PARADIGMA BARU PENDIDIKAN MATEMATIKA DAN APLIKASI ONLINE INTERNET PEMBELAJARAN CONTACT: Abdulloh Jaelani, abdjae@fst.unair.ac.id Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia The article can be accessed here. https://doi.org/10.15642/mantik.2022.8.1.36-44 Relation of Morrey Sequence Spaces, Weak Type Morrey Sequence Spaces, and Sequence Spaces Pragasto Aji Hendro Puadi1*, Eridani1, Abdulloh Jaelani1* 1Department of Mathematics, Universitas Airlangga, Surabaya, Indonesia Article history: Received Apr 26, 2022 Revised, Jun 5, 2022 Accepted, Jun 28, 2022 Kata Kunci: Ruang Barisan, Ruang Morrey Ruang Morrey Tipe Lemah Abstrak. Ruang Morrey merupakan ruang yang cukup penting dan banyak dikaji dalam banyak cabang matematika. Ruang Morrey tipe lemah merupakan ruang berorde semu dan memiliki sifat dasar yang sama dengan ruang barisan Morrey.Pada artikel ini diselidiki sifat elementer antara ruang barisan Morrey dan ruang barisan Morrey tipe lemah. Selanjutnya ditunjukkan hubungannya antara ruang barisan Morrey dan ruang barisan Morrey tipe lemah dengan ruang barisan. Berdasarkan hasil pembahasan diperoleh sifat elementer ruang barisan Morrey ℓ𝑝 βŠ‚ β„“π‘ž 𝑝 dengan 1 ≀ 𝑝 ≀ π‘ž < ∞ dan β„“π‘ž 𝑝2 βŠ† β„“π‘ž 𝑝1 dengan 1 ≀ 𝑝1 ≀ 𝑝2 ≀ π‘ž < ∞. Sifat elementer dari ruang barisan Morrey tipe lemah adalah β„“π‘ž 𝑝 βŠ† πœ”β„“π‘ž 𝑝 dengan 1 ≀ 𝑝 ≀ π‘ž < ∞, πœ”β„“π‘ž 𝑝2 βŠ† πœ”β„“π‘ž 𝑝1 dengan 1 ≀ 𝑝1 ≀ 𝑝2 ≀ π‘ž < ∞ dan ruang barisan Morrey tipe lemah merupakan ruang quasi norma. Lebih lanjut hubungan ruang barisan Morrey, ruang barisan Morrey lemah dan ruang barisan adalah ℓ𝑝 βŠ‚ β„“π‘ž 𝑝 βŠ† πœ”β„“π‘ž 𝑝 . Keywords: Sequence Spaces, Morrey Spaces, Weak Type Morrey Spaces, Abstract. Morrey space is a space that important spaces and widely studied in many branches of mathematics. Weak type Morrey spaces is a quasinormed spaces and have alike elementary properties with Morrey sequence spaces. This article investigates some properties the elementary properties of Morrey sequence spaces and weak type Morrey sequence space. Next is show relation Morrey sequence spaces and weak type Morrey sequence space with sequence spaces. Based on the results of the discussion, it was obtained that the elementary properties of Morrey sequence spaces is ℓ𝑝 βŠ‚ β„“π‘ž 𝑝 with 1 ≀ 𝑝 ≀ π‘ž < ∞ and β„“π‘ž 𝑝2 βŠ† β„“π‘ž 𝑝1 with 1 ≀ 𝑝1 ≀ 𝑝2 ≀ π‘ž < ∞. The elementary properties of weak type Morrey sequence spaces πœ”β„“π‘ž 𝑝 is β„“π‘ž 𝑝 βŠ† πœ”β„“π‘ž 𝑝 with 1 ≀ 𝑝 ≀ π‘ž < ∞, πœ”β„“π‘ž 𝑝2 βŠ† πœ”β„“π‘ž 𝑝1 with 1 ≀ 𝑝1 ≀ 𝑝2 ≀ π‘ž < ∞ and weak type Morrey sequence spaces is quasinormed space. Furthermore, the relation of Morrey sequence spaces, weak type Morrey sequence spaces and sequence spaces is ℓ𝑝 βŠ‚ β„“π‘ž 𝑝 βŠ† πœ”β„“π‘ž 𝑝 How to cite: P. A. H. Puadi, Eridani, & A. Jaelani, β€œRelation of Morrey Sequence Spaces, Weak Type Morrey Sequence Spaces, and Sequence Spaces”. J. Mat Mantik, vol. 8, no. 1, pp. 36-44, Jun. 2022. Jurnal Matematika MANTIK Vol. 8, No. 1, June 2022, pp. 36-44 ISSN: 2527-3159 (print) 2527-3167 (online) mailto:abdjae@fst.unair.ac.id https://doi.org/10.15642/mantik.2021.7.1.9-19 http://u.lipi.go.id/1458103791 P. A. H. Puadi, Eridani, & A. Jaelani Relation of Morrey Sequence Spaces, Weak Type Morrey Sequence Spaces, and Sequence Spaces 37 1. Introduction Morrey spaces were first introduced by Charles Bardfield Morrey Jr. (1907-1984) on 1938. Morrey spaces became an important space in many branches of mathematics even though it was first discovered to solve partial differential equations, now there are hundreds of articles and journals that discuss Morrey space to take up the recent development of Morrey Spaces [1], [2]. On 2016, it is defined that Morrey sequence space is denoted by β„“π‘ž 𝑝 with 1 ≀ 𝑝 ≀ π‘ž < ∞ is a set of all real sequence π‘₯ = 〈π‘₯π‘˜ βŒͺπ‘˜βˆˆβ„€ that holds β€–π‘₯β€– β„“π‘ž 𝑝 = sup 𝑁 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 (βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 < ∞ with 𝑁 ∈ β„•, 𝑆𝑁 = {βˆ’π‘, βˆ’(𝑁 βˆ’ 1), … , 0, … , 𝑁 βˆ’ 1, 𝑁} and |𝑆𝑁 | denote the cardinality of 𝑆𝑁 [3], [4]. Sequence spaces denote by β„“ 𝑝 = ℓ𝑝 𝑝 with 𝑝 = π‘ž is a set of all sequences that holds βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ β„€ < ∞ and 𝑝 as parameter [5]–[7] . Morrey sequence space β„“π‘ž 𝑝 has a very close relation with sequence space ℓ𝑝. One of the Morrey sequence space’s elementary properties is β€–π‘₯β€– β„“π‘ž 𝑝 ≀ β€–π‘₯β€– β„“ 𝑝 for all π‘₯ ∈ ℓ𝑝, hence ℓ𝑝 βŠ† β„“π‘ž 𝑝 for 1 ≀ 𝑝 ≀ π‘ž < ∞. In other words, Morrey sequence space β„“π‘ž 𝑝 is an extension of sequence space ℓ𝑝. Morrey sequence space β„“π‘ž 𝑝 can be more extend to weak type Morrey sequence space Ο‰β„“π‘ž 𝑝 [8]–[10]. Weak type Morrey sequence spaces is a set of all real sequence π‘₯ = 〈π‘₯π‘˜ βŒͺπ‘˜βˆˆβ„€ that holds β€–π‘₯β€–Ο‰ β„“π‘ž 𝑝 = sup π‘βˆˆβ„•,𝛾>0 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝 < ∞. Weak type Morrey sequence spaces is a quasinormed spaces and have alike elementary properties with Morrey sequence spaces. Based on the description above, we will discuss about Morrey sequence spaces’ elementary properties and weak type Morrey sequence spaces and also the relation between sequence space β„“p, Morrey sequence space β„“π‘ž 𝑝 dan weak type Morrey sequence space Ο‰β„“π‘ž 𝑝 . Definition [11] Quasinorm β€–βˆ™ β€– on a vector space 𝑉 over a field ℝ is a function from 𝑉 to [0, ∞) and holds (i) ‖𝑒‖ = 0 if and only if 𝑒 = 0 (ii) β€–π‘Ÿπ‘’β€– = |π‘Ÿ|‖𝑒‖ for every π‘Ÿ ∈ ℝ and 𝑒 ∈ 𝑉 (iii) There exists 𝐢 β‰₯ 1 so that if 𝑒, 𝑣 ∈ 𝑉 then ‖𝑒 + 𝑣‖ ≀ 𝐢(‖𝑒‖ + ‖𝑣‖) if β€– β€– is a quasinorm and (𝑉, β€–βˆ™ β€–) is a quasinormed space. Theorem [12] (Minkowski inequality) If π‘₯1, π‘₯2, … , π‘₯𝑛 , 𝑦1, 𝑦2, … , 𝑦𝑛 ∈ ℝ and 𝑝 β‰₯ 1 then (βˆ‘ |π‘₯π‘˜ + π‘¦π‘˜ | 𝑝𝑛 π‘˜=1 ) 1/𝑝 ≀ (βˆ‘ |π‘₯π‘˜ | 𝑝𝑛 π‘˜=1 ) 1/𝑝 + (βˆ‘ |π‘¦π‘˜ | 𝑝𝑛 π‘˜=1 ) 1/𝑝. Theorem [12] If π‘₯1, π‘₯2, … , π‘₯𝑛 , 𝑦1, 𝑦2, … , 𝑦𝑛 ∈ ℝ and 0 < 𝑝 < 1 then βˆ‘ |π‘₯π‘˜ + π‘¦π‘˜ | 𝑝𝑛 π‘˜=1 ≀ βˆ‘ |π‘₯π‘˜ | 𝑝𝑛 π‘˜=1 + βˆ‘ |π‘¦π‘˜ | 𝑝𝑛 π‘˜=1 . Theorem [12] (HΓΆlder inequality) If π‘₯1, π‘₯2, … , π‘₯𝑛 , 𝑦1, 𝑦2, … , 𝑦𝑛 ∈ ℝ and 𝑝, π‘ž is an exponent conjugation then βˆ‘ |π‘₯π‘˜ π‘¦π‘˜ | 𝑛 π‘˜=1 ≀ (βˆ‘ |π‘₯π‘˜ | 𝑝𝑛 π‘˜=1 ) 1/𝑝(βˆ‘ |π‘¦π‘˜ | π‘žπ‘› π‘˜=1 ) 1/π‘ž . Jurnal Matematika MANTIK Vol. 8, No. 1, June 2022, pp.36-44 38 Definition [12] Suppose that 𝑝 ∈ (0, ∞). ℓ𝑝 is a set of all sequence π‘₯ ∢ β„• β†’ ℝ that holds βˆ‘ |π‘₯π‘˜ | π‘βˆž 𝑖=1 convergent or ℓ𝑝 = {π‘₯ = 〈π‘₯𝑛 βŒͺ ∢ βˆ‘ |π‘₯π‘˜ | π‘βˆž π‘˜=1 < ∞}. But on this article, ℓ𝑝 sequence space is a set of all sequence π‘₯ ∢ β„€ β†’ ℝ that holds βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜βˆˆβ„€ = βˆ‘ |π‘₯π‘˜ | π‘βˆž βˆ’βˆž < ∞. Definition [3] Suppose that 1 ≀ 𝑝 ≀ π‘ž < ∞, 𝑁 ∈ β„•, 𝑆𝑁 = {βˆ’π‘, βˆ’(𝑁 βˆ’ 1), … , 0, … , 𝑁 βˆ’ 1, 𝑁} and |𝑆𝑁 | = 2𝑁 + 1 denote the cardinality of 𝑆𝑁. Let β„“π‘ž 𝑝 denote Morrey sequence space is a set of all sequence 〈π‘₯π‘˜ βŒͺπ‘˜βˆˆβ„€ that holds β€–π‘₯β€– β„“π‘ž 𝑝 = sup 𝑁 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 (βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 < ∞. Definition [3] Suppose that 1 ≀ 𝑝 ≀ π‘ž < ∞. Let πœ”β„“π‘ž 𝑝 denote weak type Morrey sequence space is a set of all sequence 〈π‘₯π‘˜ βŒͺπ‘˜βˆˆβ„€ that holds β€–π‘₯β€–Ο‰ β„“π‘ž 𝑝 = sup π‘βˆˆβ„•,𝛾>0 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝 < ∞. 2. Methods We used the properties of definition quasinorm, Minkowski Inequality, HΓΆlder inequality, and characteristics of norm on the set of real [4], [13]–[15] to obtain properties of Morrey sequence spaces, weak type Morrey sequence space, and relation Morrey sequence spaces and weak type Morrey sequence space with sequence spaces. 3. Results and Discussion Proposition Morrey Sequence Space β„“π‘ž 𝑝 is a vector space over ℝ. Proof : Suppose that π‘₯ = 〈π‘₯π‘˜ βŒͺπ‘˜βˆˆβ„€, 𝑦 = βŒ©π‘¦π‘˜ βŒͺπ‘˜βˆˆβ„€ is an element of β„“π‘ž 𝑝 . For every π‘Ž ∈ ℝ, β€–π‘Žπ‘₯β€– β„“π‘ž 𝑝 = sup 𝑁 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 (βˆ‘ |π‘Žπ‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 = |π‘Ž| sup 𝑁 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 (βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 = |π‘Ž|β€–π‘₯β€– β„“π‘ž 𝑝 < ∞ Then π‘Žπ‘₯ ∈ β„“π‘ž 𝑝 . With Minkowski Inequality we got (βˆ‘ |π‘₯π‘˜ + π‘¦π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 ≀ (βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 + (βˆ‘ |π‘¦π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 ≀ |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝(βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 + |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝(βˆ‘ |π‘¦π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 β€–π‘₯ + 𝑦‖ β„“π‘ž 𝑝 ≀ β€–π‘₯β€– β„“π‘ž 𝑝 + ‖𝑦‖ β„“π‘ž 𝑝 . If β€–π‘₯β€– β„“π‘ž 𝑝 < ∞ and ‖𝑦‖ β„“π‘ž 𝑝 < ∞, then β€–π‘₯ + 𝑦‖ β„“π‘ž 𝑝 < ∞ so that π‘₯ + 𝑦 ∈ β„“π‘ž 𝑝 . β„“π‘ž 𝑝 is closed under the operation (+). Let 𝑧 ∈ β„“π‘ž 𝑝 then (i) π‘₯ + 𝑦 = 〈π‘₯π‘˜ + π‘¦π‘˜ βŒͺπ‘˜βˆˆβ„€ = βŒ©π‘¦π‘˜ + π‘₯π‘˜ βŒͺπ‘˜βˆˆβ„€ = 𝑦 + π‘₯ for every π‘₯, 𝑦 ∈ β„“π‘ž 𝑝 P. A. H. Puadi, Eridani, & A. Jaelani Relation of Morrey Sequence Spaces, Weak Type Morrey Sequence Spaces, and Sequence Spaces 39 (ii) π‘₯ + (𝑦 + 𝑧) = (π‘₯ + 𝑦) + 𝑧 for every π‘₯, 𝑦, 𝑧 ∈ β„“π‘ž 𝑝 (iii) There exists 0 = βŒ©β€¦ ,0,0,0, … . βŒͺ, then 0 + π‘₯ = π‘₯ + 0 for every π‘₯ ∈ β„“π‘ž 𝑝 (iv) There exists βˆ’π‘₯ = βŒ©βˆ’π‘₯π‘˜ βŒͺπ‘˜βˆˆβ„€, then (βˆ’π‘₯) + π‘₯ = π‘₯ + (βˆ’π‘₯) = 0 for every π‘₯ ∈ β„“π‘ž 𝑝 (v) Let 𝑏 ∈ ℝ. π‘Ž(π‘₯ + 𝑦) = π‘Žπ‘₯ + π‘Žπ‘¦ (π‘Ž + 𝑏)π‘₯ = π‘Žπ‘₯ + 𝑏π‘₯ (π‘Žπ‘)π‘₯ = π‘Ž(𝑏π‘₯) for every π‘₯ ∈ β„“π‘ž 𝑝 (vi) There exists 1 ∈ ℝ so that 1π‘₯ = π‘₯ for every π‘₯ ∈ β„“π‘ž 𝑝 thus β„“π‘ž 𝑝 is a vector space over ℝ.∎ Example: Suppose that 1 ≀ 𝑝 < π‘ž < ∞. A sequence π‘₯ = 〈π‘₯π‘˜ βŒͺπ‘˜βˆˆβ„€ with π‘₯π‘˜ = |π‘˜| βˆ’π‘ž/𝑝 for π‘˜ β‰  0 and π‘₯π‘˜ = 0 for π‘˜ = 0. For every 𝑁 ∈ β„•, βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 = 2 βˆ‘ 1 π‘˜π‘ž <π‘π‘˜=1 2 βˆ‘ 1 π‘˜π‘ž ∞ π‘˜=1 . (1) βˆ‘ 1 π‘˜π‘ž ∞ π‘˜=1 = 1 + ( 1 2π‘ž + 1 3π‘ž ) + ( 1 4π‘ž + 1 5π‘ž + 1 6π‘ž + 1 7π‘ž ) + β‹― < 1 + 2 2π‘ž + 4 4π‘ž + 8 8π‘ž + β‹― = 1 + 1 2π‘žβˆ’1 + 1 4π‘žβˆ’1 + 1 8π‘žβˆ’1 + β‹― If π‘ž > 1 then 0 < 1 2π‘žβˆ’1 < 1 implies that βˆ‘ 1 π‘˜π‘ž ∞ π‘˜=1 < 1 1βˆ’ 1 2π‘žβˆ’1 . (2) From (1) and (2) obtained |𝑆𝑁 | 𝑝 π‘ž βˆ’1 βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 = ( 1 |𝑆𝑁| 1βˆ’ 𝑝 π‘ž ) βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 < βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 < 2 1βˆ’ 1 2π‘žβˆ’1 (|𝑆𝑁| 𝑝 π‘ž βˆ’1 βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 < ( 2π‘ž 2π‘žβˆ’1βˆ’1 ) 1/π‘ž sup 𝑁 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 (βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 ≀ ( 2π‘ž 2π‘žβˆ’1βˆ’1 ) 1/π‘ž . Thus π‘₯ ∈ β„“π‘ž 𝑝 . ∎ Theorem Suppose that 1 ≀ 𝑝 ≀ π‘ž < ∞. β€–π‘₯β€– β„“π‘ž 𝑝 ≀ β€–π‘₯β€–β„“p for every π‘₯ ∈ β„“ 𝑝. Proof : For all 𝑁 ∈ β„•, it’s easy to see that 0 < |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 ≀ 1 then |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝(βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 ≀ (βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 and sup 𝑁 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 (βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 ≀ sup 𝑁 (βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 β€–π‘₯β€– β„“π‘ž 𝑝 ≀ β€–π‘₯β€–β„“p . ∎ Jurnal Matematika MANTIK Vol. 8, No. 1, June 2022, pp.36-44 40 Example : Let 1 ≀ 𝑝 < π‘ž < ∞ and a sequence π‘₯ = 〈π‘₯π‘˜ βŒͺπ‘˜βˆˆβ„€ with π‘₯π‘˜ = |π‘˜| βˆ’1/π‘ž for π‘˜ β‰  0 and π‘₯π‘˜ = 0 for π‘˜ = 0. If 0 < 𝑝 π‘ž < 1 then βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ β„€ = 2 βˆ‘ 1 π‘˜π‘/π‘ž ∞ π‘˜=1 β‰₯ 2 βˆ‘ 1 π‘˜ ∞ π‘˜=1 . We know that βˆ‘ 1 π‘˜ ∞ π‘˜=1 is harmonic series then it’s divergent and βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 divergent thus π‘₯ βˆ‰ ℓ𝑝. For all 𝑁 ∈ β„•, βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 = βˆ‘ 1 |π‘˜|𝑝/π‘ž π‘˜ ∈ 𝑆𝑁,π‘˜β‰ 0 = 2 βˆ‘ 1 π‘˜π‘/π‘ž 𝑁 π‘˜=1 . For every 𝑝 and π‘ž with 1 ≀ 𝑝 < π‘ž < ∞, function 𝑦 = π‘₯βˆ’π‘/π‘ž has 𝑦′ < 0 and 𝑦′′ > 0 on π‘₯ β‰₯ 1. Figure 1. Area of partition below 𝑦 = π‘₯βˆ’π‘/π‘ž We know that the sum of areas of partitions equal to βˆ‘ 1 π‘˜π‘/π‘ž 𝑁 π‘˜=2 And βˆ‘ 1 π‘˜π‘/π‘ž 𝑁 π‘˜=2 ≀ βˆ‘ 1 π‘˜π‘/π‘ž 𝑁 π‘˜=1 = 1 + βˆ‘ 1 π‘˜π‘/π‘ž 𝑁 π‘˜=2 ≀ 1 + ∫ 1 π‘₯𝑝/π‘ž 𝑑π‘₯ 𝑁 1 ≀ 1 βˆ’ π‘ž π‘žβˆ’π‘ + π‘ž π‘žβˆ’π‘ 𝑁 1βˆ’ 𝑝 π‘ž . Hence, |𝑆𝑁 | 𝑝 π‘ž βˆ’1 βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ≀ 2 ( 1βˆ’ π‘ž π‘žβˆ’π‘ + π‘ž π‘žβˆ’π‘ 𝑁 1βˆ’ 𝑝 π‘ž (2𝑁+1) 1βˆ’ 𝑝 π‘ž ) and lim π‘β†’βˆž 2 ( 1βˆ’ π‘ž π‘žβˆ’π‘ + π‘ž π‘žβˆ’π‘ 𝑁 1βˆ’ 𝑝 π‘ž (2𝑁+1) 1βˆ’ 𝑝 π‘ž ) = 2 ( π‘ž π‘žβˆ’π‘ 2 𝑝 π‘ž βˆ’1 ) = π‘ž π‘žβˆ’π‘ 2 𝑝 π‘ž |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝(βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 ≀ (2 ( 1βˆ’ π‘ž π‘žβˆ’π‘ + π‘ž π‘žβˆ’π‘ 𝑁 1βˆ’ 𝑝 π‘ž (2𝑁+1) 1βˆ’ 𝑝 π‘ž )) 1/𝑝 sup 𝑁 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 (βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ 𝑆𝑁 ) 1/𝑝 ≀ 21/𝑝 ( π‘ž π‘žβˆ’π‘ ) 1/𝑝 thus π‘₯ ∈ β„“π‘ž 𝑝 .∎ Theorem Suppose that 1 ≀ 𝑝1 ≀ 𝑝2 ≀ π‘ž < ∞. For all π‘₯ ∈ β„“π‘ž 𝑝2 applies that P. A. H. Puadi, Eridani, & A. Jaelani Relation of Morrey Sequence Spaces, Weak Type Morrey Sequence Spaces, and Sequence Spaces 41 β€–π‘₯β€– β„“π‘ž 𝑝1 ≀ β€–π‘₯β€– β„“q p2 . Proof : By HΓΆlder inequality, we have βˆ‘ |π‘₯π‘˜ | 𝑝1 π‘˜βˆˆπ‘†π‘ ≀ (βˆ‘ |π‘₯π‘˜ | 𝑝2 π‘˜βˆˆπ‘†π‘ ) 𝑝1 𝑝2 (βˆ‘ 1π‘˜βˆˆπ‘†π‘ ) 1βˆ’ 𝑝1 𝑝2 ( 1 |𝑆𝑁| βˆ‘ |π‘₯π‘˜ | 𝑝1 π‘˜βˆˆπ‘†π‘ ) 1 𝑝1 ≀ ( 1 |𝑆𝑁| βˆ‘ |π‘₯π‘˜ | 𝑝2 π‘˜βˆˆπ‘†π‘ ) 1 𝑝2 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝1 (βˆ‘ |π‘₯π‘˜ | 𝑝1 π‘˜βˆˆπ‘†π‘ ) 1 𝑝1 ≀ |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝2 (βˆ‘ |π‘₯π‘˜ | 𝑝2 π‘˜βˆˆπ‘†π‘ ) 1 𝑝2 β€–π‘₯β€– β„“π‘ž 𝑝1 ≀ β€–π‘₯β€– β„“q p2 . ∎ From the above theorem, we have β„“π‘ž 𝑝2 βŠ† β„“π‘ž 𝑝1 on 1 ≀ 𝑝1 ≀ 𝑝2 ≀ π‘ž < ∞ but we can’t approve β„“π‘ž 𝑝2 βŠ‚ β„“π‘ž 𝑝1 yet [3]. Theorem If 1 ≀ 𝑝 ≀ π‘ž < ∞ then β€–π‘₯β€–πœ”β„“π‘ž 𝑝 ≀ β€–π‘₯β€–β„“π‘ž 𝑝 For every π‘₯ ∈ β„“π‘ž 𝑝 . Proof: |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝 = |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝|𝛾𝑝{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝 = |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝(βˆ‘ π›Ύπ‘π‘˜βˆˆπ‘†π‘ ,|π‘₯π‘˜|>𝛾 ) 1/𝑝 ≀ |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝(βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜βˆˆπ‘†π‘,|π‘₯π‘˜|>𝛾 ) 1/𝑝 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝 ≀ |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝(βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜βˆˆπ‘†π‘ ) 1/𝑝 supremum over 𝑁 ∈ β„• and 𝛾 > 0 on the above inequality, we have sup π‘βˆˆβ„•,𝛾>0 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝 ≀ sup 𝑁 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 (βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜βˆˆπ‘†π‘ ) 1/𝑝 β€–π‘₯β€–πœ”β„“π‘ž 𝑝 ≀ β€–π‘₯β€–β„“π‘ž 𝑝 . Thus β„“π‘ž 𝑝 βŠ† πœ”β„“π‘ž 𝑝 ∎. Example : Suppose that 1 ≀ 𝑝 ≀ π‘ž < ∞. A sequence π‘₯ = 〈π‘₯π‘˜ βŒͺπ‘˜βˆˆβ„€ with π‘₯π‘˜ = |π‘˜| βˆ’1/𝑝 for π‘˜ β‰  0 and π‘₯π‘˜ = 0 for π‘˜ = 0. βˆ‘ |π‘₯π‘˜ | 𝑝 π‘˜ ∈ β„€ = 2 βˆ‘ 1 π‘˜ ∞ π‘˜=1 . We know that βˆ‘ 1 π‘˜ ∞ π‘˜=1 is divergent then π‘₯ βˆ‰ β„“ 𝑝 but for any 𝛾 > 0, 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘˜| βˆ’1/𝑝 > 𝛾}| 1/𝑝 = 2𝛾|{π‘˜ ∈ β„• ∢ 1 ≀ π‘˜ < 𝑁, π‘˜βˆ’1/𝑝 > 𝛾}| 1/𝑝 and π‘˜βˆ’1/𝑝 > 𝛾 ⟹ π‘˜βˆ’1 > 𝛾𝑝 ⟹ π‘˜ < 1 𝛾𝑝 then 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘˜| βˆ’1/𝑝 > 𝛾}| 1/𝑝 < 2𝛾 ( 1 𝛾𝑝 ) 1/𝑝 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘˜| βˆ’1/𝑝 > 𝛾}| 1/𝑝 < 2𝛾 ( 1 𝛾 ) = 2 then π‘₯ ∈ πœ”β„“π‘ 𝑝 and ℓ𝑝 βŠ‚ πœ”β„“π‘ 𝑝 = πœ”β„“π‘. Theorem If 1 ≀ 𝑝 ≀ π‘ž < ∞ then β€– β€–πœ”β„“π‘ž 𝑝 is a quasinorm and (πœ”β„“π‘ž 𝑝 , β€– β€–πœ”β„“π‘ž 𝑝 ) is a quasinormed space. Jurnal Matematika MANTIK Vol. 8, No. 1, June 2022, pp.36-44 42 Proof: From the definition, we know that β€–π‘₯β€–πœ”β„“π‘ž 𝑝 β‰₯ 0 for all π‘₯ ∈ πœ”β„“π‘ž 𝑝 . If π‘₯ = 0 (π‘₯π‘˜ = 0 for all π‘˜ ∈ β„€) then {π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾} is an empty space and |{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| = 0, |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝 = 0 sup π‘βˆˆβ„•,𝛾>0 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝 = 0 β€–π‘₯β€–πœ”β„“π‘ž 𝑝 = 0. If β€–π‘₯β€–πœ”β„“π‘ž 𝑝 = 0 then |{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| = 0 for all 𝑁 ∈ β„• and 𝛾 > 0, hence for every π‘˜ ∈ β„€ applies that 0 ≀ |π‘₯π‘˜ | ≀ 𝛾 ⟹π‘₯π‘˜ = 0 untuk setiap π‘˜ ∈ β„€ (π‘₯ = 0). Let π‘₯ ∈ πœ”β„“π‘ž 𝑝 and π‘Ÿ = 0 then β€–π‘Ÿπ‘₯β€–πœ”β„“π‘ž 𝑝 = |π‘Ÿ|β€–π‘₯β€–πœ”β„“π‘ž 𝑝 = 0. If π‘Ÿ β‰  0 then applies that β€–π‘Ÿπ‘₯β€–πœ”β„“π‘ž 𝑝 = sup π‘βˆˆβ„•,𝛾>0 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘Ÿπ‘₯π‘˜ | > 𝛾}| 1/𝑝 = sup π‘βˆˆβ„•,𝛾>0 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 𝛾 |{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾 |π‘Ÿ| }| 1/𝑝 let 𝛾 |π‘Ÿ| = π‘Ž ⟹ 𝛾 = |π‘Ÿ|π‘Ž then β€–π‘Ÿπ‘₯β€–πœ”β„“π‘ž 𝑝 = sup π‘βˆˆβ„•,π‘Ž>0 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 |π‘Ÿ|π‘Ž|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > π‘Ž}| 1/𝑝 = |π‘Ÿ| sup π‘βˆˆβ„•,π‘Ž>0 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝 π‘Ž|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > π‘Ž}| 1/𝑝 = |π‘Ÿ|β€–π‘₯β€–πœ”β„“π‘ž 𝑝 . Let π‘₯, 𝑦 ∈ πœ”β„“π‘ž 𝑝 . For any 𝑁 ∈ β„•, if π‘˜ ∈ 𝑆𝑁 dan |π‘₯π‘˜ | ≀ |π‘¦π‘˜ | then |π‘₯π‘˜ + π‘¦π‘˜ | ≀ |π‘₯π‘˜ | + |π‘¦π‘˜ | ≀ 2|π‘¦π‘˜ | else if π‘˜ ∈ 𝑆𝑁 dan |π‘₯π‘˜ | > |π‘¦π‘˜ | then |π‘₯π‘˜ + π‘¦π‘˜ | ≀ |π‘₯π‘˜ | + |π‘¦π‘˜ | ≀ 2|π‘₯π‘˜ |. Thus {π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ + π‘¦π‘˜ | > 𝛾} βŠ† {π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | + |π‘¦π‘˜ | > 𝛾} βŠ† {π‘˜ ∈ 𝑆𝑁 ∢ 2|π‘₯π‘˜ | > 𝛾} βˆͺ {π‘˜ ∈ 𝑆𝑁 ∢ 2|π‘¦π‘˜ | > 𝛾}. For any 𝛾 > 0 dan 𝑁 ∈ β„•, |{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ + π‘¦π‘˜ | > 𝛾}| ≀ |{π‘˜ ∈ 𝑆𝑁 ∢ 2|π‘₯π‘˜ | > 𝛾}| + |{π‘˜ ∈ 𝑆𝑁 ∢ 2|π‘¦π‘˜ | > 𝛾}| Multiply both sides by (|𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝𝛾) 𝑝 applies that (|𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝𝛾) 𝑝 |{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ + π‘¦π‘˜ | > 𝛾}| ≀ (|𝑆𝑁| 1 π‘ž βˆ’ 1 𝑝𝛾) 𝑝 |{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾 2 }| + (|𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝𝛾) 𝑝 |{π‘˜ ∈ 𝑆𝑁 ∢ |π‘¦π‘˜ | > 𝛾 2 }| Let 𝛾 2 = 𝜎 ⟹ 𝛾 = 2𝜎 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ + π‘¦π‘˜ | > 𝛾}| 1/𝑝 ≀ 2 ((|𝑆𝑁 | 1 π‘ž βˆ’ 1 π‘πœŽ) 𝑝 |{π‘˜ ∈ 𝑆𝑁 : |π‘₯π‘˜ | > 𝜎}| + (|𝑆𝑁 | 1 π‘ž βˆ’ 1 π‘πœŽ) 𝑝 |{π‘˜ ∈ 𝑆𝑁 : |π‘¦π‘˜ | > 𝜎}|) 1/𝑝 . If 𝑝 > 1 ⟹ 1 𝑝 < 1then |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ + π‘¦π‘˜ | > 𝛾}| 1/𝑝 P. A. H. Puadi, Eridani, & A. Jaelani Relation of Morrey Sequence Spaces, Weak Type Morrey Sequence Spaces, and Sequence Spaces 43 ≀ 2 ((|𝑆𝑁 | 1 π‘ž βˆ’ 1 π‘πœŽ) 𝑝 |{π‘˜ ∈ 𝑆𝑁 : |π‘₯π‘˜ | > 𝜎}| + (|𝑆𝑁 | 1 π‘ž βˆ’ 1 π‘πœŽ) 𝑝 |{π‘˜ ∈ 𝑆𝑁 : |π‘¦π‘˜ | > 𝜎}|) 1/𝑝 ≀ 2 (|𝑆𝑁 | 1 π‘ž βˆ’ 1 π‘πœŽ|{π‘˜ ∈ 𝑆𝑁 : |π‘₯π‘˜ | > 𝜎}|) 1/𝑝 + 2 (|𝑆𝑁 | 1 π‘ž βˆ’ 1 π‘πœŽ|{π‘˜ ∈ 𝑆𝑁 : |π‘¦π‘˜ | > 𝜎}|) 1/𝑝 taking supremum over 𝛾 > 0 dan 𝑁 ∈ β„• from the above inequality, we get β€–π‘₯ + π‘¦β€–πœ”β„“π‘ž 𝑝 ≀ 2β€–π‘₯β€–πœ”β„“π‘ž 𝑝 + 2β€–π‘¦β€–πœ”β„“π‘ž 𝑝 = 2 (β€–π‘₯β€–πœ”β„“π‘ž 𝑝 + β€–π‘¦β€–πœ”β„“π‘ž 𝑝 ). Thus β€– β€–πœ”β„“π‘ž 𝑝 is a quasinorm and (πœ”β„“π‘ž 𝑝 , β€– β€–πœ”β„“π‘ž 𝑝 ) is a quasinormed space.∎ Theorem If 1 ≀ 𝑝1 ≀ 𝑝2 ≀ π‘ž then β€–π‘₯β€–πœ”β„“π‘ž 𝑝1 ≀ β€–π‘₯β€–πœ”β„“π‘ž 𝑝2 for all π‘₯ ∈ πœ”β„“π‘ž 𝑝2 . Proof : From the definition, for all π‘₯ ∈ β€–π‘₯β€– πœ”β„“π‘ž 𝑝2 and any 𝑁 ∈ β„•. |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝2 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝2 ≀ sup π‘βˆˆβ„•,𝛾>0 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝2 𝛾|{π‘˜ ∈ 𝑆𝑁 : |π‘₯π‘˜ | > 𝛾}| 1/𝑝2 = β€–π‘₯β€– πœ”β„“π‘ž 𝑝2 . And it is equivalent to 𝛾 ≀ |𝑆𝑁| 1 𝑝2 βˆ’ 1 π‘ž |{π‘˜βˆˆπ‘†π‘βˆΆ|π‘₯π‘˜|>𝛾}| 1/𝑝2 β€–π‘₯β€– πœ”β„“π‘ž 𝑝2 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝1 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝1 ≀ |𝑆𝑁 | 1 𝑝2 βˆ’ 1 𝑝1 |{π‘˜βˆˆπ‘†π‘ ∢|π‘₯π‘˜|>𝛾}| 1 𝑝2 βˆ’ 1 𝑝1 β€–π‘₯β€– πœ”β„“π‘ž 𝑝2 |𝑆𝑁 | 1 π‘ž βˆ’ 1 𝑝1 𝛾|{π‘˜ ∈ 𝑆𝑁 ∢ |π‘₯π‘˜ | > 𝛾}| 1/𝑝1 ≀ ( |{π‘˜βˆˆπ‘†π‘βˆΆ|π‘₯π‘˜|>𝛾}| |𝑆𝑁| ) 1 𝑝1 βˆ’ 1 𝑝2 β€–π‘₯β€– πœ”β„“π‘ž 𝑝2 ≀ β€–π‘₯β€– πœ”β„“π‘ž 𝑝2 taking supremum over 𝑁 ∈ β„• and 𝛾 > 0 on the above inequality, we get β€–π‘₯β€– πœ”β„“π‘ž 𝑝1 ≀ β€–π‘₯β€–πœ”β„“π‘ž 𝑝2 . ∎ From the above inequality we have πœ”β„“π‘ž 𝑝2 βŠ† πœ”β„“π‘ž 𝑝1 . 4. Conclusions Based on the results and discussion, we obtained some conclusions: 1) There are some Morrey sequence space’s elementary properties : i. If 1 ≀ 𝑝 ≀ π‘ž < ∞ then for all π‘₯ ∈ ℓ𝑝, we have β€–π‘₯β€– β„“π‘ž 𝑝 ≀ β€–π‘₯β€–β„“p and β„“ 𝑝 βŠ‚ β„“π‘ž 𝑝 . ii. If 1 ≀ 𝑝1 ≀ 𝑝2 ≀ π‘ž < ∞ then for all π‘₯ ∈ β„“π‘ž 𝑝2 , we have β€–π‘₯β€– β„“π‘ž 𝑝1 ≀ β€–π‘₯β€– β„“q p2 and β„“π‘ž 𝑝2 βŠ† β„“π‘ž 𝑝1 . 2) There are some weak type Morrey sequence space’s elementary properties : i. If 1 ≀ p ≀ q < ∞ then for all x ∈ β„“q p , we have β€–xβ€–Ο‰β„“q p ≀ β€–xβ€–β„“q p and β„“q p βŠ† Ο‰β„“q p . ii. If 1 ≀ p ≀ q < ∞ then β€– β€–Ο‰β„“q p is a quasinorm and (Ο‰β„“q p , β€– β€–Ο‰β„“q p ) is a quasinormed space. iii. If 1 ≀ p1 ≀ p2 ≀ q < ∞ then for all x ∈ Ο‰β„“q p2, we have β€–xβ€– Ο‰β„“q p1 ≀ β€–xβ€–Ο‰β„“q p2 and πœ”β„“π‘ž 𝑝2 βŠ† πœ”β„“π‘ž 𝑝1 . Jurnal Matematika MANTIK Vol. 8, No. 1, June 2022, pp.36-44 44 3) Based on the results in points 1 and 2 it can be concluded that ℓ𝑝 sequence space is a subset of Morrey Sequence Space and Morrey Sequence Space is a subset of weak type Morrey Sequence Space or equivalent to ℓ𝑝 βŠ‚ β„“π‘ž 𝑝 βŠ† πœ”β„“π‘ž 𝑝 . References [1] Y. Sawano, H. Gunawan, V. Guliyev, and H. Tanaka, β€œMorrey spaces and related function spaces,” Journal of Function Spaces, vol. 2014. pp. 1–2, 2014, doi: 10.1155/2014/867192. [2] V. Kokilashvili, A. Meskhi, and H. Rafeiro, β€œSublinear operators in generalized weighted Morrey spaces,” Dokl. Math., vol. 94, no. 2, pp. 558–560, 2016, doi: 10.1134/S1064562416050203. [3] H. Gunawan, E. Kikianty, and C. Schwanke, β€œDiscrete Morrey spaces and their inclusion properties,” Math. Nachrichten, vol. 291, no. 8–9, pp. 1283–1296, 2018, doi: 10.1002/mana.201700054. [4] S. Fatimah, A. A. Masta, S. Al Hazmy, C. Kustiawan, and I. Rukmana, β€œDiscrete Orlicz-Morrey spaces and their inclusion properties,” J. Eng. Sci. Technol., vol. 16, no. 3, pp. 2018–2027, 2021. [5] H. Roopaei, β€œNorm of Hilbert operator on sequence spaces,” J. Inequalities Appl., vol. 2020, no. 117, pp. 1–13, 2020, doi: 10.1186/s13660-020-02380-2. [6] D. Carando, M. Mazzitelli, and P. Sevilla-Peris, β€œA Note on the Symmetry of Sequence Spaces,” Math. Notes, vol. 110, no. 1–2, pp. 26–40, 2021, doi: 10.1134/S0001434621070038. [7] K. Boruah and B. Hazarika, β€œOn some generalized geometric difference sequence spaces,” Proyecciones, vol. 36, no. 3, 2017, doi: 10.4067/S0716- 09172017000300373. [8] N. Tumalun and H. Gunawan, β€œMorrey Spaces are Embedded Between Weak Morrey Spaces and Stummel Classes,” J. Indones. Math. Soc., pp. 203–209, 2019, doi: 10.22342/jims.25.3.817.203-209. [9] Y. Sawano and S. R. El-Shabrawy, β€œWeak Morrey spaces with applications,” Math. Nachrichten, vol. 291, no. 1, pp. 178–186, 2018, doi: 10.1002/mana.201700001. [10] E. Nakai and Y. Sawano, β€œSpaces of pointwise multipliers on morrey spaces and weak morrey spaces,” Mathematics, vol. 9, no. 21, pp. 1–18, 2021, doi: 10.3390/math9212754. [11] R. Haller and J. Langemets, β€œGeometry of banach spaces with an octahedral norm,” Acta Comment. Univ. Tartu. Math., vol. 18, no. 1, pp. 125–133, 2014, doi: 10.12697/ACUTM.2014.18.13. [12] S. Ovchinnikov, Functional Analysis: An Introductory Course. Switzerlandβ€―: Springer, 2018. [13] H. Gunawan, D. I. Hakim, and A. S. Putri, β€œOn Geometric Properties Of Morrey Spaces,” Ufa Math. J., vol. 13, no. 1, pp. 131–136, 2021, doi: 10.13108/2021-13-1- 131. [14] U. Kadak, β€œOn multiplicative difference sequence spaces and related dual properties,” Bol. da Soc. Parana. Mat., vol. 35, no. 3, 2017, doi: 10.5269/bspm.v35i3.29182. [15] A. A. Masta, S. Fatimah, and M. Taqiyuddin, β€œThird version of Weak Orlicz– Morrey spaces and its inclusion properties,” Indones. J. Sci. Technol., vol. 4, no. 2, pp. 257–262, 2019, doi: 10.17509/ijost.v4i2.18182.