PARADIGMA BARU PENDIDIKAN MATEMATIKA DAN APLIKASI ONLINE INTERNET PEMBELAJARAN CONTACT: Widya Eka Pranata, widyapranata983@gmail.com Department of Mathematics, Universitas Negeri Gorontalo, Kota Gorontalo, Gorontalo 96128, Indonesia The article can be accessed here. https://doi.org/10.15642/mantik.2021.7.1.31-40 Implementation of Dijkstra Algorithm and Welch-Powell Algorithm for Optimal Solution of Campus Bus Transportation Nurwan1, Widya Eka Pranata2* , Muhammad Rezky Friesta Payu3, Nisky Imansyah Yahya4 1,2,3,4Department of Mathematics, Universitas Negeri Gorontalo, Gorontalo, Indonesia Article history: Received Sep 28, 2020 Revised Feb 19, 2021 Accepted May 30, 2021 Kata Kunci: Rute terpendek, Jadwal optimal, Algoritma Dijkstra, Algoritma Welch-Powell Abstrak. Penelitian ini membahas tentang penerapan algoritma Dijkstra dan algoritma Welch-Powell pada masalah transportasi bus kampus. Tujuan peneitian ini adalah untuk menentukan rute terpendek dan jadwal optimal untuk jalur trasportasi bus kampus UNG. Dalam menentukan rute terpendek, setiap persimpangan direpresentasikan sebagai simpul dan jalur yang dilalui direpresentasikan sebagai sisi. Lintasan terpendek diperoleh 𝑉1 βˆ’ 𝑉2 βˆ’ 𝑉5 βˆ’ 𝑉8 βˆ’ 𝑉9 βˆ’ 𝑉10 βˆ’ 𝑉13 βˆ’ 𝑉16. Dalam menetukan jadwal optimal, jumlah bus merepresentasikan simpul dan waktu merepresentasikan sisi yang menghubungkan setiap simpul. Jadwal optimal bus dimulai pukul 06.30 pagi sampai pukul 17.00 sore. Setiap bus mendapatkan 4 (empat) sesi keberangkatan dan 4 (empat) sesi kepulangan dengan waktu tempuh masing-masing sesi 60 menit. Keywords: Shortest route, Optimal schedule, Dijkstra algorithm, Welch-Powell algorithm Abstract. This research deals with applying the Dijkstra algorithm and Welch-Powell algorithm to on-campus bus transportation problems. This research aims to determine the optimal solution of campus bus transportation routes in the shortest routes and schedules. In determining the shortest route, each intersection represented as a node and the path described as the sides. The shortest path obtained 𝑉1 βˆ’ 𝑉2 βˆ’ 𝑉5 βˆ’ 𝑉8 βˆ’ 𝑉9 βˆ’ 𝑉10 βˆ’ 𝑉13 βˆ’ 𝑉16. In determining the optimal schedule, the number of buses represents the vertices, and the time expresses the side that connects each node. The optimal program of the bus starts from 06.30 am to 5.00 pm. Every bus gets four sessions of departure and four sessions return with travel time each session is 60 minutes. How to cite: Nurwan, W. E. Pranata, M. R. F. Payu, and N. I. Yahya, β€œImplementation of Dijkstra Algorithm and Welch-Powell Algorithm for Optimal Solution of Campus Bus Transportation”, J. Mat. Mantik, vol. 7, no. 1, pp. 31-40, May 2021. Jurnal Matematika MANTIK Vol. 7, No. 1, May 2021, pp. 31-40 ISSN: 2527-3159 (print) 2527-3167 (online) mailto:widyapranata983@gmail.com https://doi.org/10.15642/mantik.2021.7.1.31-40 http://u.lipi.go.id/1458103791 Jurnal Matematika MANTIK Vol. 7, No. 1, May 2021, pp. 31-40 32 1. Introduction The development of a new campus of Gorontalo State University (UNG) at Bone Bolango Regency is approximately 15 km from the center of Gorontalo City. Campus transfer impacts academic activities or activities as many as 4 (four) faculties, with about 8643 students. The UNG campus transfer from the center of Gorontalo city to Bone Bolango regency impacts transportation availability. The availability of transport is crucial for students to support activities in the new UNG campus. Transportation equipment that serves the route of Gorontalo City to the new campus Bone Bolango is a bus provided by the Gorontalo Porvinsi Transportation Agency and the Bone Bolango Regency Transportation Agency. Gorontalo Provincial Government prepares public transportation services in the form of Bus Rapid Transit (BRT). BRT is a mass transportation facility for the people, including UNG students, to the UNG Bone Bolango campus, even with a limited number. BRT does not prioritize the needs of UNG students. Therefore, it has an impact on the delay of students in eroding lectures. The issue of distance and the discovery of optimal routes is the most crucial thing in transportation problems when students go to Bone Bolango's new campus. This situation is to reduce student delays in participating in academic activities. The above conditions required a solution to get the optimal bus route that serves students from the center of Gorontalo City to the New Campus of UNG Bone Bolango Regency and the optimal schedule of companies or transportation service providers. Transportation problems can be solved using graph theory to describe the pain to make it easier to solve. One of the ideas developed in graph theory is coloring. There are three kinds of color in graph theory: vertex coloring, face coloring, and region color [1]. Dijkstra's algorithm can also be called a greedy algorithm. It is one of the algorithms used to solve the shortest path. It does not have a negative cost [2]. The optimal route is completed using the Dijkstra algorithm to get the optimal bus schedule used welch-Powell algorithm. The working principle of algorithm Dijkstra searches for the two smallest trajectories, so this algorithm is advantageous in determining the shortest course from one point to another [3]. Dijkstra algorithms often search for the shortest routes, using nodes on a simple road network [3]. The Dijkstra algorithm's use to determine the shortest route of a graph will result in the best route, namely selecting and analyzing the unselected node's weight, then selecting the node with the most negligible weight [4]. The Dijkstra algorithm's application in determining the shortest route, among others, finds an effective route to avoid traffic jams during rush hour [5]. Dijkstra algorithm is used to calculate the closest distance from one point to the museum chosen to be the destination [6]. Implementation of Dijkstra algorithms on urban rail transit networks [7]. Determination of the Shortest Route with Using Dijkstra's Algorithm on the Path School bus [8]. One of the concepts of graphs to solve transportation scheduling problems is the concept of graph coloring. Graph coloring is the coloration represented by the sorted number [9] [10]. Use by coloring vertices based on the highest degree of all vertices [11]. The welch-Powell algorithm invented by Welch and Powell is very useful in scheduling. The application of graph coloring uses the Welch-Powell algorithm in determining student guidance schedules [12]. Another study about applying the Dijkstra algorithm was carried for selecting the route to reduce traffic congestion in Purwokerto. This study aims to solve congestion by determining alternative routes that are more effective and efficient. Application of Dijkstra's Algorithm utilizing determine the most negligible weight of each road segment. From this research, the rider can choose alternative routes to avoid congestion [13]. They are searching for the shortest route with Dijkstra's Algorithm. This research aims to simulate shortest path search using The Dijkstra algorithm to help find the shortest route [14]. Application of Dijkstra's Algorithm in the Bus Route Search Application Trans Nurwan, Widya E. Pranata, Muhammad R. F. Payu, Nisky I. Yahya Implementation of Dijkstra Algorithm and Welch-Powell Algorithm for Optimal Solution of Campus Bus Transportation 33 Semarang. This researcher proposes a digital application solution to search for Trans Semarang Bus routes using the Dijkstra Algorithm [15]. Several studies related to Dijkstra's algorithm in transportation problems only focus on determining the shortest route without optimal scheduling. To optimize students' transportation routes to the UNG Bone Bolango campus and the opposite, the researchers solved two problems transportation: shortest route and the optimal schedule. Therefore, the researcher uses two different algorithms, namely the Dijkstra algorithm and the Welch Powell algorithm. The background presented above is needed for optimal bus transportation that serves students from campus 1 in Gorontalo city to Bone Bolango campus. Researchers applied Dijkstra algorithms to determine the shortest routes and Welch-Powell algorithms to design schedules. This study will find the shortest route and planned bus departure schedule from campus 1 to Bone Bolango campus and scheduled return from Bone Bolango campus to Campus 1 Gorontalo City. 2. Methods This study aims to find the optimal route solution of the bus by using the Dijkstra algorithm and set the bus optimal schedule solution by using the Welch-Powell algorithm with the following stages: a. Take a screenshot on google maps in the form of an image. b. Determines several routes from campus 1 to the Bone Bolango campus. c. Specify a starting point. d. Specify a destination point. e. Specify multiple intersections as nodes in the graph. f. Create a straight line from node to node as a side on a graph. g. We create a weighted graph by connecting the vertices using the contents and giving weight according to the distance. h. Analysis of data using Dijkstra and Welch-Powell algorithms. i. Make conclusions. 3. Results and Discussion 3.1 Bus Shortest Route to UNG Bone Bolango Campus Researchers take screenshots on google maps based on previous research methods and represented them in the figure's form. The resulting image is then graphed, as shown in Figure 1. Figure 1. Weighted Graph Jurnal Matematika MANTIK Vol. 7, No. 1, May 2021, pp. 31-40 34 Figure 1 is a route that a bus can take from the starting point or departure point located at campus 1 UNG Gorontalo city to the endpoint located at the campus UNG Bone Bolango. The route in this study represents the side that connects each node. We can see the definition of nodes in Figure 1 in Table 1. Table 1. Image Copyright Getty Images Image Caption The 1st graph No Node Name (intersection) 1 𝑉1 Campus 1 UNG 2 𝑉2 The intersection of three Sentra Media (Jendral Sudirman street–Pangeran Hidayat street) 3 𝑉3 The intersection of four Junior high school 6 Gorontalo (Jendral Sudirman street– Jaksa Agung Suprapto street– Arif Rahman Hakim street) 4 𝑉4 The intersection of four Darul Muhtadin mosque (Arif Rahman Hakim street –Prof Jhon Aryo Katili street – Bj. Pola Isa street) 5 𝑉5 The intersection of four Public health center (Pangeran Hidayat street – Rusli Datau street – Prof. Aryo Katili street – Bj. Pola Isa street) 6 𝑉6 The intersection of four Baiturahim mosques (Nani Wartabone street– Raja Eyato street– Sultan Botutihe steer) 7 𝑉7 The intersection of four Moodu Market (Sultan Botutihe street– Aloei Saboe steer– Matolodula street) 8 𝑉8 The intersection of three UBM (Bj. Pola Isa street–Aloei Saboe street- Tinaloga street) 9 𝑉9 The intersection of three Tinaloga gas station (Tinaloga steer–Toto Tengah street) 10 𝑉10 The intersection of 4 Bypass Kabila (Toto Tengah street–B.J Habibie street– Sabes street– Noho Hudji street) 11 𝑉11 The intersection of three Police office of Kabila (Pasar Minggu street- Tapa Kabila street) 12 𝑉12 The intersection of three Al Munawarah mosque (Pasar Minggu street– Muh. Van Gobel street) 13 𝑉13 The intersection of four Darul Muhaimin mosque ( B.J Habibie street– Muh. Van Gobel street – El Madinah Road street) 14 𝑉14 The intersection of three Indomaret (Pasar Minggu street–Jembatan Merah street) 15 𝑉15 The intersection of three Adipura Monument of Bone Bolango (Jembatan Merah street–B.J Habibie street) 16 𝑉16 UNG Bone Bolango campus Table 1 data is used to determine the shortest trajectory using the Dijkstra algorithm with steps: 1). Node label with πœ†(𝑠) = 0, and for each 𝑣 node in 𝐺 other than 𝑠, 𝑣 node label with πœ†(𝑣) = ∞. 2). Suppose 𝑒 ∈ 𝑇 with a minimum πœ†(𝑒). 3). If 𝑒 = 𝑑, stop, then the shortest trajectory from s to t is πœ†(𝑑). 4). For each side 𝑒 = 𝑒𝑣, 𝑣 ∈ 𝑇; replace label 𝑣 with πœ†(𝑣) = minimum πœ†(𝑣), πœ†(𝑒) + w(e). 5). 𝑇 = 𝑇 βˆ’ 𝑒, and return to iteration 2 [16]. The shortest trajectory problem in all knot pairs is to find the shortest trajectory between knot pairs. 𝑉𝑖 , 𝑉𝑗 ∈ 𝑣 in such a way that 𝑖 β‰  𝑗 [17]. Matrices of agility formed from graph weights with steps: 1). The distance of 𝑉𝑖 node with 𝑉𝑗 if there is a connecting side, then in writing with the weight, 2) 0 if the 𝑉𝑖 node is connected to 𝑉𝑖 And 3) if no side connects the 𝑉𝑖 node with 𝑉𝑗 After looking at the steps above then fill the matrix of agility with the weight on the graph. The results of graph representations weighted into the matrices of the neighboring show in Table 2. Nurwan, Widya E. Pranata, Muhammad R. F. Payu, Nisky I. Yahya Implementation of Dijkstra Algorithm and Welch-Powell Algorithm for Optimal Solution of Campus Bus Transportation 35 Table 2. Representation of Graphs in The Matrices of Neighboring 𝑽 π‘½πŸ π‘½πŸ π‘½πŸ‘ π‘½πŸ’ π‘½πŸ“ π‘½πŸ” π‘½πŸ• π‘½πŸ– π‘½πŸ— π‘½πŸπŸŽ π‘½πŸπŸ π‘½πŸπŸ π‘½πŸπŸ‘ π‘½πŸπŸ’ π‘½πŸπŸ“ π‘½πŸπŸ” π‘½πŸ 0𝑣1 1𝑣1 6𝑣1 ∞ ∞ 18𝑣1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ 1𝑣2 0𝑣2 ∞ ∞ 17𝑣2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ‘ 6𝑣3 ∞ 0𝑣3 19𝑣3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ’ ∞ ∞ 19𝑣4 0𝑣4 14𝑣4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ“ ∞ 17𝑣5 14𝑣5 0𝑣5 ∞ ∞ ∞ 23𝑣5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ” 18𝑣6 ∞ ∞ ∞ ∞ 0𝑣6 17𝑣6 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ• ∞ ∞ ∞ ∞ ∞ 17𝑣7 0𝑣7 29𝑣7 ∞ ∞ 21𝑣7 ∞ ∞ ∞ ∞ ∞ π‘½πŸ– ∞ ∞ ∞ ∞ 23𝑣8 ∞ 29𝑣8 0𝑣8 3.5𝑣8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ— ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3.5𝑣9 0𝑣9 11𝑣9 ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸπŸŽ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 11𝑣10 0𝑣10 24𝑣10 ∞ 24𝑣10 ∞ ∞ ∞ π‘½πŸπŸ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 24𝑣11 0𝑣11 22𝑣11 ∞ 22𝑣11 ∞ ∞ π‘½πŸπŸ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 22𝑣12 0𝑣12 22𝑣12 ∞ ∞ ∞ π‘½πŸπŸ‘ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 24𝑣13 ∞ ∞ 0𝑣13 ∞ ∞ 20𝑣13 π‘½πŸπŸ’ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 22𝑣14 ∞ ∞ 0𝑣14 22𝑣14 ∞ π‘½πŸπŸ“ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 22𝑣15 0𝑣15 2𝑣15 π‘½πŸπŸ” ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20𝑣16 14 20𝑣16 0𝑣16 Weight change of each iteration based on algorithm Dijkstra's steps obtained the shortest route from each node 𝑉𝑖 to the 𝑉𝑗 as in Table 3. Table 3. Results of the shortest route in the matrices of neighbouring 𝑽 π‘½πŸ π‘½πŸ π‘½πŸ‘ π‘½πŸ’ π‘½πŸ“ π‘½πŸ” π‘½πŸ• π‘½πŸ– π‘½πŸ— π‘½πŸπŸŽ π‘½πŸπŸ π‘½πŸπŸ π‘½πŸπŸ‘ π‘½πŸπŸ’ π‘½πŸπŸ“ π‘½πŸπŸ” π‘½πŸ 0𝑣1 1𝑣1 6𝑣1 ∞ ∞ 18𝑣1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ 1𝑣1 6𝑣1 ∞ 18𝑣2 18𝑣1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ‘ 6𝑣1 25𝑣3 18𝑣2 18𝑣1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ’ 25𝑣3 18𝑣2 18𝑣1 ∞ 41𝑣5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ“ 25𝑣3 18𝑣1 35𝑣4 41𝑣5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ” 25𝑣3 35𝑣6 41𝑣5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ π‘½πŸ• 35𝑣6 41𝑣5 ∞ ∞ 56𝑣7 ∞ ∞ ∞ ∞ ∞ π‘½πŸ– 41𝑣5 44.5𝑣8 ∞ 56𝑣7 ∞ ∞ ∞ ∞ ∞ π‘½πŸ— 44.5𝑣8 55.5𝑣9 56𝑣7 ∞ ∞ ∞ ∞ ∞ π‘½πŸπŸŽ 55.5𝑣9 56𝑣7 ∞ 79.5𝑣10 ∞ ∞ ∞ π‘½πŸπŸ 56𝑣7 78𝑣11 79.5𝑣10 ∞ ∞ ∞ π‘½πŸπŸ 78𝑣11 79.5𝑣10 96𝑣12 ∞ ∞ π‘½πŸπŸ‘ 79.5𝑣10 96𝑣12 ∞ ∞ π‘½πŸπŸ’ 96𝑣12 118𝑣14 99.5𝑣13 π‘½πŸπŸ“ 101.5𝑣16 99.5𝑣13 π‘½πŸπŸ” 101.5𝑣16 Representation of the neighbouring matrix in Table 3 results in the shortest route of the bus with the following details: a. The 𝑉1 is connected to 𝑉1, 𝑉3 , 𝑉6 with a weight of 𝑉1 βˆ’ 𝑉2 = 1 , 𝑉1 βˆ’ 𝑉3 = 6, 𝑉1 βˆ’ 𝑉6 = 18. Because 𝑉2 the smallest weight choose and colour, it then lowered the 𝑉2. b. 𝑉2 connected with 𝑉1 and 𝑉5 with a 𝑉2 βˆ’ 𝑉5 = 17. Added with colored weight (17 + 1 = 18). Because 𝑉3 the smallest weight, then the 𝑉3 selected and coloured, then lowered the 𝑉3. Jurnal Matematika MANTIK Vol. 7, No. 1, May 2021, pp. 31-40 36 c. 𝑉3 connected with 𝑉1 and 𝑉4 nodes with a weight of 𝑉3 βˆ’ 𝑉4 = 19 Added with a coloured weight (19+6 = 25). Furthermore, two nodes have the same weight (smallest), namely 𝑉5 and𝑉6, selected 𝑉5, then lowered the 𝑉5. d. 𝑉5 connected with 𝑉2 , 𝑉4, 𝑉8 with a weight of 𝑉5 βˆ’ 𝑉4 = 14, Added with a coloured weight (14 +18 = 32). Because the weight is greater than the previous weight, the previous weight is lowered. Next 𝑉5 βˆ’π‘‰8 = 23 then add with the coloured weight (23+18 = 41). Because 𝑉6 the smallest weight, then select and colour, then lowered the 𝑉6. e. 𝑉6 connected with 𝑉1 and 𝑉7 nodes with a 𝑉6 βˆ’ 𝑉7 = 17, then add with the coloured weight (17 + 18 = 35). Because 𝑉4 smallest weight choose and colour then lowered the 𝑉4. f. 𝑉4 connected with the 𝑉3 and 𝑉5 because the 𝑉3 and 𝑉5 already coloured, then further lose the smallest weight. Since 𝑉7 smallest weight choose and colour, it is also lowered 𝑉7. g. 𝑉7 connected with 𝑉8 and 𝑉11 with a weight of 𝑉7 βˆ’ 𝑉8 = 29, then add with the coloured weight (29 +35 = 64) because the result is 64, greater than the previous weight, then lower the previous weight. Next 𝑉7βˆ’ 𝑉11 = 21 then add with the colored weight (21 + 35 = 56). Since the smallest weighted V8 select and colour, the next lowered 𝑉8. h. 𝑉8 is connected to 𝑉7 and 𝑉9 with a weight of 𝑉8 βˆ’π‘‰9 = 3.5, then add with the coloured weight (3.5 + 41 = 44.5). Because 𝑉9 smallest weight choose and colour then lowered the 𝑉9. i. 𝑉9 is connected to 𝑉8, and 𝑉10 with a weight of 𝑉9 βˆ’ 𝑉10 = 11, then add with the coloured weight (11 + 44.5 = 55.5). Since V_10 smallest weight choose and colour, the knot is further lowered 𝑉10. j. 𝑉10 connected with 𝑉9, 𝑉11, 𝑉13 with a weight of 𝑉10 βˆ’ 𝑉11= 24 then add with the weight already coloured (24 + 55.5 = 79.5) because the result is 79.5, greater than the previous weight, then lower the previous weight. Next 𝑉10 βˆ’ 𝑉13 = 24 then add with the colored weight (24 + 55.5 = 79.5). Because 𝑉11smallest weight choose and colour then lowered the 𝑉11. k. 𝑉11 connected with 𝑉7, 𝑉10, 𝑉12 with a weight of 𝑉11 βˆ’ 𝑉12 = 22, then added with a coloured weight (22 + 56 = 78). Because 𝑉12 smallest weight choose and colour then lowered the V_12. l. 𝑉12 is connected with 𝑉11, 𝑉13, 𝑉14 with a weight of 𝑉12 βˆ’ 𝑉13= 22, then add with the coloured weight (22 + 78 = 100) because the result is 100, greater than the previous weight, then lower the previous weight. Next 𝑉12 βˆ’V_14 = 18 then add the colored weight (18+78 = 96). Because 𝑉13 smallest weight choose and colour then lowered the 𝑉13. m. 𝑉13 is connected with 𝑉10, 𝑉12, 𝑉16 with a weight of 𝑉13 βˆ’ 𝑉16 = 20 then add with the colored weight (20 + 79.5 = 99.5). Because 𝑉14 smallest weight choose and colour then lowered the 𝑉14. n. 𝑉14 is connected 𝑉12, 𝑉15 with a weight of 𝑉14 βˆ’ 𝑉15 = 22 then 27 add with colored weight (22 + 96 = 118). Because of the smallest weighted V16 select and colour, the next lowered 𝑉16. o. 𝑉16 is connected to the 𝑉13, and 𝑉15 with a weight of 𝑉16 βˆ’π‘‰15 = 2, then add with the coloured weight (2+99.5 = 101.5) because the result is 101.5, smaller than the previous weight, then choose and colour. Next, I lowered the 𝑉15. p. 𝑉15 connected to the 𝑉14 and 𝑉16 because the 𝑉14 and 𝑉16 has been coloured, then it is finished. Figure 2 The shortest route a bus can take from campus 1 UNG to Bone Bolango's new campus is From V_1 to V_16, or vice versa obtained the shortest route begins 𝑉1 βˆ’ 𝑉2 βˆ’ 𝑉5 βˆ’ 𝑉8 βˆ’ 𝑉9 βˆ’ 𝑉10 βˆ’ 𝑉13 βˆ’ 𝑉16 or Campus 1 UNG - The intersection of three Sentra Nurwan, Widya E. Pranata, Muhammad R. F. Payu, Nisky I. Yahya Implementation of Dijkstra Algorithm and Welch-Powell Algorithm for Optimal Solution of Campus Bus Transportation 37 Media (Jendral Sudirman street–Pangeran Hidayat street) - The intersection of four Public health center (Pangeran Hidayat street – Rusli Datau street – Prof. Aryo Katili street – Bj. Pola Isa street) - The intersection of three UBM campus (Bj. Pola Isa street–Aloei Saboe street-Tinaloga street) - The intersection of three Tinaloga gas station (Tinaloga steer–Toto Tengah street) - The intersection of four Bypass Kabila (Toto Tengah street–B.J Habibie street– Sabes street– Noho Hudji street) - The intersection of four Darul Muhaimin mosque ( B.J Habibie street– Muh. Van Gobel street – El Madinah Road street) – UNG Bone Bolango Campus. Figure 2. Bus Shortest Route to UNG Bone Bolango Campus 3.2 Bus Schedule to UNG Bone Bolango Campus The Welch-Powell algorithm is required to color the graph's vertices based on the highest degree of all its nodes. From the data available, there are four buses in operation [18]. These four buses run back and there, represented in a graph. The data of the number of buses be defined as a node on the graph. There are no specific labelling rules, labelled with an index to distinguish which buses operate back and away. Suppose each node with π‘‰π‘Ž,𝑏 with the following description: 1. a: A bus, a ∈ [1, 4] 2. b: Return or Departure (1 for departure, 2 for return) Figure 3. Representation of Bus Data in Graph Figure 4. Graph Representation of Bus Schedules Jurnal Matematika MANTIK Vol. 7, No. 1, May 2021, pp. 31-40 38 Each node in Figure 3 is then connected and forms aside. The side represents the bus's operational time, and each bus does not operate simultaneously. The arrangement of the vertices' location establishes a circle to make it easier to draw a straight line for the relationship of each node. The node in Figure 4 represents the bus, and the side is a representation of time. Node 𝑉1.1, 𝑉2.1, 𝑉3.1, 𝑉4.1 is the bus departure node from campus 1 to campus UNG Bone Bolango and node 𝑉1.2, 𝑉2.2, 𝑉3.2, 𝑉4.2 is the node from campus UNG Bone Bolango to campus 1. what can see degrees on each node in Table 4. Table 4. Vertices by degree No Node Neighbors Degrees 1 𝑉1.1 𝑉1.2, 𝑉2.1, 𝑉3.1, 𝑉4.1 4 2 𝑉1.2 𝑉1.1, 𝑉2.2, 𝑉3.2, 𝑉4.2 4 3 𝑉2.1 𝑉1.1, 𝑉2.2, 𝑉3.1, 𝑉4.1 4 4 𝑉2.2 𝑉1.2, 𝑉2.1, 𝑉3.2, 𝑉4.2 4 5 𝑉3.1 𝑉3.2, 𝑉1.1, 𝑉2.1, 𝑉4.1 4 6 𝑉3.2 𝑉3.1, 𝑉1.2, 𝑉2.2, 𝑉4.2 4 7 𝑉4.1 𝑉4.2, 𝑉1.1, 𝑉2.1, 𝑉3.1 4 8 𝑉4.2 𝑉4.1, 𝑉1.2, 𝑉2.2, 𝑉3.2 4 Table 4 shows the same degree on each node, then coloured by not giving the same colour to the neighbouring nodes as in Figure 5. By doing the steps of the welch-Powell algorithm, knot colouring is obtained as in Figure 6. Figure 5. The Colouration of Vertices In Graph Figure 6. Final Result of Knot Coloring In Figure 6, four kinds of coloring are obtained. Next, group the buses by chromatic numbers. A graph has a chromatic number denoted by πœ’(𝐺) [19] [20]. Zero graphs have a chromatic number of πœ’(𝐺) = 1, while to color, a complete graph is required n color fruits because all points are interconnected [19] [21]. The chromatic number of the bus schedule representation graph is πœ’(𝐺) = 4 which means each bus schedule for return or departure is at least four sessions. We can see the results of graph coloring for the campus bus schedule in Table 5. Table 5. Bus Departure and Return Schedule to/from UNG Bone Bolango Campus No Departure Schedule Schedule of Return Time Bus Time Bus 1 06.30 BUS 1 07.30 BUS 1 2 07.30 BUS 2 08.30 BUS 2 3 08.00 BUS 3 09.00 BUS 3 Nurwan, Widya E. Pranata, Muhammad R. F. Payu, Nisky I. Yahya Implementation of Dijkstra Algorithm and Welch-Powell Algorithm for Optimal Solution of Campus Bus Transportation 39 No Departure Schedule Schedule of Return Time Bus Time Bus 4 08.30 BUS 4 09.30 BUS 4 5 09.00 BUS 1 10.00 BUS 1 6 09.30 BUS 2 11.00 BUS 2 7 10.00 BUS 3 12.30 BUS 3 8 11.00 BUS 4 13.00 BUS 4 9 12.30 BUS 1 13.30 BUS 1 10 13.00 BUS 2 14.00 BUS 2 11 13.30 BUS 3 14.30 BUS 3 12 14.00 BUS 4 15.00 BUS 4 13 14.30 BUS 1 15.30 BUS 1 14 15.00 BUS 2 16.00 BUS 2 15 15.30 BUS 3 16.30 BUS 3 16 16.00 BUS 4 17.00 BUS 4 Table 5 the bus departure schedule from campus 1 to UNG Bone Bolango campus consists of 16 departure time sessions with departure time starting from 06:30 and ending at 16:00 with a delay of 60 minutes each departure time. The bus return schedule from UNG Bone Bolango campus to campus 1 consists of 16 sessions by the same bus. The bus departure schedule from UNG Bone Bolango campus to campus starts at 07.30 am and ends at 05.00 pm. The overall departure schedule consists of 32 departure sessions. Each bus gets eight departure sessions per day with a minimum session break of 60 minutes, including travel time. 4. Conclusions The Dijkstra algorithm's calculation obtained the shortest bus route from campus 1 to campus UNG Bone Bolango is the trajectory 𝑉1βˆ’π‘‰2βˆ’π‘‰5βˆ’π‘‰8βˆ’π‘‰9βˆ’π‘‰10βˆ’π‘‰13βˆ’π‘‰16 with a distance of 9.95 km. The bus passed by the bus is Campus 1 UNG β†’ The intersection of 3 Sentra Media β†’ The intersection of 4 Public health center β†’ The intersection of 3 UBM campus β†’ The intersection of 3 Tinaloga gas station β†’ The intersection of 4 Bypass Kabila β†’ Intersection of 4 Darul Muhaimin mosque β†’ UNG Bone Bolango Campus. The coloring results using the Welch-Powell algorithm obtained the number of colors on the bus schedule's color to UNG Bone Bolango in four colors. The bus departure and return schedule are 16 sessions each, and the bus operating time starts from 06.30 am to 05.00 pm. Each bus gets four departure sessions and four return sessions per day with a travel time of 60 minutes. References [1] A. Y. Harsya and I. H. Agustin, β€œPewarnaan Titik Pada Operasi Graf Sikel dengan Graf Lintasan Pendahuluan Teorema yang Digunakan,” in Journal University Of Jember, 2014, vol. 1, no. 1. [2] M. S. Yusuf, H. M. Az-zahra, and D. H. Apriyanti, β€œImplementasi Algoritma Dijkstra Dalam Menemukan Jarak Terdekat Dari Lokasi Pengguna Ke Tanaman Yang Di Tuju Berbasis Android ( Studi Kasus di Kebun Raya Purwodadi ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 12, pp. 1779–1781, 2017. [3] Siswanto, Algoritma dan Struktur Data Non Linear dengan Java. Yogyakarta: Graha Ilmu, 2011. [4] A. Pitri, β€œPenerapan Metode Djikstra Pencarian Rute Terpendek Sekolah Luar Jurnal Matematika MANTIK Vol. 7, No. 1, May 2021, pp. 31-40 40 Biasa ( SLB ) di Kota Medan,” J. Ris. Komput., vol. 5, no. 6, pp. 638–643, 2018. [5] P. Sembiring, A. S. Harahap, and K. S. Zalukhu, β€œImplementation of Dijkstra’s algorithm to find an effective route to avoid traffic jam on a busy hour,” J. Phys. Conf. Ser., vol. 1116, no. 2, 2018. [6] S. Maimunah, Ni’matuzahroh, S. Prasetyaningrum, and B. I. Suwandayani, β€œImplementasi Model Pendidikan Inklusi di Sekolah Dasar Kota Batu,” J. Pendidik. Surya Edukasi, vol. 4, no. 2, 2018. [7] T. Jimeng, S. Quanxin, and C. Zhijie, β€œA New Implementation of Dijkstra ’ s Algorithm on Urban Rail Transit Network,” 2016, no. Iccte, pp. 507–513. [8] I. P. W. Gautama and K. Hermanto, β€œPenentuan Rute Terpendek dengan Menggunakan Algoritma Dijkstra pada Jalur Bus Sekolah,” J. Mat., vol. 10, no. 2, p. 116, 2020. [9] M. Kubale, Graph Colorings. America: AMS Bookstore. [10] R. Diestel, Graph Theory, Electronic. New York: Springer-Verleg, 2000. [11] R. Munir, Matematika diskrit. Bandung: Informatika, 2012. [12] A. W. Bustan and M. R. Salim, β€œImplementation of Graph Colouring Using Welch-Powell Algorithm to Determine Student Mentoring Schedule,” THEOREMS (The Orig. Res. Math., vol. 4, no. 1, pp. 79–86, 2019. [13] U. M. Rifanti, β€œPemilihan Rute Terbaik Menggunakan Algoritma Dijkstra Untuk Mengurangi Kemacetan Lalu Lintas di Purwokerto,” JMPM J. Mat. dan Pendidik. Mat., vol. 2, no. 2, p. 90, 2017. [14] M. K. Harahap and N. Khairina, β€œPencarian Jalur Terpendek dengan Algoritma Dijkstra,” SinkrOn, vol. 2, no. 2, p. 18, 2017. [15] D. Ardana and R. Saputra, β€œPenerapan Algoritma Dijkstra pada Aplikasi Pencarian Rute Bus Trans Semarang,” in Seminar Nasional Ilmu Komputer (SNIK 2016), 2016, no. 978-602-1034-40–8, pp. 299–306. [16] I. Budayasa, Teori Graph dan Aplikasinya. Surabaya: Unesa University Press, 2007. [17] E. A. Sarwoko, β€œPerancangan Arsitektur Pemaralelan Untuk Mencari Shortest Path Dengan Algoritma Dijkstra,” Matematika, vol. 6, no. 3, pp. 137–143, 2003. [18] Y. Rusdiana and A. Maulani, β€œAlgoritma Welch-Powell Untuk Pewarnaan Graf pada Penjadwalan Perkuliahan,” Sci. Phys. Educ. J., vol. 3, no. 1, pp. 37–47, 2019. [19] G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs. California: Pacific Grove California, 2016. [20] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Second Edi. Springer Science+Business Media New York, 2021. [21] A. M. Soimah and N. S. M. Mussafi, β€œPewarnaan Simpul Dengan Algoritma Welch-Powell Pada Traffic Light Di Yogyakarta,” J. Fourier, vol. 2, no. 2, p. 73, 2013.