PARADIGMA BARU PENDIDIKAN MATEMATIKA DAN APLIKASI ONLINE INTERNET PEMBELAJARAN How to cite: A. L. Firdiansyah, β€œDynamics of Infected Predator-Prey System with Nonlinear Incidence Rate and Prey in Refuge”, J. Mat. Mantik, vol. 6, no. 2, pp. 123-134, October 2020. Dynamics of Infected Predator-Prey System with Nonlinear Incidence Rate and Prey in Refuge Adin Lazuardy Firdiansyah STAI Muhammadiyah Probolinggo, adin.lazuardy@gmail.com doi: https://doi.org/10.15642/mantik.2020.6.2.123-134 Abstrak. Model mangsa-pemangsa dengan laju kejadian nonlinear dan perlindungan dimunculkan untuk menggambarkan perubahan prilaku pada mangsa yang sehat ketika jumlah mangsa yang terinfeksi meningkat, sedangkan pemangsa dapat memakan mangsa dengan mengakses perlindungan pada mangsa. Oleh karena itu, analisis dinamik model mangsa-pemangsa dengan penyebaran penyakit yang dinotasikan dengan laju kejadian nonlinear dan perlindungan mangsa dibahas pada penilitian ini. Hasil analisis ditemukan bahwa ada delapan titik kesetimbangan, dimana semua titik kesetimbangan tersebut stabil asimtotik secara lokal. Selanjutnya, perlindungan mangsa juga dipertimbangkan pada penelitian ini. Perlindungan mangsa memiliki pengaruh penting pada model. Hal ini ditunjukkan dengan adanya perlindungan mangsa yang dapat mencegah kepunahan pada populasi mangsa. Pada bagian akhir, simulasi numerik dilakukan untuk mengilustrasikan hasil analisis yang diperoleh. Untuk penelitian berikutnya, model mangsa-pemangsa dapat diinvestigasi efek pemanenanya untuk kedua populasi. Kata kunci: Model mangsa-pemangsa; Laju kejadian nonlinear; Perlindungan; Kestabilan Abstract. A predator-prey system with nonlinear incidence rate and refuging in prey is proposed to describe behavior change of certain infected diseases on healthy prey when the number of infected prey is getting large, while predator can predate prey by accessing refuging in prey. Therefore, this paper discusses the dynamics behavior predator-prey model with the spread of infected disease that is denoted by nonlinear incidence rate and adding prey refuge. We find the existence of eight non- negative equilibrium in the model, which their local stability has been determined. Furthermore, we also observe the prey refuge properties in the model. We find that prey refuge can prevent extinction in prey populations. In the end, some numerical solutions are carried out to illustrate our analytic results. For future work, we can investigate the harvesting effect in both populations, which is disease control in the predator-prey model with the spread of infected disease. Keywords: Predator-prey system; Nonlinear incidence rate; Refuge; Stability Jurnal Matematika MANTIK Vol. 6, No. 2, October 2020, pp. 123-134 ISSN: 2527-3159 (print) 2527-3167 (online) Jurnal Matematika MANTIK Volume 6, No. 2, October 2020, pp. 123-134 124 1. Introduction After Lotka and Volterra proposed a mathematical model that could represent the interactions of predators and prey, many researchers were interested to study the model. Similarly, Kermack and McKendrick [1] also proposed a SIR (Susceptible-Infectious- Recovered) epidemic model that represented the infected disease transmission. After that, Anderson and May [2] for the first time proposed the eco-epidemiology model and investigated invasion, persistence, and spread of infected disease in the model. Since then, many researchers have studied the eco-epidemiology model. Generally speaking, the eco- epidemiology model is divided into three cases. The first case is an only infected disease in prey as in [3]–[5]. The second case is an only infected disease in predator as in [6]. Meanwhile, the third case is an infected disease in both populations as in [7]–[9]. In the eco-epidemiology model, there is a basic component that can represent the spread of infected disease. Generally, it is denoted by the simple mass incidence rate, 𝛽𝑆𝐼, with 𝛽 means the infection rate. This incidence rate shows that the transmission disease with rate 𝛽𝑆𝐼, i.e. when the transmission disease increases significantly, then the number of infected population increases too [1]. In the model [3]–[8], the authors assume the simple mass incidence rate to represent the transmission disease in the model. In several cases, the simple mass incidence rate doesn’t produce appropriate results. When the amount of infected population increases significantly, the susceptible population tend to change their behavior to reduce contact with the infected population. Therefore, Capasso and Serio [10] proposed the saturated incidence rate to describe the transmission disease. As done in [9], they investigated the local stability where the transmission disease in the eco-epidemiology model followed the saturated incidence rate. However, there is a nonlinear incidence rate that is suggested by [11]. They introduced nonlinear incidence rate, 𝛽𝐼𝑝 1+π›ΌπΌπ‘ž (𝑝, π‘ž, 𝛼, 𝛽 were positive constants), where 𝛽𝐼𝑝 meant infection rate and 1 1+π›ΌπΌπ‘ž meant inhibition rate from the behavior change on healthy population when infected population was getting large. Many researcher uses this incidence rate by giving 𝑝, π‘ž, 𝛼 makes different values as in [12]–[14]. This becomes more rational because it includes the effect of tightness from infective individuals [12]. Recently, the effect of disease in the eco-epidemiology model has become an important topic for many researchers. However, other components that can influence the dynamic of species interactions is the Allee effect, habitat complexity, harvesting, and prey refuge. For the prey refuge effect, theoretical research provides a conclusion that it can influence stabilizing and destabilizing the predator-prey model and can avoid extinction in prey [15]–[17]. It can make the predator-prey model to form more realistic. Motivated by previous research, we modify a model from [9] by including nonlinear incidence rate and adding the effect of prey refuge. At this time, several similar models have emerged, but the latest distinctive feature of our model is the inclusion of transmission disease in both populations and also the inclusion of prey refuge properties of the prey population. Incorporation of prey refuge gives a factor which can be accessed by predator populations. Under this adding effect, our model is more realistic and differs from the previous eco-epidemiology model. The model is analyzed to determine the local stability of its equilibrium points. Moreover, several simulations are given to demonstrate the results of our analysis. 2. Methods The method used for this research is the literature study which studies some previous research. It’s used to modify a model from [9]. The steps to solve this research are below: a. Reviewing and studying the predator-prey model from previous research. Adin Lazuardy Firdiansyah Dynamics of Infected Predator-Prey System with Nonlinear Incidence Rate and Prey in Refuge 125 b. Modifying the predator-prey model by including nonlinear incidence rate and adding the effect of prey refuge. c. Analyzing the existence of equilibrium points and local stability in the modified model. d. Performing numerical simulation by using the Runge-Kutta 4th order method as a numerical method to support our analysis results. e. Making a conclusion based on the analysis results. 3. Result and Discussion 3.1 The Formulation Model Our mathematical model contains two populations, namely the prey population and predator population. At time 𝑑, susceptible and infected prey are denoted by 𝑆(𝑑) and 𝐼(𝑑), respectively. Meanwhile, susceptible and infected predator are denoted by π‘Œπ‘†(𝑑) and π‘ŒπΌ(𝑑), respectively. The following is several basic assumptions for our mathematical model: a. In the absence of predation and disease, the prey grows according to logistics with a growth rate π‘Ÿ (π‘Ÿ > 0) and carrying capacity 𝐾 (𝐾 > 0). b. Only one population that can reproduce, namely susceptible prey. c. The prey has one infection source like viruses or other sources. Meanwhile, the predator can be infected due they eat the infected prey. d. The transmission disease follows the nonlinear incidence rate 𝛽𝑆𝐼 1+𝐼 , where 𝛽𝐼 means infection rate and 1 1+𝐼 means inhibition rate from behavior change on healthy prey, when infected prey is getting large. Meanwhile, the transmission disease in predator follows the simple mass incidence rate (π›Ύπ‘Œπ‘†π‘ŒπΌ), where 𝛾 expressed infection rate. e. Both of infected prey and predator isn’t recovered and no get immune. f. The infected predator can’t predate healthy prey. Both of infected predator and susceptible predator can eat infected prey because it is easy to be predated by them. But, the ability to catch from an infected predator is lower than susceptible predator. g. All species have natural death rates and death rates due to infection. h. The functional response for predation of predator is the Lotka-Volterra type. i. The refuge protection can be denoted with (1 βˆ’ π‘š3)𝑆 for susceptible prey and (1 βˆ’ π‘š4)𝐼 for infected prey, where π‘š3, π‘š4 ∈ (0,1] and healthy prey is more agile than infected prey. The details of the model structure are shown in the schematic flow diagram as in figure 1. From the flow chart in figure 1, the mathematical model is presented as follows: 𝑑𝑆 𝑑𝑑 = π‘Ÿπ‘† (1 βˆ’ 𝑆 + 𝐼 𝐾 ) βˆ’ 𝛽𝑆𝐼 1 + 𝐼 βˆ’ 𝑝1(1 βˆ’ π‘š3)π‘†π‘Œπ‘† βˆ’ π‘Ž1𝑆, 𝑑𝐼 𝑑𝑑 = 𝛽𝑆𝐼 1 + 𝐼 βˆ’ 𝑝2(1 βˆ’ π‘š4)πΌπ‘Œπ‘† βˆ’ 𝑝3(1 βˆ’ π‘š4)πΌπ‘ŒπΌ βˆ’ π‘Ž2𝐼, π‘‘π‘Œπ‘† 𝑑𝑑 = π‘Ž3(1 βˆ’ π‘š3)π‘†π‘Œπ‘† + π‘Ž4(1 βˆ’ π‘š4)πΌπ‘Œπ‘† βˆ’ π›Ύπ‘Œπ‘†π‘ŒπΌ βˆ’ 𝑑3π‘Œπ‘†, π‘‘π‘ŒπΌ 𝑑𝑑 = π‘Ž5(1 βˆ’ π‘š4)πΌπ‘ŒπΌ + π›Ύπ‘Œπ‘†π‘ŒπΌ βˆ’ π‘Ž6π‘ŒπΌ. (1) with the initial condition as 𝑆(0) > 0, 𝐼(0) > 0, π‘Œπ‘†(0) > 0, π‘ŒπΌ(0) > 0. All parameters with their biological meaning are given as follows: π‘Ž1 = π‘š1 + 𝑑1, π‘Ž2 = π‘š2 + 𝑑2 + 𝑐, π‘Ž3 = 𝑝1π‘ž1, π‘Ž4 = 𝑝2π‘ž2, π‘Ž5 = 𝑝3π‘ž3, and π‘Ž6 = 𝑑4 + 𝑑5 where π‘š1 and π‘š2 are migration rates for susceptible prey and infected prey, respectively. 𝑝1(𝑝2) and 𝑝3 are predation rate from healthy predator to healthy prey (to infected prey) and predation rate from infected predator to infected prey, respectively. π‘ž1(π‘ž2) and π‘ž3 are conversion rate from healthy prey into healthy predator (infected predator) and conversion rate from infected prey into an infected Jurnal Matematika MANTIK Volume 6, No. 2, October 2020, pp. 123-134 126 predator. 𝑑1(𝑑2) and 𝑑3(𝑑4) are natural death from susceptible prey (infected prey) and natural death from a susceptible predator (infected predator), respectively. 𝑐(𝑑5) is the death rate from infected prey (from an infected predator) due to infection from disease. We assume that all parameters are positive values. Figure 1. Schematic diagram of the model 3.2 Equilibrium Point of Mathematical Model We set the right-hand sides equal to zero. Thus, we get possible equilibriums: a. The trivial equilibrium point is 𝐸0(0,0,0,0). This point always exists. b. The axial equilibrium point is 𝐸1(𝑆 (1), 0,0,0), where 𝑆(1) = 𝐾(π‘Ÿβˆ’π‘Ž1) π‘Ÿ . It will exist when π‘Ÿ > π‘Ž1. c. 𝐸2(𝑆 (2), 𝐼(2), 0,0) is the predator-free equilibrium point, where 𝑆(2) = (1 + 𝐼(2))(π‘ŸπΎ βˆ’ π‘ŸπΌ(2) βˆ’ πΎπ‘Ž1) βˆ’ 𝐾𝛽𝐼 (2) π‘Ÿ(1 + 𝐼(2)) and 𝐼(2) is the positive root of quadratic equations 𝐴0(𝐼 (2)) 2 + 𝐴1𝐼 (2) + 𝐴2 = 0, where 𝐴0 = π‘Ÿ(π‘Ž2 + 𝛽), 𝐴1 = 2π‘Ÿπ‘Ž2 βˆ’ π›½π‘ŸπΎ + π›½π‘Ÿ + π›½π‘Ž1𝐾 + 𝛽 2𝐾, and 𝐴2 = π‘Ÿπ‘Ž2 βˆ’ π›½π‘ŸπΎ + π›½π‘Ž1𝐾. The equilibrium 𝐸2 will exist if π‘Ÿ β‰₯ π›½π‘Ž1𝐾 π›½πΎβˆ’π‘Ž2 . d. 𝐸3 (𝑆 (3), 0, π‘Œπ‘† (3) , 0) is the disease-free equilibrium point, where 𝑆(3) = 𝑑3 π‘Ž3(1 βˆ’ π‘š3) and π‘Œπ‘† (3) = 𝐾(π‘Ÿ βˆ’ π‘Ž1) βˆ’ π‘Ÿπ‘† (3) 𝐾𝑝1(1 βˆ’ π‘š3) . The equilibrium point 𝐸3 will exist if π‘Ÿ > π‘Ž1π‘Ž3𝐾(1βˆ’π‘š3) π‘Ž3𝐾(1βˆ’π‘š3)βˆ’π‘‘3 . e. 𝐸4 (𝑆 (4), π‘Ž6 π‘Ž5(1βˆ’π‘š4) , 0, π‘ŒπΌ (4) ) is the healthy predator-free equilibrium point, where 𝑆 𝐼 π‘Œπ‘† π‘ŒπΌ 𝛽𝑆𝐼 1 + 𝐼 π‘Ÿπ‘† (1 βˆ’ 𝑆 + 𝐼 𝐾 ) π‘Ž1𝑆 𝑝1π‘†π‘Œπ‘† 𝑑3π‘Œπ‘† π‘š3π‘†π‘Œπ‘† 𝑝2πΌπ‘Œπ‘† π‘š4πΌπ‘Œπ‘† 𝑝3πΌπ‘ŒπΌ π›Ύπ‘Œπ‘†π‘ŒπΌ π‘Ž2𝐼 π‘š4πΌπ‘ŒπΌ π‘Ž6π‘ŒπΌ Adin Lazuardy Firdiansyah Dynamics of Infected Predator-Prey System with Nonlinear Incidence Rate and Prey in Refuge 127 𝑆(4) = (π‘Ž5(1 βˆ’ π‘š4) + π‘Ž6)(𝑝3(1 βˆ’ π‘š4)π‘ŒπΌ (4) + π‘Ž2) π›½π‘Ž5(1 βˆ’ π‘š4) and π‘ŒπΌ (4) = 𝐢1 βˆ’ 𝐢2 π‘Ÿπ‘3(1 βˆ’ π‘š4)(π‘Ž5(1 βˆ’ π‘š4) + π‘Ž6) 2 with 𝐢1 = πΎπ›½π‘Ž5(1 βˆ’ π‘š4)(π‘Ÿ βˆ’ π‘Ž1)(π‘Ž5(1 βˆ’ π‘š4) + π‘Ž6) and 𝐢2 = π‘Ÿπ‘Ž2(π‘Ž5(1 βˆ’ π‘š4) + π‘Ž6) 2 + 𝐾𝛽2π‘Ž5π‘Ž6(1 βˆ’ π‘š4) + π‘Ÿπ›½π‘Ž6(π‘Ž5(1 βˆ’ π‘š4) + π‘Ž6). This equilibrium exists when 𝐢1 > 𝐢2 and π‘Ÿ > π‘Ž1. f. 𝐸5 (𝑆 (5), 0, π‘Ž6 𝛾 , π‘ŒπΌ (5) ) is the infected prey-free equilibrium point, where 𝑆(5) = 𝐾𝛾(π‘Ÿ βˆ’ π‘Ž1) βˆ’ 𝐾𝑝1π‘Ž6(1 βˆ’ π‘š3) π‘Ÿπ›Ύ and π‘ŒπΌ (5) = (1 βˆ’ π‘š3)π‘Ž3𝑆 (5) βˆ’ 𝑑3 𝛾 . It will exist if π‘Ÿ > πΎπ‘Ž3(1βˆ’π‘š3)(π›Ύπ‘Ž1+𝑝1π‘Ž6(1βˆ’π‘š3)) 𝛾(πΎπ‘Ž3(1βˆ’π‘š3)βˆ’π‘‘3) . g. 𝐸6 ( 𝑑3βˆ’π‘Ž4(1βˆ’π‘š4)𝐼 (6) π‘Ž3(1βˆ’π‘š3) , 𝐼(6), π‘Œπ‘† (6) , 0) is the infected predator-free equilibrium, where π‘Œπ‘† (6) = 𝛽𝑑3 βˆ’ π›½π‘Ž4(1 βˆ’ π‘š4)𝐼 (6) βˆ’ π‘Ž2π‘Ž3(1 βˆ’ π‘š3)(1 + 𝐼 (6)) 𝑝2π‘Ž3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4)(1 + 𝐼 (6)) and 𝐼(6) is the positive root of quadratic equations 𝐷0(𝐼 (6)) 2 + 𝐷1𝐼 (6) + 𝐷2 = 0 with 𝐷0 = π‘Ÿπ‘2(1 βˆ’ π‘š4)(π‘Ž3(1 βˆ’ π‘š3) βˆ’ π‘Ž4(1 βˆ’ π‘š4)), 𝐷1 = πΎπ‘Ž3𝑝2(1 βˆ’ π‘š3)(1 βˆ’ π‘š4)(𝛽 + π‘Ž1 βˆ’ π‘Ÿ) +π‘Ÿπ‘2(1 βˆ’ π‘š4)(𝑑3 + π‘Ž3(1 βˆ’ π‘š3) βˆ’ π‘Ž4(1 βˆ’ π‘š4)) βˆ’πΎπ‘1(1 βˆ’ π‘š3)(π‘Ž2π‘Ž3(1 βˆ’ π‘š3) + π›½π‘Ž4(1 βˆ’ π‘š4)), 𝐷2 = π‘Ÿπ‘2(1 βˆ’ π‘š4)(𝑑3 βˆ’ πΎπ‘Ž3(1 βˆ’ π‘š3)) +πΎπ‘Ž3(1 βˆ’ π‘š3)(π‘Ž1𝑝2(1 βˆ’ π‘š4) βˆ’ π‘Ž2𝑝1(1 βˆ’ π‘š3)) + 𝐾𝛽𝑝1𝑑3(1 βˆ’ π‘š3). This equilibrium will exist if 𝐼(6) < 𝛽𝑑3βˆ’π‘Ž2π‘Ž3(1βˆ’π‘š3) π›½π‘Ž4(1βˆ’π‘š4)+π‘Ž2π‘Ž3(1βˆ’π‘š3) . h. 𝐸7 (𝑆 (7), 𝐼(7), π‘Ž6βˆ’π‘Ž5(1βˆ’π‘š4)𝐼 (7) 𝛾 , π‘Ž3(1βˆ’π‘š3)𝑆 (7)+π‘Ž4(1βˆ’π‘š4)𝐼 (7)βˆ’π‘‘3 𝛾 ) is the interior equilibrium point, where 𝑆(7) = (1+𝐼(7))(πΎπ‘Ÿπ›Ύβˆ’π‘Ž1π›ΎπΎβˆ’π‘Ÿπ›ΎπΌ (7)βˆ’πΎπ‘1(1βˆ’π‘š3)(π‘Ž6βˆ’π‘Ž5(1βˆ’π‘š4)𝐼 (7)))βˆ’πΎπ›Ύπ›½πΌ(7) π›Ύπ‘Ÿ(1+𝐼(7)) and 𝐼(7) is the positive root of the cubic equation 𝑄0(𝐼 (7)) 3 + 𝑄1(𝐼 (7)) 2 + 𝑄2𝐼 (7) + 𝑄3 = 0, with 𝑄0 = πΎπ‘Ž3π‘Ž5𝑝1𝑝3(1 βˆ’ π‘š3) 2(1 βˆ’ π‘š4) 2 βˆ’ π›Ύπ‘Ÿπ‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) Jurnal Matematika MANTIK Volume 6, No. 2, October 2020, pp. 123-134 128 +π›Ύπ‘Ÿπ‘Ž4𝑝3(1 βˆ’ π‘š4) 2 βˆ’ π›Ύπ‘Ÿπ‘Ž5𝑝2(1 βˆ’ π‘š4) 2, 𝑄1 = 2π›Ύπ‘Ÿπ‘Ž4𝑝3(1 βˆ’ π‘š4) 2 βˆ’ 2π›Ύπ‘Ÿπ‘Ž5𝑝2(1 βˆ’ π‘š4) 2 + π›Ύπ‘Ÿπ‘Ž6𝑝2(1 βˆ’ π‘š4) + 𝛾 2π‘Ÿπ‘Ž2 βˆ’π›Ύπ‘Ÿπ‘‘3𝑝3(1 βˆ’ π‘š4) + 2πΎπ‘Ž3π‘Ž5𝑝1𝑝3(1 βˆ’ π‘š3) 2(1 βˆ’ π‘š4) 2 + 𝛽𝛾2π‘Ÿ βˆ’πΎπ‘Ž3π‘Ž6𝑝1𝑝3(1 βˆ’ π‘š3) 2(1 βˆ’ π‘š4) βˆ’ πΎπ›Ύπ‘Ž1π‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) +πΎπ›Ύπ‘Ÿπ‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) βˆ’ πΎπ›½π›Ύπ‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) βˆ’πΎπ›½π›Ύπ‘Ž5𝑝1(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) βˆ’ 2π›Ύπ‘Ÿπ‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4), 𝑄2 = π›Ύπ‘Ÿπ‘Ž4𝑝3(1 βˆ’ π‘š4) 2 βˆ’ π›Ύπ‘Ÿπ‘Ž5𝑝2(1 βˆ’ π‘š4) 2 + 2π›Ύπ‘Ÿπ‘Ž6𝑝2(1 βˆ’ π‘š4) + 2𝛾 2π‘Ÿπ‘Ž2 βˆ’2π›Ύπ‘Ÿπ‘‘3𝑝3(1 βˆ’ π‘š4) + πΎπ‘Ž3π‘Ž5𝑝1𝑝3(1 βˆ’ π‘š3) 2(1 βˆ’ π‘š4) 2 + 𝛽𝛾2π‘Ÿ βˆ’2πΎπ‘Ž3π‘Ž6𝑝1𝑝3(1 βˆ’ π‘š3) 2(1 βˆ’ π‘š4) βˆ’ 2πΎπ›Ύπ‘Ž1π‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) +2πΎπ›Ύπ‘Ÿπ‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) βˆ’ πΎπ›½π›Ύπ‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) + 𝐾𝛽 2𝛾2 βˆ’πΎπ›½π›Ύπ‘Ž5𝑝1(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) + πΎπ›½π›Ύπ‘Ž6𝑝1(1 βˆ’ π‘š3) βˆ’ 𝐾𝛽𝛾 2π‘Ÿ + 𝐾𝛽𝛾2π‘Ž1 βˆ’π›Ύπ‘Ÿπ‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4), 𝑄3 = πΎπ›Ύπ‘Ÿπ‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) βˆ’ πΎπ›Ύπ‘Ž1π‘Ž3𝑝3(1 βˆ’ π‘š3)(1 βˆ’ π‘š4) βˆ’πΎπ‘Ž3π‘Ž6𝑝1𝑝3(1 βˆ’ π‘š3) 2(1 βˆ’ π‘š4) + πΎπ›½π›Ύπ‘Ž6𝑝1(1 βˆ’ π‘š3) +π›Ύπ‘Ÿπ‘Ž6𝑝2(1 βˆ’ π‘š4) βˆ’ π›Ύπ‘Ÿπ‘‘3𝑝3(1 βˆ’ π‘š4) + 𝐾𝛽𝛾 2π‘Ž1 βˆ’ 𝐾𝛽𝛾 2π‘Ÿ + 𝛾2π‘Ÿπ‘Ž2. The existing form of the positive root in the cubic equation can be determined by using Cardan’s method as in [18]. 3.3 Stability Analysis To check the local stability of the equilibrium point, we have to determine the eigenvalues of the Jacobian matrix. Here, the Jacobian matrix at the equilibrium point πΈβˆ—(π‘†βˆ—, πΌβˆ—, π‘Œπ‘† βˆ—, π‘ŒπΌ βˆ—) is as follows: π½βˆ— = [ 𝑒11 𝑒12 βˆ’π‘1(1 βˆ’ π‘š3)𝑆 βˆ— 0 π›½πΌβˆ— 1 + πΌβˆ— 𝑒22 βˆ’π‘2(1 βˆ’ π‘š4)𝐼 βˆ— βˆ’π‘3(1 βˆ’ π‘š4)𝐼 βˆ— π‘Ž3(1 βˆ’ π‘š3)π‘Œπ‘† βˆ— π‘Ž4(1 βˆ’ π‘š4)π‘Œπ‘† βˆ— 𝑒33 βˆ’π›Ύπ‘Œπ‘† βˆ— 0 π‘Ž5(1 βˆ’ π‘š4)π‘ŒπΌ βˆ— π›Ύπ‘ŒπΌ βˆ— 𝑒44 ] , where 𝑒11 = = π‘Ÿ (1 βˆ’ π‘†βˆ— + πΌβˆ— 𝐾 ) βˆ’ π‘Ÿπ‘†βˆ— 𝐾 βˆ’ π›½πΌβˆ— 1 + πΌβˆ— βˆ’ 𝑝1(1 βˆ’ π‘š3)π‘Œπ‘† βˆ— βˆ’ π‘Ž1, 𝑒12 = βˆ’ π‘Ÿπ‘†βˆ— 𝐾 βˆ’ π›½π‘†βˆ— 1 + πΌβˆ— + π›½π‘†βˆ—πΌβˆ— (1 + πΌβˆ—)2 , 𝑒22 = π›½π‘†βˆ— 1 + πΌβˆ— βˆ’ π›½π‘†βˆ—πΌβˆ— (1 + πΌβˆ—)2 βˆ’ 𝑝2(1 βˆ’ π‘š4)π‘Œπ‘† βˆ— βˆ’ 𝑝3(1 βˆ’ π‘š4)π‘ŒπΌ βˆ— βˆ’ π‘Ž2, 𝑒33 = π‘Ž3(1 βˆ’ π‘š3)𝑆 βˆ— + π‘Ž4(1 βˆ’ π‘š4)𝐼 βˆ— βˆ’ π›Ύπ‘ŒπΌ βˆ— βˆ’ 𝑑3, 𝑒44 = π‘Ž5(1 βˆ’ π‘š4)𝐼 βˆ— + π›Ύπ‘ŒπΌ βˆ— βˆ’ π‘Ž6. The characteristic equation of 𝐸0 is (π‘Ÿ βˆ’ π‘Ž1 βˆ’ πœ†)(βˆ’π‘Ž2 βˆ’ πœ†)(βˆ’π‘‘3 βˆ’ πœ†)(βˆ’π‘Ž6 βˆ’ πœ†) = 0, which has eigenvalues πœ†1 = π‘Ÿ βˆ’ π‘Ž1; πœ†2 = βˆ’π‘Ž2; πœ†3 = βˆ’π‘‘3; πœ†4 = βˆ’π‘Ž6. Thus, 𝐸0 is locally asymptotically stable if only if π‘Ÿ < π‘Ž1. On point 𝐸1, the characteristic equation of 𝐸1 is (π‘Ž1 βˆ’ π‘Ÿ βˆ’ πœ†)(𝑔1 βˆ’ πœ†)(𝑔2 βˆ’ πœ†)(βˆ’π‘Ž6 βˆ’ πœ†) = 0, with Adin Lazuardy Firdiansyah Dynamics of Infected Predator-Prey System with Nonlinear Incidence Rate and Prey in Refuge 129 𝑔1 = 𝛽𝐾(π‘Ÿ βˆ’ π‘Ž1) π‘Ÿ βˆ’ π‘Ž2, 𝑔2 = π‘Ž3𝐾(1 βˆ’ π‘š3)(π‘Ÿ βˆ’ π‘Ž1) π‘Ÿ βˆ’ 𝑑3. This point has eigenvalues πœ†1 = π‘Ž1 βˆ’ π‘Ÿ; πœ†2 = 𝑔1; πœ†3 = 𝑔2; πœ†4 = βˆ’π‘Ž6. Thus, 𝐸1 can be said the locally asymptotically stable if only if π‘Ž1 < π‘Ÿ < π‘šπ‘–π‘› { π›½πΎπ‘Ž1 π›½πΎβˆ’π‘Ž2 , πΎπ‘Ž1π‘Ž3(1βˆ’π‘š3) πΎπ‘Ž3(1βˆ’π‘š3)βˆ’π‘‘3 }, where 𝛽𝐾 > π‘Ž2 and πΎπ‘Ž3(1 βˆ’ π‘š3) > 𝑑3. On point 𝐸2, the characteristic equation of 𝐸2 is (πœ†2 βˆ’ (β„Ž1 + β„Ž2)πœ† + (β„Ž1β„Ž2 βˆ’ β„Ž3β„Ž2))(β„Ž4 βˆ’ πœ†)(β„Ž5 βˆ’ πœ†) = 0, with β„Ž1 = π‘Ÿ (1 βˆ’ 𝑆(2) + 𝐼(2) 𝐾 ) βˆ’ π‘Ÿπ‘†(2) 𝐾 βˆ’ 𝛽𝐼(2) 1 + 𝐼(2) βˆ’ π‘Ž1, β„Ž2 = 𝛽𝑆(2) 1 + 𝐼(2) βˆ’ 𝛽𝑆(2)𝐼(2) (1 + 𝐼(2))2 βˆ’ π‘Ž2, β„Ž3 = 𝛽𝐼(2) 1 + 𝐼(2) , β„Ž4 = π‘Ž3(1 βˆ’ π‘š3)𝑆 (2) + π‘Ž4(1 βˆ’ π‘š4)𝐼 (2) βˆ’ 𝑑3, β„Ž5 = π‘Ž5(1 βˆ’ π‘š4)𝐼 (2) βˆ’ π‘Ž6. Eigenvalues on this point 𝐸2 is πœ†1,2 = (β„Ž1+β„Ž2)±√(β„Ž1+β„Ž2) 2βˆ’4(β„Ž1β„Ž2βˆ’β„Ž3β„Ž2) 2 ; πœ†3 = β„Ž4; πœ†4 = β„Ž5. Thus, the point 𝐸2 can be said the locally asymptotically stable if only if β„Ž1 + β„Ž2 < 0; β„Ž1β„Ž2 > β„Ž3β„Ž2; π‘Ž5(1 βˆ’ π‘š4)𝐼 (2) < π‘Ž6; π‘Ž3(1 βˆ’ π‘š3)𝑆 (2) + π‘Ž4(1 βˆ’ π‘š4)𝐼 (2) < 𝑑3. On point 𝐸3, we obtain the characteristic equation of 𝐸3 is (πœ†2 βˆ’ (𝑛1 + 𝑛2)πœ† + (𝑛1𝑛2 βˆ’ 𝑛3𝑛4))(𝑛5 βˆ’ πœ†)(𝑛6 βˆ’ πœ†) = 0, with 𝑛1 = π‘Ÿ (1 βˆ’ 𝑆(3) 𝐾 ) βˆ’ π‘Ÿπ‘†(3) 𝐾 βˆ’ 𝑝1(1 βˆ’ π‘š3)π‘Œπ‘† (3) βˆ’ π‘Ž1, 𝑛2 = π‘Ž3(1 βˆ’ π‘š3)𝑆 (3) βˆ’ 𝑑3, 𝑛3 = βˆ’π‘1(1 βˆ’ π‘š3)𝑆 (3), 𝑛4 = π‘Ž3(1 βˆ’ π‘š3)π‘Œπ‘† (3) , 𝑛5 = 𝛽𝑆(3) βˆ’ 𝑝2(1 βˆ’ π‘š4)π‘Œπ‘† (3) βˆ’ π‘Ž2, 𝑛6 = π›Ύπ‘Œπ‘† (3) βˆ’ π‘Ž6, which has eigenvalues πœ†1,2 = (𝑛1+𝑛2)±√(𝑛1+𝑛2) 2βˆ’4(𝑛1𝑛2βˆ’π‘›3𝑛4) 2 ; πœ†3 = 𝑛5; πœ†4 = 𝑛6. So, we can say that the point 𝐸3 is locally asymptotically stable if only if 𝑛1 + 𝑛2 < 0; 𝑛1𝑛2 > 𝑛3𝑛4; 𝛽𝑆 (3) βˆ’ 𝑝2(1 βˆ’ π‘š4)π‘Œπ‘† (3) < π‘Ž2 and π›Ύπ‘Œπ‘† (3) < π‘Ž6. On point 𝐸4, the characteristic equation of 𝐸4 is (𝑧1 βˆ’ πœ†)(πœ† 3 + πœ‘1πœ† 2 + πœ‘2πœ† + πœ‘3) = 0. One eigenvalue is πœ†1 = 𝑧1, where 𝑧1 = π‘Ž3(1 βˆ’ π‘š3)𝑆 (4) + π‘Ž4(1 βˆ’ π‘š4)𝐼 (4) βˆ’ π›Ύπ‘ŒπΌ (4) βˆ’ 𝑑3. Other eigenvalues are obtained from the roots of cubic equations, which are obtained from the matrix 𝐽(𝐸4). Jurnal Matematika MANTIK Volume 6, No. 2, October 2020, pp. 123-134 130 𝐽(𝐸4) = ( 𝑧2 𝑧3 0 𝛽𝐼(4) 1 + 𝐼(4) 𝑧4 βˆ’π‘3(1 βˆ’ π‘š4)𝐼 (4) 0 π‘Ž3(1 βˆ’ π‘š4)π‘ŒπΌ (4) π‘Ž5(1 βˆ’ π‘š4)𝐼 (4) βˆ’ π‘Ž6) , with 𝑧2 = π‘Ÿ (1 βˆ’ 𝑆(4) + 𝐼(4) 𝐾 ) βˆ’ π‘Ÿπ‘†(4) 𝐾 βˆ’ 𝛽𝐼(4) 1 + 𝐼(4) βˆ’ π‘Ž1, 𝑧3 = βˆ’ π‘Ÿπ‘†(4) 𝐾 βˆ’ 𝛽𝑆(4) 1 + 𝐼(4) + 𝛽𝑆(4)𝐼(4) (1 + 𝐼(4))2 , 𝑧4 = 𝛽𝑆(4) 1 + 𝐼(4) βˆ’ 𝛽𝑆(4)𝐼(4) (1 + 𝐼(4))2 βˆ’ 𝑝3(1 βˆ’ π‘š4)π‘ŒπΌ (4) βˆ’ π‘Ž2. Thus, the roots of the cubic equation are πœ‘1 = βˆ’π‘‘π‘Ÿ (𝐽(𝐸4)) ; πœ‘2 = 𝑀11 + 𝑀22 + 𝑀33; and πœ‘3 = βˆ’ 𝑑𝑒𝑑 (𝐽(𝐸4)), where 𝑀𝑖𝑗 is minor of entry (𝐽(𝐸4)) 𝑖𝑗 . By using Routh-Hurwitz criteria, the point 𝐸4 is the locally asymptotically stable which can be provided with the following condition πœ‘1 > 0; πœ‘3 > 0; πœ‘1πœ‘2 > πœ‘3; π‘Ž3(1 βˆ’ π‘š3)𝑆 (4) + π‘Ž4(1 βˆ’ π‘š4)𝐼 (4) < π›Ύπ‘ŒπΌ (4) + 𝑑3. On point 𝐸5, the characteristic equation of 𝐸5 is (𝑒1 βˆ’ πœ†)(πœ† 3 + 𝛿1πœ† 2 + 𝛿2πœ† + 𝛿3) = 0. One eigenvalue is πœ†1 = 𝑒1, where 𝑒1 = 𝛽𝑆 (5) βˆ’ 𝑝2(1 βˆ’ π‘š4)π‘Œπ‘† (5) βˆ’ 𝑝3(1 βˆ’ π‘š4)π‘ŒπΌ (5) βˆ’ π‘Ž2. Meanwhile, three eigenvalues are the roots of cubic equations πœ†3 + 𝛿1πœ† 2 + 𝛿2πœ† + 𝛿3 = 0, which are given by matrix 𝐽(𝐸5). 𝐽(𝐸5) = ( 𝑒2 βˆ’π‘1(1 βˆ’ π‘š3)𝑆 (5) 0 π‘Ž3(1 βˆ’ π‘š3)π‘Œπ‘† (5) 𝑒3 βˆ’π›Ύπ‘Œπ‘† (5) 0 π›Ύπ‘ŒπΌ (5) 𝑒4 ), where 𝑒2 = π‘Ÿ (1 βˆ’ 𝑆(5) 𝐾 ) βˆ’ π‘Ÿπ‘†(5) 𝐾 βˆ’ 𝑝1(1 βˆ’ π‘š3)π‘Œπ‘† (5) βˆ’ π‘Ž1, 𝑒3 = π‘Ž3(1 βˆ’ π‘š3)𝑆 (5) βˆ’ π›Ύπ‘ŒπΌ (5) βˆ’ 𝑑3, 𝑒4 = π›Ύπ‘Œπ‘† (5) βˆ’ π‘Ž6. So, we obtain the roots of the cubic equation, i.e. 𝛿1 = βˆ’π‘‘π‘Ÿ (𝐽(𝐸5)) ; 𝛿2 = 𝑀11 + 𝑀22 + 𝑀33; and 𝛿3 = βˆ’ 𝑑𝑒𝑑 (𝐽(𝐸5)) with 𝑀𝑖𝑗 is minor of entry (𝐽(𝐸5)) 𝑖𝑗 . By using Routh- Hurwitz criteria, the point 𝐸5 can be said locally asymptotically stable if it satisfies the following condition, 𝛽𝑆(5) < 𝑝2(1 βˆ’ π‘š4)π‘Œπ‘† (5) + 𝑝3(1 βˆ’ π‘š4)π‘ŒπΌ (5) + π‘Ž2; 𝛿1 > 0; 𝛿3 > 0; 𝛿1𝛿2 > 𝛿3. On point 𝐸6, the characteristic equation of 𝐸6 is (𝑙1 βˆ’ πœ†)(πœ† 3 + 𝜎1πœ† 2 + 𝜎2πœ† + 𝜎3) = 0. One eigenvalue is πœ†1 = 𝑙1, with 𝑙1 = π‘Ž5(1 βˆ’ π‘š4)𝐼 (6) + π›Ύπ‘Œπ‘† (6) βˆ’ π‘Ž6. Three eigenvalues are the roots of cubic equations, i.e. πœ†3 + 𝜎1πœ† 2 + 𝜎2πœ† + 𝜎3 = 0, which are given by matrix Adin Lazuardy Firdiansyah Dynamics of Infected Predator-Prey System with Nonlinear Incidence Rate and Prey in Refuge 131 𝐽(𝐸6). 𝐽(𝐸6) = ( 𝑙2 𝑙3 βˆ’π‘1(1 βˆ’ π‘š3)𝑆 (6) 𝛽𝐼(6) 1 + 𝐼(6) 𝑙4 βˆ’π‘2(1 βˆ’ π‘š4)𝐼 (6) π‘Ž3(1 βˆ’ π‘š3)π‘Œπ‘† (6) π‘Ž4(1 βˆ’ π‘š4)π‘Œπ‘† (6) 𝑙5 ) , where 𝑙2 = π‘Ÿ (1 βˆ’ 𝑆(6) + 𝐼(6) 𝐾 ) βˆ’ π‘Ÿπ‘†(6) 𝐾 βˆ’ 𝛽𝐼(6) 1 + 𝐼(6) βˆ’ 𝑝1(1 βˆ’ π‘š3)π‘Œπ‘† (6) βˆ’ π‘Ž1, 𝑙3 = βˆ’ π‘Ÿπ‘†(6) 𝐾 βˆ’ 𝛽𝑆(6) 1 + 𝐼(6) + 𝛽𝑆(6)𝐼(6) (1 + 𝐼(6))2 , 𝑙4 = 𝛽𝑆(6) 1 + 𝐼(6) βˆ’ 𝛽𝑆(6)𝐼(6) (1 + 𝐼(6))2 βˆ’ 𝑝2(1 βˆ’ π‘š4)π‘Œπ‘† (6) βˆ’ π‘Ž2, 𝑙5 = π‘Ž3(1 βˆ’ π‘š3)𝑆 (6) + π‘Ž4(1 βˆ’ π‘š4)𝐼 (6) βˆ’ 𝑑3. Thus, we obtained other corresponding eigenvalues, namely 𝜎1 = βˆ’π‘‘π‘Ÿ (𝐽(𝐸6)) ; 𝜎2 = 𝑀11 + 𝑀22 + 𝑀33; 𝜎3 = βˆ’ 𝑑𝑒𝑑 (𝐽(𝐸6)), with a minor of entry (𝐽(𝐸6)) 𝑖𝑗 that is denoted by 𝑀𝑖𝑗. By using Routh-Hurwitz criteria, the point 𝐸6 can be said locally asymptotically stable if only if π‘Ž5(1 βˆ’ π‘š4)𝐼 (6) + π›Ύπ‘Œπ‘† (6) < π‘Ž6; 𝜎1 > 0; 𝜎3 > 0; 𝜎1𝜎2 > 𝜎3. On point 𝐸7, we have the characteristic equation of 𝐸7, which is obtained from the matrix π½βˆ—(𝐸7). Meanwhile, 𝐽 βˆ—(𝐸7) is the Jacobian matrix at 𝐸7. Eigenvalues of 𝐸7 are the roots of the fourth-order equation, i.e. πœ†4 + πœ‚1πœ† 3 + πœ‚2πœ† 2 + πœ‚3πœ† + πœ‚4 = 0, with πœ‚1 = βˆ’π‘‘π‘Ÿ(𝐽 βˆ—(𝐸7)), πœ‚2 = 𝜏11 + 𝜏22 + 𝜏33 + 11 + 22 + 𝜌11, πœ‚4 = βˆ’(𝑀11 + 𝑀22 + 𝑀33 + 𝑀44), πœ‚4 = 𝑑𝑒𝑑(𝐽 βˆ—(𝐸7)), where 𝜏( ) and 𝜌 are minor of order 2 from the remaining submatrix after 4th row and 4th column (after 3rd row and 3rd column) and after 2nd row and 2nd column are removed from π½βˆ—(𝐸7), respectively. Meanwhile, 𝑀𝑖𝑗 is minor of order 3 for entry (𝐽 βˆ—(𝐸7))𝑖𝑗 . By using Routh-Hurwitz criteria, we get the condition for the stability of asymptotical locally at the point 𝐸7, namely πœ‚1 > 0; πœ‚1πœ‚2 > πœ‚3; πœ‚3(πœ‚2πœ‚1 βˆ’ πœ‚3) βˆ’ πœ‚4πœ‚1 2 > 0; πœ‚4 > 0. 3.4 Numerical Simulation In this section, we present some numerical solutions by using the Runge-Kutta 4th order as a numerical method to illustrate our analytical results. We use some parameters for the system (1), namely π‘Ÿ = 0.45, 𝐾 = 10, 𝛾 = 0.15, 𝑝1 = 0.6, 𝑝2 = 0.8, 𝑝3 = 0.45, π‘Ž1 = 0.12, π‘Ž2 = 0.16, π‘Ž3 = 0.25, π‘Ž4 = 0.35, π‘Ž5 = 0.15, π‘Ž6 = 0.16, 𝑑3 = 0.103, 𝛽 = 0.3333. Case 1: We start with π‘š3 = 0.157 and π‘š4 = 0.108. The prey refuge is very small, which means that the number of prey outside the refuge is huge. All solutions are convergent to Jurnal Matematika MANTIK Volume 6, No. 2, October 2020, pp. 123-134 132 𝐸3(0.4887,0,0.6090,0), see figure 2(a). This equilibrium is also locally asymptotically stable, see figure 2(b). It indicates that infected predator and infected prey are extinct. Case 2: We consider π‘š3 = 0.65 and π‘š4 = 0.3. The prey refuge means that the number of prey outside prey refuge is less than the first case. All solutions with different values are convergent to equilibrium 𝐸5(2.3556,0,1.0667,0.6874), see figure 3(a). 𝐸5 is also locally asymptotically stable, see figure 3(b). It indicates that the infected prey is extinct. (a) (b) Figure 2. Numerical solution for case 1: (a) time graph; (b) the phase portrait (a) (b) Figure 3. Numerical solution for case 2: (a) time graph; (b) the phase portrait Case 3: When the prey refuge increases to become π‘š3 = 0.85 and π‘š4 = 0.5, then it shows that amount of prey outside refuge is small. All trajectories with different values converge to the point of equilibrium 𝐸7(2.7641,0.4901,0.8216,0.5761), see figure 4(a), and is also locally asymptotically stable, see figure 4(b). It indicates that all populations exist. (a) (b) Figure 4. Numerical solution for case 3: (a) time graph; (b) the phase portrait To investigate the effect of refuge in prey populations, we can observe the dynamic behavior of the system (1) by using π‘š3, π‘š4 makes different values. Figure 5 shows the Adin Lazuardy Firdiansyah Dynamics of Infected Predator-Prey System with Nonlinear Incidence Rate and Prey in Refuge 133 time graph of prey populations which means that prey refuge can prevent extinction in prey populations when π‘š3, π‘š4 values are getting large. Figure 5. Influence refuge in prey by using π‘š3, π‘š4 makes different values 4. Conclusions In this paper, we have merged an eco-epidemiology model with transmission disease in both populations by using non-linear incidence rate in prey populations and also prey refuge proportional in prey populations. Eight equilibrium points that exist under certain conditions and also that local stability for those points have been determined. We have noticed that prey refuge can avoid extinction in prey populations. For future work, we have to investigate the harvesting effect in both populations. It is used as a disease control in an eco-epidemiology model. References [1] W. O. Kermack and A. G. McKendrick, β€œA Contribution to the Mathematical Theory of Epidemics,” Proc. R. Soc. London, vol. 115, no. 772, p. 22, 1927. [2] R. M. Anderson and R. M. May, β€œThe invasion, persistence and spread of infectious diseases within animal and plant communities,” Philos. Trans. R. Soc. Lond. B. Biol. Sci., vol. 314, no. 1167, pp. 533–570, 1986, doi: 10.1098/rstb.1986.0072. [3] C. Maji, D. Kesh, and D. Mukherjee, β€œBifurcation and global stability in an eco- epidemic model with refuge,” Energy, Ecol. Environ., vol. 4, no. 3, pp. 103–115, 2019, doi: 10.1007/s40974-019-00117-6. [4] S. Kant and V. Kumar, β€œAnalysis of an eco-epidemiological model with migrating and refuging prey,” Springer Proc. Math. Stat., vol. 143, pp. 17–36, 2015, doi: 10.1007/978-81-322-2485-3_2. [5] A. K. Pal and G. P. Samanta, β€œStability analysis of an eco-epidemiological model incorporating a prey refuge,” Nonlinear Anal. Model. Control, vol. 15, no. 4, pp. 473– 491, 2010, doi: 10.15388/na.15.4.14319. [6] S. A. Wuhaib and Y. A. B. U. Hasan, β€œPredator-Prey Interactions With Harvesting of Predator With Prey in Refuge,” Commun. Math. Biol. Neurosci., vol. 2013, no. 1, pp. 1–19, 2013. [7] S. P. Bera, A. Maiti, and G. P. Samanta, β€œA prey-predator model with infection in both prey and predator,” Filomat, vol. 29, no. 8, pp. 1753–1767, 2015, doi: 10.2298/FIL1508753B. Jurnal Matematika MANTIK Volume 6, No. 2, October 2020, pp. 123-134 134 [8] S. Kant and V. Kumar, β€œStability analysis of predator–prey system with migrating prey and disease infection in both species,” Appl. Math. Model., vol. 42, pp. 509– 539, 2017, doi: 10.1016/j.apm.2016.10.003. [9] A. Pusparani, W. M. Kusumawinahyu, and Trisilowati, β€œDynamical Analysis of Infected Predator-Prey Model with Saturated Incidence Rate,” IOP Conf. Ser. Mater. Sci. Eng., vol. 546, no. 5, p. 8, 2019, doi: 10.1088/1757-899X/546/5/052055. [10] V. Capasso and G. Serio, β€œA generalization of the Kermack-McKendrick deterministic epidemic model,” Math. Biosci., vol. 42, no. 1–2, pp. 43–61, 1978, doi: 10.1016/0025-5564(78)90006-8. [11] W. min Liu, S. A. Levin, and Y. Iwasa, β€œInfluence of nonlinear incidence rates upon the behavior of SIRS epidemiological models,” J. Math. Biol., vol. 23, no. 2, pp. 187– 204, 1986, doi: 10.1007/BF00276956. [12] S. Ruan and W. Wang, β€œDynamical behavior of an epidemic model with a nonlinear incidence rate,” J. Differ. Equ., vol. 188, no. 1, pp. 135–163, 2003, doi: 10.1016/S0022-0396(02)00089-X. [13] R. K. Naji and A. N. Mustafa, β€œThe dynamics of an eco-epidemiological model with nonlinear incidence rate,” J. Appl. Math., vol. 2012, p. 24, 2012, doi: 10.1155/2012/852631. [14] A. P. Maiti, C. Jana, and D. K. Maiti, β€œA delayed eco-epidemiological model with nonlinear incidence rate and Crowley–Martin functional response for infected prey and predator,” Nonlinear Dyn., vol. 98, no. 2, pp. 1137–1167, 2019, doi: 10.1007/s11071-019-05253-6. [15] S. Sharma and G. P. Samanta, β€œA Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge,” Chaos, Solitons and Fractals, vol. 70, no. 1, pp. 69–84, 2015, doi: 10.1016/j.chaos.2014.11.010. [16] S. Wang, Z. Ma, and W. Wang, β€œDynamical behavior of a generalized eco- epidemiological system with prey refuge,” Adv. Differ. Equations, vol. 2018, no. 1, pp. 1–20, 2018, doi: 10.1186/s13662-018-1704-x. [17] M. Onana, B. Mewoli, and J. J. Tewa, β€œHopf bifurcation analysis in a delayed Leslie– Gower predator–prey model incorporating additional food for predators, refuge and threshold harvesting of preys,” Nonlinear Dyn., vol. 100, no. 3, pp. 3007–3028, 2020, doi: 10.1007/s11071-020-05659-7. [18] Y. Cai, C. Zhao, W. Wang, and J. Wang, β€œDynamics of a Leslie-Gower predator- prey model with additive Allee effect,” Appl. Math. Model., vol. 39, no. 7, pp. 2092– 2106, 2015, doi: 10.1016/j.apm.2014.09.038.