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I. Introduction 

 Traffic flow prediction is a crucial research domain focused on anticipating forthcoming traffic 

patterns within a road network [1]. Recently, this field has garnered increasing interest due to the 

rapid advancements and adoption of Intelligent Transportation Systems (ITS). Traffic flow 

prediction plays a fundamental role within the framework of ITS, serving as a pivotal component, 

plays a critical role in traffic management and planning, and aims to provide better transport 

management by avoiding congestion.  

In most megacities, traffic congestion is a significant issue that hinders residents' daily lives and 

the nation's economic progress [2]. The significant causes of traffic congestion include rising 

population, urbanization, poor traffic management, and inadequate transportation infrastructure [3]. 

The economic burden of traffic congestion in urban centers is steadily increasing globally, affecting 

nearly every major city. For instance, in Dhaka, traffic congestion results in the loss of five million 

working hours daily, translating to an annual economic toll ranging from 200 to 550 billion takas [4]. 

Such severe traffic congestion can harm a nation's economy, hinder foreign investments, disrupt the 

supply and demand dynamics, and contribute to heightened emotional stress among the population 

[5]. Consequently, timely and precise traffic flow forecasting is immensely valuable to urban 

residents. Travelers can create better trip arrangements with accurate traffic flow forecasting, 

reducing traffic congestion, fuel consumption, and carbon emissions [6].  

However, because of its intricate spatial and temporal connections and abrupt accidents, traffic 

flow prediction has always been a complex problem. Numerous specialists and academics have 

dedicated their research to studying traffic flow prediction and have developed numerous prediction 
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With the recent surge in road traffic within major cities, the need for both short and 
long-term traffic flow forecasting has become paramount for city authorities. Previous 
research efforts have predominantly focused on short-term traffic flow estimations for 
specific road segments and paths. However, applications of paramount importance, 
such as traffic management and schedule routing planning, demand a deep 
understanding of long-term traffic flow predictions. However, due to the intricate 
interplay of underlying factors, there exists a scarcity of studies dedicated to long-term 
traffic prediction. Previous research has also highlighted the challenge of lower 
accuracy in long-term predictions owing to error propagation within the model. This 
model effectively combines Graph Convolutional Network (GCN) capacity to extract 
spatial characteristics from the road network with the stacked GCN aptitude for 
capturing temporal context. Our developed model is subsequently employed for traffic 
flow forecasting within urban road networks. We rigorously compare our method 
against baseline techniques using two real-world datasets. Our approach significantly 
reduces prediction errors by 40% to 60% compared to other methods. The 
experimental results underscore our model's ability to uncover spatiotemporal 
dependencies within traffic data and its superior predictive performance over baseline 
models using real-world traffic datasets. 
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techniques that can be categorized depending on the model: parametric or nonparametric. Parametric 

models derive their parameters by analyzing the original data, and traffic forecasts are subsequently 

executed based on predefined regression functions. Various traditional parametric models like the 

ARIMA model [7], the KF model [8][9], and different variations of ARIMA have been utilized for 

traffic flow prediction. Nevertheless, due to traffic flow's nonlinear and stochastic nature, these 

models often struggle to provide accurate predictions. 

Consequently, nonparametric models, including random forest [10], support vector machine 

[11][12], fuzzy logic models [13], Bayesian networks [14], K-Nearest Neighbors methods [15][16], 

neural network models [17][18], and hybrid combinations of these algorithms, have been introduced. 

These models can handle spatiotemporal data, although their effectiveness may vary depending on 

the application and dataset size. Despite their superior performance, these models encounter 

challenges when dealing with extensive traffic datasets. 

To address these challenges, recent advancements in deep learning networks have become 

increasingly prevalent, as they can handle large datasets and improve prediction accuracy by utilizing 

multiple layers to extract intricate traffic characteristics. For instance, Wu and Tan [19] introduced a 

model featuring a one-dimensional Convolutional Neural Network (CNN) for capturing spatial 

features and incorporated two Long Short-term Memory (LSTM) layers to capture temporal patterns. 

Duan et al. [20] adopted CNN for spatial features and combined it with LSTM for temporal feature 

extraction. Additionally, they employed a greedy training policy to reduce training time and enhance 

accuracy, especially in deeper networks. However, CNN has inherent limitations when dealing with 

complex topological structures, as it was initially designed for Euclidean spaces like images and 

regular grids, making it less suitable for adequately characterizing the spatial intricacies and 

dependencies within road networks. The Graph Convolutional Network (GCN) [21] was introduced 

to address this limitation. GCN represents the traffic network as a graph and effectively captures 

spatial attributes from neighboring nodes. In another study [22], a combination of GCN was utilized 

for traffic flow prediction, incorporating LSTM and multitask learning to capture global and local 

traffic flow correlations along road segments. This model leveraged GCN within an undirected graph 

framework to depict the spatial distribution patterns of taxi trips and used LSTMs to capture temporal 

features. 

Additionally, the implementation of multitask learning enhanced the model's generalizability. In 

[23], an approach called Hierarchical Graph Convolution Networks (HGCN) was proposed, 

operating on both micro and macro traffic graphs. This study recognized the hierarchical structure of 

traffic systems, comprising microlayers (road networks) and macro layers (region networks). In [24], 

the authors emphasized the importance of learning node-specific patterns without relying on 

predefined graphs. To achieve this, they introduced two adaptive modules: the Node Adaptive 

Parameter Learning (NAPL) module, capturing node-specific patterns, and the Data Adaptive Graph 

Generation (DAGG) module, inferring interdependencies among traffic series automatically. These 

modules were integrated with recurrent networks to create the Adaptive Graph Convolutional 

Recurrent Network (AGCRN), effectively capturing fine-grained spatial and temporal correlations 

in traffic data. However, it is worth noting that these innovative methods predominantly focused on 

short-term traffic prediction despite the increased complexity associated with long-term prediction. 

Long-term traffic prediction is particularly challenging due to its essential applications in traffic 

management and schedule routing planning. Consequently, research is scarce in this domain, 

primarily because predicting the distant future presents more considerable difficulties compared to 

short-term forecasting. 

Long-term traffic flow prediction is a less frequently explored research area, and achieving 

accurate long-term predictions poses challenges due to performance degradation over extended 

timeframes compared to short-term predictions. A previous study [25] employed a Recurrent Neural 

Network (RNN) with GPU acceleration to forecast long-term traffic flow in Odense and Beijing. 

However, it is worth noting that RNNs are susceptible to the vanishing gradient problem, which can 

impact their performance. In another study [26], a spatial-temporal graph attention network was 

introduced, designed to capture the data's dynamic graph structure and spatial-temporal 

dependencies. Their model is tested using two public datasets gathered in California. In their study, 
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Wang et al. [27] introduced a deep learning architecture comprising two main components: a bottom-

up LSTM encoder-decoder structure and a top-down calibration layer. 

On the other hand, Li et al. [28] proposed a hybrid model for forecasting next-day traffic flow. 

This model incorporates wavelet decomposition, CNN, and LSTM techniques. In [29], CNN and 

BiLSTM are incorporated to predict long-term traffic flow. However, CNN is unsuitable for 

capturing the complex traffic road network structure since it is based on Euclidean distance. 

Moreover, as those prediction techniques do not use separate models, errors can propagate quickly, 

and those models find difficulties in handling sudden incidents. Accurately predicting traffic patterns 

beyond short time frames remains challenging due to the inherent complexities of error accumulation 

in existing models, which undermines long-term forecasting precision. To solve those problems, we 

proposed a stacked GCN that can handle sudden incidents, and as there is a GCN for every segment, 

the error does not propagate. Most models use RNN or its variant to capture the temporal feature and 

CNN or GCN to capture the spatial feature. However, using separate models has drawbacks; it cannot 

capture the inherent interrelationship between temporal and spatial features. To overcome this, we 

used stacked GCN, where segmented modules inherit the temporal feature that helps GCN capture 

both the spatial and temporal features simultaneously.   

In the proposed architecture, we design a segmented module that segments input data to extract 

the temporal features and then incorporates a GCN for every segment to give day-long predictions. 

Thus, we use stacked GCN to get the final prediction outcome based on the segment, and as a result, 

because of stacked architecture, the error from the previous outcome is not propagated in the next 

prediction. GCN is utilized in the proposed method since it improves CNN, which can directly handle 

graphs and non-Euclidian distance and thus works better in road networks. Our contributions to this 

paper are briefly summarized below:  
● We proposed a stacked GCN predictive model for traffic flow over extended periods and applied 

segments to improve the prediction performance without accumulating errors. 
● We used two publicly available datasets to evaluate our model and perform a whole-day 

prediction. We conducted a comparative analysis of our model against the baseline methods, 
and our model shows superiority in traffic forecasting. 

II. Method 

This section introduces the proposed Stacked GCN model designed for long-term traffic flow 

prediction. Our architecture leverages GCN to extract intricate spatial relationships within the road 

network. The road network, represented as the graph G = (V, E), serves as the input to GCN, 

encapsulating the topological structure of the road network. Each road is treated as a node, illustrated 

in Figure 1, and the edges denote connections between the roads.  

 

    (a)        (b) 

Fig. 1. Real road structure transformation into graph road network where (a) Road map (b) Graph structure of the road map 

Within the graph, individual roads are node representations, with V being the set of road nodes V 

= {v1, v2,· · ·,vN }, N signifying the total number of nodes, and E representing the set of edges. The 

adjacency matrix A ∈ R N×N characterizes road linkages, with entries in the matrix being 0 for 

unrelated roads and 1 for connected ones. The feature matrix X ∈ R N×F, with F corresponding to the 
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historical traffic flow data length. Our primary objective is to predict traffic flow for the next T time 

steps, relying on historical data. The proposed Stacked GCN model comprises two essential modules: 

i) a segmented module and ii) a graph convolutional network module. GCN effectively captures 

spatial traffic data characteristics, while the segments module divides historical data into S segments, 

enabling the model to learn temporal patterns. The primary goal of our suggested model is to create 

a more accurate forecast, and the divergence from the actual value should be minimized. As a result, 

our goal is to reduce prediction error, which can be expressed as in (1). 

 

𝑚𝑖𝑛⁡(||𝑌𝑖 −⁡𝑌_𝑖 ⁡||)         (1) 

 

𝑌𝑖 represents the actual observed value of traffic flow, while 𝑌_𝑖 signifies the predicted output. 

The methods of the modules are described in the following subsections. 

A. Segmented Module  

To capture the periodic information embedded within the historical data, we employ the 

segmented module, which transforms the full-length historical traffic data (X) into a collection of 

periodic segments denoted as S = {S1, S2, . . . , Sd}, where d represents the number of segments. 

Each of these segments encapsulates historical data from a distinct period, with Si representing a sub-

time series conveying information about a specific period. Here, l signifies the length of each 

segment, and Si is composed of temporal features about the corresponding time interval. Figure 2 

illustrates an illustrative example of this data segmentation process, where the previous four days' 

twenty-four-hour data is segmented into six segments. Each segment consists of four hours. So, the 

value of d is six, and the value of l is four hours. The fifth day's data were predicted using the previous 

four days' data segments. 

 

Fig. 2. Segmentation mechanism of input data 

In this proposed method to predict a time stamp, we have considered the same time segment from 

the historical data rather than the whole historical data. Typically, traffic behavior within a region 

exhibits a consistent pattern during the same periods across different days. As a result, historical 

daily patterns can be characterized as recurring weekly patterns within specific time windows. For 

instance, the traffic speed observed on a Wednesday at 8:00 AM and 9:00 AM will resemble the 

corresponding time slots on previous days. Consequently, the repetitive patterns in traffic data from 

preceding days within a specific time window can serve as a valuable reflection of the historical daily 
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trends. Thus, we have extracted the temporal features from the segmented module from the historical 

data, and from the stacked GCN module, we have considered the traffic speed for that particular time 

segment.  

B. Graph Convolutional Networks 

The GCN model collects spatial features from its first-order neighborhood. As depicted in Figure 

3, node a represents a central road, while nodes b and c signify the roads connected to this central 

road. Spatial features are extracted by establishing the topological relationships between the central 

and neighboring roads. The GCN model generates a Fourier domain filter utilizing the adjacency 

matrix 'A' and the feature matrix 'X.' This filter, applied to the nodes within the graph, gathers spatial 

characteristics from the first-order neighborhood of each node. The GCN model is constructed by 

stacking multiple convolutional layers, allowing it to capture increasingly complex spatial 

relationships among the nodes, as in (2). 

 

𝐻𝑙+1 = 𝜎⁡(𝐷−
1

2⁡𝐴⁡𝐷−
1

2⁡𝐻(𝑙)⁡𝑊(𝑙)⁡)       (2) 

 

𝐻(𝑙) represents the node feature matrix at layer 𝑙, 𝐴 = 𝐴 + 𝐼  is the adjacency matrix of the graph 

with self-connections added, D is the degree matrix, W(l) denotes the learnable weight matrix at 

layer 𝑙, and 𝜎 represents a nonlinear activation function. The number of layers in the model 

determines the maximum distance over which node characteristics can propagate and interact within 

the graph structure. With one layer GCN, for instance, each node can only obtain information from 

its neighbors. Each node's information-gathering operation runs simultaneously and independently. 

We repeat the process of obtaining information when we layer another layer on top of the original 

one. However, GCN suffers from a vanishing gradient problem if more layers are added, precisely 

more than four layers, causing limited performance [30]. To avoid this problem, we used two layers 

in GCN that can better handle non-euclidean road networks compared to CNN without suffering 

from the vanishing gradients problem. We utilize historical traffic data as our input, segment the 

input data, and then use a two-layered Graph Convolution Network (GCN) for every segment. 

 

Fig. 3. Graph Convolutional Network (GCN) 

C. The Proposed Stacked-based GCN Model 

The architecture of our proposed model, as depicted in Figure 4, incorporates a segmented module 

responsible for preprocessing the input time series data X and converting it into periodic segments 

denoted as S. For day-long prediction, we have segmented twenty-four hours into S segments. We 

have generated results for different numbers of segments. 
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Fig. 4. Graph Convolutional Network (GCN) 

Table 1 demonstrates that an increase in the number of segments leads to reduced error. Twenty-

four segments give less error than others (2, 3, 4, 6, 8, 12). In twenty-four segments, each segment 

consists of one-hour timestamps. In the GCN model, the processed segments are utilized to generate 

the final predictions for traffic speed data. As depicted in Figure 1, the initial raw historical data is 

initially input into the system, and from there, the segments are extracted for further processing. In 

Fig. 3, we have demonstrated the segmentation of historical data for our model. Previous four days, 

particular segments (suppose 4:00 PM - 5:00 PM) have been considered to predict the fifth day's 4:00 

PM - 5:00 PM. Every day is divided into S segments. After that, in the stacked GCN models, GCN 

models are used to process each segment separately. Every GCN used for the segment is two-layered. 

The outputs of these modules are then merged to produce the final prediction sequence Y. Historical 

data in the segment module helps the model inherit the temporal feature and GCN helps capture 

spatial features. The proposed method does not incorporate any other model to capture the temporal 

feature separately, as using separate models cannot capture the inherent interrelationship between 

temporal and spatial features. The stacked GCN model can effectively capture temporal and spatial 

features by employing segmentation. 

Table 1.  Day-long (Twenty-four hours) prediction performance for different segments on the SZ-taxi dataset 

Number of Segments RMSE MAE R2 

24 5.5843 4.4322 0.6995 

12 5.6228 4.2262 0.6940 

8 5.6179 4.2211 0.6930 

6 5.6421 4.2171 0.6876 

4 5.6465 4.2279 0.6955 

3 5.7155 4.3007 0.6897 

2 5.8001 4.3659 0.6808 

III. Experimental Results 

A. Dataset Description 

 In this section, we evaluate the predictive performance of our proposed model using two publicly 
available real-world datasets: the SZ-taxi dataset and the PeMSD7 dataset. These datasets have 
gained popularity in traffic forecasting research and have been employed for performance 
benchmarking in prior studies. Those datasets have both speed and connection data that are needed 
for GCN.   

SZ-taxi: The SZ-taxi dataset, covering taxi trajectories in Shenzhen from January 1 to January 31, 
2015, is centered on the Luohu District's 156 highways. This dataset is structured into two essential 
components: a 156x156 adjacency matrix illustrating highway connections and a feature matrix 
capturing the time-varying traffic speeds for each road. Each row in the feature matrix corresponds 
to a unique route, while columns represent traffic speeds at fifteen-minute intervals. The dataset is 
split into two segments for research purposes, allocating twenty days for training and ten days for 
testing, facilitating effective model development and evaluation. 

PeMSD7: The PeMSD7 dataset provides traffic speed data collected from 228 sensors in 
California's District Seven during weekdays in May and June 2012. It includes two critical 
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components: a 228x228 adjacency matrix representing sensor connections within the network and a 
feature matrix depicting the time-varying traffic speeds for each sensor. Each row in the feature 
matrix corresponds to an individual sensor, while columns represent five-minute intervals of traffic 
speed measurements. The dataset is segmented into a training set, consisting of the first month's data 
encompassing 6,336 timestamps and a test set with an equal number of timestamps, enabling 
practical model training and evaluation for traffic flow prediction research.  

   Table 2 illustrates the learning parameters employed in our proposed model. We utilized the Adam 
optimizer during the training process to minimize the RMSE. The Adam optimizer dynamically 
adjusts the model's real-time parameters, enhancing its accuracy and computational efficiency. The 
L2 Regularization technique is used to reduce model overfitting. As we have memory limitations, 
we used 1000 epochs,64 hidden units, batch size 32, and 0.001 learning rate. As per Table. 1, we can 
see that twenty-four segments give better performance. Thus, we used twenty-four segments for a 
one-day prediction.  

Table 2.  Learning Parameters 

Parameter Description 

Learning Rate 0.001 

Number of Epoch 1000 
Loss Function RMSE 

Hidden Unit 64 

Optimizer Adam 

Regularization Techniques L2 Regularization 

 

B. Evaluation Metrics 

    To assess prediction performance, we utilize three metrics. Three commonly used performance 

measurements for model evaluation in various fields are the Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE). In particular, the RMSE 

is an important metric to evaluate the effectiveness of the proposed model. The RMSE value indicates 

the average magnitude of the differences between actual and predicted data values. In general, a 

smaller RMSE suggests that the model and its predictions perform better, reflecting reduced errors 

in prediction accuracy. The eqaution of RMSE as in (3). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦1 − 𝑦1̂

2)𝑛
𝑖=1         (3) 

     The absolute mathematical operation turns a negative integer into a positive number. Indeed, 

when calculating the MAE, the absolute difference between an expected (actual) value and a 

predicted value is always taken, ensuring that the result is positive regardless of whether the 

prediction overestimates or underestimates the actual value. The formula of MAE as in (4). 

𝑅𝑀𝑆𝐸 =⁡
1

𝑛
∑ |𝑦1 − 𝑦1̂|
𝑛
𝑖=1         (4) 

     The coefficient of determination, often referred to as R-squared, quantifies the proportion of 

variation in the dependent variable that can be accounted for by the independent variable (s) in a 

regression model. It has a value between 0 and 1, with higher values suggesting that the model fits 

the data more closely as in (5). 

𝑅2 = ⁡1 −⁡
∑ (𝑦𝑖̂−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅)2
𝑛
𝑖=1

         (5) 

C. Compared Methods 

     We conducted a comparative analysis of our proposed model against several widely recognized 
models for traffic flow prediction. We selected four commonly employed approaches, encompassing 
both traditional time-series prediction methods and deep learning techniques. 

 First is Autoregressive Integrated Moving Average (ARIMA). ARIMA represents a conventional 
statistical method that captures temporal dependencies within data by employing autoregression, 
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differencing, and moving average techniques. Researchers have extensively used it for traffic flow 
estimation [31]. Second is Support Vector Regression (SVR). SVR is a model that forecasts future 
traffic data by leveraging existing data to train the model and establish the relationship between input 
and output variables [32]. This model employs a linear kernel function. The next is K-nearest 
Neighbor (KNN). KNN is a widely recognized supervised learning approach used for data 
classification based on the proximity of data points to their neighbors [15]. KNN retains all available 
instances and classifies new cases using a similarity score. The last is Graph Convolutional Network 
(GCN). GCN represents a semi-supervised deep learning method that captures the spatial 
characteristics of nodes within a graph. It operates effectively in non-Euclidean spaces, making it 
suitable for modeling road networks 

IV. Result and Discussion  

Table 3 shows the performance of the four approaches outlined above and our suggested model on 

two frequently used datasets. First, we calculate RMSE, MAE, and R2 for a whole day (twenty-four 

hour) prediction. Table 3 reveals that our proposed approach surpasses the other four methods across 

both datasets regarding RMSE, MAE, and R2. Lower error values imply higher accuracy, except for 

R2, where higher values indicate superior performance. The error calculations are conducted twenty-

four hours ahead of predictions. In the sz-taxi dataset, our proposed method demonstrates a remarkable 

16.9% reduction in RMSE compared to ARIMA and a 9.17% decrease compared to GCN. Moving to 

the PeMSD7 dataset, our proposed model achieves a substantial 60.4% reduction in RMSE compared 

to ARIMA, 55.5% reduction compared to SVR, 45.7% reduction to KNN, and 53% reduction to GCN. 

Our proposed model exhibits superior performance, particularly in the PeMSD7 dataset. This is 

attributed to the larger size of the PeMSD7 dataset, allowing our model to learn more effectively by 

relying on historical data for predicting future traffic trends. Notably, ∗ it indicates negligible values, 

signifying poor prediction performance for the model in those cases. 

Table 3.  Prediction performance of the proposed model and other baseline models using SZ-taxi data and PeMSD7 datasets 
for a day (24 hours) 

Model Name 
SZ-taxi PeMSD7 

RMSE MAE R2 RMSE MAE R2 

ARIMA 6.7963 4.6757 * 11.3038 9.1818 * 

SVR 6.56454 4.55313 0.6552 10.0653 4.9432 0.5032 

KNN 5.96454 4.25313 0.6752 8.2546 4.8241 0.5134 
GCN 6.2163 4.6581 0.6451 9.5362 6.8600 0.5162 

Proposed Model 5.6463 4.2197 0.6871 4.4808 3.2734 0.8105 

 

The poor results of the baseline methods are because of the difficulty for ARIMA, KNN, and SVR 

in dealing with complex, irregular time series data. That is why they performed poorly in long 

datasets like the PeMSD7. Despite utilizing GCN within the model, its predictive performance is 

subpar. GCN primarily focuses on spatial characteristics, neglecting the temporal nature inherent in 

traffic data, which is fundamentally time series data. Our proposed model addresses this limitation 

by segmenting the data, enhancing GCN's ability to handle time series data. 

Consequently, our proposed model exhibits superior day-long traffic flow speed prediction 

capabilities. Additionally, ARIMA, a well-established traffic forecasting method, suffers from 

reduced prediction accuracy when confronted with extended and irregular data patterns. ARIMA 

computes its predictions by calculating and averaging errors across individual nodes, and any 

anomalies in the data can consequently inflate the final total error. On the other hand, in our proposed 

long-term prediction, error does not propagate, resulting in better results when compared to others. 

In Figure 5, we visualize traffic prediction and actual traffic flow for an entire day on one road 

for the SZ-taxi dataset. The yellow line indicates actual traffic flow, and the blue dotted line indicates 

predicted traffic flow. The model demonstrates an ability to capture the daily traffic flow data trends. 

Utilizing GCN for each segmented dataset allows for capturing temporal and spatial characteristics 

throughout the day. 
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Fig. 5. The visualization results for a prediction horizon of twenty-four hours in the SZ-taxi dataset 

Our model has shortcomings as it does not account for external variables such as weather 

conditions, accidents, or holidays, which can result in limitations in accurately capturing traffic flow 

dynamics. Our plans involve integrating attention mechanisms to detect abrupt incidents and 

adopting a dynamic adjacency matrix instead of a static one to enhance the information supplied to 

the GCN. In addition, we aim to integrate weather conditions and holiday data into our analysis 

alongside speed data. 

V. Conclusion  

In this research paper, we introduced the concept of a stacked GCN, a deep learning methodology 

aimed at tackling the complexities associated with long-term traffic flow prediction. Accurate long-

term prediction is essential in traffic management and sustainable urban planning, particularly as 

urbanization and population growth exacerbate traffic congestion issues. The proposed Stacked GCN 

model overcomes traditional error accumulation issues by employing a segmented module for 

temporal feature extraction and leveraging Graph Convolutional Networks' capabilities. 

Incorporating historical data in segmentation helps our model learn the historical pattern. In a 

comparison between the ARIMA, SVR, KNN, and GCN models using two real-world traffic 

datasets, it is evident that the stacked GCN model outperforms the others and yields the most accurate 

prediction results.  

Our model can reduce error from 40% to 60% compared to other methods that we used for 

comparison. This produces accurate day-long traffic forecasts, providing travelers with preemptive 

route planning information. Moreover, our model does not use hybrid models like other long-term 

prediction models, ensuring faster results. In the future, our strategy includes integrating attention 

mechanisms to detect unexpected events and employing a dynamic adjacency matrix instead of a 

fixed one to enhance the information available to the GCN. We aim to integrate weather conditions 

and holiday data into our analysis alongside speed data. 
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