data available on the UCI web portal. The number of records

initially was 541,909 lines, but after grouping by invoice number, the number of records became

22,106, consisting of 4059 unique items. As explained in the UCI web portal, this transnational

dataset contains all transactions between 01/12/2010 and 09/12/2011 (almost one year) for UK-based

and registered non-store online retailers. This company primarily sells unique gifts for any occasion.

In order to make the proposed method be compared fairly with the query-based session method,

the rules are mined with minsup = 1% and minconf = 50%. Using a lower minsup and minconf such

as 0.1% and 10% respectively, results in an explosion of the number of rules to more than 2 million

rules, which is not adequate for demonstrating the features and functionality of the proposed method

and of the compared traditional method as well.

The difference between the proposed approach and traditional AR-based RS methods is that only

rules with X and Y lengths of precisely one item were mined out, or |X| = 1 and |Y| = 1; whereas to

the traditional method 0 < |X|  3 and |Y| = 1 were applied. These approaches are carried out with

the following considerations: first, with short rules, the number of rules that must be maintained in

memory is less than long rules [51], [52].

In the proposed approach, the number of rules generated is 194 rules which are then arranged as

a series of rules that are used as the training dataset. The size of the training dataset becomes 824

records. For the traditional method approach, the resulting rules are 194 rules, of which 40 rules have

|X| = 3 and |Y| = 1 which is used for Test #1. Mining results for this traditional method are stored in

ruleDB-trad.

The results of applying 1 to 3 layers of LSTM show no significant difference between loss and

accuracy. The lowest loss values for each application, respectively, are 0.2234, 0.2163 and 0.3118

with an accuracy of 84.2%, 83.8% and 84.4%. Charts of changes in loss and accuracy for each epoch

for these three treatments with 1 LSTM layer is given in Figure 9.

Fig. 9. Loss and accuracy of model with 1 LSTM + Dropout + Dense layers

An essential note during experiments is that if the dropout layer is not applied, there is an

improvement in loss, which is an average of 0.07 and an average accuracy of 93.7%. It is explained

that Dropout can avoid overfitting by deleting cells randomly [39]. However, in some literature

regarding text generators, no comparison was found between the results of the dropout and non-

dropout models[31], [44], [53]. In addition, because of its generative nature, the text-generator

 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214 210

method results in the formation of new sentences from new term arrangements so that the 'accuracy'

of terms that should appear after the previous term intuitively does not result from applying the

dropout layer only, but also the richness of vocabulary and sentences available in the training set.

The results of test #1 show that the proposed method can predict next-items and produce top-10

recommendations for all 40 three-item X series where the query-based method can generate the next-

items. In contrast, the query-based method cannot generate top-10 recommendations for all X, but

only 2 items, as shown in Table 2 (left-side), is because not all X which is the antecedent of the rules

has 10 consequent items Y. This is an advantage offered by the proposed method.

For test #2, a manual inspection found several item combinations not in the ruleDB-trad database.

These items are trained to the developed model to seek recommendations. One of the results is given

in Table 2 (right-side), where the proposed method produces top-10 recommendations, and the

traditional method does not find any items, which means traditional query-based methods are not

adaptive in generating recommendations for any input itemIDs entered.

Table 2. Top-10 recommendations produced for items seen by the user, which is a frequent itemset (left-side), and is not a

frequent itemset (right-side)

itemID Description itemID Description

Items seen by user is frequent itemset Not a frequent itemset

85099B Jumbo Bag Red Retrospot 85099B Jumbo Bag Red Retrospot

20712 Jumbo Bag Woodland Animals 20711 Jumbo Bag Toys

21931 Jumbo Storage Bag Suki 20712 Jumbo Bag Woodland Animals

Top-10 Recommendation by proposed method

84731 3 Birds Canvas Screen 22282 12 Egg House Painted Wood

22950 36 Doilies Vintage Christmas 84559B 3d Sheet of Cat Stickers

90199B 5 Strand Glass Necklace Amethyst 72801C 4 Rose Pink Dinner Candles

22580 Advent Calendar Gingham Sack 22371 Airline Bag Vintage Tokyo 78
21143 Antique Glass Heart Decoration 23068 Aluminum Stamped Heart

17164B Ass Col Small Sand Gecko Weight 90183A Amber Drop Earrings W Long Beads

47421 Assorted Color Lizard Suction Hook 84879 Assorted Color Bird Ornament

20749 Assorted Color Mini Cases 20749 Assorted Color Mini Cases
47420 Assorted Color Suction Cup Hook 47420 Assorted Color Suction Cup Hook

84950 Assorted Color T-Light Holder 84950 Assorted Color T-Light Holder

Top Recommendation by traditional method

22386 Jumbo Bag Pink Polka Dot
22411 Jumbo Shopper Vintage Red Paisley No result

Next, the proposed method's ability to generatively find recommendations for each input given in

a session is demonstrated with the following step: 1) get the top-K recommendations from the

itemIDs series, called X1, 2) the itemID in the first position of recommendation is assumed to be

clicked by the user, so it goes into X1, and simultaneously pushes out a product from X1, and then

this series becomes X2; 3) The second step is repeated until X5 is obtained, then the results are

analyzed. Using K = 3, the result is shown as follows:

• X1: {85099b: Jumbo Bag Red Retrospot, 20711: Jumbo Bag Toys, 20712: Jumbo Bag Woodland

Animals}

Top-3 recommendations: 23697: A Pretty Thank You Card (Clicked), 85161: Acrylic Geometric

Lamp, 22915: Assorted Bottle Top Magnets

• X2: {23697: A Pretty Thank You Card, 85099b: Jumbo Bag Red Retrospot, 20712: Jumbo Bag

Woodland Animals}

Top-3 recommendations: 22282: 12 Egg House Painted Wood (Clicked), 22374: Airline Bag

Vintage Jet Set Red, 22915: Assorted Bottle Top Magnets

• X3: {22282: 12 Egg House Painted Wood, 23697: A Pretty Thank You Card, 20712: Jumbo

Bag Woodland Animals}

Top-3 recommendations: 84558a: 3D Dog Picture Playing Cards (Clicked), 22915: Assorted

Bottle Top Magnets, 84879: Assorted Color Bird Ornament

• X4: {22282: 12 Egg House Painted Wood, 84558a: 3D Dog Picture Playing Cards, 23697: A

Pretty Thank You Card}

211 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214

Top-3 recommendations: 21448: 12 Daisy Pegs in Wood Box (Clicked), 23442: 12 Hanging

Eggs Hand Painted, 22906: 12 Message Cards with Envelopes

• X5: {21448: 12 Daisy Pegs in Wood Box, 22282: 12 Egg House Painted Wood, 84558a: 3D

Dog Picture Playing Cards}

Top-3 recommendations: 22436: 12 Colored Party Balloons, 22150: 3 Stripey Mice Felt craft,

84559a: 3D Sheet of Dog Stickers.

In this simulation, it can be understood that whatever order of items the user sees, the system can

always generate a new list of recommendations, and with this ability, the recommendation system is

said to be generative in generating recommendations.

The results of the user-centric validity test on the list of recommendations produced by the

proposed model are shown in Figure 10, with the metrics being measured as accuracy, familiarity,

attractiveness, enjoyability, novelty, diversity, and context compatibility, which are captured from

the user's perspective. As seen, users feel that the recommended items are less accurate than those

the user has seen. However, in other metrics, users give the opposite response. In terms of familiarity,

even though it is inaccurate, as many as 56% of users feel familiar with the recommended item.

Furthermore, as many as 72% of users agree that recommended items are attractive, 76% of users

enjoy the list of recommended items, and they also feel that they just found out that the recommended

items are related to items they have previously viewed. 80% of users agree that the list of

recommended items is diverse, and 56% of users also agree that the items are related to the context

of the items they have seen. On the other hand, although it appears that many users have a neutral

opinion, it can be said that few users disagree with the questions asked regarding the metrics being

measured.

Fig. 10. User validation of measured metrics

An interesting thing to note is that 20% of users who have a neutral perception of accuracy think

that the recommended product still has something to do with the product they have seen, namely that

it has elements of animal shapes or something related to Christmas, such as the color red, and

ornaments to decorate Christmas or New Year celebrations.

This result is in line with the results of previous studies, which show that accuracy versus novelty

and diversity are inverse metrics [54]–[58]. If accuracy is essential, recommendation results tend to

be uniform because accuracy is associated with the degree of similarity between the recommended

product and those the user has seen or purchased. Diversity, on the other hand, brings a list of

recommended products that are not similar to any products the user has ever seen. Novelty is closely

related to diversity because the user's new understanding of the product usually arises when they are

presented with products that are not similar to those previously visited.

Another important note is that AR-based RS does not produce recommended item Y with high

similarity to a series of items X that the user has visited or purchased. The pair (X, Y) is formed from

the Support and Confidence metrics, so if the results from the traditional method show that Y and X

 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214 212

look similar, it is because (X, Y) were purchased together, not because the product descriptions are

similar.

IV. Conclusions

The ability of the proposed RNN-based session method to generatively and adaptively produce

recommendations after recommendations from a series of items viewed by a user in a session has

been demonstrated. Traditional query-based methods are incapable of this because next-item

recommendations are not generated from the learning process but instead rely on rules. As a result,

when the item array that a user is looking for in a session is not a frequent itemset, then the traditional

method fails to find the next-item, hence also recommendations. The results of user-centered

validation of several matrices toward the proposed method show that although the level of accuracy

of recommended products and products seen by users is only 20%, other metrics reach above 70%,

such as novelty, diversity, attractiveness and enjoyability. As a suggestion for future development,

the model can be built by adding several layers of attention to remember a more extended sequence

of rules, such as in the transformers model.

Declarations

Author contribution

All authors contributed equally as the main contributor of this paper. All authors read and approved the final paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare no known conflict of financial interest or personal relationships that could have appeared to influence
the work reported in this paper.

Additional information

Reprints and permission information are available at http://journal2.um.ac.id/index.php/keds.

Publisher’s Note: Department of Electrical Engineering and Informatics - Universitas Negeri Malang remains neutral with

regard to jurisdictional claims and institutional affiliations.

References

[1] T. Silveira, M. Zhang, X. Lin, Y. Liu, and S. Ma, “How good your recommender system is? A survey on evaluations

in recommendation,” Int. J. Mach. Learn. Cybern., vol. 10, no. 5, 2019.

[2] J. Ben Schafer, J. A. Konstan, and J. Riedl, “E-Commerce Recommendation Applications,” in Applications of Data

Mining to Electronic Commerce, 2011.

[3] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems : Principles , methods and evaluation,”

Egypt. Informatics J., vol. 16, no. 3, pp. 261–273, 2015.

[4] Q. Y. Shambour, M. M. Abu-Alhaj, and M. M. Al-Tahrawi, “A hybrid collaborative filtering recommendation

algorithm for requirements elicitation,” Int. J. Comput. Appl. Technol., vol. 63, no. 1–2, 2020.

[5] W. Jiang et al., “A new time-aware collaborative filtering intelligent recommendation system,” Comput. Mater.

Contin., vol. 61, no. 2, pp. 849–859, 2019.

[6] K. Yi, T. Chen, and G. Cong, “Library personalized recommendation service method based on improved association

rules,” Libr. Hi Tech, vol. 36, no. 3, pp. 443–457, 2018.

[7] Y. Tian, B. Zheng, Y. Wang, Y. Zhang, and Q. Wu, “College library personalized recommendation system based on

hybrid recommendation algorithm,” in Procedia CIRP, 2019.

[8] M. Ge, F. Ricci, and D. Massimo, “Health-aware food recommender system,” in RecSys 2015 - Proceedings of the

9th ACM Conference on Recommender Systems, 2015.

[9] X. Li et al., “Application of intelligent recommendation techniques for consumers’ food choices in restaurants,” Front.

Psychiatry, 2018.

[10] L. D. Adistia, T. M. Akhriza, and S. Jatmiko, “Sistem Rekomendasi Buku untuk Perpustakaan Perguruan Tinggi

Berbasis Association Rule,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, 2019.

http://journal2.um.ac.id/index.php/keds
https://doi.org/10.1007/s13042-017-0762-9
https://doi.org/10.1007/s13042-017-0762-9
https://doi.org/10.1007/978-1-4615-1627-9_6
https://doi.org/10.1007/978-1-4615-1627-9_6
https://doi.org/10.1016/j.eij.2015.06.005
https://doi.org/10.1016/j.eij.2015.06.005
https://doi.org/10.1504/IJCAT.2020.107908
https://doi.org/10.1504/IJCAT.2020.107908
https://doi.org/10.32604/cmc.2019.05932
https://doi.org/10.32604/cmc.2019.05932
https://doi.org/10.1108/LHT-06-2017-0120
https://doi.org/10.1108/LHT-06-2017-0120
https://doi.org/10.1016/j.procir.2019.04.126
https://doi.org/10.1016/j.procir.2019.04.126
https://doi.org/10.1145/2792838.2796554
https://doi.org/10.1145/2792838.2796554
https://doi.org/10.3389/fpsyt.2018.00415
https://doi.org/10.3389/fpsyt.2018.00415
https://doi.org/10.29207/resti.v3i2.971
https://doi.org/10.29207/resti.v3i2.971

213 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214

[11] T. K. Dang, Q. P. Nguyen, and V. S. Nguyen, “A Study of Deep Learning-Based Approaches for Session-Based

Recommendation Systems,” SN Computer Science, vol. 1, no. 4. 2020.

[12] S. Wang, L. Cao, Y. Wang, Q. Z. Sheng, M. A. Orgun, and D. Lian, “A Survey on Session-based Recommender

Systems,” ACM Comput. Surv., vol. 54, no. 7, 2022.

[13] M. Ludewig and D. Jannach, “Evaluation of session-based recommendation algorithms,” User Model. User-adapt.

Interact., vol. 28, no. 4–5, 2018.

[14] S. Latifi, N. Mauro, and D. Jannach, “Session-aware recommendation: A surprising quest for the state-of-the-art,” Inf.

Sci. (Ny)., vol. 573, 2021.

[15] M. Ludewig, N. Mauro, S. Latifi, and D. Jannach, “Empirical analysis of session-based recommendation algorithms,”

User Model. User-adapt. Interact., vol. 31, no. 1, 2021.

[16] M. Maher et al., “Comprehensive Empirical Evaluation of Deep Learning Approaches for Session-Based

Recommendation in E-Commerce,” Entropy, vol. 24, no. 11, 2022.

[17] D. Wang, D. Xu, D. Yu, and G. Xu, “Time-aware sequence model for next-item recommendation,” Appl. Intell., vol.

51, no. 2, 2021.

[18] G. M. Harshvardhan, M. K. Gourisaria, S. S. Rautaray, and M. Pandey, “UBMTR: Unsupervised Boltzmann machine-

based time-aware recommendation system,” J. King Saud Univ. - Comput. Inf. Sci., 2021.

[19] J. Li, Y. Wang, and J. McAuley, “Time interval aware self-attention for sequential recommendation,” in WSDM 2020

- Proceedings of the 13th International Conference on Web Search and Data Mining, 2020.

[20] Y. Guo, Y. Ling, and H. Chen, “A time-aware graph neural network for session-based recommendation,” IEEE

Access, vol. 8, 2020.

[21] T. M. Phuong, T. C. Thanh, and N. X. Bach, “Neural session-aware recommendation,” IEEE Access, vol. 7, 2019.

[22] J. Zhao et al., “DCFGAN: An adversarial deep reinforcement learning framework with improved negative sampling

for session-based recommender systems,” Inf. Sci. (Ny)., vol. 596, 2022.

[23] X. Huang, Y. He, B. Yan, and W. Zeng, “Fusing frequent sub-sequences in the session-based recommender

system[Formula presented],” Expert Syst. Appl., vol. 206, 2022.

[24] L. van Maasakkers, D. Fok, and B. Donkers, “Next-basket prediction in a high-dimensional setting using gated

recurrent units,” Expert Syst. Appl., vol. 212, 2023.

[25] T. Liu, X. Yin, and W. Ni, “Next Basket Recommendation Model Based on Attribute-Aware Multi-Level Attention,”

IEEE Access, vol. 8, 2020.

[26] B. Peng, Z. Ren, S. Parthasarathy, and X. Ning, “M2: Mixed Models With Preferences, Popularities and Transitions

for Next-Basket Recommendation,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, 2023.

[27] U. Niranjan, R. B. V. Subramanyam, and V. Khanaa, “Developing a Web Recommendation System Based on Closed

Sequential Patterns,” in Communications in Computer and Information Science, 2010.

[28] G. E. Yap, X. L. Li, and P. S. Yu, “Effective next-items recommendation via personalized sequential pattern mining,”

in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2012.

[29] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Effective Personalization Based on Association Rule Discovery

from Web Usage Data,” in Proceedings of the Third International Workshop on Web Information and Data

Management (WIDM), 2001.

[30] T. M. Akhriza, Y. Ma, and J. Li, “Revealing the Gap Between Skills of Students and the Evolving Skills Required by

the Industry of Information and Communication Technology,” Int. J. Softw. Eng. Knowl. Eng., vol. 27, no. 05, pp.

675–698, 2017.

[31] M. Lippi, M. A. Montemurro, M. Degli Esposti, and G. Cristadoro, “Natural Language Statistical Features of LSTM-

Generated Texts,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 11, 2019.

[32] R. Dolphin, “LSTM Neworks A Detailed Explanation,” Web Page, 2020. (accessed Jan. 06, 2022).

[33] P. P. Barman and A. Boruah, “A RNN based approach for next word prediction in assamese phonetic transcription,”

in Procedia Computer Science, 2018.

[34] J. Brownlee, “Text Generation With LSTM Recurrent Neural Networks in Python with Keras,” Machine learning

mastery, 2018.

[35] J. Gordon and J. M. Hernández-Lobato, “Combining deep generative and discriminative models for Bayesian semi-

supervised learning,” Pattern Recognit., vol. 100, 2020.

[36] A. Fujino, N. Ueda, and K. Saito, “A hybrid generative/discriminative approach to text classification with additional

information,” Inf. Process. Manag., vol. 43, no. 2, 2007.

[37] C. L. P. Chen and S. Feng, “Generative and Discriminative Fuzzy Restricted Boltzmann Machine Learning for Text

and Image Classification,” IEEE Trans. Cybern., vol. 50, no. 5, 2020.

[38] N. C. Dvornek, X. Li, J. Zhuang, and J. S. Duncan, “Jointly Discriminative and Generative Recurrent Neural Networks

for Learning from fMRI,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2019.

[39] A. Carta, “Building a RNN Recommendation Engine with TensorFlow,” Medium.com2, 2021. (accessed Jan. 06,

2022).

[40] S. Ambulgekar, S. Malewadikar, R. Garande, and B. Joshi, “Next Words Prediction Using Recurrent

NeuralNetworks,” ITM Web Conf., vol. 40, 2021.

https://doi.org/10.1007/s42979-020-00222-y
https://doi.org/10.1007/s42979-020-00222-y
https://doi.org/10.1145/3465401
https://doi.org/10.1145/3465401
https://doi.org/10.1007/s11257-018-9209-6
https://doi.org/10.1007/s11257-018-9209-6
https://doi.org/10.1016/j.ins.2021.05.048
https://doi.org/10.1016/j.ins.2021.05.048
https://doi.org/10.1007/s11257-020-09277-1
https://doi.org/10.1007/s11257-020-09277-1
https://doi.org/10.3390/e24111575
https://doi.org/10.3390/e24111575
https://doi.org/10.1007/s10489-020-01820-2
https://doi.org/10.1007/s10489-020-01820-2
https://doi.org/10.1016/j.jksuci.2021.01.017
https://doi.org/10.1016/j.jksuci.2021.01.017
https://doi.org/10.1145/3336191.3371786
https://doi.org/10.1145/3336191.3371786
https://doi.org/10.1109/ACCESS.2020.3023685
https://doi.org/10.1109/ACCESS.2020.3023685
https://doi.org/10.1109/ACCESS.2019.2926074
https://doi.org/10.1016/j.ins.2022.02.045
https://doi.org/10.1016/j.ins.2022.02.045
https://doi.org/10.1016/j.eswa.2022.117789
https://doi.org/10.1016/j.eswa.2022.117789
https://doi.org/10.1016/j.eswa.2022.118795
https://doi.org/10.1016/j.eswa.2022.118795
https://doi.org/10.1109/ACCESS.2020.3018030
https://doi.org/10.1109/ACCESS.2020.3018030
https://doi.org/10.1109/TKDE.2022.3142773
https://doi.org/10.1109/TKDE.2022.3142773
https://doi.org/10.1007/978-3-642-15766-0_25
https://doi.org/10.1007/978-3-642-15766-0_25
https://doi.org/10.1007/978-3-642-29035-0_4
https://doi.org/10.1007/978-3-642-29035-0_4
https://doi.org/10.1007/978-3-642-29035-0_4
https://doi.org/10.1145/502932.502935
https://doi.org/10.1145/502932.502935
https://doi.org/10.1145/502932.502935
https://doi.org/10.1142/s0218194017500255
https://doi.org/10.1142/s0218194017500255
https://doi.org/10.1142/s0218194017500255
https://doi.org/10.1109/TNNLS.2019.2890970
https://doi.org/10.1109/TNNLS.2019.2890970
https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
https://doi.org/10.1016/j.procs.2018.10.359
https://doi.org/10.1016/j.procs.2018.10.359
https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
https://doi.org/10.1016/j.patcog.2019.107156
https://doi.org/10.1016/j.patcog.2019.107156
https://doi.org/10.1016/j.ipm.2006.07.013
https://doi.org/10.1016/j.ipm.2006.07.013
https://doi.org/10.1109/TCYB.2018.2869902
https://doi.org/10.1109/TCYB.2018.2869902
https://doi.org/10.1007/978-3-030-32692-0_44
https://doi.org/10.1007/978-3-030-32692-0_44
https://doi.org/10.1007/978-3-030-32692-0_44
https://medium.com/decathlontechnology/building-a-rnn-recommendation-engine-with-tensorflow-505644aa9ff3
https://medium.com/decathlontechnology/building-a-rnn-recommendation-engine-with-tensorflow-505644aa9ff3
https://doi.org/10.1051/itmconf/20214003034
https://doi.org/10.1051/itmconf/20214003034

 T. A. Armanda et al. / Knowledge Engineering and Data Science 2023, 6 (2): 199–214 214

[41] S. G. Vadlamudi, S. Kumar, S. Sahu, A. Malviya, and P. Choudhury, “Multi-Window Time-Aware Personalized

Recommendation System,” IN201741023671, 2017.

[42] Q. Zhang, L. Cao, C. Shi, and Z. Niu, “Neural Time-Aware Sequential Recommendation by Jointly Modeling

Preference Dynamics and Explicit Feature Couplings,” IEEE Trans. Neural Networks Learn. Syst., 2021.

[43] H. Miao, A. Li, L. S. Davis, and A. Deshpande, “Towards unified data and lifecycle management for deep learning,”

in Proceedings - International Conference on Data Engineering, 2017.

[44] T. Iqbal and S. Qureshi, “The survey: Text generation models in deep learning,” Journal of King Saud University -

Computer and Information Sciences, vol. 34, no. 6. 2022.

[45] M. Kaminskas and D. Bridge, “Diversity, serendipity, novelty, and coverage: A survey and empirical analysis of

beyond-Accuracy objectives in recommender systems,” ACM Transactions on Interactive Intelligent Systems, vol. 7,

no. 1. 2016.

[46] P. Gravino, B. Monechi, and V. Loreto, “Towards novelty-driven recommender systems,” Comptes Rendus Physique,

vol. 20, no. 4. 2019.

[47] K. Kapoor, V. Kumar, L. Terveen, J. A. Konstan, and P. Schrater, “‘i like to explore sometimes’: Adapting to dynamic

user novelty preferences,” in RecSys 2015 - Proceedings of the 9th ACM Conference on Recommender Systems,

2015.

[48] Z. Zolaktaf, R. Babanezhad, and R. Pottinger, “A generic top-n recommendation framework for trading-off accuracy,

novelty, and coverage,” Proc. - IEEE 34th Int. Conf. Data Eng. ICDE 2018, pp. 149–160, 2018.

[49] k. Nanath and M. Ahmed, “User-Centric Evaluation of Recommender Systems: A literature review,” Int. J. Bus. Inf.

Syst., vol. 1, no. 1, 2020.

[50] D. Y. A. Waykar, “Human-AI Collaboration in Explainable Recommender Systems: An Exploration of User-Centric

Explanations and Evaluation Frameworks,” INTERANTIONAL J. Sci. Res. Eng. Manag., vol. 07, no. 07, 2023.

[51] T. M. Akhriza and I. D. Mumpuni, “Quantitative class association rule-based approach to lecturer career promotion

recommendation,” Int. J. Inf. Decis. Sci., vol. 13, no. 2, 2021.

[52] T. M. Akhriza, Y. Ma, and J. Li, “Novel Push-Front Fibonacci Windows Model for Finding Emerging Patterns with

Better Completeness and Accuracy:,” ETRI J., vol. 40, no. 1, 2018.

[53] R. Patel and S. Patel, “Deep Learning for Natural Language Processing,” in Lecture Notes in Networks and Systems,

2021, pp. 523–533.

[54] K. Bradley and B. Smyth, “Improving Recommendation Diversity,” in Proceedings of the 12th irish conference on

artificial intelligence and cognitive science, 2001.

[55] T. Yu, J. Guo, W. Li, H. J. Wang, and L. Fan, “Recommendation with diversity: An adaptive trust-aware model,”

Decis. Support Syst., vol. 123, 2019.

[56] R. Xie et al., “Improving Accuracy and Diversity in Matching of Recommendation With Diversified Preference

Network,” IEEE Trans. Big Data, vol. 8, no. 4, 2022.

[57] Y. Lin, C. Huang, W. Yao, and Y. Shao, “Personalised attraction recommendation for enhancing topic diversity and

accuracy,” J. Inf. Sci., vol. 49, no. 2, 2023.

[58] C. Matt, A. Benlian, T. Hess, and C. Weiß, “Escaping from the filter bubble? the effects of novelty and serendipity on

users’ evaluations of online recommendations,” in 35th International Conference on Information Systems “Building

a Better World Through Information Systems”, ICIS 2014, 2014.

https://patents.google.com/patent/US20190012718A1/en
https://patents.google.com/patent/US20190012718A1/en
https://doi.org/10.1109/TNNLS.2021.3069058
https://doi.org/10.1109/TNNLS.2021.3069058
https://doi.org/10.1109/ICDE.2017.112
https://doi.org/10.1109/ICDE.2017.112
https://doi.org/10.1016/j.jksuci.2020.04.001
https://doi.org/10.1016/j.jksuci.2020.04.001
https://doi.org/10.1145/2926720
https://doi.org/10.1145/2926720
https://doi.org/10.1145/2926720
https://doi.org/10.1016/j.crhy.2019.05.014
https://doi.org/10.1016/j.crhy.2019.05.014
https://doi.org/10.1145/2792838.2800172
https://doi.org/10.1145/2792838.2800172
https://doi.org/10.1145/2792838.2800172
https://doi.org/10.1109/ICDE.2018.00023
https://doi.org/10.1109/ICDE.2018.00023
https://doi.org/10.1504/ijbis.2020.10035978
https://doi.org/10.1504/ijbis.2020.10035978
https://doi.org/10.55041/ijsrem24775
https://doi.org/10.55041/ijsrem24775
https://doi.org/10.1504/ijids.2021.116507
https://doi.org/10.1504/ijids.2021.116507
https://doi.org/10.4218/etrij.18.0117.0175
https://doi.org/10.4218/etrij.18.0117.0175
https://doi.org/10.1007/978-981-16-0882-7_45
https://doi.org/10.1007/978-981-16-0882-7_45
https://www.bibsonomy.org/bibtex/219b57c3acb162cffa6f825a3deb0603d/bsmyth
https://www.bibsonomy.org/bibtex/219b57c3acb162cffa6f825a3deb0603d/bsmyth
https://doi.org/10.1016/j.dss.2019.113073
https://doi.org/10.1016/j.dss.2019.113073
https://doi.org/10.1109/TBDATA.2021.3103263
https://doi.org/10.1109/TBDATA.2021.3103263
https://doi.org/10.1177/0165551521999801
https://doi.org/10.1177/0165551521999801
file:///F:/ELEKTRO/KEDS/Layout/Volume%206%20Nomor%202/Escaping%20from%20the%20filter%20bubble
file:///F:/ELEKTRO/KEDS/Layout/Volume%206%20Nomor%202/Escaping%20from%20the%20filter%20bubble
file:///F:/ELEKTRO/KEDS/Layout/Volume%206%20Nomor%202/Escaping%20from%20the%20filter%20bubble

