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Abstract: The effect of Ca and Sr-doping on the structural electronic and optical properties of the cubic Ba1-

xCaxTiO3 and Ba1-xSrxTiO3 (x=0.4, 0.6) mixed crystals was investigated using first-principles calculations based on
density functional theory (DFT). The calculated band structures based on the optimized geometry of the cell for
the solid solutions show an indirect band gap character at M-points, with low energy dispersion along height
symmetry directions in the Brillouin zone. The band gaps increase with Ca and Sr concentrations. The total and
partial densities of states were analyzed to examine the contribution of different orbitals to the maximum of
valence band and the minimum of the conduction band. The optical properties such as reflectivity, energy loss,
refractive index and extinction coefficient were studied.
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Introduction

The interest carried in perovskites (ATiO3) and their dielectric properties
did not stop growing. The technico-economics requirements, directed
essentially to the miniaturization and the production at a lower cost, are at
the origin of the discovery of new successful materials. The most recent
fields of application are the ones of the aeronautics, the antennas guides of
waves, filters, satellite links, the processing and storage of the information
[1-3].The titanate of barium is certainly the material most studied among
compounds ferroelectrics [4] due to their chemical and mechanical
stability. At room temperature it exhibit a ferroelectric properties in
tetragonal phase with space group P4mm, over this temperature the BaTiO3

becomes a cubic phase Pm-3m.

The integration of ions isovalents as, Ca2+, Sr2+ and Pb2+ in Ba sites and the
substitution of tetravalent ions Ti4+ by Zr4+, Sn4+ and Hf4+ can influences
the properties of the BaTiO3, such as the phase transition temperature and
tailor these properties to performance requirements. The investigations in
this domain were mainly concentrated on the systems (Ba, Sr)TiO3

characterized by high dielectric constant. Increasing content of Sr2+on the
Ba2+ site, leads to decrease the temperature transition with an expansion of
the constant dielectric, low leakage current, low dielectric dispersion
against frequency and can be implanted in electroluminescent devices as a
high transparency insulator layer [5].
The major problems of these compounds seem of dielectric losses and its
relative variation, according to the temperature [6,7]. In order to reduce this
inconvenient, we have considered the good dielectric properties and the
relaxor nature of (Ba, Ca) TiO3 materials which are expected as alternative
candidates fortunable microwave dielectric materials with low dielectric
loss and temperature dependence.
The aim of this work is to carry out the electronic and optical properties;
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such as reflectivity, energy loss, refractive index and extinction coefficient
of Ba1-xCaxTiO3 and Ba1-xSrxTiO3, where x = 0.4 and 0.6, using the first
principle calculations.

Computation detail
We used for our calculations ABINIT ab initio software package [8-10]
which is based on the density functional theory (DFT), using plane wave
pseudo potential formalism, in order to obtain response function
calculations [11-13], computing are performed by the generalized gradient
approximation (GGA) with the Fritz-Haber-Institute (FHI)
pseudopotentials and Perdew-Burke-Ernzerh of exchange correlation [14],
energy cutoff of the electronic wave functions was expanded in plane
waves at 950 eV, which are well converged. The Monkhorst Pack Mesh
scheme [15] k-points grid sampling was set at 4 x 4 x 4 to perform the
irreducible Brillouin zone integrations. The initial crystal data of BaTiO3 in
cubic structure with the space group Pm-3m reported in the literature
[16], were used as a starting point. The optimized structure and minimum
energy lattice constants of the relaxed cubic unit cell were initially
computed. The electronic and optical properties were calculated for the
equilibrium structures.

Structural and electronic properties
The calculated a-cell parameters are listed in Table1. It is apparent that the
a-lattice parameter decreases with doped amount of the Sr and Ca elements,
this result is due to the lower ionic radius value of Sr and Ca compared to
Ba in the pure compound BaTiO3. The values obtained for the pure
BaTiO3, SrTiO3 and CaTiO3 crystals are in perfect agreement with other
theoretical and experimental values [17-19].

Table 1: Calculated a-cell parameter and band gap energy
of Ca and Sr-substitued BaTiO3

BaTiO3

Cell parameter(a)
(Å)

Band gap Eg
(eV)

4.123
4.008 [17]
4.011 [16] Exp

2.150
2.200 [23] Ahuja
3.270 [26] Exp

Ba0.6Ca0.4TiO3
Ba0.4Ca0.6TiO3

CaTiO3

4.106
4.075
3.964
3.851[17]
3.895[18] Exp

2.201
2.263
2.433
2.780 [24]
3.500 [27] Exp

Ba0.6Sr0.4TiO3
Ba0.4Sr0.6TiO3

SrTiO3

4.092
4.064
3.984
3.907 [17]
3.890 [18] Exp

2.222
2.266
2.380
2.200 [23]
3.250 [28] Exp

The calculated band structures along the high symmetry directions in the
first irreducible Brillouin Zone, in the same scale from -6 eV to 20 eV for
all crystals are shown in figure1; these bands look very similar and agree
with band structure published, previously in the literature [17-23]. The
nature of the crystal components and the electrostatic interactions affect the
dispersion of the band structure. The top of the valence band, for
Ba0.6Ca0.4TiO3, Ba0.4Ca0.6TiO3, Ba0.6Sr0.4TiO3 and Ba0.4Sr0.6TiO3

compounds, is located at M-points. The highest valence states at M-points
appear only about 0.1 eV after the highest states at Г points. The bottom of
the conduction band is located at Г-points. The lowest valence states at Г-
points appear only about 0.1 eV after the highest states at X-points. The
analysis of all directions reveals medium energy dispersion along Г-M and
M-X directions, while a lower dispersion is present along Г-X, equivalent
to the revolution axis.

Figure 1: Calculated band structure: a) Ba0.6Ca0.4TiO3,
b) Ba0.6Sr0.4TiO3, c) Ba0.4Ca0.6TiO3, d) Ba0.4Sr0.6TiO3

The figures reveal also that all compounds exhibit an indirect band gap
transition. From Table 1, we can see that the energy gap increases by
increasing the Ca and Sr content. This effect of doping is in agreed with
previous works [19,20]. The high band gap value is found to be 2.266 eV
for Ba0.4Sr0.6TiO3. The calculated values for the pure BaTiO3, SrTiO3 and
CaTiO3 (Figure 2) are found to be 2.15 eV, 2.380 eV and 2.433 eV
respectively, which are in reasonable agreement with other theoretical data
[21-24]. While they are slightly lower than available experimental results
[26-28]. These results are well known by underestimate the band gap
presented by DFT calculations [29-31].
Figure 3 shows plots of the total (TDOS) and partial (PDOS) densities of
states for Ba0.4Ca0.6TiO3, Ba0.4Sr0.6TiO3, Ba0.6Ca0.4TiO3 and Ba0.6Ca0.4TiO3.
A low displacement of the density is observed in conduction band to high
energy as function of Ca and Sr concentration.
The analysis of TDOS and PDOS variation versus photon energy reveals
that the maximum of the valence band is occupied by the orbital O-2p, and
the minimum of the conduction band is occupied by the orbital Ti-3d. From
-4 eV to -1 eV, appears the mixed contribution of O-2p, Ti-3d and a low
contribution of Ba-6s, Ca-4s and Sr-5s orbitals. Beyond 6 eV, a low
contribution of O-2s, O-2p, Ti-3s, Ti-3d, Ba-5p, Ba-6s, Ca-3p, Ca-4s, Sr-5s
and Sr-4p orbitals appears too.

Optical properties

The real and imaginary components of the dielectric function are used to
calculate the optical properties of Ba1-xCaxTiO3 and Ba1-xSrxTiO3 solid
solutions, such as the reflectivity R (ω), energy loss L(ω), refractive index
n (ω )and extinction coefficient k (ω) from the following relationships [22]:

Where ε1(ω) and ε2(ω) are the real and imaginary parts of the frequency
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Figure 2: Total and partial densities of states of the pure BaTiO3, CaTiO3 and SrTiO3

Figure 3: Total and partial densities of states: a) Ba0.6Ca0.4TiO3, b) Ba0.6Sr0.4TiO3,c) Ba0.4Ca0.6TiO3, d) Ba0.4Sr0.6TiO3
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complex dielectric function ε(ω)= ε1(ω)+iε2(ω), which are calculated from
the Kramers-Kronig relationship and the momentum matrix elements
between the occupied and unoccupied wave functions[32-33].
The calculated reflectivity R(ω) of the studied compounds, in the energy
range from 0 to 30 eV, are shown in figure 4 For the energy values less than
1 eV and above 22 eV, the reflectivity is lower than 17% for all
compounds, which indicates that these compounds are transparent, and
expected to be poor electrical conductors at this range.

Figure 4: Variation of reflectivity R(ω) versus photon
energy: a) Ba0.6Ca0.4TiO3 and Ba0.6Sr0.4TiO3- b)

Ba0.4Ca0.6TiO3 and Ba0.4Sr0.6TiO3

The curves show that the first optical critical point (A1) of the reflectivity
occurs at 3.271 eV and 3.790 eV for Ba0.6Ca0.4TiO3 and Ba0.4Ca0.6TiO3, and
at 3.907 eV and 3.790 eV for Ba0.6Sr0.4TiO3 and Ba0.4Sr0.6TiO3. These points
give the threshold for indirect optical transitions between the valence band
(VB) and the conduction band (CB), which are known as the fundamental
absorption edge due to the interaction between the O-2p and Ti-3d states
[34-35]. After this threshold energy (first critical point), the curves decrease
towards another critical point A2, this peak is caused by the interaction
between the O-2p and higher-energy conduction bands, whereas the peak
A3 is due to the interactions between Ti-3d and O-2s. We can observe that
the first peaks resulting from transition between O-2p and Ti-3d are
dominant.

Figure 5: Variation of energy loss L(ω) versus photon
energy: a) Ba0.6Ca0.4TiO3 and Ba0.6Sr0.4TiO3- b)

Ba0.4Ca0.6TiO3 and Ba0.4Sr0.6TiO3

As shown in figure 5, the energy loss gives a sharp peak at 21 eV, which is
related with the reduction of reflectivity R(ω), and gives the plasma
frequency ωp, according to Drude theory [36].

Figure 6: Variation of refractive index n(ω) versus
photon energy: a) Ba0.4Ca0.6TiO3 and Ba0.4Sr0.6TiO3 b)

Ba0.6Ca0.4TiO3 and Ba0.6Sr0.4TiO3

The variation of refractive index n(ω), with photon energy, for the titled
compounds are shown in figure 6. At 0 frequency, the value of the
refractive index is found to be about 2.25 for Ba0.6Ca0.4TiO3 and
Ba0.6Sr0.4TiO3, and 2.30 for Ba0.4Ca0.6TiO3 and Ba0.4Sr0.6TiO3. Their
variations enhanced beyond the zero frequency, increase with energy in
transparency region and limit reaching their maximum values in the UV
region at A1 point. The obtained values are 3.204 for Ba0.6Ca0.4TiO3, 3.201
for Ba0.4Ca0.6TiO3, 3.040 for Ba0.6Sr0.4TiO3 and 3.258 for Ba0.4Sr0.6TiO3.
Beyond the maximum point (A1), the refractive index decreases with few
oscillations to A2 and A3 points. Then, it tend to the unity after plasma
frequency which exhibit an insulators-like behaviour. In general, the
spectra are shifted towards low energies by changing the cations from Ba to
Ca and Sr.
The calculated extinction coefficient k(ω) for Ba0.6Ca0.4TiO3 and
Ba0.4Sr0.4TiO3 and for Ba0.6Ca0.6TiO3 and Ba0.4Sr0.6TiO3 is displayed in
figure 7a and figure 7b respectively.The analysis of the curves depicts a
constant value between 0 eV and the optical edge value, and then, the
extinction coefficient increases with Ca and Sr content, accompanied by
some swings which are due to the extinction of the plasmons. The
absorption edge starts from about 2 eV, corresponding to the energy gap.
This originates from the transition between O-2p states located at the top of
the valence bands to the Ti-3d states dominating in the bottom of the
conduction bands. Table II gathers the values of the critical points (A1).
The higher value was observed for Ba0.4Ca0.6TiO3 (1.970 at 4.485 eV).

Figure 7: Variation of extinction coefficient k(ω) versus
photon energy: a) Ba0.6Ca0.4TiO3 and Ba0.6Sr0.4TiO3 b)

Ba0.4Ca0.6TiO3 and Ba0.4Sr0.6TiO3
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Table 2. Maximum values of the first peaks for optical constants.

Conclusion

We have investigated the structural, electronic and optical properties of Ba1-

xCaxTiO3 and Ba1-xSrxTiO3 (x=0.4, 0.6) using DFT calculations with GGA
approximation as implemented in the ABINIT package. The results show
that the fundamental gap of all compounds exhibits an indirect transition at
M-points, with low energy dispersion along height symmetry directions
wich is large compared to BaTiO3 situated at - point. The calculated
energy band gaps are 2.201 eV, 2.222 eV, 2.263 eV and 2.266 eV for
Ba0.6Ca0.4TiO3, Ba0.6Sr0.4TiO3, Ba0.4Ca0.6TiO3 and Ba0.4Sr0.6TiO3

respectively. The analysis of the total and partial densities of states reveals
the contribution of all components around the energy gap and a small
displacement of the density in conduction band to high energy. the energy
loss gives a sharp peak at 21 eV, which is related with the reduction of
reflectivity due to plasma frequency ωp.
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